Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29047
Title: Adsorption Behaviour of Se(-II) and Tc(IV) onto Granite, Shale, Limestone, Illite, and MX-80 Bentonite in Ca-Na-Cl and Na-Ca-Cl Solutions
Other Titles: Adsorption of Se(-II) and Tc(IV)
Authors: Racette, Joshua
Advisor: Nagasaki, Shinya
Department: Engineering Physics and Nuclear Engineering
Keywords: Adsorption;Radionuclides;Se(-II);Tc(IV);Granite;Shale;Limestone;Illite;MX-80 Bentonite;Surface Complexation Modelling
Publication Date: 2023
Abstract: Canada is in the process of implementing a Deep Geologic Repository (DGR) to dispose of used nuclear waste. Adsorption behaviour of both Se(-II) and Tc(IV) onto granite, shale, limestone, illite, and MX-80 bentonite has been elucidated. Se(-II) adsorption onto granite and MX-80 bentonite displays a decrease in Rd with an increase in solution pH. Se(-II) adsorption onto granite decreases with an increase in solution ionic strength. Se(-II) adsorption onto MX-80 bentonite does not return evidence which supports an apparent effect due to the ionic strength. Tc(IV) adsorption onto shale, limestone, illite, and MX-80 bentonite remains constant as the solution pH increases. Ionic strength does not affect the magnitude of Tc(IV) adsorption across the adsorbents, however an increase in ionic strength accelerates Tc(IV) adsorption. Se(-II) surface complexation models are best simulated with the following surface complexes: ≡Feldspar_sSe-, ≡Biotite_sOH2HSe, ≡Albite_sSe-, ≡Montmorillonite_sSe-, and ≡Montmorillonite_sOH2HSe. Tc(IV) adsorption is best simulated with: ≡Biotite_sOTcO(OH), ≡Quartz_sOTcO(OH), (≡Feldspar_sOH)2TcO(OH)-, ≡Montmorillonite_sOTcO(OH), (≡Albite_sOH)2TcO(OH)-, ≡Illite_sOTcO(OH), and ≡Chlorite_sOTcO(OH). Se(-II) adsorption onto granite and MX-80 bentonite in CR-10 solution returns Rd values of (1.80 ± 0.10) m3∙kg-1 and (0.47 ± 0.38) m3∙kg-1, respectively. Tc(IV) adsorption onto granite and MX-80 bentonite in CR-10 solution returned Rd values of (1.47 ± 0.25) m3∙kg-1 and (2.19 ± 0.33) m3∙kg-1, respectively. Tc(IV) adsorption onto shale, limestone, illite, and MX-80 bentonite in SR-270-PW solution returned Rd values of (0.16 ± 0.10) m3∙kg-1, (0.44 ± 0.21) m3∙kg-1, (1.86 ± 0.44) m3∙kg-1, and (0.23 ± 0.10) m3∙kg-1, respectively. This thesis will further deepen the understanding of Se(-II) and Tc(IV) adsorption.
URI: http://hdl.handle.net/11375/29047
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Racette_Joshua_JJ_202308_PhD.pdf
Open Access
25.1 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue