Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28771
Title: Accelerating Multi-target Visual Tracking on Smart Edge Devices
Authors: Nalaie, Keivan
Advisor: Zheng, Rong
Department: Computing and Software
Keywords: Mutli-object tracking;Edge computing;Real-time video analytics;Efficient deep inference;Efficient object detection
Publication Date: 2023
Abstract: \prefacesection{Abstract} Multi-object tracking (MOT) is a key building block in video analytics and finds extensive use in surveillance, search and rescue, and autonomous driving applications. Object detection, a crucial stage in MOT, dominates in the overall tracking inference time due to its reliance on Deep Neural Networks (DNNs). Despite the superior performance of cutting-edge object detectors, their extensive computational demands limit their real-time application on embedded devices that possess constrained processing capabilities. Hence, we aim to reduce the computational burdens of object detection while maintaining tracking performance. As the first approach, we adapt frame resolutions to reduce computational complexity. During inference, frame resolutions can be tuned according to the complexity of visual scenes. We present DeepScale, a model-agnostic frame resolution selection approach that operates on top of existing fully convolutional network-based trackers. By analyzing the effect of frame resolution on detection performance, DeepScale strikes good trade-offs between detection accuracy and processing speed by adapting frame resolutions on-the-fly. Our second approach focuses on enhancing the efficiency of a tracker by model adaptation. We introduce AttTrack to expedite tracking by interleaving the execution of object detectors of different model sizes in inference. A sophisticated network (teacher) runs for keyframes only while, for non-keyframe, knowledge is transferred from the teacher to a smaller network (student) to improve the latter’s performance. Our third contribution involves exploiting temporal-spatial redundancies to enable real-time multi-camera tracking. We propose the MVSparse pipeline which consists of a central processing unit that aggregates information from multiple cameras (on an edge server or in the cloud) and distributed lightweight Reinforcement Learning (RL) agents running on individual cameras that predict the informative blocks in the current frame based on past frames on the same camera and detection results from other cameras.
URI: http://hdl.handle.net/11375/28771
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Nalaie_Keivan_2023_06_phd.pdf
Open Access
27.58 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue