Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29009
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFahnestock, Margaret-
dc.contributor.authorGage, Claire-
dc.date.accessioned2023-10-06T18:13:45Z-
dc.date.available2023-10-06T18:13:45Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/11375/29009-
dc.description.abstractAging and Alzheimer’s disease (AD) are associated with decreased cognitive function and neural degeneration. The basal forebrain is one of the first areas of the brain to degenerate in AD and depends on the neurotrophin brain-derived neurotrophic factor (BDNF) for survival. Loss of BDNF transport from target neurons may contribute to basal forebrain cholinergic neuron (BFCN) vulnerability in AD and aging. Oxidative stress is associated with cholinergic dysfunction and cognitive decline in aging and AD, and it is possible that oxidative stress may contribute to BDNF transport deficits in BFCNs. BFCNs are grown in microfluidic chambers that allow isolation of BFCN soma and axon terminals so transport of biotinylated and fluorescently labelled BDNF can be quantified. The objective of my research was to determine if oxidative stress induces BDNF retrograde transport deficits in BFCNs, and the mechanism behind this effect. I found that oxidative stress does reduce BDNF retrograde transport in BFCNs. Because it has previously been shown that aged BFCNs have decreased BDNF transport and downregulate the BDNF receptor TrkB, expression of both TrkB and p75NTR receptors was tested following oxidative stress using immunocytochemistry (ICC) and western blotting. This experiment showed that oxidative stress does not affect p75NTR or TrkB receptor levels. A likely alternative is that oxidative stress may lead to alterations in the transport machinery responsible for retrograde BDNF transport. I hypothesized that oxidative stress decreases retrograde axonal transport of BDNF via increased insulin-like growth factor 1 receptor (IGF1R) activity, which decreases the protein expression of the adaptor proteins BICD1 and Hook1 by inhibiting GSK3β activity via the PI3K-Akt pathway. ICC and western blotting showed that oxidative stress has no effect on either BICD1 or Hook1 levels. Future directions of this work involve further studying the involvement of the IGF1R pathway in oxidative stress, and the effect on other proteins involved in BDNF transport, including htt and DISC1.en_US
dc.language.isoenen_US
dc.subjectBDNFen_US
dc.subjectOxidative Stressen_US
dc.subjectAgingen_US
dc.subjectAlzheimer's Diseaseen_US
dc.subjectAxonal Transporten_US
dc.subjectBasal Forebrainen_US
dc.titleInvestigating mechanisms of oxidative-stress induced BDNF axonal transport deficits in basal forebrain cholinergic neuronsen_US
dc.typeThesisen_US
dc.contributor.departmentNeuroscienceen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Gage_Claire_V_202309_MSc.pdf
Open Access
1.39 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue