Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28588
Title: Quantitative variation in Drosophila melanogaster wing shape and size
Authors: Pelletier, Katharine
Advisor: Dworkin, Ian
Department: Biology
Keywords: Quantitative Genetics;Drosophila;Multivariate Traits;Development;Genetics;Genetics of complex traits
Publication Date: Jun-2023
Abstract: Several studies examining the genetics of adaptation have identified single alleles, of large phenotypic e ect, contributing to divergence between populations. This empirical finding is consistent with predictions made by the geometric model of adaptation, where a small number of alleles of large e ect and many alleles of small e ect are fixed as the population adapts. However, these examples of single genes of large e ect may represent a biased sample of the alleles of adaptation with polygenic allele shifts having a greater contribution than currently understood. Increasing power to detect smaller e ect variants, due to falling sequencing costs and improved statistical methods, has made the contribution of small allele frequency shifts at many loci, or polygenic adaptation, more apparent. In contrast to models predicting single genes of large e ect with large allele frequency changes, polygenic adaptation allows for small allele frequency changes across many alleles of small e ect to contribute to phenotypic change. Using artificial selection, I demonstrate the alignment of genetic e ects contributing to wing shape variation within a developmental pathway but a lack of replication of these same genetic e ects in other wild-caught populations. Secondly, using advanced intercross QTL mapping between altitudinally diverged populations, I demonstrate a polygenic basis for wing shape and size variation. Finally, using comparative developmental biology I investigate how change to cell size and number in the wing may contribute to divergence between high and low altitude populations. Together, this work provides evidence for many alleles of small e ect rather than alleles of large e ect contributing to adaptive divergence of wing shape and size and provides context for identified alleles through replication in other populations and comparative developmental biology.
URI: http://hdl.handle.net/11375/28588
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Pelletier_Katharine_M_finalsubmission2023May_PhD.pdf
Open Access
5.5 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue