Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28776
Title: DEVELOPMENT OF A TECHNIQUE TO LOCALIZE AND QUANTIFY VOLUMETRIC LOW-LEVEL WASTE FROM CANDU PLANTS
Authors: Zhou, Peixiao
Advisor: Byun, Soo Hyun
Department: Radiation Sciences (Medical Physics/Radiation Biology)
Keywords: Low-level waste;MCNP;CANDU;Monte Carlo;Gamma Spectrometry;volume waste;radioactive waste;HPGe;LaBr
Publication Date: 2023
Abstract: With the complex composition of the radioisotopes and waste materials, the characterization of the volumetric low-level wastes from CANDU plants is challenging. This study presents a technique to localize and quantify the contaminations presented in the CANDU waste containers. MCNP-based models are developed for an N-type coaxial HPGe detector and a LaBr3 detector to simulate the photon peak information. The simulated efficiency and the experimental count rates are combined to estimate the activity of unknown waste samples. During the spectrum collection of a 4L Marinelli beaker source and 1-quart waste samples, the MCNP algorithm showed better accuracy in activity estimation than the Mirion ISOCS/LabSOCS software. With further development, this method has the potential to outperform the popular commercial software in estimating activity for volume sources with complex geometry and uneven distribution. The multi-detector array models with hotspot designs are also studied in this work to provide real-time information about the location and activity of the contamination inside the 2.2 m3 industrial low-level waste containers. The on-site measurements show promising results as the position of the contamination was able to be located within a volume of 61×40×34 cm. Overall, this technique has good potential to be utilized in the nuclear industry for large-volume low-level waste analysis.
URI: http://hdl.handle.net/11375/28776
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Zhou_Peixiao_202308_MSc.pdf
Open Access
2.54 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue