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Abstract

Multi-object tracking (MOT) is a key building block in video analytics and finds ex-

tensive use in surveillance, search and rescue, and autonomous driving applications.

Object detection, a crucial stage in MOT, dominates in the overall tracking infer-

ence time due to its reliance on Deep Neural Networks (DNNs). Despite the superior

performance of cutting-edge object detectors, their extensive computational demands

limit their real-time application on embedded devices that possess constrained pro-

cessing capabilities. Hence, we aim to reduce the computational burdens of object

detection while maintaining tracking performance.

As the first approach, we adapt frame resolutions to reduce computational com-

plexity. During inference, frame resolutions can be tuned according to the complexity

of visual scenes. We present DeepScale, a model-agnostic frame resolution selection

approach that operates on top of existing fully convolutional network-based track-

ers. By analyzing the effect of frame resolution on detection performance, DeepScale

strikes good trade-offs between detection accuracy and processing speed by adapting

frame resolutions on-the-fly.

Our second approach focuses on enhancing the efficiency of a tracker by model

adaptation. We introduce AttTrack to expedite tracking by interleaving the execution

of object detectors of different model sizes in inference. A sophisticated network
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(teacher) runs for keyframes only while, for non-keyframe, knowledge is transferred

from the teacher to a smaller network (student) to improve the latter’s performance.

Our third contribution involves exploiting temporal-spatial redundancies to enable

real-time multi-camera tracking. We propose the MVSparse pipeline which consists

of a central processing unit that aggregates information from multiple cameras (on

an edge server or in the cloud) and distributed lightweight Reinforcement Learning

(RL) agents running on individual cameras that predict the informative blocks in the

current frame based on past frames on the same camera and detection results from

other cameras.

iv



To my parents,

sister, and brother

v



Acknowledgements

I express my deepest gratitude to Dr. Rong Zheng, my supervisor for invaluable

suggestions and encouragements to delve deeper in my research. Her wisdom and

knowledge have been a source of motivation entire my Ph.D. program. I find myself

lucky to have an opportunity to be one of her students in my lifetime.

I am grateful to my committee members, Dr. Fei Chiang and Dr. Lingyang Chu,

for their invaluable feedbacks and constructive criticisms. I would also like to express

my appreciation to my external committee member for joining the committee team.

I would like to extend my gratitude to all of my teachers for introducing me to the

world of science. Thank you to Dr. Hadi Sadoghi Yazdi and Dr. Sayed Kamaledin

Ghiasi-Shirazi for guiding me to discover my research passion in the machine learning

field.

I would like to thank my friends in the WiSeR research group for providing an

active research environment. Thank you Renjie Xu for the valuable discussions and

setting up testbed structures. I and Renjie had lovely talks about Nintendo games

that are truly unforgettable.

I would like to thank Dr. Parsa Bagherzadeh, my cherished friend, for providing

invaluable guidance and assistance throughout my doctoral journey, from its begin-

ning to its end.

vi



I express gratitude to the Iranian community in Hamilton for providing a sup-

portive and compassionate atmosphere. I would like to thank my Iranian friends at

McMaster University for engaging conversations and social events.

My greatest appreciation goes to my parents, Hossein and Mozhgan for encour-

aging me in higher education and unwavering support on this road. I would like to

express my sincerest gratitude to my brother, Alireza, and loving sister, Niloofar.

vii



Contents

Abstract iii

Acknowledgements vi

List of Abbreviations xiv

Declaration of Academic Achievement xvi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9

2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Online Frame Size Adaptation for MOT on Smart Cameras and Edge

Servers 29

viii



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Tracking with adaptive resolutions . . . . . . . . . . . . . . . . . . . 36

3.4 Computation partition for MOT on smart camera-edge . . . . . . . . 42

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Online Deep Attention Transfer for MOT 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Preliminary study of model sizes on tracking performance . . . . . . . 61

4.4 The AttTrack framework . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Efficient Cooperative Spatial-Temporal Processing for Distributed

Multi-view Tracking 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 A preliminary study on multi-camera multi-target pedestrian tracking 84

5.3 The MVSaprse framework . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Concluding Remarks 109

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

ix



List of Figures

1.1 Overview of the contributions. . . . . . . . . . . . . . . . . . . . . . . 5

2.1 An overview of the studied single-view datasets. . . . . . . . . . . . . 23

2.2 An overview of the studied multi-view datasets. . . . . . . . . . . . . 25

3.1 A breakdown of GPU processing time in FairMOT on the MOT17

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Person detection rate using DLA-34 on MOT17 dataset. . . . . . . . 35

3.3 The DeepScale pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Four representative architectures for computation partition between an

edge server and a smart camera. . . . . . . . . . . . . . . . . . . . . . 45

3.5 Time efficiency of DeepScale and DeepScale++ in comparison to the

fixed resolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Percentages of frames of different resolutions selected by DeepScale++

under different configurations. . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Impact of interval K on workload partition. . . . . . . . . . . . . . . . 55

4.1 Demonstration of tracking results from a small and a large model. . . 64

4.2 Schematic illustration of attention transfer. . . . . . . . . . . . . . . . 65

4.3 System architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Attention state update. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

x



4.5 System architecture for student and skip module design. . . . . . . . 68

4.6 The student network architecture. . . . . . . . . . . . . . . . . . . . . 69

4.7 Cross model feature learning. . . . . . . . . . . . . . . . . . . . . . . 70

4.8 Results of attention transfer for AttTrack and Layerwise approach. . . 77

5.1 MVDet system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Distribution of camera coverage over people on the scene. . . . . . . . 87

5.3 Oracle’s top camera of choice experiences variations throughout time

in relation to 3 distinct individuals. . . . . . . . . . . . . . . . . . . 88

5.4 System pipeline of MVSparse . . . . . . . . . . . . . . . . . . . . . . 89

5.5 An illustration of the Bipartite graph matching algorithm. . . . . . . 93

5.6 MVSparse’s Policy network architecture. . . . . . . . . . . . . . . . . 94

5.7 Average overlapping views selected by MVSparse. . . . . . . . . . . . 102

5.8 Detection performance of MVSparse under different Ks. . . . . . . . . 103

5.9 Backbone inference time (FPS) in MVSparse. . . . . . . . . . . . . . 103

5.10 Representative architectures for computation partition between a GPU

server and smart cameras in MVSparse. . . . . . . . . . . . . . . . . . 106

xi



List of Tables

2.1 Characteristics of the representative single view object tracking datasets.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Characteristics of the representative multi-view object tracking datasets. 28

3.1 The tracking time and accuracy of FairMOT on the MOT17 dataset. 36

3.2 Qualitative comparison among different edge-server architectures. . . 44

3.3 The tracking accuracy and latency of DeepScale++ under different

thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Three set configurations for DeepScale and DeepScale++. . . . . . . 48

3.5 Adaptive frame-size vs fixed-size tracking on the validation set of MOT17

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Impact of adaption interval K on the validation set of the MOT17

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Results of four representative architectures for computation partition

between edge server and smart cameras. . . . . . . . . . . . . . . . . 51

3.8 Comparison with SOTA methods on MOT benchmarks. . . . . . . . . 52

4.1 Impact of model size on tracking performance on the MOT17 dataset. 63

4.2 Performance of Teacher-only and Student-only baselines on the MOT17

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xii



4.3 AttTrack model experiments on the MOT17 dataset . . . . . . . . . . 74

4.4 YOLOv5 and DLA34 models with IFM on the MOT17 dataset. . . . 75

4.5 Compression of Different Teacher Models using EFM on the MOT17

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Importance of cross-model feature learning on the MOT17 dataset. . 76

4.7 Performance of model skipping in AttTrack compared to the baseline

on the MOT17 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 Performance of Teacher-only and Student-only baselines on the MOT15

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 AttTrack and Layerwise attention on the MOT15 dataset. . . . . . . 79

5.1 Average number of processed frames by Oracle and MVDet. . . . . . 87

5.2 Detection results on the WildTrack dataset. . . . . . . . . . . . . . . 101

5.3 Detection results on the MultiviewX dataset. . . . . . . . . . . . . . . 101

5.4 Tracking results on WildTrack and MultiViewX datasets. . . . . . . . 104

5.5 Testbed results on the WildTrack dataset. . . . . . . . . . . . . . . . 108

5.6 Testbed results on the MultiviewX dataset. . . . . . . . . . . . . . . . 108

xiii



List of Abbreviations

BIP Binary Integer Program

CNN Convolutional Neural Network

DNN Deep Neural Network

EFM Explicit Feature Mapping

FCN Fully Convolution Network

FoV Field of View

FHD Full High Definition

FPS Frames per Second

IFM Implicit Feature Mapping

IG Information Gain

IoU Intersection of Union

KD Knowledge Distillation

LSTM Long Short Term Memory

xiv



MODA Multi Object Detection Accuracy

MODP Multi Object Detection Precision

MOT Multi Object Tracking

MOTA Multi Object Tracking Accuracy

NAS Neural Architecture Search

RGB Red Greed Blue

RL Reinforcement Learning

RNN Recurrent Neural Network

RoI Region of Interest

SOTA State of The Art

xv



Declaration of Academic

Achievement

The presented work here is the outcome of research conducted by myself during the

years 2018-2023.

xvi



Chapter 1

Introduction

1.1 Motivation

Multi-Object Tracking (MOT) aims to find and track the trajectories of moving

objects in a visual scene. It is an essential component of intelligent video analytics

and has found applications in autonomous vehicles, search and rescue operations, and

surveillance [119, 103]. The wide deployments of surveillance cameras—China leads

the world with 200 million installations, followed by the United States with 50 million

and Germany with 5.2 million CCTV cameras—speaks for the importance of modern

visual analytics and monitoring systems for public safety [5].

Modern MOT systems often employ a tracking-by-detection strategy [133, 136,

113]. Specifically, object detection initially determines the bounding boxes of objects

of interest in every frame. Next, object association is employed to associate each

detection with existing trajectories based on appearance and motion characteristics.

Deep neural networks (DNNs), in particular, convolutional neural networks (CNNs)

[84, 117, 6], have been widely adopted in object detection and re-identification in
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MOT. Despite their superior performance, these models face challenges in high com-

putational complexity and memory usage. These challenges hinder the deployment

of cutting-edge object detectors on embedded devices with low power and resource

constraints. To achieve real-time multi-object tracking on resource-limited devices,

in this thesis, we recognize that there exists significant sparsity and redundancy in

video sequences, which are exploited by our novel solutions.

Input frame size. The computational intensity of large DNN models depends

on both the input size and model size. Complex models are not always necessary

for sparse scenes to achieve high inference accuracy. Therefore, by analyzing the

complexity of the scene during inference, it is possible to lower frame resolutions to

accelerate the tracking process.

Works such as [20, 123, 78, 71, 57, 87] aim to lessen the computational burden

of deep networks by analyzing the relationship between input resolution and compu-

tation cost of object detectors. Improved tracking accuracy is often associated with

larger frame resolutions, albeit this comes at the expense of longer inference time. It

has been recognized that the density and sizes of objects fluctuate with time, even

for footage recorded from the same camera [82, 78]. Thus, to achieve an appropriate

balance between tracking accuracy and speed, an approach that evaluates visual con-

tent inside scenes and adapts frame resolution is essential. Unfortunately, existing

approaches incur considerable overhead in determining the suitable frame resolutions

at run time or having to store a different model for each resolution, making them un-

suitable for embedded devices. Therefore there is a need for efficient frame resolution

adaption.

Model size. It was found that deep models with a large number of parameters

2
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are not always necessary for object detection tasks involving only a limited num-

ber of categories [83, 69, 131]. Scenes with sparse objects also offer opportunities

for employing low-complexity object detectors. Knowledge Distillation (KD) allows

knowledge transfer from a larger, slower model, known as the teacher model, to a

smaller, faster model, referred to as the student model. The student model benefits

from this knowledge from the teacher, as it allows the student model to learn the

behavior of the teacher model, ultimately improving the quality of generalization.

Several methods employed KD in object detection [15, 69, 77] but limit the trans-

mission of knowledge during train time. However, the student model with limited

representation power may need supervision from the teacher model during inference.

This is particularly relevant when encountering challenging scenarios such as occlusion

or distant objects that may be underrepresented in training data.

Temporal-spatial redundancy. Multi-person multi-camera video analytics on

a large scale typically require substantial computational resources and network band-

width consumption. Most works in the field of multi-camera tracking, aim to increase

accuracy rather than improving efficiency [51, 62, 128]. There are two types of re-

dundancy, temporal and spatial. Temporal redundancy refers to situations when a

significant proportion of frames contain only static or slowly changing backgrounds.

Spatial redundancy, on the other hand, relates to situations where people can be

captured by multiple cameras and due to their overlapping FoVs, only a subset of

which are needed for tracking purposes. Temporal redundancy has been explored in

the visual analytics domain. Several approaches including Zhu et al. [137] and Su et

al. [100] utilized optical flow to separate foreground moving objects from stationary

3



Ph.D. Thesis—K. Nalaie McMaster University—Computer Science

background. However, optical flow incurs extra computing overhead and is inade-

quate for large motions, such as newly arrived objects. In a different line of approach,

Verelst et al. [106] uses reinforcement learning to train an agent online, extracting

informative regions. However, the majority of studies in this category are limited to

single-camera tracking.

In multi-camera tracking, the works presented in [44, 68] aimed to facilitate

real-time video analytics by exploiting redundancy across multiple camera views.

They identify the overlapping regions across multiple cameras and construct an offline

lookup table, which is used to determine the regions of interest for each camera during

inference. In the presence of occluded objects, the offline fixed assignment can be

inadequate. Furthermore, existing fixed partition strategies only associate one region

with a single camera. Aggregating multiple views for the same object has been shown

to improve detection accuracy[14].

Distributed processing. Distributed computing involves performing computa-

tions near the location of a user or end device, resulting in faster and more reliable

services and access to powerful computing resources on the cloud. In a distributed

system, an end device is a source device such as a mobile phone or tablet which

generates data by interacting with users and is capable of processing the data on a

small scale without relying on cloud servers. This reduces network costs and avoids

bandwidth constraints. On the other hand, an edge device refers to any process-

ing unit that is near end devices, responsible for processing data generated by end

devices. Also, cloud denotes a remote and powerful processing unit, equipped to

perform massive computational loads received from edge or end devices. To address

the limitations posed by end devices and significant network latency associated with

4
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transferring data between end, edge, and cloud servers, recently efficient edge com-

puting architectures have been developed for visual analytics [43, 12, 61, 30]. While

these approaches intended to split computation loads between different devices, they

do not specially address MOT’s requirements in distributed settings in terms of both

tracking accuracy and performance efficiency.

1.2 Contributions

The thesis as summarized in Figure 1.1, contributes to the improvement of multi-

object tracking efficiency on resource-constrained end and edge devices.

Efficient multi-object 
tracking

Reducing input 
image size

Reducing model size

Reducing temporal-
spatial redundancy

Extracting model size and detectability scores

Model agnostic input-size estimator

Designing computation partition schemes

Online detection knowledge transfer

Cross-model feature learning 

Model adaptation tracking pipeline 

Distributed online RL learning 

Designing Oracle to measure spatial 
redundancy

Sparse and parallel processing

Figure 1.1: Overview of the contributions.

In Chapter 3, we introduce DeepScale, which aims to accelerate the execution
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of object detectors by adapting input frame resolutions. During the inference time,

DeepScale periodically assesses the complexity of visual content and dynamically

adjusts the frame resolution based on user-defined parameters. Following is a list of

key characteristics of DeepScale:

• DeepScale is model-agnostic and can enhance the tracking throughput of exist-

ing fully convolutional network-based trackers.

• We integrate detection performance scores at training with a one-shot tracker

architecture, allowing DeepScale to learn the representation estimations for dif-

ferent frame sizes on its own.

• Two computation partition schemes tailored for multiple object tracking: one

exclusively using edge servers with adaptive frame-size transmission and the

other involving edge server assistance in tracking.

In Chapter 4, we present AttTrack, a solution to adapting the size of deep mod-

els. By effectively sharing knowledge between a sophisticated teacher network and a

small student network during the training and inference phases, AttTrack enhances

the tracking accuracy of the student model while preserving its computational gain.

Specially,

• By interleaving the execution of two models with different representation pow-

ers, we achieve a fast-tracking performance during inference, while maintaining

the accuracy comparable to that obtained by the larger model.

• We incorporate the updated predictions from the teacher model as prior knowl-

edge to guide the student model.

6
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• We utilize cross-model feature learning that aligns the intermediate representa-

tions of the teacher and student models.

In Chapter 5, we present MVSparse, an efficient cooperative multi-object tracking

framework that exploits temporal-spatial redundancy across multiple cameras. Uti-

lizing an online distributed reinforcement learning mechanism, we establish a fully

end-to-end trainable pipeline that accelerates any tracking-by-detection model by

reducing detection and communication costs between cameras and an edge server.

MVSparse consists of three main components:

• We use a clustering algorithm in which objects associated with the same person

are grouped in one cluster. To determine which cameras are used to detect each

person, we select the K largest bounding-box elements from each cluster. This

enables us to perform object detection with only K views of the same object in

the scene.

• We use distributed lightweight RL agents running on individual cameras that

identify the informative blocks in a frame based on past frames on the same

camera and detection results from other cameras. Only selected blocks will be

sent to a central unit.

• We deploy sparse backbone processing optimized to process selected regions of

all cameras simultaneously.

1.3 Organization

The content of this thesis comprises contents from two published conference pa-

pers [82, 83]. The rest of the thesis is organized as follows:

7
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• Chapter 2. We provide an overview of related work, performance metrics, and

characteristics of representative single and multi-view tracking datasets.

• Chapter 3. We present DeepScale, the model-agnostic solution to accelerating

the tracking throughput of MOT by dynamically adjusting the resolution of

input frames.

• Chapter 4. We present AttTrack, a technique to transfer knowledge gained

from a complex teacher model to a small student model.

• Chapter 5. We describe MVSparse, a distributed online tracking technique

to deal with spatial and temporal redundancy from synchronized cameras with

overlapping FoVs.

• Chapter 6. We conclude the thesis with final remarks and directions for future

works.

8



Chapter 2

Background
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2.1 Related work

The intense computing requirements of deep models employed in video analytics have

been the subject of extensive research over the past few years. In this section, first,

we review existing SOTA methods in MOT. We then discuss four main categories

of approaches that aim to improve the efficiency of video analytics models, namely,

decreasing the input frame size, reducing the model complexity, exploring tempo-

ral/spatial redundancies in video frames, and collaborative edge-cloud architectures.

2.1.1 MOT pipelines and SOTA model architectures

Existing SOTA methods on MOT rely on the tracking by detection paradigm. Some

trackers gain popularity due to their simplicity and minimal requirements. For in-

stance, the IOU-Tracker [9] does not leverage any motion feature and associates de-

tections and trajectories solely based on spatial overlaps. It can achieve 100K FPS

inference time when detection time is excluded. Similarly, SORT [7] presents a fast-

tracking approach by only employing spatial features. It combines KalmanFilter to

predict the future location of existing trajectories and Hungarian algorithm [63] to

link detections to those predicted locations. Some recent works suggest using visual

features extracted from each detected object to be used as re-ID features, enhancing

the accuracy of trackers against occlusion and fast motions [6, 118, 76]. With advances

in multi-task learning, utilizing a shared network for detection and tracking purposes

started to appear. In [113] authors aimed to achieve a (near) real-time tracking speed

by training a shared model based on multi-task learning which can simultaneously

generate detections and corresponding visual embeddings. Tracking approaches such

as [31, 136] solve visual tracking in a straightforward manner by training a single

10
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network jointly to perform detection and motion estimation. In ByteTracker[132],

the authors present tracking by associating every detection box instead of solely re-

lying on high-score detections, enhancing the robustness of detection-based trackers

by associating low-score detection boxes. In existing trackers such as [133, 98, 113],

the two-stage association is employed where high-score detections are preferred over

low-score detections, even if the latter is more accurate detections. Addressing is-

sues of two-stage association methods, in [99], Stadler et al. present a Combined

Matching approach in which all possible assignments between detections and trajec-

tories are considered simultaneously, improving association accuracy and preventing

ID switches.

2.1.2 Adaptive frame size in visual processing

The need to adapt frame sizes has been recognized in the literature on action recogni-

tion, video object detection, and classification applications to speed up the inference

time. AdaScale [20] uses a scale regression model to predict a resolution that results

in the minimum loss of predicted bounding boxes. The authors define a metric asso-

ciated with the loss of predicted bounding boxes in an image at different scales and

use it to generate the optimal scale labels by running a pre-trained object detector

on the training set. A scale regressor is then trained along with a bounding box

predictor in a two-headed network. While AdaScale can be utilized in MOT, the

metric proposed for determining the optimal scale fails to account for the effect of

input frame sizes on re-identification and will thus lead to suboptimal performance in

MOT. Moreover, AdaScale does not provide user-controlled parameters to trade-off

inference performance with speed at run time.

11
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To meet the accuracy-latency requirements in visual object detection on embedded

systems, in ApproxNet [123], the authors introduce a data-driven modeling approach

in the face of changing content and resource contention. A quadratic regression is

used to pick a particular configuration at the run time among object tracking types,

the number of object proposals, the downsampling ratios of the tracker, and frame

sizes. To select the appropriate parameters, profiling of CPU and memory usage of the

configurations on a target platform is needed. As the search space grows exponentially

with the number of knobs, the run time complexity increases accordingly. The use of

a multi-branch detection network also increases the storage complexity of the model.

In AR-Net [78], an adaptive image-size strategy is proposed, which uses a policy

network to decide what resolution to choose for action recognition at run time. The

policy network contains a feature extractor and an LSTM module. To handle different

input sizes, the authors propose to store different backbone networks corresponding

to different resolutions. AR-NET is not directly applicable to MOT. Furthermore, it

has several drawbacks: first, storing multiple networks demands extra storage, which

may limit its applicability on embedded devices; second, having a separate feature

extractor for the sole purpose of predicting suitable resolutions causes additional com-

putational overhead; third, the policy network takes images of the lowest resolution

as inputs. Such low-resolution images may not contain the necessary information for

correct predictions (“how does one know what is not there?”)

Liu et al. [71] developed AdaVP, a parallel detection and tracking pipeline to fully

utilize the computation resource on current mobile devices for high detection accuracy.

AdaVP dynamically adapts input frame sizes to YOLOv3 at runtime to achieve a

good trade-off between tracking accuracy and latency. The adaptation is based on
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the rate of changes in the detected areas from the object detector, YOLO. The major

difference between our work and [71] is that [71] employs a tracking algorithm to

track the objects between two frames of YOLO processing. The tracking method

can only track the objects discovered by the object detection model. It is unable to

handle new objects that appear prior to the YOLO processing of the following frame.

Chameleon [57] dynamically selects the suitable configurations (such as input

resolution and frame rate) for DNN-based video analytics. At each profiling win-

dow, it chooses the top-k best configurations which are shared among similar videos

and cameras. Although Chameleon reduces the profiling costs by tuning the control

knobs independently, the overhead of profiling grows as the number of control knobs

increases. Furthermore, searching control knobs independently can result in sub-

optimal decisions. VideoEdge [55] also chooses an appropriate configuration using an

offline profiling method to search among 1800 combinations of different resolutions,

frame rates, and multiple object detectors. Considering the exhaustive cost of offline

profiling, some works aimed to accelerate profiling using merging, caching, and avoid-

ing redundant iterations. For instance, ApproxDet [123] enhances profiling efficiency

by sub-sampling the configuration space. DeepDecision [87] formulates an opti-

mization problem that determines the best system configuration based on empirical

measurements of network bandwidth, edge device battery use, network latency, and

model accuracy. Due to the combinatorial nature of the optimization problem, each

iteration of DeepDecision requires exhaustive grid search, which makes it unsuitable

for real-time applications.

Compared to the aforementioned works, DeepScale (Chapter 3) has several advan-

tages for MOT tasks. First, the metric to determine the optimal resolution is tailored
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to MOT in that it considers both target detection and re-identification across frames.

Second, in DeepScale, feature extraction is shared between resolution prediction and

object detection, and thus incurs small overhead. Lastly, DeepScale allows users to

choose suitable accuracy-latency trade-offs at run time without having to retrain the

network or store extra models/branches.

In Chapter 3, different from existing attempts to accelerate visual processing or

MOT, we adapt the sizes of input frames to achieve a good trade-off between inference

time and tracking accuracy. DeepScale is model agnostic and can work with any fully

convolution network (FCN)-based object detectors. It is to the best of our knowledge,

the first work to do so for MOT.

2.1.3 Model size reduction

Neural architecture search

In the process of Neural Architecture Search (NAS), the topology of the network is

automated to optimize the computation process. In early NAS studies, the problem

was formulated as a RL problem where an agent generate a topology to maximize the

reward(performance evaluation). For instance, in works [138, 86], a recurrent neu-

ral network is adopted to generate model descriptors of neural networks. However,

for large datasets such as ImageNet [26] exhaustive search for all possible combi-

nations of operations is expensive. To address this, in NasNet [139], the authors

propose to search for an architectural building block to construct a scalable archi-

tecture built by stacking only Reduction Cells and Normal Cells. Methods such as

[121, 89] have explored the application of the genetic algorithm to optimize the design

of deep networks. GNet[121] encodes the representation of a network as a fix-length
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binary string and then applies genetic operations such as mutation and cross-over

to generate a more competitive generation. The competitiveness of each generation

is determined by evaluating a trained network from scratch on a vitiation set. Liu

et al. [73] proposed an RL approach to search for a student architecture using KD-

based reward. The distilled knowledge from a teacher model is incorporated into the

structural architecture of the student model.

Neural network pruning

Neural network pruning aims to accelerate the performance of a neural network by

removing superfluous parts of the network that consume computational resources

without impacting the network’s performance. In the unstructured pruning approach,

works such as [33, 35, 46, 47] aim to reduce the number of floating point operations

by removing connections between the network’s parameter. Although unstructured

weight pruning is simple to implement and popular, its effectiveness is highly de-

pendent on framework implementation and hardware support. Also when it comes

to pruning fully connected layers, it does not significantly reduce the computation

cost since the FLOP associated with these types of layers contributes less than 1% in

overall processing time [56]. To address this problem in CNNs, researchers propose

to prune larger structures such as entire convolution filters [116, 67, 74, 115]. In [45],

authors introduce a Ghost module that splits each convolution layer into two parts

aiming to decrease the number of parameters in each layer. The first layer involves

ordinary convolutions, while the second layer applies liner operation to the intrinsic

feature maps generated by the first layer. In a separate study by Gao et al. [37],

authors use a channel pruning approach for CNNs. This involves splitting a single
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network into a stack of sub-networks along with a standalone network which is trained

to predict the performance of each sub-networks guiding the pruning.

Knowledge distillation

Knowledge Distillation (KD) was first proposed by Hinton et al. [50], which aims to

train a student (a smaller and faster) model by transferring knowledge from a teacher

(a bigger and slower) model. This knowledge in the form of softened outputs of the

teacher model is more informative than one-hot vectors in training data. Subsequent

studies improved upon [50] and devised various ways to ease the training of small

models with few trainable parameters. Romero et al. [96] proposed FitNet, which uses

the intermediate representation learned by a teacher model to change the structure

of a small model from being wide and shallow to narrow and deep. Knowledge

transmission was considered as a distribution matching problem in [53]. Despite

success of KD in classification problems, the needs for bounding box regression and

heatmap estimation in object detection introduce additional obstacles. To extend

KD to object detection Chen et al. [15] included a feature imitation loss into the

detection loss to use the intermediate features of the teacher as hints for the student

model. In [69], the authors devised MIMIC, an extended KD for detector models

by employing a fully convolutional feature mimic architecture to transfer knowledge

for each pixel individually. In order to avoid teacher supervision for background

regions, Mehta et al. [77] introduced objectness scaled distillation for one-shot object

detectors. Similarly, our method uses the attention mechanism of the teacher to

train the student model on softer labels. However, the key distinction between our

AttTrack (Chapter 4) and the aforementioned approaches is that during the inference
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time, the student model uses real teacher outputs, to calibrate tracking outputs and

achieve better accuracy.

2.1.4 Exploration of temporal/spatial redundancy

Recognizing the abundance of static or slowly changing backgrounds in input frames,

BlockCopy was introduced in [106] to speed up deep neural network processing for

video analytics. It employs a policy network to identify and remove backgrounds and

stationary regions from a frame and concentrates exclusively on informative regions.

Consequently, only the selected regions in the current frame are processed via sparse

convolution, and the computed features of excluded regions are reused from previous

frames. BlockCopy has shown promises in accelerating pedestrian detection, instance

segmentation, and semantic segmentation tasks, but it is restricted to single-camera

inputs. DeepCache, introduced in [122], utilizes the internal structure of a deep

architecture to produce reusable results by matching regions in the current frame

with those earlier frames via diamond searches. Thus, computation is necessary only

in mismatched areas in the backbone layers. Similar to BlockCopy, DeepCache only

exploits temporal redundancy in single camera feeds. Furthermore, for large input

frames, the diamond search can impose significant overhead.

CrossRoI [44] is among the first works that exploits spatial redundancy in multi-

camera multi-target detection using deep models. It reduces the need for extra com-

munication and computational resources by taking advantage of the overlapping FoV.

Through offline profiling, a lookup table of regional associations among all the cam-

eras is constructed using Re-ID filtering. In the inference time, each camera transmits
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only areas of its captured view specified by the lookup table. Upon receiving cam-

era feeds from multiple perspectives, the server uses sparse block processing, such as

SBNet [93], to speed up inference. In contrast to our approach, CrossRoI relies on

fixed RoI masks of the visual scenes computed from multiple frames offline. When the

density or moving patterns of objects change, this offline approach may fail to extract

accurate non-overlapping coverage. Polly [68] also exploits spatial redundancy across

cameras but allows sharing of detection results in overlapping FoV among several

cameras. Polly eliminates redundant inference over the same regions across different

viewpoints by sharing the inference results from the reference camera with the target

camera. However, we find that it is beneficial to aggregate different perspectives for

object detection and the optimal views change over time. Unlike CrossROI and Polly,

MVSparse judiciously adapts the regions in each view to be processed through dis-

tributed reinforcement learning and fuses multi-view information to obtain the final

detection results.

Dai et al. [24] developed RESPIRE, a method that aims to reduce spatial and

temporal redundancy by carefully choosing frames that maximize overall information

given latency, computation resources, and bandwidth constraints. This approach is

restricted to general feature descriptors such as SIFT, which results in low granularity

when number of objects is large. Also, all camera feeds must be retrieved to fully

benefit from any temporal or spatial redundancy. In [125], Yang et al. proposed a

traffic-related object detection framework CEVAS, which simultaneously eliminates

the existing spatial and temporal redundancy in multi-view video data. CEVAS

uses cooperative perception to exploit temporal and spatial redundancy in a multi-

camera environment. It reduces temporal redundancy by detecting newly arrived
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objects using optical flow as a motion feature. Targeting spatial redundancy, an object

manager runs centrally to evaluate detections across multiple cameras to eliminate

spatial redundancy of common objects among different cameras with overlapping

FoV.

2.1.5 Efficient visual processing

Sparse processing in deep models

Generally, a large number of layers in deep networks are needed to achieve the state

of the art accuracy on visual tasks. However, it may not be necessary to process all

layers and instead adjust the network’s depth according to input characteristics[104].

Works such as [120, 112] utilize a set of residual convolution layers, and the depth

of the network is a function of sequential decisions which use the output of previous

decisions. Instead of applying convolutional filters to the entire input frames, some

works only convolve these filters over particular locations [18, 36]. For example, SB-

Net [93] computes block-wise convolutions based on binary computation masks and

copies the results to the corresponding coordinates. Authors in [105] introduced Seg-

Blocks, which divide images into blocks and process low-complexity areas at a reduced

resolution to capitalize on spatial redundancy in images. It first splits an image into

blocks, runs a policy network to identify non-important regions, and then processes

non-important regions at a low resolution. SegBlocks enables feature propagation

using zero padding to eliminate discontinuities at block borders.
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Real-time multi-object tracking

Due to the high complexity of object detection and association in tracking-by-detection

frameworks, existing attempts on real-time MOT fall into three categories: efficient

object detection, low-latency object association, and integrated tracking models.

Efficient object detection In [8], the authors employ a Faster-RCNN detection

model that uses shared parameters for region proposal and object classification. In

[124], to enable real-time MOT on unmanned aerial vehicles, the authors utilize a

YOLO object detector and JPDA multiple object tracking. Although a frame rate of

60Hz can be achieved using NVIDIA Jetson TX2 on PETS datasets, more than 20%

reduction in MOTA is reported in [124].

Low latency object association Methods in this category aim to accelerate track-

ing speed by incorporating fast and efficient data association models. The work in

[22] achieves near-real-time tracking performance through hypothesis generation and

selection. In [60], a data association module based on an LSTM network has been

implemented that simultaneously considers the appearances of each track to match

with detected objects in the next frame.

Integrated tracking models Recently, several works perform object detection,

compute visual features for re-identification (re-ID) and/or predict associations among

objects using a single network( [133], [136], [113]). These methods are appealing due

to less inference time and higher accuracy compared to their counterparts that only

consider temporal association. In CenterTrack [136], detected objects are associated

through time using 2D displacement prediction. In JDE [113] and FairMOT [133],
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motion estimation is done using Kalman filters. In [108], the authors associate

detected objects over time utilizing an extended RCNN with an association head to

capture the Euclidean distance of embedding vectors.

2.1.6 Efficient edge-cloud architecture

Due to the limited computation capability of end devices and long network latency

to transfer a large volume of data to cloud servers, efficient edge computing archi-

tectures have been investigated for visual analytics in recent years. In [43], Gu et

al. improve the object tracking performance and energy consumption on end devices

using a collaborative edge-cloud architecture where the end device offloads compu-

tation to gain more accurate object positions. In [12], a difficult-case discriminator

is introduced to classify images into easy and hard classes based on the extracted

semantics of each image. The hard cases are uploaded to a server while easy classes

are processed on the device locally. In [61] KO et al. propose a network partitioning

solution between an edge and a host to enhance the edge platform’s throughput. In

the work, a DNN works as an encoding pipeline and the output of an intermediate

layer is sent to the host. In [30], Fang et al. proposed a novel distributed collabora-

tive framework to run compute-intensive inference tasks on small specialized models

executed resource-constrained devices. The key idea is to train multiple scale-down

models, who together have comparable or even better inference performance than a

monolithic large model. Although these approaches split computation loads between

end devices and edge servers or among end devices, they are not designed for MOT

and fail to account for multi-object detection quality in optimizing the end-to-end

performance.
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2.2 Datasets

This section provides a concise description of representative single-view and multi-

view object tracking datasets commonly used in literature.

2.2.1 Single-camera multi-object tracking

Multi-object tracking datasets MOT15 [66], MOT16 [79], MOT17 [79], and MOT20 [25],

are four widely used pedestrian tracking purposes. “public“ and “private“ protocols

are available in these databases. Since we use our object detection models in this the-

sis, the study primarily focuses on the “private“ protocol. To evaluate the tracking

performance of our models, we utilize the official evaluation method from MOT Chal-

lenge [2]. There are a total of 11 separate training sequences in MOT15, as well as an

extra 11 testing sequences. Selected sequences from the KITTI [39] and PETS [29]

datasets are also included, along with various image resolutions. There are no differ-

ences between the video clips seen in MOT16 and MOT17. MOT17, however, has

enhanced annotations and incorporates three public object detectors. The goal of this

improvement is to raise the quality of the dataset. The MOT20 dataset, in compari-

son, provides a representation of densely populated and challenging environments. It

contains 8 additional sequences that are intended to test tracking techniques in busy

environments. Table 2.1 presents an overview of the characteristics of sequences in

these datasets.

22



Ph.D. Thesis—K. Nalaie McMaster University—Computer Science

(a) MOT15 dataset.

(b) MOT16/MOT17 dataset.

(c) MOT20 dataset.

Figure 2.1: An overview of the studied single-view datasets.

2.2.2 Multi-camera multi-object tracking

For our pedestrian tracking experiments, we utilized two multi-view datasets. The

WildTrack dataset contains 400 images of size 1920× 1080px from 7 cameras encom-

passing 12 × 36 square meter area. The ground plane is segmented into cells of size

2.5cm2 with total of 480× 1440 cells. On average, 3.74 cameras are required to cover

the entire scene, with an average of 20 persons in each frame.

MultiviewX comprises synthetic images generated by Unity Engine [3] of resolu-

tion 1920× 1080px taken by 6 different cameras. On average, there are 40 people in

each frame and 4.41 cameras are needed for full coverage of the scene of size 16×25m2.
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The coverage area on the ground plane is divided into 640×1000cells, each of 2.5cm2

in size. A total of 400 video frames for each camera are included in the dataset.

MMPTRACK [48] provides a large-scale densely labeled tracking dataset gen-

erated through an auto annotation system. It includes five environments: Retail,

Lobby, Industry, Cafe, and Office. A 3D tracker uses calibrated depth and RGB cam-

eras to construct 3D tracking results. These results are then projected into each RGB

camera view generating 2D trajectories. The quality of the 3D tracker is evaluated

according to a manual check procedure.

The synergetic social scene analysis (SALSA) dataset [4], contains records of so-

cial interactions within indoor environments involving 18 participants over a span

of 60 minutes. To include information regarding participants’ personality traits, the

data is collected using four synchronized static surveillance cameras, microphones,

accelerometers, Bluetooth, and infrared sensors.

MTA dataset [62] addresses privacy concerns by recording urban areas recorded

by 6 cameras in a small section of Grand Theft Auto 5 (GTA) video game. The

dataset includes 2840 identities covering both indoor and outdoor environments.

CityFlow as presented in [101], provides a comprehensive city-scale multi-target

multi-camera vehicle tracking dataset. This dataset covers diverse environments,

including city streets, residential regions, and highways. It consists of more than

200K annotated bounding boxes of vehicles captured from 10 intersections of a mid-

size city in the U.S. The farthest distance between any two cameras is 2.5 KM.

The characteristics of the multi-view tracking datasets are presented in Table 2.2.
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(a) WildTrack dataset with 7 different views.

(b) MultiviewX dataset with 6 different views.

Figure 2.2: An overview of the studied multi-view datasets.

2.3 Performance metrics

To evaluate the tracking performance of a method, finding an association between

ground-truth references and model outputs is necessary. This association gives rise

to estimations of spatial and temporal errors such as false alarms and ID switches.

In the following, we describe several widely accepted metrics split into detection and

tracking, which are used to evaluate a tracking method.

Multiple Object Detection Accuracy (MODA): The number of false alarms

and false misses are incorporated into the detection accuracy of a system as stated in
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the following equation:

MODA(t) = 1− FPt + FNt

NGt

, (2.3.1)

where FPt and FNt are false positive and false negative detections, and NGt is the

total number of objects in the ground truth in frame t.

Multiple Object Detection Precision (MODP): To compute MODP, first,

it is required to compute Mapped Overlap Ratio as below:

MappedOverlapRatio(t) =

Nt
mapped∑
i=1

G
(t)
i ∩D

(t)
i

G
(t)
i ∪D

(t)
i

. (2.3.2)

Then, MODP is computed as:

MODP (t) =
MappedOverlapRatio(t)

N t
mapped

, (2.3.3)

where G
(t)
i and D

(t)
i represent ground-truth and the corresponding detected objects

respectively, and N t
mapped stands for total number of mapped object in frame t.

Multiple Object Tracking Accuracy(MOTA): Multi-object tracking perfor-

mance is typically calculated as follows:

MOTA = 1−
∑Nframes

t FPt + FNt + IDSWt∑Nframes

t NGt

, (2.3.4)

where t represents the frame index, FPt, FNt, and IDSWt are false positive, false

negative, and ID-switched objects, and NGt stands for the number of ground truth

bounding boxes.
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Identification F1 Score (IDF1): IDF1 computes the ratio of correctly identi-

fied detection over the number of correct identifications and ground truth:

IDF1 =
2× IDTP

2× IDTP + IDFP + IDFN
, (2.3.5)

where IDTP, IDFT, IDFN stand for the number of truly identified objects, the

number of false detections, and the number of missed detections.
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Chapter 3

Online Frame Size Adaptation for

MOT on Smart Cameras and Edge

Servers
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3.1 Introduction

Increasingly, DNNs, specifically CNNs become the dominant models for object detec-

tion and re-identification in MOT [84], [117], [6]. Despite their superior performance,

these models tend to have high computation complexity making them inadequate for

real-time applications at high input resolutions and frame rates on low-end devices

such as smart cameras.

To enable real-time prediction of DNN models, there are three complementary

categories of approaches. First, one can deploy edge servers with high computation

power close to the cameras and offload part of or all of their computation tasks. For

example, several computation partition approaches have been proposed that split the

data flow graph representation of a given model into two or more parts and execute

them on end devices and edge servers [59, 61]. The second line of approaches reduce

the size of DNN models through techniques such as model compression [126, 17, 50]

and neural architecture search [81, 72]. The third category of works leverage tempo-

ral [20, 78, 71] and spatial correlations [122] to improve the accuracy and performance

of deep models. In this chapter, we take a model-agnostic approach for real-time

MOT and develop DeepScale, a frame resolution adaptation framework that scales

input frames based on the complexity of their visual content. DeepScale is moti-

vated by two key observations of MOT applications. First, higher resolution frames

can capture fine details of remote objects in a scene and thus lead to more accurate

tracking. However, not all scenes are created equal or contain relevant objects in far

fields. Second, although key layers in CNN models such as convolutional layers and

max-pooling layers can work with different input sizes without any modification, the

inference time increases with increasing input frame sizes. From the two insights, we
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ask i) is it possible to find the minimal frame sizes with comparable tracking accuracy

as that of fixed high-resolution inputs; ii) can we provide tuning knobs to developers

and end-users to control the trade-offs between computing time and tracking accuracy

by adapting the frame size automatically? and iii) how to partition a DNN-based

MOT pipeline between end devices and edge servers?

The answers to the first two questions are affirmative. At run time, DeepScale

takes every Kth full-resolution frame as its input to estimate a suitable resolution for

subsequent K − 1 frames based on user-provided control parameters. Object detec-

tion and association are then performed on the scaled frames using unmodified fully

convolutional detector model architectures from existing trackers. To further reduce

computation overheads, resolution estimation in DeepScale shares common feature

extraction layers as object detection. Training of DeepScale is self-supervised. No

extra label is needed other than those for the MOT task themselves. Instead, a

detectability measure is introduced to gauge the ability of frames of different res-

olutions to capture relevant objects. To answer the third question, we propose two

computation partition schemes tailored for MOT, namely, edge server-only with adap-

tive frame-size transmission (SOAT) and edge server-assisted tracking (SAT). Both

schemes take advantage of the reduced frame resolutions offered by DeepScale to de-

crease the amount of network data transfer and computation loads on end devices.

Moreover, the model-agnostic nature of DeepScale makes it possible to run models of

different complexity on end devices and edge servers to fine-tune the trade-off between

tracking accuracy and latency.

To evaluate the performance of DeepScale, we conduct experiments on both public

MOT datasets and a small-scale testbed consisting of an NVIDIA Jetson TX2 powered
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device and a Telsa P100 GPU server. DeepScale can achieve a good trade-off between

computation time and tracking performance. For example, in comparison to a SOTA

method, DeepScale is able to accelerate the end-to-end inference speed up to 60% at

only 2.3% reduction on MOTA scores.

In summary, the main contributions of the work include:

• We provide a quantitative study of the impact of frame sizes on tracking time

and accuracy.

• We propose a model-agnostic DeepScale framework that adapts input frame

sizes based on the visual content of scenes.

• An extension of DeepScale, called DeepScale++, is further devised to take ad-

vantage of training with multi-resolution inputs to improve the inference accu-

racy of low-resolution frames.

• Two computation partition approaches that split MOT inference tasks between

an end device and an edge server are proposed and evaluated using a real-world

testbed.

• Extensive experiments on MOT datasets have been conducted and demonstrate

the superior performance and flexibility of DeepScale++ in accelerating MOT

tasks.

The rest of the chapter is organized as follows. In Section 3.2.2, we first quan-

tify the impact of frame sizes on tracking time and accuracy and then present the

training procedure and the inference pipeline of DeepScale. In Section 3.5, extensive

experiment results on MOT datasets are presented by comparing our solution with

other SOTA methods followed by a conclusion in Section 3.6.
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3.2 Background and motivation

3.2.1 Multi-object tracking

Visual MOT starts with detecting objects (using e.g.[28],[92]) of interest in a frame.

During tracking, a tracker (e.g. [136],[113]) adds newly detected objects to an active

set. In the case of pedestrian tracking, the tracker keeps a set of detected bounding

boxes and an identity vector. For each person, bounding boxes with similar motion

features in different frames are grouped into a track. Kalman filtering or its variants

can be applied to predict the position of each track in the next frame. Next, each

detected object in the next frame is matched to an active track based on appearance

features and the distance between the detected location and predicted position. If

a track is matched to a detected object, the detection is considered as a part of the

track. For unmatched detections, new tracks are created.

3.2.2 Impacts of frame sizes on tracking performance

To gain insights on the effect of frame sizes on tracking performance, we have con-

ducted experiments using FairMOT [133], a SOTA tracker on MOT datasets. The

FairMOT object detector uses DLA-34 [129] as the backbone architecture and has

three heads to predict a heatmap, re-ID features, and bounding box sizes for each

frame. Object association is done by initializing tracklets based on the estimated

boxes in the first frame and linking the detected boxes in subsequent frames to ex-

isting tracklets based on their cosine distances computed on re-ID features and the

amount of bounding box overlaps. A Kalman filter is also used to predict the locations

of the tracklets in the current frame.
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Figure 3.1: A breakdown of GPU processing time in FairMOT on the MOT17
dataset. The frame size is fixed at 608× 1088 px. Object detection includes CPU to
GPU transfer and running the DLA-34 network and generating the bounding boxes.

Object association pertains to running bipartite graph matching for IOU/re-ID
feature association purposes. Other operations include I/O, image resizing.

Figure 3.1 shows a breakdown of the total tracking time among object detection,

object association, and other operations such as I/O, image resizing, etc. The frame

size is fixed at 608 × 1088 px. Object detection includes CPU to GPU transfer and

running the DLA-34 network and generating the bounding boxes. Object associa-

tion pertains to running bipartite graph matching for IoU/re-ID feature association

purposes. Other operations include I/O, image resizing. As evident from the figure,

object detection is the most time-consuming step, taking more than half of the total

time. The time spent on object association is also significant. Table 3.1 compares

the tracking performance in MOTA and identification F1 score (IDF1), and inference

time. As expected, larger frame sizes generally result in higher tracking accuracy at

the cost of longer inference time.

However, frame resolutions do not affect tracking performance uniformly across all
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Figure 3.2: Person detection rate using DLA-34 on MOT17 dataset. We normalized
the numbers of detected objects to that in the full resolution detection.

scenes. In Figure 3.2, we provide two sample trials of FairMOT, one from MOT17-05

and one from MOT 17-13. The numbers are normalized of detected objects to that in

the full resolution detection. To quantify detection performance, we define detection

rate as the number of objects detected on frames of a fixed size normalized by the

number of detected objects at the full resolution. From Figure 3.2, we observe that in

both trials, a lower resolution negatively impacts detection rates. However, the gap

between the detection rates of resolution 480 × 864px and resolution 320 × 576px is

less pronounced in MOT 17-05 than in MOT 17-13. This can be explained by the

dominance of close and bigger objects in MOT 17-05. Furthermore, in both trials,
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Table 3.1: The tracking time and accuracy of FairMOT on the MOT17 dataset at
different input resolutions performed on one Tesla P100 GPU.

Resolution (px) MOTA(%) IDF1(%) Time

320× 576 58.7 66.8 1X
480× 864 68.6 72.8 1.25X
608× 1088 70.4 74.1 1.62X

there are scenes where tracking at the lowest resolution gives good detection rates.

Examples are frame 80 in MOT 17-05 and frame 500 in MOT 17-13, which contain

mostly close objects. In contrast, for frame 400 in MOT 17-05, frames 80 and 400 in

MOT 17-13, only resolution 480 × 864 px gives good detection rates. Furthermore,

due to the mixture of near and far objects and poor light conditions, all resolutions

fare poorly on frame 800 in MOT 17-05.

Therefore, we conclude that there is no one-size-fit-all frame size for real-time

MOT tasks. Even for a video stream from the same camera, changes occur over

time in the density and sizes of objects. Therefore, an adaptive scheme based on the

analysis of the visual content in scenes is needed in order to find a good trade-off

between tracking accuracy and speed.

3.3 Tracking with adaptive resolutions

3.3.1 Algorithmic overview

To take advantage of the shorter inference time of smaller frame sizes, DeepScale aims

to select a suitable resolution on the fly without compromising tracking performance.

We assume the underlying object detection network can inherently handle inputs of

different sizes. This is true for many modern detectors based on FCNs. For example,
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CenterNet [28] outputs detection maps as grid cells. Each cell is associated with the

likelihood that an object falls into the cell. In absence of any fully connected layer,

FCNs can produce detection maps of different sizes for different input resolutions.

Figure 3.3 illustrates the DeepScale pipeline. DeepScale runs on every Kth frame.

Given a set of R candidate resolutions {β1, β2, . . . , βR}, it takes a full-resolution frame

of size H × W (e.g., 608 × 1088px) and outputs one heat map of size H ′ × W ′

for each resolution in parallel. In other words, the output is a tensor of dimension

R × H ′ ×W ′. Then, these heat maps are used to estimate how well frames of the

corresponding resolutions preserve the detectability of the full-resolution frame. The

smallest resolution that meets the detectability requirement will be selected. The

subsequentK−1 frames are then down-sampled to the selected resolution for tracking.

3.3.2 Self-supervised learning

In DeepScale, we choose not to predict the “optimal“ resolution directly for two

reasons. First, a single-valued resolution does not provide sufficient supervision signals

to train the model. Second, since one can not simultaneously optimize tracking

accuracy and inference time by scaling input frame sizes, users should be given the

choice to determine the best trade-off for their applications. The DeepScale network

learns the heatmaps for input frames of different resolutions. Doing so also has the

added benefit of eliminating the need for labeled training data for resolution selection.

Formally, DeepScale learns a mapping T : R3×H×W 7→ [0, 1]R×H′×W ′
. To prepare

the training data for DeepScale, for each full-resolution RGB frame of size H ×W ,

ground truth heatmaps for R resolutions are generated as follows. First, for each

37



Ph.D. Thesis—K. Nalaie McMaster University—Computer Science

Figure 3.3: The DeepScale pipeline. DeepScale performs object tracking and
resolution estimation simultaneously via two FCN [75] heads: detection and

resolution estimator. First, the received input is resized to the highest image size.
Then, for every K frame, DeepScale generates two outputs: detected bounding
boxes and resolution-wise feature maps. Finally, resolutions for the next K − 1

frames are updated based on the result generated from Resolution selection module,
Eq.(3.3.4).
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resolution βr, we resize the training set to frames of size Hr×Wr. Second, we run the

base detector (e.g., FairMOT) to output the centers and corners of bounding boxes of

detected objects in each frame and scale them (up) to values in a full frame. Third,

similar to [65], we apply a 2D Gaussian filter over each object center by penalizing

the pixels outside the detected bounding boxes based on their distances to the center

of the bounding box. Specifically, let (xc,r, yc,r) be the centers of a detected object in

a frame of resolution βr. Then, Yr,x,y = exp(− (xr−xc,r)
2+(yr−yc,r)

2

2σ2
c,r

) is the pixel value at

location (xr, yr) in the heat map for resolution βr augmented with a Gaussian kernel,

and σc,r is determined by the object size and the relative resolution. Yr,x,y acts as

ground truth labels to train the detectability branch of DeepScale. Therefore, our

approach is self-supervised.

Let Ŷr,x,y be the predicted heatmap for resolution βr. We define a detectability

loss using pixel-wise logistic regression with a focal loss as [70]:

Lossdetectability = −
1

N

∑
r,x,y


f(Ŷr,x,y) Yr,x,y = 1;

g(Yr,x,y, Ŷr,x,y) otherwise;

(3.3.1)

where

f(Ŷr,x,y) = (1− Ŷr,x,y)
αlog(Ŷr,x,y),

g(Yr,x,y, Ŷr,x,y) = (1− Yr,x,y)
β(Ŷr,x,y)

αlog(1− Ŷr,x,y),

and α = 2 , β = 4 (based on the reported result in [65]), and N is the number of

objects in the frame.
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Finally, we jointly train the detection and detectability branches using the follow-

ing loss function:

Loss = Lossdetection + λLossdetectability, (3.3.2)

where Lossdetection pertains to the detection sub-network of the base model as follows:

Lossdetection =

1

2
(
1

eω1
(Lheatmap + Lbox) +

1

eω2
Lidentity + ω1 + ω2),

(3.3.3)

which consists of learnable task based parameters ω1 and ω2, heatmap loss, box-size

loss, and re-identification loss defined in [133]1. In the experiments, we set λ = 1.

3.3.3 From heatmaps to tracking with adaptive resolutions

At the inference stage, for every Kth frame, DeepScale predicts heatmaps Ŷr,x,y, r =

1, 2, . . . , R, x = 1, 2, . . . H ′, y = 1, 2, . . .W ′. This part is presented as Resolution

selection module in Figure 3.3.

The task of finding the best resolution can be formulated as:

min r

s.t.

∑H′,W ′

x,y Ŷr,x,y ◦ Ŷmax,x,y∑H′,W ′

x,y Ŷmax,x,y

≥ γr,
(3.3.4)

where Ŷmax,x,y, x = 1, 2, . . . H ′, y = 1, 2, . . .W ′ is the predicted heatmap for the highest

resolution,‘◦’ is the Hadamard product operator, and γr ∈ [0, 1] is a user-specified

threshold for resolution βr. γr reflects users’ tolerance of degradation in detectability.

1Heatmap loss in Lossdetection is only for frames of the full resolution. In contrast, Lossdetectability
sums over Gaussian filtered heatmap losses over all resolutions.
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Clearly, smaller γrs favor lower resolution images. In Section 3.3.4 we will discuss

how to choose appropriate threshold values in the face of different latency-accuracy

requirements. The solution to Eq.(3.3.4) gives the resolution to be used for the next

K−1 frames. Once the suitable resolution is found, DeepScale proceeds to construct

trajectories of detections.

For object association, trajectories are initially created from detected objects in

the first frames and extended by linking newly detected ones in subsequent frames.

To link objects, we leverage appearance-based re-ID features (of 128 dimensions in

our implementation) extracted from the re-ID branch. By sharing the same feature

extraction network between the detection and detectability branches, less overhead is

incurred. We compute an appearance affinity matrix based on the cosine similarity

and assign each new detection to the existing trajectories using bipartite marching.

If a new object fails to match an existing trajectory according to appearance, we

further verify if its bounding box has significant overlap with existing ones, called

Intersection over Union (IoU) criterion. Similar to [113] we use a Kalman filter

[114] to predict the coordinates of previously detected objects in the current frame.

Note that changing input resolutions between consecutive frames may lead to different

re-ID features for the same object and thus a mismatch. However, the use of the IoU

criterion can mitigate such a negative effect since the movements of objects between

neighboring frames tend to be small.

During training using Eq.(3.3.1), DeepScale learns the quality of detection for each

resolution offline. Given a user’s accuracy-latency requirement at run time, it selects

a set of suitable thresholds and adapts the input size by solving Eq.(3.3.4) online. No

additional training is needed for different threshold values. To ease user selection, we
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also provide three set configurations (in Section 3.5.2, Table 3.4) that correspond to

high-accuracy & low-speed, medium accuracy & medium speed, and low-accuracy &

high-speed, respectively.

3.3.4 Multi-resolution training

Due to the use of FCNs, DeepScale can handle different frame sizes during inference.

We can take advantage of such property during training as well by augmenting the

training data with five input frame sizes via resizing. Furthermore, the network meets

all five image resolutions during each training epoch. Since the network structure and

parameters remain the same, switching from one resolution to another does not impose

any extra overhead. We call this extension DeepScale++. DeepScale++ differs from

DeepScale only in the training phase. DeepScale++ take training data of all five

resolutions in each training epoch. Therefore, extra training costs arise from image

resizing and additional iterations over images of different resolutions in each epoch.

During inference, the same process is followed by both models.

3.4 Computation partition for MOT on smart camera-

edge

During the interference phase, DeepScale can adaptively select frame resolutions

based on the user-specified quality of service requirements. When deployed on smart

cameras, depending on their computation capability and access bandwidth, the Deep-

Scale pipeline as shown in Figure 3.4 can be flexibly partitioned between smart cam-

eras and edge servers (shortened as server in the following discussion). Specifically,
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we consider four representative architectures:

• Smart camera-only (CO): All computation is done on an edge device. Deep-

Scale is employed to accelerate the processing time on the edge.

• Edge server-only (SO): Full-resolution frames are sent to a server, where all

computation is performed. DeepScale is employed to accelerate the processing

time on the server.

• Edge server-only with adaptive frame-size transmission (SOAT): For

every Kth frame, a full-resolution (FHD) frame is sent to a server, which in

turn informs the edge device of the suitable frame solution for the subsequent

K − 1 frames to send. All computation is done on the server. DeepScale is

employed to accelerate the processing time on the server.

• Edge server-assisted tracking (SAT): For everyKth frame, a full-resolution

frame is sent to a server, which in turn computes the bounding boxes and reID

features, and determines the suitable resolution for subsequent frames. The

results are sent to the edge device. Upon reception of the information, the edge

device determines object association. Additionally, the edge device performs

object detection and association for the remaining K − 1 scaled frames. In this

setup, DeepScale partly runs on the server and partly on the edge device.

Clearly, there exist trade-offs among computation on the smart camera and the

edge server and the amount of network data transfer. A qualitative comparison is

given in Table 3.2. Quantitative experimental results from a real-world testbed can

be found in Section 3.5.4.
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Table 3.2: Qualitative comparison among different edge-server architectures.

Computation Network Traffic
Approaches Server Edge S → E E → S

CO No High No No
SO High No No High

SOAT High No Low Low
SAT Low High Low Low

In addition to the aforementioned architectures and control parameters (e.g., K),

further trade-offs can be made by running different backbone models thanks to the

model agnostic nature of DeepScale. This is particularly relevant in the SO and

SOAT, where all or most of the computation is done on an edge server. In such

situations, a lower-capacity backbone model can be run on the edge device for feature

extraction likely at the cost of degraded tracking accuracy.

3.5 Experiments

In this section, we evaluate the performance of DeepScale on MOT datasets and a

small-scale testbed focusing on pedestrian tracking tasks.

3.5.1 Implementation

DeepScale can work with any FCN-based object detection models. In the imple-

mentation, we use FairMOT [133] and append a detectability branch consisting of

two fully convolutional layers. Among backbone networks such as ResNet-34 [49],

ResNet50 [49], High-resolution Network(HRNet) [109] and DLA-34 [129], from the

reported tracking performance and tracking latency in [133], we find that DLA-34
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Figure 3.4: Four representative architectures for computation partition between an
edge server and a smart camera. From left to right: Smart camera-only: the end
device runs DeepScale (adopting a lightweight object detection model e.g. YOLO)

locally; Edge server-only: the edge server receives FHD frames and performs
tracking using the DLA-34 model; Edge server-only with adaptive frame-size

transmission: same as SO but the edge server adjusts the image resolution sent by
the smart camera; Edge server-assisted tracking: the smart camera runs DeepScale
and each K frame receives the optimum resolution and detection results from the

edge server.
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offers the best trade-off. During inference, we run DeepScale with both object de-

tection and detectability branches for every Kth frame but only the object detection

head for the succeedingK−1 frames. However, it should be noted that DeepScale can

work with the other architectures as well. In the case that a non-FCN object detector

is used, DeepScale can still be applied by storing one object detector network for each

input size and performing switches based on the resolution selected during inference.

The candidate resolutions are {320×576, 352×640, 384×704, 480×864, 608×1088}

px. We pre-train DeepScale on the CrowdHuman [97] dataset. The Adam optimizer,

learning rate e−4 and a batch size of 12 are used for 30 epochs on the training set.

We augment the training datasets using random affine transforms with parameters

scale = [0.50, 1.20], rotation = [−5, 5], and translation = [0.10, 0.10]. Testing and

training are done on Tesla-P100 GPUs.

Metrics To evaluate the tracking performance, the MOTA score is utilized. In

benchmark experiments, we also evaluate Identity Switches (IDSw), FPS, Most Tracked

(MT) ratio for > 80% cases, and Most Lost (ML) ratio for < 20% cases and report

IDF1 in overall tracking accuracy.

3.5.2 Evaluation using MOT datasets

In Figure 3.5, we compare the tracking performance and speed of DeepScale, Deep-

Scale++ and several SOTA methods. We use a pre-trained model for CenterTrack

and train both FairMOT and JDE on half of the MOT17 training set. FairMOT

and CenterTrack use DLA-34 as their detector’s backbone and DarkNet-53 [92] is the

network architecture for the JDE tracker. All of these three trackers can only handle

frames of a fixed set of resolutions. In contrast, in DeepScale and DeepScale++,
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by changing configuration parameters (e.g., thresholds), different trade-offs between

MOTA and FPS can be achieved. The threshold settings for DeepScale++ in the

experiments are given in Table 3.3, where the minus sign means the corresponding

resolution cannot be chosen. In the figure, 2nd order polynomial fitting functions for

the results of DeepScale and DeepScale++ are also plotted.

It is worth noting that the ⟨MOTA, FPS⟩ tuples achieved by FairMOT under dif-

ferent input frame sizes generally fall on the curve associated with DeepScale. This

indicates that DeepScale does not compromise tracking performance while provid-

ing users the flexibility in choosing proper trade-offs between tracking accuracy and

speed. From Figure 3.5, we also observe that the DeepScale++ curve lies on the top

and to the right of that of DeepScale. This implies that for the same tracking speed,

DeepScale++ can achieve higher MOTA. Conversely, for the same MOTA, Deep-

Scale++ takes less time than DeepScale. Compared to FairMOT on full-resolution

frames, the MOTA score of one configuration of DeepScale++ is higher and its frame

rate is 14% faster.

We also study the application of DeepScale on CenterTrack. During inference,

CenterTrack dynamically switches the input frame sizes according to the selected

resolutions from the DeepScale pipeline. Compared to CenterTrack with fixed res-

olution, the “CenterTrack+DeepScale“ curve indicates faster performance and more

accurate tracking results.

Adaptive vs fixed resolution tracking We demonstrate the ability of DeepScale

to tune trade-offs between tracking accuracy and speed for different parameter settings

and compare the results against those from fixed resolutions. In the experiments,

for simplicity, only three threshold settings are considered as listed in Table 3.4.
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Table 3.3: The tracking accuracy and latency of DeepScale++ under different
thresholds, K = 40.

Threshold
MOTA FPS

480× 864 384× 704 352× 640 320× 576
0.00 0.00 0.00 0.80 62.2 24.53
0.00 0.00 0.00 0.90 64.2 24.38
0.00 0.00 0.00 1.00 64.3 24.33
0.00 0.00 0.80 0.90 64.6 24.14
0.00 0.00 1.00 1.00 66.3 23.69
0.80 1.00 1.00 1.00 69.0 21.62
0.90 1.00 1.00 1.00 69.8 21.31
1.00 1.00 1.00 1.00 69.8 19.63
0.90 – – – 70.4 19.32
1.00 – – – 70.8 17.63

These configurations are chosen to represent, respectively, low latency-low accuracy

(C1), medium latency-medium accuracy (C2), high latency-high accuracy (C3). The

quality of detection at a specific resolution relative to that of the highest resolution

is calculated by Eq.(3.3.4). In Table 3.4, γi = 1 forces the corresponding resolution

to be chosen if the model detects the same set of bounding boxes when the highest

resolution is taken as input.

Table 3.4: Three set configurations for DeepScale and DeepScale++.

Size 480× 864 384× 704 352× 640 320× 576
Threshold γ1 γ2 γ3 γ4

C1 0.00 0.00 1.00 1.00
C2 0.80 1.00 1.00 1.00
C3 1.00 – – –

Table 3.5 summarizes the tracking performance and speed for DeepScale and from

fixed resolution inputs. From the table, we observe that DeepScale++C3 outperforms
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Figure 3.5: Time efficiency of DeepScale and DeepScale++ in comparison to the
fixed resolutions on the validation set of MOT17 dataset.

tracking with full-resolution frames in MOTA and is 14% faster. Similar improve-

ments are also achieved by DeepScale++C2 and DeepScale++C1 relative to the re-

spective fixed-size inputs.

We further show in Figure 3.6 the percentage of frames of different resolutions

selected by DeepScale++ under different configurations. With DeepScale++C3,

48.85% of frames are processed at high resolution, which explains its high MOTA

score. In contrast, DeepScale++C2 processes very few (2.7%) high resolution frames

and significantly more second highest (384× 704px) and a significant percentage

(31.85%) of lowest-resolution frames (320× 576 px). The trend continues with Deep-

Scale++C1, which selects the 3rd highest resolution for 59.57% of input frames and

the lowest resolution for 31.85% of frames.
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Table 3.5: Adaptive frame-size vs fixed-size tracking on the validation set of MOT17
dataset, K = 40.

Fixed size or DeepScale++ MOTA% FPS
608× 1088 px 70.4 15.43
DeepScale++C3 70.8 17.63
480× 864 px 68.6 19.85
DeepScale++C2 69.0 21.62
384× 704 px 65.2 23.30
DeepScale++C1 66.3 23.69
352× 640 px 62.9 24.43

Figure 3.6: Percentages of frames of different resolutions selected by DeepScale++
under different configurations on the validation set of MOT17, K = 40.

Impact of adaptation interval K Next, we investigate the impact of K on track-

ing performance and speed. Recall that DeepScale is applied every K frames to deter-

mine the suitable resolutions for the nextK−1 frames. WhenK is smaller, resolution

selection is done more frequently and thus leads to better tracking performance at the

cost of more computation overhead. Table 3.6 summarizes the performance of Deep-

Scale under three configurations over 4 different adaptation intervals. In general, asK

decreases, tracking speed reduces but tracking accuracy improves. Among the three
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Table 3.6: Impact of adaption interval K on the validation set of the MOT17
dataset.

DeepScale++
configuration

K=40 K=20 K=10 K=2
FPS MOTA FPS MOTA FPS MOTA FPS MOTA

C3 17.63 70.8 17.61 70.6 17.44 70.7 16.52 70.7
C2 21.62 69.0 21.35 69.5 20.87 69.6 18.37 70.4
C1 23.69 66.3 23.44 66.6 22.94 66.7 19.58 69.3

Table 3.7: Results of four representative architectures for computation partition
between edge server and smart cameras. K=5.

Architecture
DeepScale++
configuration

FPS↑ MOTA(%)↑ Server time↓
(ms) per frame

Camera time↓
(ms) per frame

Transmission time↓
(ms) per frame

Network traffic load↓
KB per frame

SO C1 5.7 66.3 43.6 55.6 87.4 46.5
SO C2 5.6 68.7 46.8 53.2 75.7 46.5
SO C3 5.2 69.5 57.1 52.8 80.4 46.5

SOAT C1 7.0 66.2 41.9 34.8 67.7 26.9
SOAT C2 6.4 68.5 46.2 38.6 69.2 31.8
SOAT C3 5.5 69.7 56.8 46.3 76.9 40.8
SAT C1 5.0 56.8 17.9 158.0 22.1 21.6
SAT C2 4.5 60.6 19.5 179.3 22.0 21.6
SAT C3 3.8 61.9 17.8 223.8 22.2 21.6
CO C1 5.3 55.9 0.0 186.0 0.0 0.0
CO C2 4.7 59.9 0.0 212.6 0.0 0.0
CO C3 3.7 61.6 0.0 267.5 0.0 0.0

configurations, the value of K has the most impact on DeepScale++C1 with MOTA

scores increasing from 66.3% to 69.3% when K reduces from 40 to 2. Somewhat

surprisingly, with DeepScale++C3, very few changes are observed in MOTA scores

for different Ks. This may be explained by multi-resolution training in DeepScale++,

which makes object detection more robust to smaller object sizes in lower-resolution

frames. Indeed, we observe from experiments with DeepScale (omitted due to space

limits) consistent improvements in MOTA scores for smaller K among all configura-

tions.

51



Ph.D. Thesis—K. Nalaie McMaster University—Computer Science

3.5.3 Benchmark evaluation

In this section, we evaluate the performance of DeepScale++ (C2, K = 30) on

MOT15 [66], MOT16 [79], MOT17 [79] and MOT20 [25] datasets under the pri-

vate object detector category. For all datasets, starting from a pre-trained model

on CrowdHuman [97], we retrain DeepScale++ on the full training data. For com-

parison, we consider integrated solutions including FairMOT, CenterTrack, and JDE

trackers. Note that the results are obtained by running these trackers on a single

Tesla-P100 GPU.

As shown in Table 3.8, DeepScale++ ranks first in tracking speed on all datasets.

For MOT15, which contains both indoor and outdoor scenes with street views, it

achieves a MOTA of 58.3 (2.3% less than the best performing tracker FairMOT on this

task) at 25.87 FPS (1.57X faster than FairMOT). Compared to JDE, DeepScale++

is ∼1.30X faster with 7.2% higher in MOTA on MOT16. No method manages to

achieve real-time tracking (≥ 30 FPS) on MOT20 due to its dense crowd scenes that

take a longer time for person association. Significant speed-up is still obtained by

DeepScale++ with acceptable tracking accuracy.

Table 3.8: Comparison with SOTA methods on MOT benchmarks.

Dataset Method MOTA↑ FPS↑ IDF1↑ MT↑ ML↓ ID Sw↓

MOT15
FairMOT 60.6 16.44 65.7 47.6% 11.0% 591
DeepScale++ 58.3 25.87 62.0 36.3% 18.0% 572

MOT16
JDE 64.4 15.94 55.8 35.4% 20.0% 1544
FairMOT 74.9 15.43 72.8 44.7% 15.9% 1074
DeepScale++ 71.6 20.15 71.1 38.6% 18.7% 1331

MOT17
CenterTrack 67.8 13.97 64.7 34.9% 24.8% 2898
FairMOT 73.7 15.43 72.3 43.2% 17.3% 3303
DeepScale++ 70.2 20.50 70.3 39.2% 20.3% 3870

MOT20
FairMOT 61.8 12.5 67.3 68.8% 7.6% 5243
DeepScale++ 59.44 14.39 66.33 52.6% 11.2% 4123
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3.5.4 Testbed experiments

Testbed Our testbed consists of an embedded device mimicking a smart camera

and a server. Specifically, the end device is NVIDIA Jetson TX2 which adopts an in-

tegrated GPU. The edge server has a single Tesla-P100 GPU, Intel(R) Xeon(R) CPU,

and 64GB RAM. The end device connects to the server through a Wi-Fi router. The

network upload and download bandwidths are 21.1 Mbps and 78.0 Mbps respectively,

and the average round trip latency is 1.40 ms.

Implementation All models are implemented in PyTorch [85] a popular deep

learning framework in Python. Due to the resource constraints on the end device,

we train a lightweight DeepScale++ model based on the YOLO[92] architecture.

Therefore, during inference, different DeepScale models run on the end device and

the edge server in SAT. The detectability branch is trained together with the detection

branch in DeepScale. Therefore, the model needs to be retrained if a different object

detection model is utilized. For instance, CO and SO run different DeepScale models

in the testbed implementation – one is based on YOLO and the other DLA-34. All

models are trained on half of the MOT17-training dataset and validated using another

remaining half. To reduce the network load, we compress the frames using image

encoding implementations from OpenCV [10] library before sending them through

the network.

Computation partition strategies Table 3.7 compares the accuracy and time of

running DeepScale++ under different computation partition strategies in the testbed.

The time spent on the end device and service include computation time while the

transmission time includes the amount of time to transfer uplink (camera-server) and
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download (server-camera) traffics if applicable in each frame. In the experiments, K

is set to 5 frames. As expected, the server time in SO and SOAT are comparable and

higher than that in SAT and CO. The time spent on the end device is the opposite.

When C1 (low latency-low accuracy) and C2 (medium latency-medium accuracy) are

chosen, the transmission time is significantly reduced when comparing SOAT to SO.

SAT has significantly lower transmission time than SO and SOAT since in SAT, FHD

frames are sent only every K frame to the server, which is consistent with the amount

of network traffic in Table 3.7. Note that CO achieves comparable FPS as SAT. But

this comes at the cost of lower MOTA scores due to the use of a lightweight object

detection architecture. SAT divides compute workloads between the edge server and

the end device to reduce compute time on the camera. In fact, with the exception

of CO, all three architectures, namely, SO, SAT, and SOAT require network data

transfer. SOAT reduces network data transfer delay compared to SO since K-1 out of

K frames can be transmitted at a lower resolution. SAT generates the least amount

of network traffic among the three but due to its long processing time on the smart

camera, the end-to-end throughput is lower than that of SOAT and SO.

Effects of K Since the smart camera periodically sends full-resolution frames to

the edge server in SOAT and SAT, the total amount of time spent for each frame

depends on the value of K in both strategies. Figure 3.7 illustrates the time spent

on the edge server, the smart camera, and in data transmission between the two

for SAT and SOAT. Similar to Table 3.7, for different Ks, more time is spent on

the edge server and data transmission in SOAT than SAT. As K increases, both

server time and transmission time decrease significantly with SOAT. In comparison,

the decrements in SAT are more pronounced since as K increases, the smart camera
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(a) SAT: Edge server-assisted tracking.

(b) SOAT: Edge server-only with adaptive
frame-size transmission.

Figure 3.7: Impact of interval K on workload partition.

processes fewer FHD frames. In summary, we observe non-trivial trade-offs among

time spent on the smart camera, the server, and data transmission across different

computation partition strategies and choices of configuration parameters (e.g., K and

C1 – C3). There is no one-size-fits-all solution. To select the optimal strategy and

parameters, one needs to profile the compute time, I/O time, and available network

bandwidth in a target deployment environment.
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3.6 Conclusion

In this chapter, we presented DeepScale, a model-agnostic method to accelerate track-

ing speeds for MOT tasks useful for both server and smart camera platforms, by

dynamically adapting sizes of input frames at run time. It can work with any FCN-

based object detection model and provide user’s control knobs to determine a suit-

able trade-off between tracking accuracy and efficiency. An extended version called

DeepScale++ that trains on multi-resolution training data was also developed. We

validated both solutions on multiple MOT datasets and found that they could achieve

comparable tracking accuracy as state-of-the-art methods with shorter inference time.

To further improve the throughput of the DeepScale pipeline, two smart camera-

edge server collaborative strategies were implemented and evaluated on a small-scale

testbed. Experimental results demonstrated that the proposed computation parti-

tion approaches could improve the tracking throughput and enhance the tracking

accuracy. As future work, we are interested in exploring the use of more advanced

detection backbones and accelerating object association on crowded scenes. Another

venue of interest is to experiment with more advanced edge devices such as Jetson

Xavier in multi-camera tracking.
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Online Deep Attention Transfer for
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4.1 Introduction

As neural network models for MOT become more complex, improved accuracy usually

comes at the cost of longer inference time. To accelerate the execution of deep models,

techniques such as model quantization [88, 54, 11] and pruning [67, 80, 135] have been

widely utilized to reduce computations and redundant connections. Computation ac-

celeration from model quantization is generally hardware dependent [41]. Extensive

parameter tuning is required for network pruning to work without significant loss of

accuracy [19]. Recently, a few works utilized temporal[20, 78, 71] and spatial [122]

correlations by finding configurations (e.g., frame rate, frame resolution) that achieve

a good trade-off between computation complexity and model performance. Unfortu-

nately, the optimal configuration is not only input sensitive but also dependent on

run time environments such as the available CPU or memory resources.

Another line of work to reduce model complexity is through KD [131]. KD uses

soft labels generated by a large model (teacher) to train a small neural network with

fewer parameters (student). The soft labels provide useful information that allows

the student model to learn the behavior of the teacher to improve generalization.

However, the lack of distilled knowledge for the student model during inference may

hinder it from correctly detecting harder instances (e.g., crowded scenes with smaller

objects).

In this chapter, we propose an attention transfer approach for object tracking

aiming to exploit the knowledge of a teacher model at both training and inference

stages. The proposed online deep attention transfer network (AttTrack), is inspired

by the idea of attention transfer first proposed in [131]. Unlike existing tracking

methods, our detection model receives additional information in the form of previously
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detected objects from the teacher model. We only run the teacher model every few

frames (called key frame) during inference to improve the representation capability

of the student model and help it to discover likely object positions in the remaining

frames. The student model can gain information about obstructed or barely visible

objects by leveraging extracted information from outputs of the teacher model on

prior frames at no extra cost. The student model is trained to fuse extracted features

of input frames and the detection estimation from the teacher model.

Extensive experiments show that AttTrack improves the tracking performance of

small models with marginal increases at interference time. Choosing the intervals

to run the teaching model, results in different trade-offs between performance and

efficiency. In summary, the main contributions of this chapter are as follows:

• We conduct an empirical study to investigate the impacts of model size on

tracking performance and speed.

• We propose an end-to-end trainable AttTrack framework to transfer the knowl-

edge of a complex teacher model to a lightweight student model at both training

and inference time.

• Extensive testing on the MOT17 and MOT15 datasets demonstrates the ef-

fectiveness of AttTrack. For example, our approach can improve the MOTA

score on YOLOv5 and DLA34 architectures by up to 12% with comparable

computation time when compared to existing attention-based methods.

The remainder of the chapter is structured as follows. We first describe related work

in Section 4.2 and study the impact of model size in tracking performance and speed in

Section 4.3. In Section 4.4 details of AttTrack are presented. We present experimental
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results in Section 4.5, followed by a conclusion in Section 4.6.

4.2 Related work

4.2.1 Attention mechanisms in object tracking

There is a long line of studies that combine the concept of attention with machine

learning. Human attention mechanism theories [95] inspired early efforts on attention-

based learning such as [64, 27]. Attention has been used in a wide range of machine

learning tasks including deep learning-based video object tracking. Fiaz et al. [32]

proposed a channel attention method that gives higher weights to channels that help

with target classification and localization. Huang et al. [52] proposed an attentional

online update paradigm for siamese visual tracking to improve the performance of a

tracker by utilizing knowledge extracted from prior tracking tasks. In [102] residual

attention modules are introduced in similarity tracking at multiple levels of feature

representation, resulting in improved discrimination quality for similarity searching.

Zhang et al. [134] created an attention retrieval network that uses learning masks

to conduct soft spatial constraints on features from a tracking backbone network,

mitigating the impact of background clutter.

4.2.2 Trainable attention mechanism for object detection

Researchers have explored attention mechanisms in object detection to enhance fea-

ture representation. The encoder and decoder stages of the object detecting system

presented in [23] use a dynamic attention approach. The attentions are determined

by size, feature dimension, and spatial features using a convolution-based encoder.
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In [127] the authors proposed a feature pyramid network to object detection in re-

mote sensing images, adapting two types of attention mechanisms: a) global spatial

attention that extracts spatial location-related features to improve the positioning

ability of the object detector, and b) pixel feature attention that expands the size of

receptive fields that makes the model learn more image details. Reverse attention was

explored in [16] to assist top-down side-output residual learning in order to acquire

more accurate residual features and handle missing object areas and details. In [110],

Wang et al. applied a pyramid attention module in their deep saliency model to give

more weight to salient regions while extracting multi-scale characteristics from input

images. In contrast to the previous researches, to achieve domain sensitivity in object

detection, Wang et al. [111] utilized a domain attention module for universal object

detection.

4.3 Preliminary study of model sizes on tracking

performance

To motivate our approach we first conduct empirical evaluations on the MOT17

dataset to assess the performance of tracking models with different model sizes.

4.3.1 Computation time break-down

Object detection, feature extraction, and object association are the three components

of a conventional DNN-based trackers. In [82], it has been reported that object

detection is the most time-consuming part of the tracking process. Therefore, this

chapter focuses on reducing the computing cost of object detection while maintaining
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the overall tracking performance.

4.3.2 Experimental setting

Object detection. There are two main categories of approaches in DNN-based ob-

ject detection. Two-stage approaches first extract regions of interest (RoIs) and then

classify and regress the RoIs. R-CNN [42] and Faster-RCNN [94] are two widely used

object detection models in this category. In the second category, one-stage approaches,

directly identify and regress objects of interest. For example, YOLO [91] divides an

input image into S × S grids and performs region classification and regression.

In this chapter, we choose FairMOT [133], a SOTA one-stage object detection

model for three reasons. First, one-stage object detectors tend to be faster than two-

stage object detectors. Second, with the YOLOv5 [58] backbone, FairMOT results

in a good trade-off between speed and computation complexity. Third, for each

identified object, FairMOT computes re-ID features, which can be utilized in object

association and tracking.

Model size. We evaluate three models following the YOLOv5 architecture but

with different sizes: YOLOv5, YOLOv5-mid (a model with half of the channels in

each layer of the base model), and YOLOv5-small (a model with a quarter of the

number of channels in each layer of the base model). All three models are pre-trained

on the COCO dataset (for object detection task) and then trained on the MOT-17

dataset (for MOT task).

Experiments are conducted on an NVIDIA GTX 3080 graphical card with 10 GB

GDDR6, running a docker on Ubuntu 20.04. The system is built using Pytorch v1.8

and CUDA v11.3.
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4.3.3 Results and observations

The tracking performance of the three models on the validation dataset is shown

in Table 4.1. It is clear that lowering model size leads to a decrease in tracking

accuracy but accelerated inference (measured in FPS). YOLOv5-mid, for example, is

faster than the base model at the cost of a 5.5% drop in the MOTA score. Similarly,

YOLOv5-small suffers around a 23.5% drop in MOTA but is 1.35 times faster than

the base model.

Figure 4.1 illustrates the tracking performance for the full model and the small

model. Compared to the full model, the small model fails to detect some objects,

especially those that are far away, partially occluded, or small sizes. Therefore, our

main goal is to train an efficient small neural network using knowledge from a big

model to attain comparable performance. Unlike existing works on attention-based

approaches, knowledge transfer is performed both during the training and inference

stages.

Table 4.1: Impact of model size on tracking performance on the MOT17 dataset.

Model IDF1(%)↑ MOTA(%)↑ FPS↑ Parameter size
YOLOv5 65.90 62.40 43.93 5.01 M

YOLOv5-mid 63.20 56.90 46.16 1.38 M
YOLOv5-small 44.70 38.90 59.32 0.31 M

4.4 The AttTrack framework

Figure 4.2 shows the schematics of the proposed online attention transfer approach.

AttTrack employs a teacher model to accurately detect objects from every K frames

at the inference time, and a student model combines this knowledge in its tracking
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(a) Extracted trajectories for MOT17-04
using YOLOv5-small model

(b) Extracted trajectories for MOT17-04
using YOLOv5 model

Figure 4.1: Demonstration of tracking results from a small and a large model. The
YOLOv5-small model performs less accurately than the YOLOv5 model due to

partially occluded or small-size objects.

model in the interim K − 1 frames as depicted in Figure 4.2.

We formulate the video based object detection and tracking problem as follows:

given a set of N input frames X = {x1, x2, ..., xN} where xn ∈ R3×H×W , the objective

is to first obtain set of Mi bounding boxes Bi = {bi,1, bi,2, ..., bi,Mi
}, where bi,j =

{recti,j, ϕi,j}, recti,j denotes the 4-dim vector (center coordinates, height and width)

associated with the jth bounding box and ϕi,j represents the extracted visual features

of the bounding box in frame i. Consequently, object tracking aims to construct the

set of trajectories Tt = {Bt, idt}, where Bt is the set of detected bounding boxes in

trajectory t, idt denotes the trajectory ID.

4.4.1 Online attention transfer

Modern object detectors such as FairMOT output heatmaps in addition to bounding

boxes, where the value of each pixel in the heatmap is its likelihood of being an object
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Xi Xi+1 Xi+2 Xi+3 Xi+4

Teacher Teacher

Student Student Student

K=4

(a) Teacher/student detection
performance comparison: a powerful

teacher model vs a small student model.

Teacher

Student

(b) Inference stage: attention transfer
for two cycles.

Figure 4.2: Schematic illustration of attention transfer. The teacher model is used
for every K = 4 frames.

center. Let the heatmap output by the teacher for keyframe k be ht
k:

ht
k = Ht(xk) (4.4.1)

where H represents the function associated with the heatmap head of the teacher

model. Then, we denote the student model output ysk+i at frame k + i as below:

ysk+i = g(f(xk+i),Φ(h
t
k, i)) (4.4.2)

where i stands for the number of frames after the keyframe k and Φ(ht
k, i) extrapolates

the heatmap of teacher in frame k to get its heatmap in frame k+i, f is the generated

features by backbone of the student model and g is the fusion function to be explained

in Section 4.4.4.
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Figure 4.3: System architecture. AttTrack applies a teacher model every K frames,
and computes updated states Φ(ht

k, i) (attention) for intermediate frames based on
the teacher’s predicted heatmap ht

k for frame k. The updated state is then fused
with the prediction on frame k + i by a student model using a fusion network,
resulting in object bounding boxes and re-identification features for frame k + i.

Figure 4.3 depicts system architecture of AttTrack. A non-key frame is processed

by the student model, to generate intermediate features. The student model then

incorporates updated attention features based on the heatmap of teacher on the

most recent keyframe. With the fused features, bounding box regression and re-

Id networks are applied to generate the bounding box and re-ID features of each

object. During tracking, a trajectory is constructed from detected objects that are

similar in appearance-based re-ID features and have a large IoU. Specifically, object

association is done in two steps: first, visual features are used to match a trajectory

and a detected object. Second, if a match is found, the IoU measure is applied to

determine whether a true match is obtained. If the object is matched to a trajectory,

the trajectory is extended; otherwise, a new trajectory is initiated. Cosine similarity

is used in computing the similarity of visual-based features. A Kalman filter [133] is

then applied to update the position state of each trajectory in the current frame.

Since the teacher model is applied for frames between two keyframes, the heatmaps

(attention) of teacher are outdated for any frame in-between. To extrapolate the
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heatmap of teacher for these frames, we devise an attention update approach next.

4.4.2 Attention update

The knowledge computed in earlier frames by the teacher is beneficial to the student

model. However, due to the presence of moving objects, such information becomes

more outdated as the time elapses between the current frame and the most recent

key frame. Therefore, updates need to be made from the teacher heatmap (Figure

4.4). Consider Bt
k the set of objects detected by the teacher model in frame k. We

first estimate the velocity of each identified object based on bounding box locations

from previous frames. The velocity is then used to predict the subsequent locations

of the corresponding object in frame k + i, i = 1, 2, ..., K − 1 using a simple linear

kinematic equation. The heatmaps are updated accordingly.

The updated heatmaps are most beneficial when the student model fails to detect

an object due to poor visibility. However, when object movements are irregular, a

new object enters the scene or an object exits the scene, the information of teacher

can still be stale. Therefore, the updated heatmaps should be combined with the

prediction from the student model for the current frame.

4.4.3 Skip-based tracker

AttTrack offers more alternatives in processing non-key frames, thanks to its skip

option. When dealing with scenes where objects move at a slow pace, it is possible

to rely on the history of their movements instead of using the student model to

detect recent objects. However, when objects move rapidly, this approach may not

be effective as their movements tend to be unpredictable. Thus, as depicted in Figure
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(a) States of outputs of teacher are updated using linear
kinematic equation.

Teacher TeacherStudent Student Student

Key frame

Xi Xi+1 Xi+2 Xi+3 Xi+4 Attention update

Key frame

(b) Inference stage: attention transfer.

Figure 4.4: Attention state update. We choose K = 4 as number of frames between
every keyframes. At frame Fk and Fk+4 teacher model is performed whereas

between these two keyframes the student model is applied.

4.5, AttTrack calculates the average velocity of identified trajectories up to the current

keyframe. If the velocity falls below a certain threshold, it chooses to skip and not use

the student model until the next keyframe. Accordingly, the anticipated location of

each identity in the next frame is updated using the first-order kinematic equations.

Teacher

Student

Skip

Key frame

Xi

Teacher

Key frame

Xi+4Xi+1 : Xi+3

Figure 4.5: System architecture for student and skip module design. AttTrack
chooses the appropriate module based on observed motion measures within a scene.
The designated module is activated and operational until the subsequent keyframe

is reached. K=4.
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Figure 4.6: The student network architecture. The student model has fewer
parameters and takes two inputs: the input-frame at time t and estimated heatmaps

of teacher up to time t.

4.4.4 Network design

For the teacher model, we can utilize any existing object detection backbone such

as DLA34 [130]. The student model, like the teacher model, creates bounding boxes

and re-ID features for observed objects. For faster computations, the student model

employs fewer parameters than the teacher model in its network backbone. As illus-

trated in Figure 4.6, the student model receives attention features and input image

as inputs and fuses the attention features and its own calculated features as:

g(f(xk+i),Φ(h
t
k, i)) = (f(xk+i),Φ(h

t
k, i)) (4.4.3)

where fusion function g appends the extrapolated features from teacher with new

features calculated by the student backbone. The fused features are fed into heatmap

and re-ID branches as defined in [133].
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Student model

Pivot features

re-ID features

Teacher model

Figure 4.7: Cross model feature learning. In the object association step, pivot
features for EFM and re-ID features for IFM are used. The re-ID features of the

student model in IFM are aligned with the teacher model.

The student model is trained using the following loss function:

Lstudent =

1

2
(
1

eω1
(Lheatmap + Lbox) +

1

eω2
Lidentity + ω1 + ω2),

(4.4.4)

which consists of learnable task based parameters ω1 and ω2, heatmap loss, box-size

loss, and re-identification loss defined in [133].

4.4.5 Cross-model feature learning

Switching from one model (for example, teacher) to another (for example, student)

can result in re-ID features that follow different distributions. Running AttTrack on

a video clip necessitates multiple transitions between the teacher and student models.

When re-ID features mismatch between teacher and predictions of student, identity

fragmentation occurs, leading to reduced tracking accuracy. To mitigate the domain

gap between the re-ID features produced by the student and the teacher models, we

propose two cross-model feature learning approaches as illustrated in Figure 4.7.

Explicit Feature Mapping (EFM): We use pivot features to induce correlation

between the computed re-ID features by the teacher and the student models. This
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is done by applying a single linear layer to map the re-ID features to the number

of identities (encoded as a one-hot vector) in the training set. Both student and

teacher models are subjected to the linear layer. By mapping each identity to those

learned pivots in the training time, this approach lowers the distance across two model

domains in the inference time.

Implicit Feature Mapping(IFM): the former method requires an additional com-

pute unit in both the student and teacher models, resulting in increased total com-

putation costs. In the second approach, we perform feature mapping implicitly for

the student model by mincing the re-ID feature layer in the teacher model. During

training, the extracted features from the teacher model are used as an additional

supervision signal and the loss function is updated as:

LW = Lstudent(W ) + Lid−att(W ). (4.4.5)

where Lstudent is the loss function in Eq.4.4.4 and Lid−att is L2 loss of re-ID features.

4.5 Performance evaluation

To qualify the performance of AttTrack, we conduct experiments on a pedestrian

tracking task. The MOTA score is used to evaluate tracking accuracy, while FPS is

used to quantify tracking speed.

4.5.1 Implementation details

Experiments are conducted using the same hardware and software setup as in Section

4.3.2. We use the Adam optimizer to train our model across 35 epochs, with a starting
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learning rate of 1e-5 that lowers every 25 epochs. A batch size of 12 is used. Rotation

and scaling are applied to augment the training set. The input frame size is 608×1088

pixels.

To evaluate the performance of AttTrack, we consider two backbone models for

the student model. The first is DLA34-small, which offers a good trade-off in track-

ing performance and speed, and is based on DLA34 used in [133]. It has in total

16.55M parameters. The second one, YOLOv5-small, has the same architecture as

YOLOv5 [58] but with only one-fourth of the parameters, allowing for fast computa-

tions and acceptable performance.

4.5.2 Baseline methods

To evaluate AttTrack, we consider the following baselines: Teacher-only and Student-

only : object detection in the tracking pipeline only uses teacher and student models,

respectively. Naive-Mix : which alternates between a teacher and a student model

every K frames and merges the tracking outputs of the two with no further informa-

tion sharing in training or inference; AttTrack w/o attention update (AttTrack-no-

update), which transfers attention from Teacher to Student at inference but does not

update the attention (i.e., Φ(ht
k, i) = ht

k); and Layerwise, which is similar to Naive-

Mix but allows layerwise attention transfer from the teacher to the student model in

training[131].
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4.5.3 Online-based attention transfer

Table 4.2 summarizes the performance of teacher models with full-fledged DLA34

and YOLOv5 backbones. The results for the student models with and without Att-

Track, AttTrack w/o attention update are given in Table 4.3. In Table 4.3, with

or without AttTrack, the teacher model is executed every 6 frames. The difference

between the two lies in whether attention transfer is performed or not. Similar to the

results in Section 4.3, smaller models have fast inference time but suffer from lower

accuracy. DLA34-small without AttTrack, for example, is 1.52× faster at the price

of 6.9 percent MOTA degradation. AttTrack improves the tracking performance of

the student model by 1.6% and 5% for DLA and YOLOv5, respectively. This shows

the effectiveness of attention transfer from the teacher model. Because AttTrack in-

vokes the teacher model every 6 frames, the running time of AttTrack is longer than

those without. In Table 4.3, we further compare AttTrack and AttTrack-no-update.

As expected, AttTrack-no-update is faster due to less computation but has slightly

degraded performance. The relative small gap between the two can be attributed to

small changes in the scenes when K = 6.

To better understand the impact of K on AttTrack, Table 4.4 lists the results of

different student models under various Ks. As expected a smaller K means more

frequent execution of the teacher model, resulting in slower processing time and more

accurate tracking outputs, and vice versa. YOLOv5-small runs faster than its DLA34

counterpart but with lower accuracy.
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Table 4.2: Performance of Teacher-only and Student-only baselines on the MOT17
dataset.

Baseline Model MOTA (%) FPS

Teacher-only
DLA34 68.30 20.78
YOLOv5 62.40 40.46

Student-only
DLA34 61.40 37.69
YOLOv5 38.90 59.32

Table 4.3: AttTrack model experiments with K = 6 on the MOT17 dataset.

Model AttTrack AttTrack-no-update Naive-mix
MOTA FPS MOTA FPS MOTA FPS

DLA34 63.00 30.80 62.90 31.30 61.40 31.65
YOLOv5 43.60 50.90 43.40 52.24 38.60 53.13

4.5.4 Alternative teacher

We conduct further investigations to see whether the representational power of teach-

ers can affect the performance of the student model. Specifically, we compare the use

of DLA34 in the teacher model and transfer the knowledge to YOLOv5-small stu-

dent model. The heatmap computed by a DLA34 teacher can still be useful to the

YOLOv5-small student model, and the re-ID features can be aligned using the mech-

anism in Section 4.4.5.

The DLA34 teacher provides better tracking performance than the YOLOv5-based

equivalent, as shown in Table 4.5, although it runs slower than the YOLOv5 teacher.

The gap in tracking performance between YOLOv5 and DLA teacher-based models

reduces as K increases as the impact of YOLOv5-small becomes more dominant.

Overall, the results in Table 4.5 show that tracking performance and processing time

can be considerably impacted by the choice of the teacher architecture.
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Table 4.4: YOLOv5 and DLA34 models with IFM on the MOT17 dataset.

K YOLOv5-small DLA34-small
MOTA FPS MOTA FPS

2 48.50 45.09 64.50 26.24
4 43.90 49.96 63.20 29.28
6 43.60 50.91 63.00 30.80

Table 4.5: Compression of Different Teacher Models using EFM on the MOT17
dataset.

K YOLOv5 →YOLOv5-small DLA34 →YOLOv5-small
MOTA FPS MOTA FPS

2 50.40 44.69 52.00 28.72
4 46.90 47.60 47.70 36.41
6 45.90 48.83 46.20 40.32

4.5.5 Cross-model feature learning

The usefulness of the learned features for transferring knowledge between teacher

and student models is evaluated in Table 4.6. In the experiments, EFM is done by

applying a single linear layer on the generated re-ID features. As can be observed, the

inclusion of this extra layer reduces the visual feature distance between the teacher

and the student, and produces more precise tracking output. The use of EFM for

K = 4 has the greatest influence on the YOLOv5 student model, accounting for

3.7% of more accurate tracking performance. As we can see, cross-model feature

learning is beneficial and has more impact on YOLOv5 than it does on DLA34-small.

Furthermore, EFM yields better tracking performance than IFM but incurs higher

computation costs. On DLA34-small, for instance, utilizing EFM withK = 2 achieves

a 65.30% MOTA score and 25.40 frame rate, whereas the use of IFM results in a 0.9%

lower MOTA score and a 0.84 faster FPS.
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Table 4.6: Importance of cross-model feature learning on the MOT17 dataset.
EFM: employing an additional convolution layer to translate features from the
teacher and student models to the common features space. IFM: student model

mimics re-ID feature generated by the student model.

Model
K

EFM IFM No Fea. Learning
MOTA FPS MOTA FPS MOTA FPS

DLA34
2 65.30 25.40 64.50 26.24 64.30 26.30
4 64.10 28.36 63.20 29.28 63.20 29.59
6 63.80 29.99 63.10 30.80 63.20 31.01

YOLOv5
2 50.40 44.69 48.50 45.09 47.50 45.57
4 46.90 47.60 43.90 49.96 43.20 50.22
6 45.90 48.83 43.60 50.91 42.90 51.03

4.5.6 Comparison with layer-wise attention transfer

In this set of experiments, we compare AttTrack with the layer-wise attention transfer

proposed in [131] (baseline Layerwise). The main difference between our approach

and [131] is that the layer-wise solution transfers attention knowledge to the student

model during the training time only, and the student model performs tracking entirely

on its own, while our AttTrack leverages teacher knowledge in both training and

inference phases. We implement a layer-wise attention approach for the MOT task

since [131] is originally built for object classification tasks. The results are shown

in Figure 4.8 for 11 different Ks between two and twelve. For fair comparison, in

the baseline layer-wise attention transfer, we also invoke the teacher model every K

frames though there is no knowledge transfer between the teacher and the student

models at inference time. 2nd order polynomial fitting functions for the AttTrack

and baseline results are also displayed in the figures. When comparing AttTrack to

layer-wise attention, we find that AttTrack exceeds the baseline significantly with

comparable processing time on tracking accuracy. The difference with YOLOv5 is

more pronounced. For example, AttTrack is 4 percent better with only 2 percent lower
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(a) Tracking performance comparison
for DLA34 architecture

(b) Tracking performance comparison
for YOLOv5 architecture

Figure 4.8: Results of attention transfer for AttTrack and Layerwise approach under
11 different Ks ∈ [2, 12] on the MOT17 dataset.

FPS whenK is between two and four. The gap in computation time between AttTrack

and baseline drops for the DLA34-based tracker. This is because the overhead of

attention transfer in AttTrack is shadowed by the high compute cost of the DLA34

backbone.

4.5.7 Skip-based tracking

Table 4.7 presents the performance of skip-based tracking in AttTrack and NaiveMix.

For NaiveMix the process of running inference on the student model is skipped and

instead, trajectories are predicted for the entire interval K based on the motion

features extracted at the recent keyframe. However, alternates between the student

model and skipping, leading to more accurate tracking performance at the expense

of reduced tracking speed.
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Table 4.7: Performance of model skipping in AttTrack compared to the baseline on
the MOT17 dataset.

Model K
NaiveMix+Skip AttTrack+Skip
MOTA FPS MOTA FPS

DLA34
2 66.20 56.54 67.30 40.09
4 59.60 101.84 66.00 51.88
6 53.80 145.71 64.50 58.46

YOLOv5
2 60.20 129.04 60.50 80.23
4 54.50 219.21 59.0 96.61
6 49.90 288.20 57.10 101.72

4.5.8 Experiments on MOT15

To verify the generalizability of AttTrack to other datasets, we further conduct ex-

periments on MOT15. The performance of Teacher-only and Student-only is given

in Table 4.8, and the comparison between AttTrack and Layerwise for different K’s

is given in Table 4.9. Similar to the trends with MOT17, we observe that AttTrack

outperforms Layerwise and Student-only in MOTA, and is considerably faster than

Teacher-only.

Table 4.8: Performance of Teacher-only and Student-only baselines on the MOT15
dataset.

Baseline Model MOTA (%) FPS

Teacher-only
DLA34 68.80 21.70
YOLOv5 61.00 54.41

Student-only
DLA34 66.90 41.47
YOLOv5 52.70 58.80

4.6 Conclusion

AttTrack is a teacher-student attention transfer approach for accelerating MOT tasks.

It transfers knowledge from a complex teacher to a lightweight student model in both

the training and inference stages. AttTrack is model agnostic and can be used in
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Table 4.9: AttTrack and Layerwise attention on the MOT15 dataset.

Model
K

AttTrack-EFM Layerwise
MOTA FPS MOTA FPS

DLA34
2 67.60 27.99 65.90 28.64
4 67.40 32.32 65.70 32.55
6 67.30 35.19 65.60 35.90

YOLOv5
2 56.50 55.17 55.00 56.63
4 54.10 56.13 52.60 57.93
6 52.90 56.46 52.30 58.39

conjunction with other techniques to accelerate neural network inference. Because

AttTrack adopts cross-model feature learning, it is capable to transfer knowledge

from any teacher to any student network with different network architectures (e.g.

YOLOv5 or DLA34). When compared with traditional attention-based methods, our

work improves tracking accuracy with marginal degradation in inference time. As

part of future work, we are interested in investigating attention mechanisms with

adaptive window sizes.
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Efficient Cooperative

Spatial-Temporal Processing for

Distributed Multi-view Tracking
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5.1 Introduction

Compared to single-camera tracking, tracking with multiple synchronized cameras

with overlapping FoV has the advantage of better accuracy from less occlusion and

multi-view coverage of the same subject. However, the need to fuse information from

geographically distributed cameras poses unique challenges. First, since cameras are

typically placed at considerable distances from one another in order to reduce costs,

there exist substantial variations in perspectives and illumination conditions across

different visual fields, object association between identities from different viewpoints

is thus a challenging undertaking. Second, processing multi-view feeds centrally does

not scale well. Typical networks for object detection tracking pipelines usually contain

a large number of convolution layers, and the computational cost of these CNNs is too

high for real-time processing, especially on embedded devices. On the other hand,

transferring raw data from multiple cameras to a central server (or a cloud data

center) for further processing incurs excessive communication delay.

Fortunately, there exists significant redundancy both spatially and temporally in

multi-view videos [128, 51]. Humans generally move in restricted areas such as path-

ways and sidewalks. Therefore, a significant proportion of frames contain only static

or slowly changing backgrounds. Over time, intermediate features from these regions

remain mostly unchanged. We call such redundancy temporal redundancy. It is thus

wasteful to assign equal amounts of processing to all regions in an input frame. Across

cameras, due to their overlapping FoVs, people can be captured by multiple cameras,

only a subset of which are needed for tracking purposes. Such redundancy is termed

spatial redundancy. Existing works on multi-target tracking exploit either temporal

or spatial redundancy but rarely both. For example, to leverage temporal redundancy
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in video analytics in single-camera streams, researchers utilized optical flow in several

studies to separate foreground moving objects from stationary background [137, 100].

Work such as NetWarp [34] further warps internal network representations using the

estimated optical flow between adjacent frames to accelerate video segmentation. Op-

tical flow incurs extra computing overhead and is inadequate for large motions, such

as newly arrived objects. In another line of work, BlockCopy [106] incorporates a

RL model that is trained online to identify informative image regions from a single

camera. Visual features are computed for informative regions only, while those from

non-informative ones are “copied“ from previous frames to achieve computational

savings.

In order to exploit the spatial redundancy presented in video frames, works in

[44, 125] perform offline profiling to partition visual fields into non-overlapping or

overlapping regions and assign one camera to each partition. The designated camera

is thus responsible for object tracking in the corresponding areas. Such approaches

can reduce the computational burden or network traffic between cameras and a central

server. However, as evident from our preliminary study in Section 5.2 and existing

literature [51], the optimal camera for an object is perspective-dependent and changes

over time due to movements, lighting, and occlusion. Moreover, fusing multiple views

can often improve detection and tracking accuracy [51, 128, 62].

In this chapter, we propose MVSparse, an efficient cooperative multi-person track-

ing framework across multiple synchronized cameras. The MVSparse pipeline consists

of models executed on a central processing unit (on an edge server or in the cloud)

and distributed lightweight RL agents running on individual cameras that identify the

informative blocks in a frame based on past frames on the same camera and detection
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results from other cameras. Only selected blocks will be sent to a central unit, which

is responsible for aggregating multiple views for detection as well as providing feed-

back to individual agents. The former is accomplished by first projecting inputs from

different perspectives to a common ground plane and then applying a deep detection

model. Feedback to each agent is computed from a novel clustering algorithm to as-

sociate objects detected by different cameras. The RL agents are trained online in a

self-supervised manner so that they can adapt to human movements, scene dynamics,

or even camera configuration changes. MVSparse concurrently exploits temporal and

spatial redundancy in multi-view videos with small computation and communication

overhead. To summarise, the main contributions of this study are as follows:

• We empirically analyze two multi-camera people tracking datasets and reveal

the degree and dynamics of overlapping views. An Oracle is devised to deter-

mine the minimum number of blocks necessary for detection as an objective

measure of spatial redundancy.

• We propose a multi-camera, multi-person detection pipeline that exploits tem-

poral and spatial redundancy to accelerate inference time and reduce network

transfer delay. Our pipeline is lightweight, and coupled with a primary detector,

it can be easily adapted for different datasets.

• MVSparse has been evaluated on two datasets, and the results show that it

can reduce the number of processed regions in input images frames by 48%

compared to a baseline approach.

• MVSparse has also been implemented and evaluated in a real testbed consisting

of four NVIDIA Jetson TX2 devices with embedded GPUs and a GPU server.
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Experiment results on WildTrack and MultiviewX datasets show that it can

accelerate the overall inference time by 1.88X and 1.60X compared to a baseline

approach that takes all views while marginally degrading tracking accuracy by

2.27% and 3.17% on the two datasets respectively.

The rest of the chapter is structured as follows: we begin with a study of cross-

camera spatial redundancy for object detection and the effects of motion on camera

coverage in multi-view settings in Section 5.2. The proposed methodology is described

in Section 5.3, and experimental findings are discussed in Section 5.4. We conclude

the chapter in Section 5.5.

5.2 A preliminary study on multi-camera multi-

target pedestrian tracking

Object identification, feature extraction, and object association are the three core

components of DNN-based trackers. Reference [82] suggests that the most time-

consuming step in the tracking process is object detection. Thus, investigating the

computing costs of object detection (amount of areas processed for each frame), specif-

ically in relation to the extent of overlapping areas across many cameras, is the pri-

mary goal of the section. We consider two datasets, WildTrack [13] and MultiviewX

[51] which were gathered from the 7 and 6 static synchronized and calibrated cameras,

with overlapping FoVs in outdoor areas, respectively. In the two datasets, there are

20 and 40 people on average per frame.

The model architecture for the baseline multi-view object detector (MVDet [51])

is shown in Figure 5.1. The model collects frames from multiple viewpoints, extracts
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7 x 3 x W x H

Backbone
Spatial 

Aggregation
Network
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Input frames Ground plane 
predictions

Figure 5.1: MVDet system: an example of running MVDet on WildTrack dataset
with 7 different cameras. Input images are converted to W ×H dimensions. The

backbone network thus generates an intermediate feature per view of
512×Wf ×Hf in size. Finally, the spatial aggregation network must provide output

features whose dimensions are compatible with a ground plane.

intermediate features using a deep backbone separately, and then aggregates the

multi-view features for ground plane predictions.

Camera Coverage Figure 5.2 shows the minimum, maximum and average number

of cameras that can detect a specific person in each frame in WildTrack and Mul-

tiviewX, based on ground truth annotations. As evident from the figures, there is

significant overlap (and consequently spatial redundancy) amongst the camera views.

In fact, each person is on average detectable by 4.75 and 4.85 cameras in WildTrack

and MultiviewX respectively. Also, it can be observed from the figures that the degree

of overlapping changes over time due to the movements of people.

Lower bound on informative regions Next, we investigate among the over-

lapping views, the minimum amount of informative regions necessary to achieve a

detection performance comparable to a baseline that takes all views.

Following BlockCopy [106], the input frames are first divided into blocks of 128×

128px as basic processing units. Thus, there are in total 5× 9 blocks in input images

of size 640 × 1152px , and 7 × 5 × 9 (6 × 5 × 9) blocks per frame in WildTrack
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(MultiviewX) dataset from seven (six) cameras. To approximate the least number

of blocks necessary, we devise an Oracle that has access to both ground truth target

locations and ground plane projections of the outputs from the MVDet backbone

for each camera. Oracle then chooses the top-K detections from all cameras for

each target that is closest to their respective ground truth location using bipartite

matching.

It can be seen that when K = 1, Oracle can drastically reduce the number of pro-

cessed blocks per frame with reasonable compromising detection performance. With

larger Ks, as expected, detection performance can be further improved with more

camera views at the expense of increased number of processed blocks. Figure 5.3

shows the best camera for a person, defined as the view containing the largest bound-

ing box for the subject in the ground truth annotation. It can be seen that the

best camera changes quite frequently. This can be attributed to a combination of

factors such as the distance to each camera and (partial) occlusion by other people,

etc. Thus, a fixed partition of the visual field will yield suboptimal decisions due to

camera coverage, occlusion, and the distribution of people.

These results indicate time-varying spatial redundancies among various cameras.

This study aims to exploit these redundancies to accelerate object detection and track-

ing pipelines. To this end, we devise the following strategy: to incorporate temporal

feature propagation and sparse convolutions on each camera, we take inspiration from

the BlockCopy [106] approach. However, unlike BlockCopy that only handles single

camera inputs, the informative blocks in each view are determined jointly by account-

ing for overlapping FoV across cameras. The main challenge is to design a scalable

approach that minimizes the amount of information exchanged between cameras and
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(a) WildTrack dataset. (b) MultiviewX dataset.

Figure 5.2: Distribution of camera coverage over people on the scene. Numbers are
smoothed using interpolating B-spline [107].

the central server.

Table 5.1: Average number of processed frames by Oracle and MVDet.

Dataset Method
Processed Blocks

per Frame
MODA%

WildTrack

Oracle-top1 08.63 84.80
Oracle-top2 12.12 87.30
Oracle-top3 13.76 88.00
MVDet [51] 45.00 88.20

MultiviewX

Oracle-top1 12.10 76.20
Oracle-top2 16.36 77.40
Oracle-top3 17.95 77.80
MVDet [51] 45.00 81.70

5.3 The MVSaprse framework

The system architecture of MVSparse is shown in Figure 5.4. It consists of a policy

network running on each camera that determines the informative blocks in every

frame, based on past decisions and the current frame, the MVDet backbone that
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(a) WildTrack dataset. (b) MultiviewX dataset.

Figure 5.3: Oracle’s top camera of choice experiences variations throughout time in
relation to 3 distinct individuals.

produces per frame per camera feature maps as well as aggregated ground plane

predictions across multiple views, a lightweight tracking module and a cross-camera

clustering module whose outputs are incorporated in the reward functions to train the

policy network on-the-fly. Next, we present details of each component in the pipeline.

5.3.1 Multi-view pedestrian detection

MVSparse takes multiple RGB images, from different viewpoints, and estimates the

pedestrian occupancy map on a ground plane. For each frame in each view, similar

to MVDet, it computes 512 feature maps of size 512×Wf ×Hf using a shared deep

backbone. Camera intrinsic and extrinsic parameters are applied to project these

feature maps onto a common ground plane. To aggregate all views, we apply a 3-

layer sub-network (called Spatial Aggregation Network) to merge the transformed

intermediate features from different viewpoints, generating the final occupancy map

on the ground plane. We determine the bounding box of each individual in each
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Cam1

Cam2

Cam3

Propagation of Knowledge

MVDet

Ground plane 
predictions

Detections 
per camera

Optimized parallel 
backbone

Detected Informative
Regions

Object Tracking

Cross-camera Clustering

Figure 5.4: System pipeline of MVSparse for 3 cameras. A policy network runs on
each camera that uses the incoming outputs of MVDet, clustering outcomes, and

input frames to identify informative areas within each view. An optimized backbone
is employed in MVDet to aggregate the blocks from each camera and process them
all at once. Subsequently, a cluster is created to group detections from different

views that correspond to the same identity (Section 5.3.2). Top-K detections in each
cluster are then sent to the respective policy networks. The object tracking module
finally leverages ground plane predictions to generate a trajectory for each identity.
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view by adding a sub-network. Instead of bound box regression to predict the center,

height, and width of the box for each person, detection is carried out on a backbone

network using head and foot pairing [51]. The bounding box output is then used in

the clustering algorithm (Section 5.3.2) and tracking.

There are two key differences in the way detection is performed in MVSparse

compared to MVDet. First, instead of feeding the entire frames to the detection

backbone network, we only update features of informative regions as decided by a

policy network (Section 5.3.3). Sparse convolutions with high efficiency are not sup-

ported by standard deep learning packages like PyTorch. We use SegBlocks [105], a

block-based image processing framework to overcome this limitation. This method

converts an RGB image of dimensions of 3×W ×H into blocks of size B×B. In this

chapter, we set B = 128. During execution, only the blocks that require updates are

processed, while the representations of the remaining blocks from previous frames are

stored and reused using specialized CUDA operations. Second, to further accelerate

computation, informative blocks from different views are grouped and processed in

parallel.

5.3.2 Cross-camera object association and camera assignment

As demonstrated in Section 5.2, there exists a significant overlap among the FoVs of

different cameras, or in other words, one person can be seen by multiple cameras. This

gives rise to potential computation saving by restricting to a small set of views. To do

so, two sub-problems should be resolved first, namely, cross-camera object association

and camera assignment. Given a set of detected objects in each view, cross-camera

object association aims to group together ones belonging to the same identity. For
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each distinct identity, camera assignment determines the specific set of K cameras

responsible for tracking it, where K is a system parameter.

The cross-camera object association problem can be formulated as a graph clus-

tering problem. Specifically, let Dt
c be the set of detected bounding boxes of objects

in view c at time t1:

Dt
c = {dtc,i : [xc,i, yc,i, wc,i, hc,i], i = 1 : |Dt

c|}. (5.3.1)

We define a graph G(U,E), where vertex u stands for an object in a view and

an edge exists between two vertex u1 and u2 if and only if they are not detectable

by the same camera. The edge weight w(u1, u2) is proportional to the Euclidean

distance between the respective centers in a ground plane. Thus, the purpose of

object association is to partition G to fully connected subgraphs (cliques) such that

the sum edge weight in the subgraphs and the number of subgraphs is minimized.

Graph clustering problems are known to be NP-hard [38]. We design a heuristic

solution outlined in Algorithm 1.

Algorithm 1 initializes the clusters using the objects detected in the first view Dt
1

and iterates through the remaining views one by one. The ground plane projection

function Πg(·) uses camera parameters to project camera coordinates into ground-

level coordinates allowing for an associating of clusters with detections based on their

respective ground plane distance. For the c th view, we compute the center of each

cluster obtained so far and construct a bi-partite graph using Binary Integer Program

(BIP) from the cluster centers in one set and the objects in Dt
c+1 in the other set. We

1Here, we use the projected coordinates of a bounding box center on the ground plane, its width,
and height in the original view to represent each detection.
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Algorithm 1 Clustering detections across multiple cameras

Require: receives Dt
c, c ∈ [1, C]

Require: outputs set Clusterst

Clusterst = {Dt
1}

for <View c ∈ [2:C]> do
centers← Center(Clusterst)
gpCenters← Πg(centers).
//projecting into the ground plane
gpD ← Πg(D

t
c).

//projecting into the ground plane
m,um← BIP (dist(gpCenters, gpD))
for <(p, q)← matched m> do

Clusterstp ← Clusterstp
⋃
Dt

c,q

end for
for <(u)← unMatched um> do

Clusterst ← Clusterst
⋃
Dt

c,u

end for
end for
return Clusterst

consider an edge between a cluster center and an object if their Euclidean distance

is below a pre-defined threshold ϵ. Matched objects are included in the respective

clusters while the unmatched ones each form a new cluster of size 1. The procedure

continues until all views have been considered. An illustrative example can be found

in Figure 5.5. Therefore, objects associated with the same person are grouped in

one cluster. To determine which cameras are used to detect each person, we select

the K largest bounding-box elements from each cluster and only the image blocks

in the corresponding views (cameras) are considered informative. This enables us to

perform object detection with only K views of the same object in the scene. If K is

set to a minimum of 1, only one view for each identity (cluster) will be chosen. In

contrast, when K = C, all views should be processed for frame t.

Lastly, we define a binary mask Γt
c ∈ {0, 1}M×N , where M × N are number of

92



Ph.D. Thesis—K. Nalaie McMaster University—Computer Science

blocks at frame t. The elements in Γt
c are assigned a value of 1 if the corresponding

blocks overlap with a bounding box representing top-K detections of clusters observed

in the camera view c. Otherwise, they are assigned a value of zero. Also, we define

γt
c which consists of a set of top-K detections identified in the camera view c. In

the subsequent section, Γt
c and γt

c are used to determine the information gain and

computation cost at the camera view c.

DetectionsClusters  

Bipartite Graph Matching

Figure 5.5: In the c th step, clusters generated from cam1 through camc are
associated with detections on camc+1. For example, clusters Clusterst1, Clusterst2,
and Clusterst3 are connected to a corresponding detection in camc+1, as shown with
green lines. dtc+1,1 is not matched to any existing cluster since the corresponding

person is only captured by camc+1. Consequently, a new cluster is created for dtc+1,1.

5.3.3 Reinforcement learning for camera-wise sparse process-

ing

In the previous section, we showed how detected objects are associated across different

views and by selecting only a subset of views for each identity, it is possible to reduce

spatial redundancy. However, the question of determining which regions a camera
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should focus on remains unresolved. This decision should take into account not

only the camera’s own observed temporal information but also the global spatial

information derived from camera assignments. In MVSparse, cameras individually

learn over time and decide on the informative blocks based on their local information

and “soft“ global feedback in the form of rewards. This is accomplished through

the online training and inference of an RL agent on each camera (Figure 5.4). As it

learns, the agent outputs actions such as processing or duplicating previous features

for each block and gets a reward depending on the computed information gain and

costs.

Policy
Network

Input frame

Previous block
decisions

Detected objects

Pixel-wise
changes

Blocks generated for 
the Camera view

Cross camera 
detection mask

Cross camera 
detection set

Figure 5.6: MVSparse’s Policy network structure for camera c. For each
perspective, MVSparse uses a different policy network. These networks exhibit

recursion by using their previous outputs for the next frame.

Policy Network: We adopt a model-free RL approach that directly outputs

decisions using a policy network. The policy network makes a decision for each block,
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as illustrated in Figure 5.6. It is designed to be more compact than the primary

detection network. For frame t, there are six inputs to this network: the current-frame

(Itc), pixel-wise changes between frames t and t − 1 (Ht−1
c ), cross-camera detection

set (γt−1
c ), cross-camera detection mask (Γt−1

c ), detected bounding boxes (Dt
c), and

previous decisions of the policy network (At−1
c ). From these inputs, the policy network

outputs Ψt ∈ [0, 1]M×N , the probabilities for each of the M × N blocks at frame t.

Formally, we have :

St
c = [Itc,Ht−1

c , γt−1
c ,Γt−1

c ,Dt
c,At−1

c ]

Policy(St
c, θ

t
c)→ Ψt

c ∈ [0, 1]M×N ,

(5.3.2)

where subscript c ∈ [1 : C] denotes the camera index, θtc is a set of network parameters

at frame t, St
c is an input state for camera c. Actions At

c is a set of actions for each

individual block atb,c which is generated by sampling Ψt
c according to the Bernoulli

distributions to produce binary decisions:

At
c = PBernoulli(Ψ

t
c) ∈ {0, 1}M×N . (5.3.3)

For atb,c ∈ At
c, if a

t
b,c = 0, the features are duplicated from the previous executions,

however, when atb,c = 1 the respective block is executed by the detection backbone.

Online learning A policy network deployed in camera c is designed to maximize

the following objective function:

maxJ (θtc) = maxEAt
c∼π(θtc)[R(A

t
c)], (5.3.4)
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where the reward R of actions At
c is defined as:

R(At
c) =

1

M ×N

M×N∑
b=1

R(atb,c). (5.3.5)

The policy network is updated online using the computed gradient and learning

rate α:

θt+1
c ← θtc + α∇θtc [J (θ

t
c)], (5.3.6)

where ∇θtc [J (θc)] can be calculated as:

∇θtc [J (θ
t
c)] = ∇θtc

M×N∑
b=1

(Eatb,c∼π(θtc)
[R(atb,c)]). (5.3.7)

In [106] it is shown that maximizing Eq.(5.3.4) is equivalent to minimizing the

following loss function:

Lt
c = −

M×N∑
b=1

R(atb,c)logπ(θtc)(a
t
b,c|St

c), (5.3.8)

where logπ(θtc)(a
t
b,c|St

c) is the log probability of action atb,c given input state St
c.

Here, R(atb,c) is the reward function w.r.t action atb,c ∈ At
c on camera c at frame t

and it is defined as:

R(atb,c) =


RIG(a

t
b,c) + Cost(atb,c) atb,c = 1,

−RIG(a
t
b,c)− Cost(atb,c) atb,c = 0.

(5.3.9)

In (5.3.9), RIG is the information gain and Cost denotes the computational

expense associated with atb,c. When block b is already activated (or equivalently,
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atb,c = 1), it receives a positive reward; otherwise, it receives a negative reward aiming

to maximize the objective function in Eq.(5.3.4).

Multi-view information gain The information gain of block b from camera c in

the multi-view setting depends on two factors: 1) whether block b is assigned to the

camera (based on the algorithm in Section 5.3.2, and 2) whether block b provides novel

information temporally. (1) is characterized by the M×N matrix Γc,t. For Eq.(5.3.9),

we follow the approach in [106] to determine the single-view information gain IG(atb,c).

The procedure eliminates background regions that are stationary while objects that

were in motion in the previous frame and do not match entirely or partially with any

object in the current frame are associated with higher information gain. Combining

(1) and (2), we have:

RIG(a
t
b,c) = IG(atb,c)Γ

t
b,c (5.3.10)

Therefore, the policy network deployed on camera c learns to focus on non-overlapping

regions exclusively recognized for viewpoint c by the clustering algorithm.

Multi-view computation cost At frame t, the percentage of processed blocks

in viewpoint c is computed as :

P t
c =

1

M ×N

M×N∑
b=1

atb,c. (5.3.11)

Same as [106] we compute the moving average of the processed blocks with momentum

µ:

Mt
c = (1− µ)P t

c + µP t−1
c . (5.3.12)

In the experiments, we set µ = 0.9. Then the corresponding computation cost is
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computed as:

Cost(atb,c) = (τ tc −Mt
c)|τ tc −Mt

c|, (5.3.13)

where τ tc is the normalized target cost for a particular view c by considering the

ratio between the number of the selected objects in the corresponding view by the

clustering algorithm and the maximum number of selected objects among all views:

τ tc =
|γt

c|
maxv|γt

v|
, (5.3.14)

where |γt
c| counts the number of bounding boxes in γt

c. Eq.(5.3.13) determines the

computation cost based on the amount of informative regions in view c. In other

words, the computation cost is proportional to the difference between τ tc and Mt
c.

When atb,c = 1 and the percentage of processed blocksMt
c is under the target τ

t
c , then

the agent receives a positive reward, leading to lower the loss function, Eq.(5.3.8);

otherwise, the reward is negative and the agent trains to lower the cost. A similar

explanation applies when atb,c is zero.

5.3.4 Lightweight people tracker

From the identities detected from multiple views, people tracking can be formulated

as a path-following problem to connect inferred trajectories from the previous time

steps to detections in the present frame. Specifically, in the ground plane, we match

an object to an existing trajectory using the IoU criterion to associate the object

with the trajectory. If the computed IoU is higher than a predefined threshold, the

trajectory is extended; if not, a new trajectory is initiated. The location state of each

trajectory is updated in the current frame using a Kalman filter [113].
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5.4 Performance evaluation

5.4.1 Datasets

Two multi-view datasets, WildTrack and MultiviewX, are used in the experiments.

Labels (bounding boxes and IDs) are provided for both datasets at 2 FPS. To study

the effect of temporal redundancy, a higher frame rate is needed. For WildTrack, the

original video sequences at the frame rate 29.85 are used while interpolation is applied

in the label space to create bounding boxes in intermediate frames. MultiviewX does

not contain video sequences at higher FPS that allow the extraction of additional

frames. Leveraging FILM [90], we generate new frames at a frame rate of 31.25 by

interpolating two successive frames. Bounding boxes in the newly generated frames

are obtained through interpolation from those in the original frames in a similar

manner as for WildTrack.

5.4.2 Implementation details

The frames have been downsampled to 640× 1152px in order to reduce computation

complexity. Each frame is split into a grid of 5 × 9 blocks, with block size of 128 ×

128px. The backbone of MVDet uses Resnet-18 to extract features with weights

randomly initialized during training. We use a Resnet-8 backbone architecture in

the policy network with additional three convolutional layers of 64 channels, batch

normalization, and ReLU activations, as well as a softmax layer over the channel

dimension. The policy networks are trained every 10 frames. For tracking, we set

the conventional threshold for IoU at 0.5, centering a 5-unit square in the location of

each detected person in a ground plane.
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To assess the effectiveness of MVSparse, several metrics are utilized including Av-

erage processed blocks per frame, MODA, MODP, precision, and recall, for detection

as well as tracking metrics MOTA and IDF1, for tracking.

For comparison, we consider three baseline methods: MVDet, BlockCopy, and

CrossRoI. We have extended BlockCopy to handle multi-view inputs. Specifically,

informative blocks in each view are first processed separately based on the decision

of its policy network. The resulting feature maps are then projected to the ground

plane and aggregated for final detection. The implementation of CrossRoI [10] follows

the author’s released codes in [1]. This method involves constructing a lookup table

by associating bounding boxes in the dataset. Features are only computed from

unmasked RoIs in all camera views using SegBlock. To make it work well for the

datasets for a fair comparison, we have also trained our detection model on WildTrack

and MultiViewX using the masks extracted from CrossRoI. CrossRoI’s SVM γ and

RANSAC parameters for WildTrack and Multiview datasets are set to (5×10−6, 1.0)

and (1× 10−6, 1.0) respectively.

5.4.3 Multi-camera detection

The detection performance of MVSparse and baseline methods are summarized in

Tables 5.2 and 5.3. We set K = 3 as a default value for MVSparse. MVDet can

reach an accuracy of 87.6% (87.10%) in WildTrack (MultiviewX) by processing an

entire image. By duplicating non-informative regions and running detection backbone

only on informative regions, BlockCopy has comparable accuracy as MVDet but only

processes 73% of blocks per frame in both datasets. MVSparse, however, is far more

efficient, processing an average of 40% blocks per frame with only a minor reduction
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in accuracy by 0.7% and 0.4% in WildTrack and MultiViewX respectively.

The crowdedness of the scene in MultiviewX is higher than WildTrack. As a re-

sult, CrossRoI finds a higher number of regions and selects more blocks per frame in

MultiviewX than WildTrack. However, since the selection is solely based on overlap-

ping criteria without considering detection quality and utilizing multiple views, the

MODA scores for CrossRoI in both datasets are lower than those of other methods.

Table 5.2: Detection results on the WildTrack dataset.

Method
Processed blocks

per frame
MODA% MODP% Prec.% Recall%

MVDet [51] 45.00 87.60 74.80 95.80 91.50
BlockCopy [106] 33.33 87.70 74.80 95.90 91.60
CrossRoI [44] 22.03 77.00 73.50 90.90 85.50

MVSparse (ours) 23.35 86.90 74.50 96.40 90.30

Table 5.3: Detection results on the MultiviewX dataset.

Method
Processed blocks

per frame
MODA% MODP% Prec.% Recall%

MVDet [51] 45.00 87.10 80.30 98.00 88.80
BlockCopy [106] 32.89 87.00 80.20 98.00 88.80
CrossRoI [44] 27.52 83.20 77.80 96.20 86.60

MVSparse (ours) 27.57 86.70 80.20 98.00 88.80

Figure 5.7 shows the number of views processed per subject in MVSparse. In this

experiment, a view is included if the detected bounding box from the respective view

overlaps the ground truth box by at least 50%. When comparing these with Fig-

ure. 5.2, we observe that MVSparse efficiently exploits spatial redundancy, reducing

the average number of views from 4.7 to 2.7 for WildTrack and from 4.87 to 4.07 for

MultiviewX.
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(a) WildTrack dataset. (b) MultiviewX dataset.

Figure 5.7: Average overlapping views selected by MVSparse. Numbers are
smoothed using interpolating B-spline [107].

5.4.4 Impact of camera coverage K

Recall that the parameter K controls the number of views selected by the clustering

algorithm for each identity. Figure 5.8 shows the effect ofK on the detection accuracy.

As expected, as K increases, as more views are aggregated, the detection accuracy

increases while the number of blocks processed increases as well. More than 2.5%

(0.9%) improvement in MODA can be seen in WildTrack (MultiviewX) when K

increases from 1 to 6 at the expense of 60% (30%) more processed blocks. According

to the results, reasonable accuracy can be attained with fewer views when K is set to

3.

5.4.5 Micro-benchmark for parallelization

In this experiment, we study the impact of processing blocks from different views

in parallel on MVSparse. Additionally, we calculate the inference time by taking

the average processing time (excluding loading and pre-processing operations) on an
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Figure 5.8: Detection performance of MVSparse under different Ks.

NVIDIA GTX 3080 10GB GPU with an Intel i7 CPU running Pytorch 1.9, and CUDA

11.6. In Figure 5.9, the backbone inference time (excluding the policy network) with

and without parallel processing for different Ks is shown. Clearly, the inference

time decreases as the number of processed blocks decreases in both cases. Moreover,

extracting feature maps from blocks from selected views through batch processing

further reduces the inference time.

Figure 5.9: Backbone inference time (FPS) in MVSparse.

103



Ph.D. Thesis—K. Nalaie McMaster University—Computer Science

5.4.6 Tracking performance

The MOT performance of all methods is presented in Table 5.4. MVSparse achieves a

MOTA of 85% on WildTrack, a slight 1.0% decrease in accuracy compared to MVDet

by processing 52.33% fewer blocks. Similar observations can be made for MultiviewX.

MVSparse processes∼40% fewer blocks per frame, with only 0.1% reduction in MOTA

compared to MVDet.

Table 5.4: Tracking results on WildTrack and MultiViewX datasets.

Dataset Method
Processed Blocks

per Frame
MOTA% IDF1%

WildTrack
MVDet [51] 45.00 86.00 84.30

BlockCopy [106] 33.33 86.00 83.60
CrossRoI [44] 22.03 75.50 73.00

MVSparse (ours) 21.45 85.00 82.80

MultiviewX
MVDet [51] 45.00 78.00 63.30

BlockCopy [106] 32.89 78.10 61.00
CrossRoI [44] 27.52 74.70 55.90

MVSparse (ours) 27.26 77.90 60.95

5.4.7 Testbed experiments

To further evaluate MVSparse’s performance in real-world deployment, we have built

a small-scale testbed consisting of four NVIDIA Jetson TX2 boards and a desktop

computer as described in Section 5.4.5 interconnected via WiFi, with average upload

and download bandwidths 18.5 and 21.1 Mbps, respectively. The Jetson embedded

GPU boards are used to emulate smart cameras with limited storage and process-

ing capability. In the distributed implementation of MVSparse, the cameras take

incoming frames and run the policy network separately. Selected blocks are then

transmitted to the server for aggregated detection and tracking. The server also runs

the clustering algorithm and sends the results to the respective cameras (Figure 5.10).
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For BlockCopy, a policy network runs on each camera to select informative blocks to

transmit to the server. No coordination is done across cameras. For CrossRoI each

camera only sends blocks according to a fixed lookup table. For MVDet, full frames

are sent directly from the cameras to the server with no further processing done at

the cameras. Each method is trained and tested on the first four camera views of the

two datasets.

Tables 5.5 and 5.6 compare the accuracy, speed, a breakdown of end-to-end in-

ference time, and the amount of data exchanged between the cameras and the server

using different approaches in the testbed. The transmission time is the amount of

time needed to transmit data between the cameras and the server. There exists a

small timing overlap in camera/ server processing and transmission time due to the

multi-threaded implementation. The reported time is averaged over 3 runs of the

experiments to mitigate the impact of varying network conditions. It is important to

note that employing only four cameras (out of 6 or 7) for pedestrian detection and

tracking reduces the detection accuracy, which explains lower MODA and MOTA

scores than the numbers reported in Tables 5.2 and 5.3. Due to extra operations on

the cameras for policy inference, MVSparse spends more time on the camera. How-

ever, overhead is compensated by the savings in transmission time because fewer data

is transferred from cameras to the server and server processing time. For instance,

on WildTrack, compared to MVDet, MVSparse results in a transmission time that is

more than twice as quick and only uses 32% of the network bandwidth. It has a faster

server processing time than BlockCopy for two reasons. First, reducing spatial redun-

dancy across several camera viewpoints, MVSparse minimizes the number of blocks

required for each frame. Second, blocks from different camera views are processed in
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parallel through the backbone on the server side. In contrast, BlockCopy processes

frames from multiple cameras in consecutive order. Similar to the results in Section

5.4.3, CrossROI has degraded detection and tracking performance due to the static

partition of the scenes among camera views. Furthermore, the number of processed

blocks increase due to fewer overlapping among the four cameras in CrossROI.
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Figure 5.10: Representative architectures for computation partition between a GPU
server and smart cameras in MVSparse.

5.5 Conclusion

This chapter investigated tracking pedestrians in crowded environments using mul-

tiple cameras. The main objective of this chapter is to address the computational

issues associated with multi-view tracking, namely the spatial and temporal redun-

dancies among all cameras with overlapping FoV. To exploit temporal redundancy,
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we employ a policy network that learns online for each camera separately. In addi-

tion, we use an online clustering approach that enables cooperative object association

between cameras, thereby addressing spatial redundancy. The spatial and temporal

components simultaneously train from beginning to end in an online fashion. Exten-

sive experiments conducted on a real-world testbed confirm that MVSaprse reduces

end-to-end processing time in the WildTrack and MultiviewX datasets by 1.88 and

1.60 times, respectively, while sacrificing minimal accuracy loss. We anticipate the

distributed cooperative approach can be applied to other applications such as visual

scene analysis.
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Chapter 6

Concluding Remarks
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6.1 Conclusion

In this dissertation to enable real-time visual MOT on smart end and edge devices,

we put forward several solutions to improve the efficiency of DNN-based object de-

tections. Our contributions include a model-agnostic method to dynamically adapt

input frame sizes, a teacher-student attention transfer approach employed in both

training and inference stages, and a distributed cooperative multi-person tracking

framework that operates across multiple cameras.

First, we proposed DeepScale that enables frame-size adaption for any FCN-based

object detection model and provides users’ control knobs to strike a balance between

tracking accuracy and efficiency. To utilize the computation resources on edge servers,

we proposed two computation partition schemes tailored for MOT, namely, edge

server only with adaptive frame-size transmission and edge server-assisted tracking.

We evaluated DeepScale on multiple MOT datasets and the results demonstrated that

the proposed method can achieve comparable tracking accuracy as SOTA methods

while significantly reducing the inference time on either smart camera or edge server.

Second, we proposed AttTrack framework that interleaves tracking between object

detectors of different model sizes. AttTrack has three key features: 1) dynamically

switching between different models during inference, 2) cross-model feature learning

to align intermediate representations from the teacher and student models, and 3)

incorporating the updated predictions from the teacher model as prior knowledge to

assist the student model. The experiment results demonstrated the effectiveness of

AttTrack in improving the tracking accuracy of the student model with only minimal

degradation of tracking speed.

Finally, in the third approach, we proposed MVSparse, a framework designed to
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facilitate efficient distributed multi-person multi-camera tracking. The MVSparse

pipeline is comprised of a central processing unit, located either on an edge server

or in the cloud, and distributed RL agents running on individual cameras. These

agents predict the informative blocks in a frame based on past frames on the same

camera and detection results from other cameras. Subsequently, only the selected

blocks are sent to a central unit, which is responsible for aggregating multiple views

of detection as well as providing feedback to individual agents. The experimental

results indicated that MVSparse can efficiently exploit spatial-temporal redundancy,

enhancing the processing speed and reducing camera-server transmission cost.

Overall, the proposed techniques in this thesis hold the promises to accelerate

visual analytics on a real-world scale. Deploying DeepScale and AttTrack on single

camera settings reduces model complexity at both input and parameter levels. They

can not only reduce the amount of data transmission between cameras and servers but

also decrease the processing time of deep models either on edge servers or end devices.

Consequently, energy efficiency can be improved in low-power devices. Moreover,

these gains can even extend to multi-camera settings where increased complexity

arises due to the existence of multiple camera views. MVSparse proposes a distributed

collaborative approach where each camera intelligently recognizes informative regions

according to temporal and spatial redundancy.

6.2 Future work

There is room to further enhance the usability and performance of the proposed

methods in this thesis.

First, DeepScale instead of a constant variable K, could benefit from adjusting
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K according to the dynamics of scenes. Situations with fast motions may require

lower values of K but higher values of K for slow-moving objects. Additionally,

instead of solely estimating resolution, the inclusion of model size prediction, enables

DeepScale to consider both model complexity and input resolution when optimizing

model configuration during inference.

Second, while AttTrack maintains teacher’s detections updated using a simple

kinematic equation for an interval of K frames, it may have inaccurate estimations

when dealing with non-linear motions. Therefore exploring alternative sequence-based

methods such as light-weight RNNs [21] or LSTMs [40] for learning motion patterns

could potentially enhance the quality of updated estimations on non-key frames.

Third, MVSparse performs tracking exclusively based on the detected objects on

the ground plane and associates them following the IoU criterion. However, in cir-

cumstances when people cross one another or the scenes are crowded, relying only on

bounding boxes of each object may not be sufficient. In such cases, incorporating vi-

sual features extracted from the backbone of object detection can reduce the amount

of ID switching. However, processing these re-ID features imposes additional pro-

cessing overhead for the pipeline. Thus the efficient design of the re-ID sub-network

should be considered.
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