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Abstract
Several studies examining the genetics of adaptation have identified single alleles, of
large phenotypic e�ect, contributing to divergence between populations. This empirical
finding is consistent with predictions made by the geometric model of adaptation, where
a small number of alleles of large e�ect and many alleles of small e�ect are fixed as
the population adapts. However, these examples of single genes of large e�ect may
represent a biased sample of the alleles of adaptation with polygenic allele shifts having a
greater contribution than currently understood. Increasing power to detect smaller e�ect
variants, due to falling sequencing costs and improved statistical methods, has made the
contribution of small allele frequency shifts at many loci, or polygenic adaptation, more
apparent. In contrast to models predicting single genes of large e�ect with large allele
frequency changes, polygenic adaptation allows for small allele frequency changes across
many alleles of small e�ect to contribute to phenotypic change. Using artificial selection,
I demonstrate the alignment of genetic e�ects contributing to wing shape variation within
a developmental pathway but a lack of replication of these same genetic e�ects in other
wild-caught populations. Secondly, using advanced intercross QTL mapping between
altitudinally diverged populations, I demonstrate a polygenic basis for wing shape and
size variation. Finally, using comparative developmental biology I investigate how change
to cell size and number in the wing may contribute to divergence between high and low
altitude populations. Together, this work provides evidence for many alleles of small
e�ect rather than alleles of large e�ect contributing to adaptive divergence of wing
shape and size and provides context for identified alleles through replication in other
populations and comparative developmental biology.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Genetic Architecture of quantitative traits

Complex traits have a complex genetic basis

Human height, crop yield, cardiovascular disease, insecticide resistance in crop pests
and brood size in fish are all examples of complex traits. The expression, or observable
phenotype, of these traits is mediated both by many loci in the genome and by their
interactions with environmental factors. From even this short representative list, it is
clear that these traits are of great importance to human health, plant and animal breeders
as well as evolutionary biologists. Although these are important traits, understanding
the genetic variation underlying phenotypic variation, or the genetic architecture, is
di�cult. In the case of human height, the proportion of trait variance that can be
explained by inheritance, is estimated to be about 80% (Visscher et al. 2017). However,
a genome wide association study (GWAS) with over 5.4 million individuals’ genomes
was able to identify over 11000 variants, encompassing about 20% of the genome. Yet,
that explained only about 40% of height variation in European populations (Yengo et al.
2022). This is an excellent illustration of how di�cult identifying the genetic architecture
of traits can be even with enormous sample sizes; it is impossible to identify all the alleles
contributing to phenotypic variation.

This problem becomes even more complex when replicating findings in other pop-
ulations as there di�erent segregating alleles, changes to minor allele frequencies and
di�erent environmental conditions that make replication di�cult. The same SNPs that
explained 40% of human height variation in European populations, explained up to 15%
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of phenotypic variation in non-European populations (Yengo et al. 2022). What ex-
plains these di�erences? In the cited example, di�erences in allele frequencies as well as
a loss of linkage disequilibrium (LD) between di�erent populations likely explains why
less variation is explained in other populations. The reduction in LD means that the
e�ect of actual causal SNPs and “marker” SNPs in LD with them can alter the apparent
contributions. The di�erences in allele frequencies influence additive genetic variation
(Vg), as, at a given site the contribution to Vg = 2pqa

2 (p and q are allele frequencies at
the bi-allelic site, a is the additive e�ect for the variant) so that co-variation at linked
sites can inflate e�ect size estimates. However, other, often less considered issues are
also likely contributing. Typically, there is a non-linear genotype-phenotype relationship
that can make replication of genetic e�ects di�cult. Trait expression can vary for the
same mutant allele in di�erent genetic backgrounds (Chandler et al. 2013) and between
di�erent environments (Chen et al. 2023).

This makes understanding the genetic architecture of traits particularly di�cult.
However, human height, as with many traits, an obvious yet often ignored aspect, is
that what is measured for height is a composite made up of several traits such leg
length, torso length, and skull length. These in turn reflect the composite e�ects of the
individual bones, and so on. While all these jointly contributing traits are generally
correlated to some degree, the genetic variants modulating trait expression of each are
partially independent (Pearson and Davin 1924) Thus, considering those individuals who
are above average in height we may be in fact examining sub-populations of “long-leg”
and “long torso” individuals. By lumping these two groups together, we ingore the
possiblity for unique e�ects within the subgroups, resulting in something analogous to a
Wahlund e�ect (Wahlund 1928), but for phenotypes. Moving forward to understand the
genetic architecture of complex traits, as well as their developmental underpinnings, will
require us to focus more on dis-aggregating complex phenotypes into component parts.
In my thesis, I explored the genetics of Drosophila melanogaster wing shape and size, to
better understand the number and types of alleles that contribute to phenotypic variation
within and between populations. Furthermore, as two jointly regulated complex traits,
themselves the sum of individual phenotypic components, I also explored the relative
contribution of local patterns (across the wing) of cell size and number on variation for
these traits.

How many genes contribute to variation of complex traits?

Quantitative traits, where traits values have a continuous distribution, are rarely con-
trolled by a single Mendelian locus (and if they were, it would require an enormous
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environmental component of variation). However, the upper limit of the number of loci
we can expect to contribute to trait variation is harder to understand. As the number of
genes influencing trait variation grows, the individual e�ects of each contributing gene
become smaller such that for traits with large numbers of loci contributing, mutational
e�ect sizes become very small (Fisher 1930). With this prediction, the results of the
human height GWAS discussed above are unsurprising. With such a large portion of the
genome contributing to a trait, e�ect sizes of individual alleles are predicted to be small,
requiring very large sample sizes to detect individual contributions. In addition to the
observation that complex traits tend to have many alleles of small e�ect contributing to
variation, many contributing variants are in non-coding, regulatory regions (Stern and
Orgogozo 2008). Because genes do not exist in isolation and are part of larger regulatory
networks, expression changes to many genes will be ‘funneled’ through key regulatory
pathways. The combination of Fisher’s infinitesimal model with this idea of variation
being concentrated in regulatory pathways results in the omnigenic model of variation.
In this model, every site in the genome has a non-zero e�ect on trait variation; however,
the expression of core genes will be more a�ected as many small changes will accumulate
at these ‘hubs’ (Boyle et al. 2017). This leaves predictions for the upper limit of the
number of genes that can influence trait variation somewhere between two and every
gene in the genome, which is not a particularly useful estimate.

The problem of identifying the alleles contributing to trait variation is particularly
well exemplified in the example of Drosophila wing shape, one of the traits my thesis
focuses on. Mutation accumulation experiments and genetic screens have implicated
between 15 and 85% of the Drosophila genome influencing trait expression of wing shape,
a substantial mutational target size (Houle and Fierst 2013; Weber et al. 2005). Early
mapping studies in wild populations identified alleles in epidermal growth factor receptor
(egfr) contributing to shape variation. These e�ects could be replicated in most, but not
all populations studied (Dworkin et al. 2005; Palsson and Gibson 2004; Palsson et al.
2005). A GWAS for variants influencing wing shape in a North American population
identified SNPs in about 500 genes, less than 1% of the Drosophila genome (Pitchers
et al. 2019). This number is an under representation of the total number of alleles
contributing to phenotypic variation in this population, as the 5% significance threshold
used and the lack of power to detect variants of very small e�ect could not be detected
with enough confidence to pass the threshold. In both the cases of the egfr SNP and
GWAS identified SNPs, the variants generally individually explained no more than 1%,
and typically far less, of total phenotypic variation. This ability to detect only a portion
of total polymorphisms contributing to phenotypic variation within populations may be
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the best that is possible without creating gigantic data sets, which is unlikely outside of
human studies.

Despite not being able to identify many of the loci contributing to phenotypic vari-
ation within populations, patterns in identified loci can indicate pathways that are par-
ticularly important. For example, in the GWAS of Drosophila wing shape variation,
there is an enrichment for variants in the hippo signaling pathway (Pitchers et al. 2019).
Hippo signaling is best characterized for its roles in regulating size of tissues across many
phyla (Zhao et al. 2011), but also is known to a�ect wing shape though regulation of
cell polarity (Baena-López et al. 2005). This observation is in line with predictions by
the omnigenic model, with some core pathways (in this case, hippo) having a greater
influence on trait variation. What is not clear is why there is a bias for some pathways
and not others. The influence of pleiotropy, developmental and mutational constraints,
and the history of selection in a population are all important for influencing what alleles
segregate and contribute to phenotypic variation.

1.1.2 The loci of evolution for polygenic traits

One gene or many?

Mutation creates the genetic variation upon which natural selection acts. When con-
sidering alleles contributing to phenotypic variation within populations, many traits
will be under balancing or purifying selection (Barton and Keightley 2002). As such
mutation-drift-selection balance likely dominates, influencing the segregating alleles in
the population. When we consider divergence between populations, we do not necessar-
ily expect the same models to explain patterns of variation as selective pressures will
change (become directional). This process requires de novo mutations to occur or seg-
regating variants at a high enough frequency in the population on which selection can
act. Although most mutations are thought to be nearly neutral as larger e�ect sizes
would be deleterious due to pleiotropy and selected against and smaller e�ect size alleles
would not confer enough of a selective advantage to overcome drift (Kimura 1968), larger
e�ect beneficial mutations can confer fitness advantage as populations adapt to a new
optimum (Orr 1998). For polygenic traits where many alleles contribute to phenotypic
variation within populations, do a small number of large e�ect alleles or many small
e�ect alleles contribute to divergence between populations?

Many examples in the literature identify single alleles of large e�ect contributing to
adaptive divergence between populations. One well-cited example is the body armor of
sticklebacks, where there is a lot of variation in the number and size of lateral body
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armor plates between salt and freshwater populations (Colosimo et al. 2005). Because
armored plates are energetically expensive to make in freshwater environments, and
there are fewer predators, there is a fitness advantage to reducing the number of plates
in freshwater populations (Schluter et al. 2021). Mapping studies identified one large
e�ect quantitative trait locus (QTL) explaining variation between populations with a
polymorphism in the eda gene being fixed in freshwater populations (Colosimo et al.
2005; O’Brown et al. 2015). The same pattern is found for many other traits, including
mouse coat colour (Steiner et al. 2007), colouration in butterflies (Martin and Reed
2014), and beak size in Galapagos finches (Lamichhaney et al. 2016), among others.
These large e�ect alleles are relatively easy to detect using QTL mapping approaches
with small sample sizes and single representative genetic backgrounds from parental
populations. For example, the mapping of the eda locus used only about 500 individuals
and 2 parental lines to detect the QTL (Colosimo et al. 2005).

As whole genome sequencing has advanced, many of the technical constraints on
mapping studies have been removed. As we sequence more individuals and genotype
individuals at more genomic sites, it has become clear that single alleles of large e�ect
alone do not explain adaptive divergence between populations in most cases. In the
case of stickleback armored plates, subsequent mapping studies have identified over 100
alleles contributing to adaptive divergence between populations, with many alleles of
small e�ect and a small number of alleles of large e�ect contributing (Miller et al. 2014).
This is in line with the predictions made with Orr’s revision of the geometric model,
where as a population moves to a new phenotypic optima, the e�ect sizes of subsequent
substitutions will be smaller as the population approaches the optimum since large e�ect
alleles will ‘overshoot’ the optimum (Orr 2005; Orr 1998).

Chromosomal inversions can also create conditions where a single gene, or a small
number of genes held together in linkage, sweep to fixation. Local suppression of recom-
bination can create large blocks of genetic di�erentiation between populations, making
these regions easier to map (to the level of the inversion). One example of the con-
tribution of polymorphisms found on chromosomal inversions to divergence is that of
Drosophila wing size adaptation along latitudinal clines. Wing size in Drosophila has a
large mutational target size, with about 15% of the genome contributing to trait vari-
ation (Carreira et al. 2009). In natural populations, wing size varies along latitudinal
clines, with animals closer to the equator smaller than those nearer to the poles, with the
same genetic basis found across continents (Calboli et al. 2003). The observed natural
variation along clines is associated with polymorphisms in the Insulin/TOR signaling
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pathways (Jong and Bochdanovits 2003; Paaby et al. 2010). These pathways are associ-
ated with the regulation of both metabolism and size (Oldham and Hafen 2003). In the
case of insulin receptor and its substrate chico both exist on the common In(3R)Payne
inversion in Drosophila (Paaby et al. 2010). This inversion, and the mapped alleles on
it, explains about 23% of altitudinal variation in wing size in both North American and
Australian populations (Kennington et al. 2007).

However, such large e�ect allele, or linkage block of alleles that may behave like a
large e�ect allele, contributing to divergence between populations is not identified in
every case. The basis of adaptive divergence is often polygenic with small e�ect alleles
contributing. For example, Littorina marine snails have evolved two ecotypes, one form
inhabiting wave exposed rocks with a small globular shell adapted for sticking to rocks
in the waves, while the other ecotype lives in boulder fields and has a thicker, elongated
shell to prevent predation from crabs (Johannesson et al. 1993). Although this trait has
a known genetic basis (Koch et al. 2021), FST between ecotypes remains low (Westram
et al. 2021). Although segregating inversions between populations explain some variation
among ecotypes, genetic background, or other polymorphisms in the genome were equally
important in predicting phenotypic expression (Koch et al. 2022). Although this system
demonstrates that many sites in the genome can contribute, it cannot indicate exactly
how many sites do contribute to the adaptive divergence seen.

Allele frequency Sweeps or subtle Shifts?

Variation in many genes contributes to adaptive divergence for polygenic traits; however,
there are opposing views on the number, relative e�ect size, and origins of the alleles
that contribute. Although all alleles are created through mutation, these mutations can
occur concurrently with adaptation to a new optimum, as predicted by the geometric
model, or can be found in variation already segregating in a population, prior to the
new selective regime. The source and e�ect size of the mutations contributing to diver-
gence create di�erent expectations for the number of alleles and genomic signatures of
selection at contributing sites. As larger e�ect alleles should also have larger selection
coe�cients, these are more likely to sweep to fixation in the genome. In contrast, se-
lection will be weaker on small e�ect alleles; when many alleles contribute in aggregate,
small allele frequency shifts at many sites will be su�cient to dramatically change trait
values (Barghi et al. 2020). Given that sweeps, particularly “hard” sweeps, are relatively
simple to detect with population genetic data, small allele frequency shifts at many loci
are often used to explain cases where there is a known genetic basis, but signatures of
selection can’t be found at any loci.
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Key to the geometric model of adaption is that as benefical alleles arise in the pop-
ulation, they sweep to fixation. Because these mutations are de novo, they exist on a
single haplotype and will undergo a hard sweep (Orr 1998). This is the simplest case
of adaptation; however, mutation rate is not often a rate limiting step for adaptation
(Karasov et al. 2010). In simulations, adaptation from true de novo mutation is rare
except in cases of rapid evolution to distant optima; rather, the alleles contributing to
divergence are more likely to come from standing variation in the population (Stetter et
al. 2018). This results in ‘soft sweeps’, or the fixation of a polymorphism with the main-
tainance of genetic diversity at nearby sites because the polymorphism exists on many
haplotypes. Evidence for soft sweeps from seggregating variation comes from repeated
‘use’ of the same alleles across populations, as the allele also segregates in the ancestor
and was selected on multiple times. In three spined sticklebacks the same alleles have
been found to explain armor plate loss in multiple populations as well as segregating in
the ancestral marine populations at low frequency (Barrett et al. 2008; Colosimo et al.
2005)

Fixation does not have to be the fate of alleles contributing to adaptive divergence. In
fact, many factors such as pleiotropy, balancing selection and frequency dependant fitness
may prevent fixation at alleles. Polygenic adaptation models predict allele frequency
shifts across many loci that are su�cient to alter the phenotype towards a new selective
optimum (Barghi et al. 2020). This architecture is much harder to detect, not only with
scans for selection but also with methods such as FST scans for allele frequency changes or
GWAS, because of the co-variation in allele frequency that is shared between populations
(Barghi et al. 2020). For Drosophila, where e�ective population sizes are large and
for traits with high mutational target sizes, such as wing shape and size, polygenic
adaptation may be a particularly good model. Rapid adaptation can be facilitated by
high mutational target size as there are many ‘routes’ that can be taken to achieve the
same change in phenotype (Barghi et al. 2019).

Although the allelic sweep and all polygenic shift models have been discussed as
opposing viewpoints of how adaptation can occur, neither model will be able to explain
all cases of adaptive divergence. These represent extreme cases and very few biological
examples fit compleatley into these neat categories. The biological ‘rules’ that govern
the number, type and dynamics of alleles contributing to divergence depend strongly
on the population size, mutation rate and demographic history of a population as well
as the specific genetic architecture of the selected trait. Even when comparing between
the same populations, there is evidence that adaptive divergence can be explained by
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shifts in allele frequency at many loci for some traits and sweeps of larger e�ect alleles
for other traits.

Clunio marine midges have populations with district reproduction times linked to
low tides associated with the moon cycle, one group reproducing at the new moon
and one at the full moon (Kaiser et al. 2011). At least 4 QTLs exist that influence
reproduction timing between ecotypes, with a polymorphism in the period gene predicted
to have the largest e�ect and the other 3 QTL associated with neural development genes
(Briöevac et al. 2023). Period is important for regulating circadian clocks in insects
(Tomioka and Matsumoto 2015). In this case, there is not a clear signature of a sweep
of alleles contributing to di�erentiation, alleles are not fixed in one ecotype, likely due
to continuous gene flow between populations (Kaiser et al. 2021). In addition to this
variation in timing of reproduction, populations of Clunio from the Artic and Baltic sea
have evolved a reproduction strategy that does not require low tides and is not linked to
the moon cycle as is true for the European Atlantic population (Fuhrmann et al. 2023).
QTL mapping of alleles associated with the loss of rhythmicity related to the moon cycle
did not identify any loci significantly contributing to trait variation (Fuhrmann et al.
2023). Additional genomic scans for di�erentiated regions between ecotypes identified
only 65 loci that were highly di�erentiated, and none of those were associated with the
signatures of a sweep. This contrast of genetic architectures of adaptation between two
arguably similar traits in the same species is interesting but the reason behind these
contrasting architectures is unclear.

In Trinidadian guppies, life history traits vary extensively between high and low pre-
dation populations (Reznick and Endler 1982). In translocation experiments populations
adapt rapidly, on the order of a few generations, to the new environment (Gordon et al.
2009). When life history traits were mapped between populations, two fitness traits
exhibited a polygenic basis with many identified QTL throughout the genome while
two traits had single QTL identified that explained the majority of variance for that
trait (Whiting et al. 2022). The di�rence in archetectures between traits may reflect
the contrasting genetic architecture of the traits as rapid adaptation is facilitated by
many alleles of small e�ect segregating or beneficial alleles of large e�ect segregating at
an intermediate frequency for di�erent traits (Kardos and Luikart 2021), these dynam-
ics could easily explain the observation of di�erent genetic architectures between both
examples used here.
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1.1.3 Understanding the loci of evolution

Simply identifying the genes that contribute to variation in traits is only the first step in
understanding the genetic variation that contributes to phenotypic variation in natural
populations. Particularly for complex traits with large mutational target sizes, it is easy
and even expected to identify many regions of the genome contributing to trait variation.
For example, in a screen for genes contributing to Drosophila pupal attachment height,
knock down of all the genes identified in a GWAS resulted in an phenotypic e�ect but and
e�ect was also observed for three quarters of randomly selected gene knockdowns (Zhang
et al. 2021). This finding is not particularly surprising in the light of the omnigenic model
where most genes in the genome are predicted to influence trait variation. With so many
genes and alleles contributing to variation, and so many of the alleles with e�ect sizes
small enough that they will never be detected without enormous sample sizes, it may be
less important to identify all alleles contributing to variation (Rockman 2012). The same
power problem exists when detecting alleles contributing to adaptive divergence when
the genetic architecture of adaptation is explained by small shifts in allele frequency at
many loci. However, not all alleles are equally likely to contribute to adaptive divergence
because of developmental and mutational constraints (Stern and Orgogozo 2008; Uller et
al. 2018), pleiotropy (Orgogozo et al. 2015), and the history of selection in a population
(Schluter 1996), will influence the available genetic diversity on which selection will act.
In cases where we may not find specific alleles of adaptation, such as in the case of
polygenic shifts in allele frequencies, it may be more helpful to understand the pathways
a�ected (Bomblies and Peichel 2022), either though changes to gene expression , changes
to developmental mechanisms or an analysis, such as gene ontology (GO) terms, of the
genes contributing to divergence. When mutational targets are high and changes in allele
frequency at individual sites are low, this approach may be useful in understanding the
changes underlying phenotypic divergence.

Beyond creating lists of loci associated with a phenotype of interest, functional work
and replication of genetic e�ects across di�erent populations can help to better under-
stand biological relevance of alleles. In the D. melanogaster wing shape GWAS discussed
above, in a single gene, dachsous (ds), there were 5 identified polymorphisms (Pitchers
et al. 2019). Are all these polymorphisms important for contributing to wing shape vari-
ation, or could linkage explain some of the enrichment for significantly associated sites in
this gene? Using developmental genetic tools and other methods, we can ask questions
about which polymorphisms really matter for trait variation, either though replication
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in other populations, correlating predicted or known e�ects with those seen during de-
velopment or testing specific e�ects of each polymorphism though genome engineering.
My thesis contributed to identifying polymorphisms important for wing shape and size
variation in Drosophila melanogaster using a variety of methods: first, by replication
of GWAS identified e�ects (chapter 2), then by mapping QTL contributing to adap-
tive divergence (chapter 3) and assaying some of the developmental changes between
populations (chapter 4).

1.1.4 Specific Thesis Goals and Summary

This goal of this thesis was to identify alleles and mechanisms that contribute to phe-
notypic variation in Drosophila melanogaster to broaden our understanding of the the
number and type of alleles, and the relationsips between these, that contribute to quanti-
tative trait variation in wild populations. For most complex traits with large mutational
target sizes, only a subset of the genes that can contribute to variation are identified
in mapping studies. Understanding the ‘rules’ that shape genetic variation within and
between populations first requires an understanding of the genetic architecture of trait
variation. However, this becomes much more complicated for quantitative traits where
both environmental and genetic sources of variation can contribute to trait expression.

In my second chapter, I demonstrate the di�culties in understanding the genetic
architecture of wing shape variation due to genetic and environmental influences. The
initial goal of this work was to replicate genetic e�ects of SNPs identified in a previous
GWAS study using both artificial selection and wild caught populations. Using artifi-
cial selection based on the shape change associated with knockdown of dachsous (ds),
a gene in the hippo signaling pathway, we demonstrate allele frequency changes at not
only ds but a number of other hippo signaling loci. This demonstrates the repeatability
of the e�ect of the ds SNP on wing shape previously identified. Because the starting
population for the selection experiment was designed to maximize genetic diversity at
ds, to ensure that these variants were at a high enough frequency to be selected on,
without consideration for diversity at other sites in the genome, it was surprising that
we also observed allele frequency shifts at other hippo loci. This indicates the strong
and correlated relationship between alleles within the same developmental pathway con-
tributing to wing size. Additionally, although we had a response to selection at hippo
signaling loci, and hippo signaling is known to be a major component of size regulation
in the Drosophila wing, we do not observe a substantial change in wing size between se-
lection lineages, indicating that the e�ect of hippo signaling on wing size and shape are
genetically separate. The same experiment using the similar emc shape change vector
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for selection, resulted in only modest allele frequency changes at emc itself, and much
larger changes associated with hippo signaling loci, indicating that replication of genetic
e�ects is dependent on the available genetic diversity within a population. Finally, using
wild caught populations of Drosophila from three locations in Michigan and a bulk seg-
regant analysis (BSA) approach, we were unable to replicate any of the genetic e�ects
previously identified. However, phenotypic variation in the wild caught populations is
largely in the same direction as the ds shape change vector, indicating that this is an im-
portant direction of variation in wild populations. However, our approach was likely not
powerful enough to detect genetic di�erentiation between bulks considering additional
environmental and genetic variation as well as low allele frequencies segregating in the
populations. This work demonstrates the importance of genetic background, environ-
mental e�ects and allele frequency in replicating genetic e�ects as well as the interesting
finding that selection can act simultaneously on a number of alleles with aligned e�ects
within a population.

In the third chapter, I use adaptively diverged populations from sub-Saharan Africa
to map alleles contributing to wing shape and size variation between two populations.
The main goal of this work was to ask how polygenic this adaptive divergence was and
if we could find evidence of fixation of large e�ect alleles, as would be predicted by the
geometric model. Using an advanced intercross between inbred lines derived from a low
altitude and a high-altitude population, I took a QTL mapping approach to identify the
genetic architecture contributing to the adaptative divergence in wing shape and size
between populations. Using pooled DNA sequencing, I measured genetic di�erentiation
between pools of individuals that were outliers (most extreme) along both the shape
and size axes. Shape adaptation had a highly polygenic basis, in agreement with earlier
mapping studies. The genetic architecture of wing shape adaptation also has a polygenic
basis, but we identified one locus on chromosome 3R as a candidate QTL contributing
to divergence. Although it is not likely that this allele was fixed in the high-altitude
population, as this locus was not di�erentiated in a third cross, it is still an interesting
QTL contributing to shape divergence. A semi-quantitative mapping study using a
panel of lines carrying deletions in this region as well as RNAi knock down of candidate
genes point to winged eye (wge) as a candidate gene in this region. However, we are
not able to rule out the possibility that more than one polymorphism, in more than one
gene, in this region that contributes to divergence. Additionally, I demonstrated that
despite the intrinsic link between shape and size though shape-size allometry, adaption of
these two traits has at least a partially distinct genetic basis and allometric relationships
remain constant between di�erent genetic backgrounds. This chapter demonstrates the
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polygenic basis of adaptation to high altitude for both wing shape and size and provides
support to the model that small shifts at many alleles segregating in populations may
contribute more to adaptative divergence than subsequent sweeps of larger e�ect alleles.

In my fourth chapter, I took a comparative developmental approach to understand
divergence between high and low altitude populations. Because the mapping study
in chapter 3 revealed a polygenic basis of adaptation to high altitude, I wanted to
compare developmental changes to provide context to what alleles may be contributing
and what developmental mechanisms, if any, appear changed between populations. The
omnigenic model predicts that although many (or all) loci in the genome can contribute
to trait variation, core genes or pathways will show increased variation. First, using
adult wings from the advanced intercrosses that were created for the mapping study
in chapter 3, I investigated the relationship between cell size and wing shape and size
in the adult wing. A structure can become larger either through having more cells
or larger cells. Although in natural evolutionary contexts Drosophila wings generally
become larger though the addition of more cells, previous work in our lab and others has
shown that adaptation to high altitude is explained in substantial part by larger cells
in the high-altitude population. I demonstrated that although there is an association
between larger wings and larger cells in the intercross, there are many individuals with
wings that have more cells rather than larger cells, suggesting that the two traits can
be partially de-coupled genetically. This can in part explain the finding in chapter 3 as
both the “larger cells” and the “more cells” genetic programs can be selected on and
create more targets for selection. I also demonstrated that although variation of cell
size averaged over the entire wing has little e�ect, local cell density variation (across the
wing) does have a shared co-variation structure with wing shape. This indicates that
regional di�erences in cell size in the wing, but not changes in the mean cell size of a wing,
are associated with shape changes. Wing size and cell size also only behave as moderate
predictors of wing abnormalities, with evidence that large e�ect alleles segregating in the
populations may better explain the observed loss of robustness. Although we observe
few developmental di�erences between populations, technical limitations of the data
collection may be able to explain this result and more work is needed before conclusions
are made about quantitative developmental changes in the wing disc.
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Chapter 2

Complexities of recapitulating
polygenic e�ects in natural
populations: replication of genetic
e�ects on wing shape in
artificially selected and wild
caught populations of Drosophila
melanogaster

This chapter is in press at Genetics, the online version can be found here

2.1 Abstract

Identifying the genetic architecture of complex traits is important to many geneticists,
including those interested in human disease, plant and animal breeding, and evolutionary
genetics. Advances in sequencing technology and statistical methods for genome-wide
association studies (GWAS) have allowed for the identification of more variants with
smaller e�ect sizes, however, many of these identified polymorphisms fail to be repli-
cated in subsequent studies. In addition to sampling variation, this failure to replicate
reflects the complexities introduced by factors including environmental variation, genetic
background, and di�erences in allele frequencies among populations. Using Drosophila
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melanogaster wing shape, we ask if we can replicate allelic e�ects of polymorphisms
first identified in a GWAS (Pitchers et al. 2019) in three genes: dachsous (ds), extra-
macrochaete (emc) and neuralized (neur), using artificial selection in the lab, and bulk
segregant mapping in natural populations. We demonstrate that multivariate wing shape
changes associated with these genes are aligned with major axes of phenotypic and ge-
netic variation in natural populations. Following seven generations of artificial selection
along the ds shape change vector, we observe genetic di�erentiation of variants in ds and
genomic regions containing other genes in the hippo signaling pathway. This suggests a
shared direction of e�ects within a developmental network. We also performed artificial
selection with the emc shape change vector, which is not a part of the hippo signaling
network, but showed a largely shared direction of e�ects. The response to selection along
the emc vector was similar to that of ds, suggesting that the available genetic diversity
of a population, summarized by the genetic (co)variance matrix (G), influenced alle-
les captured by selection. Despite the success with artificial selection, bulk segregant
analysis using natural populations did not detect these same variants, likely due to the
contribution of environmental variation and low minor allele frequencies, coupled with
small e�ect sizes of the contributing variants.

2.2 Introduction

Dissecting the genetic architecture underlying complex traits remains challenging, be-
cause of the joint contributions of many alleles of small e�ect, genotype-by-environment
interactions, and other factors. Progress in sequencing technology in conjunction with
development of GWAS statistical methodologies has enabled identification of loci con-
tributing to numerous complex traits and diseases. However, such mapping approaches
identify only a subset of loci contributing to trait variation (Visscher et al. 2017). In
part, this reflects the low power to detect rare alleles, and those with small e�ects (Tam
et al. 2019). For alleles that are relatively common in a population, replication rates
between GWAS studies are high, even when e�ect sizes are small (Marigorta et al. 2018).
However, GWAS studies have failed to replicate the e�ects observed in many candidate
gene studies, in part due to the fact that many alleles identified in these studies are rare
in populations, and require very large cohorts to detect (Fritsche et al. 2016; Ioannidis
et al. 2011).

In cases where an association is replicated between studies, the magnitude of the e�ect
can vary substantially between di�erent cohorts or populations (CONVERGE consor-
tium 2015; Marigorta et al. 2018). Di�erences can arise because of genetic background
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due to epistatic gene by gene (GxG) interactions, or due to gene-by-environment (GxE)
interactions. The initial estimates of e�ect size will be biased upwards if statistical
testing in the initial cohort is used to determine which SNPs are chosen for replication
studies. It is important to understand which of these causes of di�erences in e�ect size
are of practical significance when we want to generalize results to di�erent populations
or environments.

In this study, we focus on the issue of replication in a multivariate context, where
the joint inheritance of multiple features are simultaneously investigated. We will refer
to the suite of measured features as a ‘multivariate trait’ for convenience. In this case,
what we want to estimate is the vector of e�ects of each SNP on all measured features.
Each SNP may have a unique combination of e�ects. Univariate e�ects vary only in
magnitude, as we can only infer e�ects on a single feature. For a multivariate trait,
estimated genetic e�ects vary in magnitude, the sum of e�ects on all traits, and also in
direction, how the total e�ect is allocated among di�erent features (Melo et al. 2019).The
ability to study the direction along with the magnitude of genetic e�ects provides an
additional and important way of assessing repeatability. For a univariate trait, there is
a 50% chance that the replicate estimate will be in the same direction as the original
estimate, even with no true e�ect. By contrast, the probability of a “replicated” genetic
e�ect sharing a similar direction by chance alone decreases as the number of measured
features increases (Marquez and Houle 2015; Stephens 2013).

Studying genetic e�ects in a multivariate context is beneficial in other ways. First,
it has been demonstrated both empirically and via simulations, that genetic mapping
for multivariate traits generally increases statistical power over trait by trait analyses
(Fatumo et al. 2019; Pitchers et al. 2019; Porter and O’Reilly 2017; Shriner 2012).
Second, some multivariate traits cannot be sensibly reduced to a single measurement.
The wing shape we study is a great example of such a multivariate trait. We have
good reason to believe that wing shape is important for flight (Ray et al. 2016), but we
cannot yet say that any feature, such as wing length or width, is more or less important
than any other. Natural selection on wing shape may a�ect any or all combinations of
measurements.

Perhaps most importantly, traits are not inherited in isolation, but are the joint out-
come of an integrated developmental process that results in extensive genetic correlations
that can have important e�ects on evolution. The main source of such correlations are
the patterns of pleiotropic e�ects generated by mutational e�ects. Multivariate stud-
ies of inheritance allow pleiotropic e�ects to be estimated in a rigorous and justifiable
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manner (Melo et al. 2019). The multivariate breeder’s equation, �z = G—, enables
short term prediction of evolutionary responses. Key to understanding how popula-
tions respond to selection in the short term requires an understanding of properties
of the genetic (co)variance matrix (G), and in particular the axis of greatest genetic
variation gmax. Studies demonstrate that the direction of gmaxinfluences evolutionary
trajectories (McGuigan 2006; Blows and McGuigan 2015; Schluter 1996). The degree to
which genetic e�ects associated with particular variants align to major axes of genetic
(co)variance, expressed through G, may provide insights into which alleles are most likely
to be “captured” by selection (Pitchers et al. 2019). Due to the polygenic nature of com-
plex traits, including multivariate ones, it is important to consider not only the direction
of e�ect for alleles in a single gene but also correlated e�ects between genes contribut-
ing to the phenotype. Interestingly, initial comparisons of directions of genetic e�ects
among induced mutations in two Drosophila melanogaster wing development pathways
showed only partially correlated e�ects on wing shape within and between pathways
(Dworkin 2006). However, recent work has demonstrated that despite large di�erences
in magnitude, the direction of genetic e�ects of variants segregating in populations are
sometimes similar to those from validation experiments using RNAi knockdown of those
same genes (Pitchers et al. 2019). Additionally, Pitchers et al. (2019) demonstrated this
shared direction of e�ect could also be shared between a SNP and RNAi knockdown of
other genes in the same signaling pathway, such as those involved with hippo signaling,
a key pathway involved with wing growth and morphogenesis (Pan et al. 2018).

Pitchers et al. (2019) identified over 500 polymorphisms contributing to wing shape
variation in the Drosophila genetic resource panel (DGRP). Among these, the hippo
pathway was over-represented in SNPs associated with wing shape (Pitchers et al. 2019).
The degree to which identified hippo pathway variants reflect allele specific e�ects, di�er-
ences in magnitude of genetic e�ects, and even the large statistical uncertainty associated
with genetic e�ects of small magnitude are unclear. Given common dominance patterns,
and the likely non-linear genotype-phenotype relationships of most genetic e�ects, small
to moderate changes in gene function may result in modest phenotypic e�ects (Green
et al. 2017; Melo et al. 2019; Wright 1934). Large e�ect mutants and many RNAi
knockdown studies have moderate to large phenotypic e�ects that are not reflective of
the magnitude of genetic e�ects of SNPs contributing to phenotypic variance in natural
populations.

The expression of genetic e�ects also depends on genetic and environmental context,
with gene-by-gene (GxG) and gene-by-environment (GxE) interactions contributing to
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phenotypic variation. The context-dependence of genetic e�ects for a multivariate trait
has been demonstrated for Drosophila wing shape. Variants in Epidermal growth factor
receptor (Egfr), influencing Drosophila wing shape are replicable in both lab reared, and
wild-caught cohorts (Dworkin et al. 2005; Palsson and Gibson 2004; Palsson et al. 2005).
However, in replication studies, e�ect sizes of alleles were diminished in both outbred
populations and wild cohorts. In the latter case the same variant explained 1/10 of the
phenotypic variance explained in the initial study (Dworkin et al. 2005). Interestingly, in
a series of experimental crosses among strains, the e�ects of the SNP were replicable for
direction and magnitude in multiple experimental assays and crossing schemes. Despite
this, the genetic e�ect on wing shape from this SNP largely disappeared in one natural
population (Palsson et al. 2005). A number of reasons have been proposed for the failure
to replicate genetic e�ects including environmental e�ects, di�erences between controlled
lab and natural environments (Dworkin et al. 2005) and genetic background (Greene et
al. 2009), among others. Because both environment and genetic background likely a�ect
the genotype-phenotype map in a non-linear fashion (Wright 1934), it is important to
test observed associations in other experimental contexts.

A promising approach to confirm the estimated e�ects of candidate genetic variants
is to test whether they respond to artificial selection in the direction of the inferred
e�ect. This approach is particularly relevant to evolutionary questions, but has rarely
been used. In this study, we use artificial selection and bulk segregant analysis (BSA), to
replicate and validate SNPs associated with three genes, previously identified in a GWAS
of Drosophila wing shape (Pitchers et al. 2019); dachsous (ds), an atypical cadherin
involved with hippo signaling; the transcriptional co-repressor extra-macrochetae (emc),
and the E3 ubiquitin ligase neuralized (neur), involved with Notch signaling. Using
the vectors of shape change based on RNAi knockdowns of each gene, we demonstrate
that the direction of shape change for these genetic e�ects is aligned with major axes
of natural phenotypic and genetic variation. Using artificial selection based on the
direction of shape change defined by RNAi knockdown, we were able to replicate the
e�ects observed for ds, but not emc, likely due to the available genetic diversity in the
population. We then asked if these e�ects could be replicated in a natural population
using a bulk segregant approach, observing little evidence for replication in these samples.
We discuss our results in the context of the replicability of genetic e�ects and the shared
direction of genetic e�ects due to shared developmental processes.
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2.3 Methods

2.3.1 Drosophila strains

Phenotype data for the Drosophila genetic resource panel (DGRP) was collected for 184
strains as part of a GWAS study as described in Pitchers et al (2019). Genotype data
for these strains was obtained from freeze 2 of the DGRP (Huang et al. 2014). For repli-
cation using artificial selection, 30 DGRP strains were used: DGRP-149, 324, 383, 486,
563, 714, 761, 787, 796, 801, 819, 821, 822, 832, 843, 849, 850, 853, 859, 861, 879, 887,
897, 900, 907, 911, 913. These strains were selected to increase genetic variation at the
ds locus (Figure A1.1, Table 2.1). Reciprocal pairwise crosses between the 30 selected
DGRP strains were used to create heterozygotes and these 30 heterozygous genotypes
were successively pooled for 4 subsequent generations, allowing for recombination. After
pooling, the synthetic outbred population was maintained for approximately 47 sub-
sequent generations (allowing for recombination) before the start of artificial selection
experiments.

For the replication in wild-caught populations using BSA, individuals were collected
via sweep-netting from orchards and vineyards in Michigan and after species identifica-
tion, stored in 70% ethanol. In 2013 and 2014, cohorts were collected from Fenn Valley
Winery (FVW13 and FVW14 respectively, GPS coordinates: 42.578919, -86.144936).
Additionally in 2014, cohorts were collected from Country Mill Orchard (CMO, GPS co-
ordinates: 42.635270, -84.796706), and Phillip’s Hill Orchard (PHO, GPS coordinates:
43.117981, -84.624235). For all collected cohorts, except for the FVW14 collection, only
males were used in this study given di�culties distinguishing Drosophila melanogaster
and D. simulans females morphologically. For the genomic analysis of the FVW14 wild
caught population (below) we utilized both males and females as the number of indi-
viduals was insu�cient otherwise. For the collection where females were included in the
study, there is no evidence of contamination with D. simulans as all dissected wings
were classified as D. melanogaster using linear discriminant analysis (LDA). LDA was
trained using male wings from the collected D. melanogaster data set and males from D.
simulans. There was 100% agreement between the classification of females within each
species with our phenotypic classification, indicating that it is unlikely that D. simulans
females were included in our samples (Supplemental Figure A1.2).
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2.3.2 Morphometric Data

Landmark and semi-landmark data were captured from black and white TIFF images
using the pipeline described in (Houle et al. 2003). First, two landmark locations, the
humeral break and alula notch, were digitized using tpsDig2 (version 2.16). Wings (Van
der Linde 2004–2014 , v3.72) software was used to fit nine cubic B-splines, and manually
correct errors. All shape data was subjected to Procrustes superimposition (registration),
removing the e�ects of location, isometric scaling, and minimizing e�ects of rotation,
via an iterative least squares approach (Rohlf and Slice 1990). Generalized Procrustes
superimposition (registration) and extraction of 14 landmarks and 34 semi landmarks
was done using CPR v1.11 (Marquez 2012–201)(Figure2.1). Superimposition results in
the loss of 4 possible dimensions of variation while semi-landmarks are constrained to
vary along one “axis”, restraining these points to approximately a single dimension of
variation each. This results in a total of 58 available dimensions of shape variation,
that can be summarized using the first 58 Principal components (PCs). Allometry was
adjusted for in the analysis by fitting a model for landmark coordinates onto centroid
size, and using the residuals from this model (Klingenberg 2022). By accounting for
the allometric component of shape, shape variation associated with size variation can
be accounted for (Supplemental Figure A1.3). For most analyses, ‘allometry corrected’
shape data were used, with the exception of shape models fit using the Geomorph package
in R, where Procrustes landmarks were used and centroid size was included as a predictor
in the model.

2.3.3 Generation of shape vectors for artificial selection and bulk seg-
regant analysis

A panel of shape change vectors was estimated using the progesterone-inducible Geneswitch
GAL4, under the regulation of an ubiquitous tubulin driver, to drive the expression of
RNAi for genes of interest (ds, emc, neur), as previously described in Pitchers et al.,
2019. GAL4 expression was induced throughout larval development by adding mifepri-
stone, an analog of progesterone, to the larval food. Knockdown was varied by assaying
phenotypes at mifepristone concentrations of 0.3, 0.9, and 2.7 µM, plus a control without
mifepristone. Wing shape change associated with knockdown of the gene of interest was
estimated using multivariate regression of shape on concentration of mifepristone. Shape
change vectors estimated from the RNAi experiments for ds,emc and neur, were used
in this experiment (Figure 2.1B, Supplemental Figure A1.4). The magnitude (‘length’)
of the vector measures how much shape change occurs per unit change in mifepristone.
In general, vectors of greater magnitudes enable better estimate of direction of e�ect for
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shape change. As reported in Pitchers et al., (2019), the magnitude (l2-norm) of vectors
for RNAi knockdown of these genes are 5.5 for ds, 2.8 for neur, and 0.44 for emc.

Shape data collected as part of a previous study (Pitchers et al. 2019) was used
to assess the relationships between shape change vectors from the RNAi titration and
gmax, the first eigenvector of the G matrix estimated from DGRP line means. The e�ects
of sex, centroid size and their interaction were removed using a linear model and these
residuals were used to calculate shape score by projecting the data (Supplemental Figure
A1.5) onto the shape change vector estimated in each knockdown experiment. To assess
major axes of genetic variation among DGRP strains, principal component analysis was
performed on allometry adjusted model residuals (Supplemental Figure A1.5B). PCA
was done in a similar manner for individuals from the wild caught cohorts. Correlations
between the first three eigenvectors (“genetic PCs” including gmax), the first three PCs
from the wild caught cohorts and the shape scores for ds, emc and neur were calculated
(Figure 2.1A, Supplemental Figure A1.5). From this, ds, emc and neur shape change
vectors were selected for further experiments given high correlation with directions of
natural genetic variation (Figure 2.1A, Supplemental Figure A1.5). Note, as described
below, while ds and emc were used for artificial selection, due to the similar response
between them, we used ds and substituted neur (for emc) for the BSA.

2.3.4 Artificial selection of synthetic outbred population

The synthetic outbred population resulting from pooling DGRP lines was used as the
parent population for artificial selection. Both the ds and emc artificial selection ex-
periment were carried out with three independent replicates of each “up” and “down”
selection regimes, along with unselected control lineages. Each generation, wings of live
flies were imaged using the ‘wingmachine’ system and shape data collected (Houle et al.
2003)(Houle et al., 2003, Van der Linde 2004–2014 ,v3.72). Shape scores were calculated
by projecting the data onto the ds or emc shape change vector as described above, and
the 40 individuals each with highest or lowest shape scores, were selected to found the
next generation (Supplemental Figure A1.5A). For the control lineages, 40 individuals
were randomly selected for the next generation within each replicate lineage. Following
seven generations of selection, 75 individuals from each lineage were selected for pooled
sequencing, described below. The response to selection was evaluated both by computing
Procrustes distance (PD) between average shape of wings between generations one and
seven, and using shape scores (projections) with a linear mixed e�ect model allowing for
the fixed e�ect factors of treatment and sex, continuous predictors of centroid size and
generation, with third order interactions among these e�ects. The e�ect of generation
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was allowed to vary by replicate lineages (lmer(ds ≥ (CS + Sex + line + gen0)3̂ +
(1 + gen0|line:rep)). Realized heritabilities were estimated separately for up and down
selection lineages, from the slope of the regression of cumulative selection di�erentials on
cumulative selection response, averaging over sex and with a random e�ect of replicate
lineage.

2.3.5 Wild populations

For the BSA, wings for wild caught individuals were dissected and mounted in 70% glyc-
erol in PBS. Images of wings were captured using an Olympus DP30B camera mounted
on an Olympus BX51 microscope (Olympus software V.3,1,1208) at 20X magnification.
When possible, both left and right wings were dissected, imaged and averaged to cal-
culate an individual’s mean shape. For some individuals a wing was damaged so only
one wing could be used. Shape was captured as described above. The total number of
individuals phenotyped from each cohort can be found in Supplemental Table A1.5.

To remove allometric e�ects in the data, shape was regressed onto centroid size and
the model residuals were used for all subsequent morphometric analysis. Only data
from males was used to compare shape in wild populations, although, including fe-
males from the FVW14 population and regressing shape onto centroid size and sex gave
equivalent results (Supplemental Figure A1.6). To test for shape di�erences between col-
lection cohorts, the e�ect of centroid size and collection cohort on shape were modeled
(procD.lm(shape ≥ CS + pop_year)) using the procD.lm function in Geomorph v 3.1.3
(Adams and Otárola-Castillo 2013) and distances between populations were calculated
using the pairwise function. To select individuals for sequencing, a ‘shape score’ was
calculated using the method described above. Shape data was projected onto the vector
of shape change defined by the ds or neur knockdowns. The emc projection vector was
not used for BSA due to the high similarity with ds shape change (Figure 2.1), and the
similarity of the selection response. Its inclusion would result in selection of largely the
same cohorts of individuals for sequencing for both ds and emc. As an alternative, we
utilized the neur shape vector as it was largely uncorrelated with that of emc and ds, but
strongly correlated with natural variation in shape. The 75 most extreme individuals on
the shape score distribution, within each wild-caught cohort, were selected for pooled
sequencing. Allele frequencies within each population was estimated by sequencing 75
random individuals within each cohort. The di�erence vector between mean shapes of
selected pools (within each population) was used to calculate Procrustes distance (PD)
between pools and the correlation of this shape change vector with the selection vector
used. An estimate of genetic distances between populations was calculated using allele
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frequencies (mapping pipeline described below) in the pools of the 75 randomly selected
individuals using Bray’s distance with the vegdist() function from the vegan package
(v2.6-2) in R.

2.3.6 Sequencing and Genomic Analysis

DNA extractions from pools of selected individuals was performed using a Qiagen
DNeasy DNA extraction kit. Library preparation and Illumina sequencing was per-
formed at the research technology support facility at Michigan State University. All
library samples were prepared using the Rubicon ThruPLEX DNA Library Preparation
kit, without a procedure for automatic size selection of samples. Paired end libraries
(150bp) were sequenced using Illumina HiSeq 2500, with each sample (either one pool of
75 individuals in the BSA or one pooled replicate lineage in the artificial selection) being
run on two lanes. Reads were trimmed with Trimmomatic (v0.36) to remove adapter
contamination and checked for quality using FastQC prior to alignment (Bolger et al.
2014). Trimmed reads were aligned to the Drosophila melanogaster genome (v6.23) using
BWA-MEM (v0.7.8) (Li and Durbin 2010). Sequencing replicates of the same biologi-
cal samples were merged using SAMtools (v1.11). PCR duplicates were removed using
Picard with the MarkDuplicates tool (v 2.10.3) and reads with a mapping quality score
less than 20 were removed using SAMtools (Li et al. 2009). A local realignment around
indels was performed using GATK using the IndelRealigner tool (v3.4.46). For artificial
selection experiments, reads were merged for all up, down and control selection lines as
replicates lineages were independent. For wild cohorts, pools were not merged between
populations. mpileup files were created using SAMtools and used for subsequent ge-
nomic analysis. Highly repetitive regions of the Drosophila genome were identified and
subsequently masked in mpileup files using RepeatMasker (v4.1.1) with default settings.
INDELs and regions within 5bp of an indel were identified and masked using PoPoola-
tion2 scripts. Population genetic statistics were calculated using PoPoolation (v1.2.2)
and PoPoolation2 (v1.201) (Kofler et al. 2019a; Kofler et al. 2019b).

For the BSA in the wild-caught cohorts, a modified Cochran-Mantel-Haenszel (CMH)
test was used to measure significantly di�erentiated sites between pools of individuals.
Sampling e�ects were accounted for using the ACER package (v.1.0) in R, assuming
Ne = 106 with 0 generations of di�erentiation between selected pools (Spitzer et al.
2020). (Spitzer et al., 2020). To adjust for multiple testing, the p-value was corrected
using a Benjamini-Hochberg correction (Benjamini and Hochberg 1995) with an adjusted
alpha of 0.05. For each significant site from the CMH test, using an adjusted p-value
cut-o� of 0.05, we identified the nearest gene using BEDtools (v2.19.1) (Quinlan and
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Hall 2010). In addition, to account for sampling variation, we sampled genomic cover-
age to 75x for all samples, dropping sites that did not meet this threshold and repeating
the CMH test. We confirmed that there was no association between genetic and shape
di�erentiation between populations, and that the populations do not show strong phe-
notypic di�erentiation based on either overall shape variation, or shape scores used to
identify selected individuals for BSA (Supplemental Figures A1.3 A1.7). There was some
variation among populations in overall wing size (Supplemental Figure A1.8), however
we (assuming common allometry) adjusted for allometric e�ects on shape.

For artificial selection experiments, FST was calculated in 5000bp windows. We chose
this window size as it is expected that blocks of LD in the synthetic outbred population
will be much larger in comparison to that of the wild caught samples (King et al. 2012a;
King et al. 2012b; Marriage et al. 2014). This statistic was used to compare the “up”
selected pools to the “down” selected pools to help identify regions of di�erentiation
between selected populations.

For the artificial selection comparisons, genes in regions of high FST were identified
by finding overlaps between outlier windows and annotated Drosophila genes using Ge-
nomicRanges (v1.46.1) in Bioconductor. High FST was defined as FST values greater
than three standard deviations above the mean. GO terms associated with identified
genes were annotated using TopGO package (v2.34.0) (Alexa et al. 2006) in Bioconduc-
tor. GO enrichment was then performed to identify those terms overrepresented in the
identified list using TopGO and a Fisher’s exact test. Over representation of 2 GO terms
in outlier windows (hippo signaling, GO:0035329; negative regulation of hippo signal-
ing GO:0035331) were tested using a permutation test that randomly sampled genomic
windows from the total windows for which FST was calculated and the permutation was
run 1000 times. The distribution of the ratio of observed to expected genes annotated
with the term of interest within randomly sampled regions was compared to the number
observed in the data.

2.3.7 Verification of ds indel in DGRP

Sanger sequencing was performed on individuals from a cross between DGRP lines pre-
dicted to have the polymorphism (DGRP 195, 28, 96, 48, 59, 801) and those without
(DGRP 129, 301, 69, 385, 75, 83, 491, 34, 774) crossed to a line carrying a deletion
in the region of interest (BDSC 24960) to account for potential residual heterozygosity
in otherwise inbred strains. DNA was prepared by incubating flies in DNA extraction
bu�er (1mM EDTA, 25mM NaCl, 10 mM TrisHCl pH 7.5) for 10 minutes, followed

23

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Katie Pelletier; McMaster University– Department of Biology

by storage at -20 C. PCR application of the region of interest (Forward primer: ggag-
tacaagttgctcgaac: Reverse Primer: cagatcgtgttccctttagc) using Taq DNA polymerase
(Gene DirectX) (PCR mix: 1 µ L DNA, 1 µ L forward primer, 1 µ L reverse primer, 0.5
µ L 10mM dNTPs, 2 µ L 10x PCR Bu�er, 0.1 µL taq, H20 to 20 µL). PCR conditions
were as follows: 5 minutes 95°, (30 seconds 95°, 30 seconds 55°, 30 seconds 72°)x30.
Reactions were checked on a gel and cleaned with the GenepHlow

T
M Gel/PCR Kit

(Geneaid). Sanger sequencing reactions were performed by the Mobix Lab at McMaster
University. All alignments were created using ClustalOmega (Madeira et al. 2022).

2.4 Results

2.4.1 dachsous (ds) shape change is aligned with major axes of genetic
and phenotypic variation in natural populations

To assess the relationship between shape change vectors and axes of natural variation
described in the the DGRP, mean shape vectors were calculated for each DGRP strain,
then used in a PCA to summarize axes of variation among strains. Mean shape vec-
tors for each strain of DGRP were projected onto shape change vectors for ds, emc,
and neur, defined from the RNAi knockdowns (see Supplementary Figure A1.5, which
visually explains the procedure), generating gene specific “shape scores”. Correlations be-
tween shape scores for individual DGRP projected onto the shape change vectors (Figure
2.1, Supplemental Figure A1.5), and with PC1 generated from the DGRP (PC1DGRP )
strains was estimated (PC1DGRP - ds: r = -0.56; PC1DGRP - emc: r = -0.45; Figure
2.1). The correlation of the DGRP data, projected onto each of the ds and emc shape
change vectors was also correlated (Figure 2.1, ds-emc: r = 0.69). This is likely due
to the correlation between gene specific shape change vectors themselves (r = 0.65),
based on RNAi titration experiments. Projections of the DGRP data onto the vector
defining the neur shape change is aligned with PC1 (PC1DGRP -neur : r = -0.69) and
PC3 (PC1DGRP -neur : r = -0.64), indicating this as an important axis of shape vari-
ation in this population (Figure 1), that is moderately similar to projections onto ds
(ds-neur : r = 0.56) and very similar to emc (neur-emc: r = 0.83) shape change vectors.
Interestingly, the strength of the correlation for the DGRP strains projected onto these
vectors, di�ers from the magnitude of correlations for the RNAi titration vector of neur
with that of ds (r = 0.034) or emc (0.3). Because of these observed correlations, and
previous associations observed (Pitchers et al. 2019) ds, emc and neur were selected as
focal genes for subsequent studies.
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We also examined the relationship between direction of phenotypic e�ects with the
wild caught cohorts. For these samples, phenotypic variance for shape is due to the joint
contribution of genetic and environmental e�ects. To illustrate the di�erence in shape
variance in wild populations and the DGRP, we calculated correlations between the first
three eigenvectors for shape in the DGRP, the combined wild cohorts as well as the
CMO cohort alone. We observed low correlations between the DGRP eigenvectors and
those estimated from wild populations (Supplemental Table A1.2). As observed with
the DGRP, there is a substantial correlation between projections of shapes of individuals
onto the ds shape change vector and PC1 (defined by phenotypic variation among wild
caught files, PCwild) in most of the sampled cohorts (ds-PC1wild PHO: r = 0.78; CMO:
r = 0.87; FVW13: r = -0.22; FVW14: r = 0.95, Figure 2.2, Supplemental Figure A1.5).
In cohorts where the ds shape change vector was not correlated with PC1, specifically
the FVW13 collection, this vector is correlated with PC2 (ds-PC2wild PHO: r = 0.12;
CMO r = -0.44; FVW13: r = -0.63; FVW14: r = 0.19; Figure 2.2, Supplemental Figure
A1.9). The pattern for the wing shape from wild-caught individuals projected onto the
emc shape change vector was generally similar to that observed for ds (Figure 2.2). We
also observe a correlation between neur shape change and PC1 in most cohorts (neur-
PCwild PHO: r = 0.51; CMO: r = -0.051; FVW12: r = -0.95 FVW13; FVW14: r =
-0.084; Figure 2.2; Supplemental Figure A1.7). As with the ds shape change vector,
in some cohorts such as the CMO the stronger correlation is between the neur shape
change vector and PC2(PHO: r = 0.22; CMO: r = -0.57; FVW13: r = -0.059; FVW14:
r = 0.85; Figure 2.2; Supplemental Figure A1.7). Interestingly, in the CMO cohort, the
correlations between the projection of shape data onto the ds and neur shape change
vectors is low (ds-neur : r = 0.11, Figure 2.2).

2.4.2 Multiple loci linked to hippo signaling - including ds- respond to
artificial selection for ds and emc shape changes.

To examine if variants in ds are contributing to shape variation, and independently
replicate the findings of the earlier GWAS (Pitchers et al. 2019), we performed artificial
selection experiment for wing shape along the ds shape change vector, and examined
the genomic response to selection. By the final generation of selection, we observed
a substantial shape change in both the “up” (females: Procrustes Distance (PD) =
0.039, males: 0.044) and “down” directions (females: PD = 0.022, males: PD = 0.022),
compared to the base population at the start of the experiment. In comparison, the
shape change among unselected control lineages was much smaller (females: PD = 0.005,
males: PD = 0.005, Figure 2.3, Supplemental Figure A1.10). The direction of phenotypic
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shape change after seven generations of selection was in a similar direction to the ds shape
change vector (defined by RNAi knockdown) for both the up (females: r = 0.90, males:
r = 0.90) and down (females: r = -0.82, males: r = -0.77) selection lineages. Realized
heritabilities, averaged over sex and replicate were moderate (Supplemental Figure A1.11
up = 0.38, 95% CI: 0.25 – 0.50; down = 0.28, 95% CI: 0.24 – 0.50). Hippo signaling,
including the e�ects of ds, is often associated with changes in size (Pan 2007). However,
we do not observe a significant change of wing size in our selection lineages in either sex
(Supplemental Figure A1.12). It is possible that with more generations of selection we
would have observed a clear change in size, as there is a trend indicating such divergence
(Supplemental Figure A1.12).

Genome-wide patterns of FST were examined between up and down ds selection
lineages. We observed strong genetic di�erentiation linked with the ds locus (Figure
2.3, Supplemental Figure A1.13), ), along with several other regions in the genome.
One of the SNPs in the intron of ds (2L:702560), identified in Pitchers et al. (2019)
through GWAS, showed the expected pattern of response to selection, with opposing
sign in up and down selection lineages, with the SNP going to high frequency in all three
up selection lineages (Table 2.1). It should be noted that this SNP is near a complex
polymorphism including an insertion of 18bp that may result in inaccurate genotyping
at this locus (Supplemental Figure A1.14). ). Gene ontology analysis for genes in
regions of the genome with an FST greater than 0. 345 (three standard deviations from
mean FST ), show enrichment for hippo signaling loci (figure A1.3). The top 20 enriched
terms are all related to cell signaling and development. Of note is the inclusion of the
terms for ‘negative regulation of hippo signaling’ (GO:0035331), and ‘hippo signaling’
(GO:0035329) in this list (Supplemental Table A1.3, Supplemental Figure A1.13). Using
a permutation test we confirmed these results, selecting random sets of genomic intervals
equal in size to the number of observed outlier windows, and measured the ratio of genes
annotated to the expected number of genes in these regions. The observed value for the
terms for hippo signaling (ratio = 4.76) and negative regulation of hippo signaling (ratio
= 9.23) were in the upper 99.5% percentile in comparison to the distributions under
permutation (Supplemental Figure A1.15).

For the artificial selection experiment based on the emc shape change vector we ob-
served phenotypic di�erentiation under artificial selection in both up (females: PD =
0.043, males: PD = 0.040), and down directions (females: PD = 0.021, males: PD =
0.020), with little change in control lineages (females: PD = 0.009, males: PD = 0.008,
Figure 2.4). The direction of phenotypic change is correlated with the emc (RNAi
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knockdown) shape change vector in both up (females: r = 0.75, males: r = 0.69) and
down (females: r = -0.69, males: r = -0.75) directions. Realized heritabilities, averaged
over sex and replicate were calculated for both up and down lineages (Supplemental
Figure 16, up = 0.38, 95% CI: 0.29 – 0.47; down = 0.28, 95% CI: 0.21 – 0.35). Genetic
di�erentiation linked to the emc locus was modest following selection, but we again
observed striking genetic di�erentiation linked to ds (Figure 2.4, Supplemental Figures
A1.13 A1.16). Notably, as seen in Supplemental Figure A1.1 the site frequency spec-
trum (SFS) suggests modest allelic variation at the emc locus in the synthetic outbred
population. Using a three standard deviation cut-o� for FST , we did observe enrichment
for various developmental GO terms, but not of hippo signaling terms (Supplemental
Table A1.4, Supplemental Figure A1.13).

2.4.3 Bulk segregant analysis in wild caught cohorts does not recapit-
ulate e�ects of the GWAS or artificial selection

Having demonstrated that variants in (or linked to) ds respond to artificial selection for
wing shape along the ds shape change vector, we next wanted to determine whether
we could recapitulate these findings with wild caught individuals. In addition to deter-
mining whether we can replicate e�ects in wild cohorts, it provides the opportunity to
identify causal SNPs because of low LD generally observed in wild caught Drosophila.
Wild caught populations introduce considerably more environmental variation for shape
along with a di�erent site frequency spectrum for variants contributing to shape vari-
ation (and ds like shape changes specifically). In particular, it is known that several
of the variants that the original GWAS detected in ds have low minor allele frequency
(MAF) (Pitchers et al. 2019)(Table 2.2). The SNP at 2L:702560 does appear to be at
intermediate frequency but it occurs both directly before and after an indel, making
alignment and variant calling in this region challenging (Supplemental Figure A1.14).
We have included the frequencies (Table 2.2), but these results should be interpreted
with caution due to the technical complexities of mapping and variant calling close to
indels.

As we sampled multiple cohorts of wild-caught flies in di�erent locations and years
in Michigan (USA), we wanted to confirm that any phenotypic di�erentiation among
these samples was modest and would not impact genomic analysis for the BSA. We
observe modest, statistically significant wing shape di�erences among cohorts from a
Procrustes ANOVA, utilizing permutations of the residuals for the relevant “null” model
(Supplemental Table A1.2; R

2= 0.16, F = 351, ZRRP P = 18.3, p = 0.001)(Collyer and
Adams 2018). This appears to be due to di�erences in wing shape between the PHO

27

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Katie Pelletier; McMaster University– Department of Biology

population and other populations based on pairwise Procrustes Distances (Supplemen-
tal Tables A1.2, A1.4). In a joint PCA including all populations, there is very modest
separation between populations using allometry adjusted shape (Supplemental Figure
A1.3). Most relevant to the BSA approach we used, when we project all wild caught
individuals onto the ds and neur vectors, there is no clear separation among sampling
locales (Supplemental Figure A1.7).There is some variation in wing size between popula-
tions (Supplemental Figure A1.8), but this is unlikely to influence downstream analysis
as we use size adjusted estimates.There is little evidence of genetic di�erentiation be-
tween populations with the two collections from Fenn Valley Winery separating more
on a Principal Co-ordinate Analysis (PCoA) (Supplemental Figure A1.17) than other
sampling locales. There is also no relationship between genetic and phenotypic distances
between samples (Supplemental Figure A1.18). These results suggests that the multi-
ple sampling locales should not influence downstream genomic analysis as individuals
used for generating pools were compared within each population, and we observe little
evidence for substantial di�erences among populations.

Because there is a single bout of phenotypic selection distinguishing pools for the
BSA, changes in shape and allele frequencies are expected to be modest. We observe
shape di�erences between the two pools within each population (PD = CMO: 0.033;
PHO: 0.036; FVW13: 0.040; FVW14: 0.041; Supplemental Figure A1.19). Correlations
of the shape di�erence vectors of the pools (i.e. di�erence between the two pools created
from the extremes along the ds shape change axis), and the direction of the ds shape
change vector used for selection, is high (CMO: 0.94, PHO: 0.79, FVW13: 0.92, FVW14:
0.90).

BSA genome scans show little evidence of genetic di�erentiation linked to the ds gene
(Figure 2.5). Across the genome, 15 sites were detected as significantly di�erentiated
between “up” and “down” selected pools based on a CMH test with FDR cut-o� of 5%
(Figure 2.5, Table 2.3).The genes nearest to these sites are not associated with hippo
signaling pathways or implicated in the development of the Drosophila wing (Table 2.3).
Because PHO had somewhat distinct shape variation from the other populations and
had a lower correlation of the di�erence vector between selected pools and ds shape
change vector, we repeated the CMH test with this population left out. We observe
significant di�erentiation at 174 sites between “up” and “down” pools (Supplemental
Table A1.6, Supplemental Figure A1.20). We identified the nearest genes to these sites
and GO analysis indicated enrichment for wing development terms, in particular related
to Wnt signaling, but not hippo signaling terms (Supplemental Table A1.7). Importantly,
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we do not observe di�erentiation linked to ds or any other hippo loci. To ensure that
the results we obtained were not due to uneven coverage between samples, we down-
sampled genomic coverage to 75x for each sample, dropping sites that did not meet this
threshold. Significant di�erences were detected at 19 sites (Supplemental Figure A1.21,
Supplemental Table A1.8), but none of these overlapped with those identified using all
the genomic data. Two of the significant sites are located in the dumpy gene, a gene
known to have a role in wing morphogenesis during pupation (Etournay et al. 2015). FST

between selected and random pools within each cohort are generally low (Supplemental
Figure A1.22).

In addition to the BSA selection based upon the ds shape change, we also selected
pools of individuals based on the neur shape change vector. We did not use emc shape
change in this experiment due to the high similarity between the ds and emc shape change
vectors (r = 0.65), and the similar response to selection reported above. We selected
the neur shape change vector as it is not aligned with ds, but does align with directions
of natural variation, in wild populations (Figures 2.1, 2.2, Supplemental Figure A1.9).
Additionally, there is little relationship between the ds and neur shape change axis
(Supplemental figure A1.7, A1.9), in the wild caught cohorts. We observe shape changes
between pools of individuals (PD = CMO: 0.027; PHO: 0.028; FVW14: 0.041; FVW13:
0.038, Supplemental Figure A1.23). ). There is little evidence of genetic di�erentiation
between neur selected pools (Supplemental Figure A1.24). Only 4 sites were identified
as being significantly di�erentiated between pools and none of these sites are associated
with wing development (Supplemental Table A1.9). When population di�erentiation
between pools within populations is measured using FST , genetic di�erentiation remains
low across the genome (Supplemental Figure A1.25).

2.5 Discussion

The primary goal of this study was to determine whether we could recapitulate genetic
e�ects initially observed through a traditional GWAS using an “inverted” approach:
artificially selecting on phenotypes and observing changes in allele frequencies. We
observed that shape changes associated with the ds, emc and neur genes were associated
with major axes of genetic variation among a panel of wild type strains (DGRP) reared
in the lab, and axes of phenotypic variation among wild caught individuals (Figures 2.1,
2.2). After observing a strong response to artificial selection along two shape change
vectors (ds and emc), we examined patterns of genomic di�erentiation and observed
substantial changes in allele frequency for markers linked with ds itself (Figure 2.3),
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and markers linked to numerous genes associated with hippo signaling (Supplemental
Figures A1.13, A1.14).

In contrast, our BSA experiments, using pools of wild caught individuals chosen to
be phenotypically divergent on the same shape vectors, did not detect di�erences in the
loci identified in the artificial selection experiments (Figure 2.5, Supplemental Figure
A1.24). As we discuss in detail below, these seemingly contradictory results are in fact
not that surprising.

Following artificial selection based on ds shape change we observe allele frequency
changes not only at ds but also linked to a number of other hippo signalling loci (Figure
2.3, Supplemental Table A1.3). The previous GWAS study identified a number of loci as-
sociated with wing shape variation in the DGRP, however, this approach cannot predict
which alleles are causative (Pitchers et al. 2019). In our synthetic outbred population,
we maximized variation among haplotype blocks containing many of the candidate SNPs
in ds, increasing our ability to detect frequency changes at and near the implicated vari-
ants. Although LD blocks in the outcrossing population from this study remain large, ds
variants exist on multiple distinct haplotypes, allowing for an examination of allele fre-
quency changes for each. Of particular interest is SNP 2L:702560, previously identified
though GWAS (Pitchers et al. 2019) as influencing wing shape variation. It was driven
to near fixation in each of the artificial selection lineages (Table 2.1). Although this
polymorphism is annotated as a SNP, this region may contain a complex polymorphism
(Supplemental Figure A1.14), making it di�cult to accurately assess genotypic calls.
Because of this, the predicted allele frequency in the founding population and allele fre-
quencies in this region may be inaccurate. Previous studies demonstrate the importance
of alleles at intermediate frequency in founding populations to those contributing to re-
sponses to selection over short timescales (Kelly and Hughes 2019). If this polymorphism
is at a more intermediate frequency in the founding population, it would be more likely
to be captured by selection during these experiments. Additionally, haplotype blocks
in the initial population are large, and may contain many potential functional variants.
However, based on the results of both the current and previous studies, these ds variants
associated with 2L:702560 are good candidates for functional validation in future work.
When selecting on the emc shape change vector, which is similar to that of the ds shape
change, we observe only a modest allele frequency change at emc, and a more robust
response at ds (Figure 2.4). In hindsight, this is not particularly surprising and there
are multiple contributing factors. Given the increased genetic diversity at ds compared
to emc in the founding population, alleles in ds may have provided a more accessible
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genetic target, as selection can only act upon the diversity available in the population.
Additionally, if our estimated direction of e�ects and selection for emc (based on RNAi
knockdown) was not well aligned with the actual direction of emc SNP e�ects, this could
result in weaker selection on variants at the emc locus. It is worthwhile pointing out
the small magnitude of the emc shape change vector (0.44) relative to ds (5.5). How-
ever, previous work has indicated that there is a relationship between this estimated
emc shape change vector (from RNAi) and the e�ect of SNPs in emc on shape change
(Pitchers et al. 2019).

In addition to a response on allele frequency associated with ds, our results suggest a
response on segregating variation at other hippo signaling loci in the ds artificial selection
experiment. Earlier work has suggested that the direction of e�ects within signaling
pathways are inconsistent for alleles of small e�ect (Dworkin 2006). However, allelic e�ect
sizes in the 2006 study were heterogeneous and may result in direction and magnitude
being confounded. In contrast, in both the current and the Pitchers et al. (2019) studies,
we estimated the direction of genetic e�ects by titrating gene knockdown. The strength
of this approach is highlighted in the result that segregating variation at multiple hippo
loci was selected on (Supplemental Figures A1.13, A1.15). Our finding is consistent with
models for the architecture of complex traits that predict that many alleles of small e�ect
will contribute to trait variation with many genes within developmental pathways (Boyle
et al. 2017; Wray et al. 2018). This pathway response has also been demonstrated in
human adaptation to pathogen resistance (Daub et al. 2013) and high altitude (Gouy
et al. 2017). These results are consistent with the expectation that polymorphisms in
the same developmental pathway would show correlated phenotypic e�ects and therefore
correlated genomic responses to selection. However, this may not be reflective of all wild
caught populations. In this study, we generated a population that had high diversity
at ds, while these variants are at much lower frequency in natural populations (Table
2.2). The amount of selectable variation a variant provides, depends on both e�ect size,
a, and variant frequencies, p, as VA = 2p(1 ≠ p)a2. When allele frequencies are near 0
or 1, even variants with large e�ects will have only a small contribution to short term
selection response. Therefore, the outcrossed population we created here is an ideal
situation to validate the existence of the measured e�ects. It is unlikely to be typical of
natural populations where functional variants may be rare.

Given the clear and robust response observed in the artificial selection experiment, it
may seem surprising that we do not observe allele frequency changes in the BSA using
the wild cohorts. Indeed, previous work has demonstrated that variants in Egfr, could
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be replicated in wild caught samples (Dworkin et al. 2005; Palsson et al. 2005) and
were also found in genome wide associations (Pitchers et al. 2019). However, there are
many explanations for why we may not have been able to detect these allele frequency
changes in our experiment. First, the addition of environmental variation to the sys-
tem introduces additional complications. In the aforementioned example with Egfr, the
genetic e�ect of the SNP in wild-caught cohorts was 10% of the magnitude estimated
in lab-reared flies. As discussed previously, the ds variants implicated in the previous
GWAS study are at low frequency in the natural cohorts (Table 2.2). Given that nat-
ural populations of Drosophila are generally large and wing shape is likely under weak
selection (Gilchrist and Partridge 2001), mutation-drift-selection balance may maintain
most variation, resulting in low minor allele frequencies at these sites. Because allelic
contribution to wing shape are expected to be both rare in wild populations and of small
phenotypic e�ect, we do not expect large allele frequency changes given only one “gen-
eration” of selection. Using the approach of ACER (Spitzer et al. 2020) to account for
sampling e�ects, we observe few di�erentiated sites, and none in the ds gene, indicating
that BSA may not be well-suited to identify modest allele frequency changes, thus, not
particularly e�ective for polygenic traits. Although our approach was tailored to look
for variants that had consistent direction of frequency changes across the four collection
cohorts, it is possible that di�erent loci were contributing variation within each cohort.
We attempted to address this question by examining allele frequency changes between
selected pools within each cohort (Supplemental Figures A1.22, A1.25) but could not
identify specific loci contributing to di�erences within any one population. Previous
successful BSA studies identified smaller numbers of contributing loci with few poly-
morphisms contributing to the trait of interest. For example, in Drosophila, a number of
melanin synthesis genes contributing to variance in pigmentation between populations
were identified using a BSA (Bastide et al. 2013). Pigmentation may represent a rela-
tively ‘simpler’ genetic architecture (fewer variants of individually larger genetic e�ect,
smaller impact of environmental variation, smaller mutational target size) and if so, this
may have enabled the success of the BSA approach with such systems. In the case of
wing shape, we know that many alleles of small e�ect contribute to variation in the trait
(Pitchers et al. 2019).

Our approach for the BSA was to perform the same phenotypic selection within each
of four distinct “populations”. It is important to recognize that there was heterogeneity
among our populations, not only in allele frequencies, but in environmental variance
and potentially GxE, even though all were caught in locales in lower Michigan. We
detected small degrees of phenotypic and genetic di�erences between cohorts, however
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these e�ects are neither correlated with one another, nor related to the ds and neur
shape scores used for selecting individuals (Supplemental Figures A1.3, A1.7, A1.17). ).
The population from the Phillips Orchard (PHO) was phenotypically distinct from the
other populations. When we performed the BSA without this population, we observed
a larger set of variants associated with shape (Supplemental Figure A1.20), albeit still
not showing any e�ects at ds or neur genes themselves. One possibility is that the
increased number of sites when the PHO sample is removed from analysis represents an
unknown statistical artefact we have not identified. However, a more likely explanation
is that there are some large unknown environmental influences (E), or that the genetic
e�ects show a degree of GxE (with a specific environment in PHO) that contributed to
shape variation along the ds direction in this population. Such obfuscating e�ects have
been observed before with the previously discussed Egfr example, where the SNP e�ect
identified and validated in multiple contexts (Dworkin et al. 2005; Palsson et al. 2005;
Palsson and Gibson 2004) could not be detected in one natural population, despite being
at intermediate frequencies in each sample (Palsson et al. 2005). Importantly, we did
detect di�erentiation at sites associated with developmental processes in the wild cohorts,
suggesting that the failure to detect variation linked to ds or other hippo signaling loci
(Table 2.3, Supplemental Table A1.6, A1.7) is not due simply to a lack of power.

The response to selection at ds and other hippo signaling loci in the artificial selec-
tion experiment based on ds shape change indicates that this is an important axis of
variation for wing shape. Coupled with the alignment of phenotypic e�ects of pertur-
bations in genes in this pathway with directions of G and P, this finding may seem to
suggest a developmental bias in available variation. However, we caution against such
interpretations based solely on the findings in this study. The structure of the G ma-
trix strongly influenced our findings as we artificially created a population to maximize
genetic diversity at ds. When another e�ect is aligned with ds shape change, as in the
case of emc shape change, we observed the same response at the hippo signaling loci
and not at emc. Only the genetic diversity in the starting population was available to
be selected on so this influenced selection towards the “spiked in” ds variants, even if
the inferred phenotypic e�ects of emc variants are very similar. Alternatively, the in-
ferred emc direction of e�ects (via RNAi knockdown) may be su�ciently “distant” from
true e�ects of emc variants. If this was the case, we were ine�ectively selecting for emc
shape changes. In other cases where single genes are implicated in divergence between
multiple populations, such as mc1r in mice (Steiner et al. 2007) or pitx1 in stickleback
(Chan et al. 2010), other factors such as low pleiotropy, developmental and mutational
constraints and history of selection in the population are used to explain why these genes
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are so often implicated in evolutionary change (Gompel and Prud’homme 2009; Martin
and Orgogozo 2013; Stern and Orgogozo 2008). In our case, it is not ds itself that is
special but rather the orientation of the G matrix to align gmaxwith the direction of
e�ect for ds that shapes our results. Selection acts on variants aligned with the vector
of selection (Reddiex and Chenoweth 2021). By varying the orientation of gmaxin the
parental population, we would be able to address questions about the repeatability of
hippo overrepresentation and if this can be explained by more than just the orientation
of G.

Despite the need for skepticism about the potential for developmental bias influencing
directions of variation, the correlated response of sites linked to multiple other hippo
signaling genes is intriguing. Coupling of more traditional mapping approaches like
GWAS with short term artificial selection provides an additional route to validation and
replication of genetic e�ects. It also suggests that using multivariate data to address the
distribution of genetic e�ects will pay long-term dividends to our understanding of both
inheritance and the evolution of multivariate traits.

2.6 Figures and Tables

Table 2.1: Variants from Pitchers et al. (2019) in ds artificial selection
experiment. Estimated e�ect sizes for SNPs are estimated from a GWAS
in the DGRP using LASSO regularized coe�cients. Average frequency
is given with replicate lineage frequencies in brackets. Estimated e�ect
is the l

2-norm of shape di�erences associated with the variant. MAF =
minor allele frequency.

Variant Estimated E�ect DGRP MAF Estimated
MAF in
synthetic
outcross

Average
allele

frequency
“up”

selection

Average
allele

frequency
“down”
selection

Average
allele

frequency
“control”
selection

2L:655894 0.072 0.44 0.067 0(0, 0, 0) 0(0, 0, 0) 0.003(0, 0, 0.0105)

2L:702560* 0.159 0.056 0.06 0.995(1, 0.98, 1) 0.446(0.32, 0.35, 0.67) 0.705(0.69, 0.56, 0.87)

2L:702798 0.101 0.089 0.1 0.007(0, 0.0217, 0) 0(0, 0, 0) 0.005(0, 0, 0.139)

2L:718623 0.225 0.033 0 0(0, 0, 0) 0(0, 0, 0) 0(0, 0, 0 )

2L:718627 0.11 0.033 0 0(0, 0, 0) 0(0, 0, 0) 0(0, 0, 0 )

* This is a complex polymorphism with linked SNPs and INDELs, in Pitchers et al
(2019) a SNP in this region was found to be linked. However, the variant calling
pipeline used in this work recognized an INDEL in this region which was used for

counting.

34

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Katie Pelletier; McMaster University– Department of Biology

Table 2.2: ds Variants from Pitchers et al. (2019) in wild-caught cohorts
used in the present study. Estimated e�ect sizes for SNPs are estimated
from the DGRP GWAS with LASSO regularized coe�cients. MAF in wild
cohorts was estimated from sequenced pools of 75 random individuals.

Variant Estimated E�ect DGRP MAF Estimated
MAF CMO

Estimated
MAF

FVW13

Estimated
MAF

FVW14

Estimated
MAF PHO

2L:655894 0.072 0.445 0 0 0 0

2L:702560* 0.159 0.056 0.375 0.473 0.485 0.336

2L:702798 0.101 0.089 0.077 0.101 0.044 0.034

2L:718623 0.225 0.033 0.051 0.021 0.044 0.100

2L:718627 0.11 0.033 0.055 0.020 0.046 0.099
* This is a complex polymorphism with linked SNPs and INDELs, in Pitchers et al

(2019) a SNP in this region was found to be linked. However, the variant calling
pipeline used in this work recognized an INDEL in this region which was used for

counting.

Table 2.3: Significantly di�erentiated variants for ds shape change from
the wild-caught cohorts (BSA).

Location CMH p-value (FDR corrected) Gene FlyBase ID Distance from ORF (bp)

2R:17491270 0.026 NT5E-2 FBgn0050104 0

2R17498059 0.034 CG30103 FBgn0050103 2061

2R:17515133 0.022 CG4853 FBgn0034230 0

2R: 20537878 0.013 CG13423 FBgn0034513 0

2R:23601278 0.005 CG10332 FBgn0260455 0

2R:23601278 0.005 IM18 FBgn0067903 0

2R:23613785 0.013 Eglp4 FBgn0034885 0

2R:23613785 0.013 Eglp2 FBgn0034883 0

2R: 23646252 0.016 retn FBgn0004795 0

3L:12831924 0.005 CG10960 FBgn0036316 0

3L: 20999119 0.022 skd FBgn0003415 0

3R: 21523866 0.013 CG7956 FBgn0038890 0

3R: 2559549 0.011 Pzl FBgn0267430 0

X: 14891220 0.013 Flo2 FBgn0264078 0

X: 14891220 0.013 CG9514 FBgn0030592 0

X:16039731 0.017 Muc14a FBgn0052580 0

X: 793052 0.011 CG16989 FBgn0025621 95

X: 9448676 0.034 mgl FBgn0261260 0

35

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Katie Pelletier; McMaster University– Department of Biology

Figure 2.1: Projections of data onto RNAi shape change vectors are
correlated with major axes of shape variation among DGRP strains. (A)
Shape change vectors from RNAi titration experiments for ds, emc and
neur were used, and DGRP line means were projected onto these vectors
to calculate shape scores. Eigenvectors for the PCA were estimated based
on the same DGRP line means. Vector correlations between shape change
vectors from RNAi knockdown: ds - emc: 0.65, ds - neur : 0.03, emc -
neur : 0.30. (B) E�ect of ds shape change estimated from RNAi knock-
down, e�ects not magnified. (C) Landmarks (red) and semi-landmarks
(blue) used in geomorphic morphometric analysis on a Drosophila wing.
PCs 1-3 account for 22%, 20% and 9% of the overall, among DGRP shape
variance.
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Figure 2.2: Projections of data onto RNAi shape change vectors are
correlated with major axes of shape variation in wild-caught Drosophila.
Correlations between projection of shape data from CMO population onto
ds, emc and neur RNAi shape change vectors, and the first three eigen-
vectors from the PCA, calculated from shape data from all samples in the
CMO population. PCs 1-3 account for 24%, 18% and 9% of overall shape
variance in the CMO population.
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Figure 2.3: Artificial selection along ds shape change vector influences
allele frequencies of variants at ds. (A) Phenotypic response to selection
based on ds shape change vector. Only data from females is plotted
for ease of visualization. Each replicate of up (squares), control (dots)
and down (triangles) selection lineages are plotted (greys). Estimated
response to selection shown along red lines. Wing plots represent the
e�ect of selection on shape change between generation one and seven
(red, e�ects not magnified). (B) Genomic di�erentiation (FST ) between
up and down selection treatments measured in 5000bp windows. Red line
represents the location of the ds locus. Grey line represents 3 standard
deviations from genome wide mean FST .
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Figure 2.4: Artificial selection along emc shape change vector has mod-
est influence on allele frequencies at emc, but a greater impact at the
ds locus. (A) Phenotypic response to selection based on the emc shape
change vector. Only data from females is plotted for ease of visualization.
Each replicate of up (squares), control (dots) and down (triangles) selec-
tion lineages are plotted in greys. Estimated response to selection shown
along red lines. Shape change between generation 1 and 7 is indicated
on the right. Shape e�ects have been magnified 5x. (B) Genomic dif-
ferentiation between up and down selection lineages (FST ) measured in
5000bp sliding windows. Red and purple vertical lines represent genomic
locations of ds and emc respectively. Grey line represents 3 standard de-
viations from genome wide mean FST .
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Figure 2.5: Genetic di�erentiation between pools selected based on ds
shape change among the wild-caught cohorts. (A) Genome-wide scan for
di�erentiated loci between pools selected based on ds shape change vector
using the CMH test implemented in ACER. Points in red indicate sites
with significant di�erentiation. Position of ds gene in blue (B) Genomic
di�erentiation at ds between pools selected based on ds shape change
vector. No sites are significantly di�erentiated in ds. The large gap in sites
is due to a masked region in the genome due to repetitive sequence and
poor (syntenic) mapping scores. (C) Shape di�erence between selected
pools of individuals from one representative (CMO) population, with the
mean shape of pools represented in black and red.
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Chapter 3

Polygenic architecture of
adaptation of Drosophila
melanogaster wing shape and size
to a high-altitude environment.

3.1 Abstract

Populations of Drosophila melanogaster from high altitude environments have larger
wings and a di�erent wing shape than populations living at lower altitudes. Because
the colonization of high altitude environments is thought to be relatively recent (2000-
3000 years ago), this is an interesting system to study alleles contributing to adaptive
divergence on short time scales. Increasingly, models predict that genetic variants al-
ready present in a population are more likely to contribute to adaptation on short time
scales, particularly when populations are large and genetically diverse as is the case
for Drosophila. Selected isogenic lines derived from a lowland ( 500m) and highland
( 3000m) population were crossed together for 20 non-overlapping generations to allow
for recombination. F20 o�spring were phenotype for wing shape and size and the most
phenotypically extreme individuals for each trait were sequenced. Measuring genetic
di�erentiation between the phenotypically extreme pools of individuals revealed a poly-
genic architecture of adaptive divergence for both size and shape as is predicted by many
simulation models. Despite the polygenic nature of adaptation, we identify one QTL
that is a particularly interesting candidate contributing to shape variation in the same
direction as the adaptive divergence, however it is not replicated in all mapping crosses,
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indicating the allele is not fixed in high altitude populations. Additionally, we demon-
strate the independence of wing shape and size, despite the intrinsic links between the
two traits. Overall, this work demonstrates that many alleles, distributed throughout
the genome rather than single large e�ect alleles contribute to adaption in Drosophila
wing shape and size which adds to the growing body of evidence for the importance of
polygenic adaption.

3.2 Introduction

Polygenicity of complex traits is common, and even traits with seemingly monogenic
e�ect often have many genes of small e�ects contributing. The genetic architecture of
changes in trait mean in response to selection is a broadly studied question. Classic
studies that have mapped alleles contributing to trait variation identify one or a small
number of alleles contributing to phenotypic divergence, such as mc1r influencing coat
colour in mice (Hoekstra 2006; Hubbard et al. 2010), eda influencing stickleback armor
plate variation (Barrett et al. 2008; Colosimo et al. 2004; Hubbard et al. 2010), among
other systems. Large e�ect variants are often de novo mutations that occurred con-
currently with selection or were very rare in the ancestral population (Dittmar et al.
2016). These examples may represent a very biased sample of the genetic architecture of
complex traits as identifying these single loci of large e�ect requires smaller sample sizes
and a smaller number of unique genotypes to identify alleles. With the falling cost of
genomic sequencing and more widespread whole genome mapping in much larger popu-
lations, it has become apparent that adaptive changes in trait values generally involve
contributions from many loci (Pritchard and Di Rienzo 2010). These small e�ect vari-
ants usually include a substantial fraction of alleles segregating in ancestral populations
at non-negligible frequency, as opposed to de novo mutations or very rare variants. The
relative contribution of large and small e�ect alleles matters, as they will a�ect relative
contribution of (hard) genetic sweeps at a few genomic loci at one end of the spectrum,
to subtle shifts in allele frequencies across many loci with no fixation of alleles on the
other. The former case is much easier to detect in population genetics data than the
latter, as hard sweeps leave clear genomic footprints of low diversity. As such, where on
the spectrum of the alleleic distribution the alleles contributing to adapation occur is an
open but essential question in understanding the mechanisms of adaptation for complex
traits (Barghi et al. 2020).

Hard sweeps from single alleles of large e�ect, subtle shifts in allele frequencies and
all the points on the spectrum in between allow for rapid adaptation with contribution
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from multiple loci, but the relative e�ect sizes of contributing alleles and contribution of
mutation and segregating variation varies amung them. The theory of an adaptive walk
predicts subsequent fixation of alleles (Orr 1998; Orr 2005). This sweep can be either
“hard”, with de novo mutations contributing, or soft, with contributions from alleles
segregating in the population (Coop and Ralph 2012). For alleles to be selected on, they
must be beneficial enough to escape the selection-drift boundary and segregate at a high
enough frequency in the population. Thus, mutational patterns are likely to drive the
alleles available for selection in populations under this model.

When genetic diversity in a population is high and with a large e�ective population
size, selection at individual variants of large e�ect will be “weakened” in favor of poly-
genic adaptation or allele shifts at many loci (Chevin and Hospital 2008). As predicted
by Fisher’s infinitesimal model and subsequent extensions, the e�ect of many mutations
are predicted to be small as pleiotropy for genes is high and large e�ect alleles are lik-
ley to be deleterious for one or more of the a�ected traits (Boyle et al. 2017; Fisher
1930). Small shifts in allele frequency across many loci in response to directional selec-
tion, followed by a period of stabilizing selection, can result in phenotypic divergence,
without the fixation of alleles in the diverged population (Hayward and Sella 2019).
Because of the small shifts predicted by this model, identification of particular alleles
can be di�cult, as FST scans to identify di�erentiated alleles cannot detect these shifts
(Yeaman 2015). Thus, mapping approaches may be better suited to identify the alleles
contributing to divergence as these small e�ect alleles can still be identified.

Drosophila melanogaster populations are particularly tractable systems for mapping
alleles contributing to divergence due to short generation times, ease of culture and
the extensive genetic tools available. A number of traits vary between high and low
altitude populations of D. melanogaster in Sub-Saharan Africa, including body size,
pigmentation, wing shape and size (Bastide et al. 2016; Pitchers et al. 2013; Fabian
et al. 2015; Pool et al. 2016; Groth et al. 2018; Lack et al. 2016b). As is typical of
small insects (Dillon 2006), high altitude D. melanogaster have a larger wing size and
increased wing loading as compared to lowland populations (Pitchers et al. 2013). Using
nearly isogenic lines isolated from highland populations (Fiche, Ethiopia >3000 m) and
lowland populations representing the ancestor (Siavonga, Zambia 500 m)(Lack et al.
2015), many mapping studies have been conducted to identify the genetic basis of this
adaptive divergence. In the case of pigmentation, a small number of polymorphisms have
been identified that explain the darker pigmentation in highland populations (Bastide et
al. 2014). In contrast, mapping studies that have examined di�erences in both body and
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wing size identified a polygenic basis with little evidence of selective sweeps at single loci
(Sprengelmeyer et al. 2022). The di�erences in the genetic architecture of these traits
could help to explain the di�erences in the two patterns discovered. Pigmentation has
a ‘simpler’ genetic basis with a smaller mutational target size (Dembeck et al. 2015;
Wittkopp et al. 2003) than wing size, about 15% of the genome (Carreira et al. 2009;
Carreira et al. 2013). The previous wing size mapping study used four Zambian and four
Ethiopian inbred lines to identify alleles and likely did not fully capture the complete
genetic architecture. By adding mapping studies with more genetic backgrounds, we can
begin to understand the degree of polygenicity in wing size adaptation.

The genetic basis in wing shape variation between these two populations has not
been investigated although there is a documented wing shape change between highland
and lowland populations (Pitchers et al. 2013). Like wing size, wing shape has a large
mutational target size (Carreira et al. 2011; Houle et al. 2017) but di�ers from wing
size in its multivariate nature. In contrast to a univariate trait, such as size, that can
only vary in a single direction (larger or smaller), where directions of e�ects can be
aligned by chance 50% of the time, wing shape varies in many directions; as the number
of available dimensions of variation increases, the likelihood of e�ects being aligned by
chance decreases. Both simulations and empirical studies have demonstrated the power
of such an approach to understanding the genetic architecture of traits (Pitchers et al.
2013; Porter and O’Reilly 2017). The increased number of directions in which e�ects
can vary allows for the analysis of shared directions of variation. The major axes of
shape variation between Drosophild species are more aligned with mutational variation
rather than standing genetic variation within D. melanogaster (Houle et al. 2017). This
example is on a longer time scale than the relatively recent adaption to high altitude
observed between highland and lowland populations (<3000 years) (Sprengelmeyer et al.
2020) but creates an interesting model with which to understand the genetic architecture
of divergence on short and long time scales.

Allometry is a major component of shape variation in many systems, including
Drosophila wings (Klingenberg 2016). Although it is possible to separate the allomet-
ric component of shape (Klingenberg 2022) and there is evidence for a change in the
non-allometric component of shape between highland and lowland populations (Pitchers
et al. 2013), it is not clear if the change is a consequence of selection on shape itself or
due to selection for larger wings though allometry. The adaptive benefit of larger wings
at high altitudes is explained by the increased surface area of the wing creating lift at
lower air pressures (Dillon 2006). However, the adaptive benefit of a wing shape change
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is not as obvious, and the fitness benefits of subtle wing shape changes are di�cult to
test. By asking if non-allometric wing shape change and wing size change have unique
genetic architectures, we can test there is an adaptive advantage to wing shape change
that is genetically separable from selection on wing size.

Using highland and lowland populations of D. melanogaster, we investigated the ge-
netic architecture of two complex traits, wing shape and size divergence. We demonstrate
a polygenic architecture of adaptation for both wing size and wing shape with no QTL
shared between di�erent crosses, supporting the hypothesis that contributing alleles are
not fixed in the derived high-altitude population. Despite the unique genetic basis of
adaptation, a common allometric size-shape relationship and similar structure of shape
variation was observed between di�erent F20 intercrosses, even when the parental in-
bred lines the the crosses were derived from have unique allometries and shape variation
structures themselves. This is what we would expect in a situation where many alleles of
small e�ect, rahter than a few alleles of large e�ect, contribute to shape. We also demon-
strate the unique genetic basis of wing shape and size adaptation, even through the two
traits are intrinsically linked thought the size-shape allometric relationship. Overall,
we provide support for the model of polygenic adaptation due to small shifts in allele
frequency rather than subsequent fixations of alleles.

3.3 Methods

3.3.1 Creation of F20 advanced intercross

To map the genetic basis of shape and size adaptation between low altitude (Siavonga,
Zambia, “ZI,” 16.54 S, 28.72 E, alt. 530 m) and high altitude (from Fiche, Ethiopia,
“EF,” 9.81 N, 38.63 E, alt. 3,070 m) populations of Drosophila, 3 highland lines and 3
lowland lines were selected for creation of pairwise F20 advance intercrosses. The Zam-
bian (ZI192, ZI251, ZI418) and Ethiopian (EF43, EF81, EF96) lines were selected from
wild-caught isofemale lines that were inbred for 8 generations (Lack et al., 2015)(Figure
3.1). Lines were selected to be free of the most common, known chromosomal inver-
sions: In(1)A, In(1)Be, In(2L)t, In(2R)NS, In(3L)OK, In(3L)P, In(3R)K, In(3R)Mo,
and In(3R)P in previous analysis (Lack et al. 2016b; Lack et al. 2015). All crosses were
done at 20¶C in the lab of John Pool (University of Wisconsin), using the lab’s standard
recipe (see supplementary file 1 for all fly media recipes). Each pairwise cross was done
in a single 28cm x 14cm x 15cm cage. In the first generation, 8 parents from the appro-
priate highland and lowland lines were crossed in a reciprocal manner to ensure equal
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contributions of X chromosomes from high and low-land populations. 125 F1 individuals
of each sex from this cross were selected to start the cage cross population. In cages,
flies were provided with 14 vials of food and allowed to lay for 1 week before food was
changed. For each non-overlapping generation 1200 progeny from the previous genera-
tion were used to lay for the next generation. No selection was used in choosing which
individuals contributed to the next generation. After 20 generations of crossing, adult
flies were collected and stored in 70% ethanol and shipped to McMaster University for
wing dissection and mounting as well as DNA extraction and sequencing.

3.3.2 Collection of Morphometric Data

The right wing from individual flies were dissected and mounted in 70% glycerol in PBS
and bodies were stored in 95% ethanol in wells of a 96 well plate until genomic extraction.
Wings were imaged using a using an Olympus DP30B camera mounted on an Olympus
X51 microscope (Olympus software version 3.1.1208) using a 4X objective (total 40X
magnification) and images were taken using cellSens Standard (version 1.14).

Shape data were collected using two methods, with the second method used to in-
crease the speed of data collection and largely captured a similar shape change (Figure
A2.1). The first method (referred to as the WINGMACHINE method) used extracted
positional information for 14 landmarks and 34 semi landmarks, allowing for 58 available
dimensions of variation (explained below). In this method, shape data was collected us-
ing the WINGMACHINE pipeline outlined in (Houle et al. 2003). First, two landmarks
were placed at the humeral break and alula notch using tpsDIG2 (version 2.16). Wings
(Van der Linde 2004–2014, v4) software was used to fit nine cubic B-splines and correct
errors. All shape data was subjected to full Procrustes superimposition to scale images
to the same size, translocate to the same location and rotate to minimize distance be-
tween points (Rohlf and Slice 1990), and landmark and semi-landmark information was
extracted using the program CPR (version 1.11). Superimposition results in the loss
of 4 possible dimensions of variation while semi-landmark variation is constrained to a
single axis (dimension), resulting in 58 available dimensions of variation.

The second method (referred to as the 15 landmark method) extracted positional
information for 15 landmarks, resulting in 26 available dimensions of variation (2 avail-
able dimensions for each landmark 4 dimensions due to superimposition). Landmarks
were identified using a Fiji (v4.0.3) plug in designed to capture wing shape in this way.
In this case, Procrustes superimposition was done with the gpapagen() function in the
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geomorph (v 4.0.3) package (Adams and Otárola-Castillo 2013). The shape change cap-
tured using both methods is similar, as demonstrated by the similar variance structures
and shape changes between the two methods (Figures A2.1, A2.2). In both cases, the
methods used for downstream analysis of shape were the same.

Males and females were considered separately for downstream analyses due to sexual
dimorphism for both wing shape and size. To remove allometric components on shape
in the data, and to ensure that the size and shape axes of variation were independent, a
PCA that included the shape residuals along with the natural log transform of centroid
size was used. Using this method, size variation, including the allometric component of
shape, is captured by PC1 (Klingenberg 2022)(Figure A2.3). The remaining PCs (PC2 –
58) for the WINGMACHINE method or PC2 – PC26 for the 15 point method) were then
used for the subsequent steps of the analysis. The vector of shape change between the
high and low altitude parental populations was calculated from the di�erence between
the mean shape for the three highland and three lowland lines used as the parents in
F20 crosses. Shape data (represented by the PCs) from individual wings was projected
onto this di�erence vector to create the ‘shape score’.

3.3.3 Genomic analysis and QTL mapping

For a given cross, the 50 most extreme individuals, within each sex, in the distribution of
shape (measured as a shape score, described below) and size (measured as centroid size)
were selected. Those individuals with the 50 highest and 50 lowest shape scores were
selected for sequencing while size pools were created from the 50 largest and 50 smallest
individuals. In cases where an individual was an outlier for both size and shape, these
individuals were included in both pools (details below, Figure 3.2).

Genomic DNA extractions were performed using a Quiagen DNeasy kit on a max-
imum of 25 individuals in each sample. To create pools for sequencing, samples were
combined such that each fly contributed an equimolar amount of DNA to the sequenced
pool, using concentrations measured with the DeNovix dsDNA Broad Range Kit. The
number of flies in extraction sample and the amount of DNA added to the final pool
can be found in supplemental file 1. Library prep using the NEB Ultra II kit for library
preparation and 150bp paired end sequencing using illumina NovaSeq6000 by Genome
Quebec (Montreal, QC).

Reads were trimmed with Trimmomatic (v0.36) to remove adapter contamination
and checked for quality using FastQC prior to alignment (Bolger et al. 2014). Trimmed
reads were aligned to the Drosophila melanogaster genome (v6.23) using BWA-MEM
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(v0.7.8) (Li and Durbin 2010). Sequencing replicates of the same biological samples
were merged using SAMtools (v1.11). PCR duplicates were removed using Picard with
the MarkDuplicates tool (v 2.10.3) and reads with a mapping quality score less than 20
were removed using SAMtools (Li et al. 2009). A local realignment around indels was
performed using GATK using the IndelRealigner tool (v3.4.46). Highly repetitive regions
of the Drosophila genome were identified and subsequently masked in mpileup files using
RepeatMasker with default settings (v4.1.1) with default settings. INDELs and regions
within 5bp of an indel were identified and masked using PoPoolation2 scripts. FST was
calculated in 5000bp windows using PoPoolation (v1.2.2) and PoPoolation2 (v1.201)
(Kofler et al. 2019a; Kofler et al. 2019b)

3.3.4 RNAi of candidate regions on chromosome 3R

To estimate the e�ects of candidate gene knockdown on shape change, we expressed an
RNAi construct for the gene of interest in the developing wing disc. RNAi experiments
were done using fly media with the Dworkin lab recipe (see supplementary file 1). A
nubbin-Gal-4 line (BDSC:25754) was crossed to RNAi lines of the gene of interest (UAS-
GOI RNAi) and progeny were allowed to develop at low larval density. All but one RNAi
line were derived from the Drosophila transgenic RNAi project (TRiP) panel (Perkins
et al. 2015) and a common background with the TRiP control (BDSC:36303). The
RNAi lines used in the experiment were: locomotion defects (loco), winged-eye (wge),
button (btn), wake, eukaryotic translation elongation factor alpha 2a (ef6a) and TGF-—
activated kinase 1-like2 (takl2 )(Table A2.1. The loco RNAi line also carries a scute allele,
known to have e�ects on wing shape. To account for this e�ect, loco RNAi flies were also
crossed to a white mutant. The wge RNAi line did not have a known genetic background
so we crossed this line to a w- mutant as well as a control for this construct. Each cross
was done in two replicate vials to account for environmental variance. Adult F1 flies
were collected 24-48 hours following eclosion to allow for wing hardening and stored in
70% EtOH until dissected and imaged for morphometrics using the same methods as
above. Shape data were collected using the 15-landmark method.

The e�ect of RNAi knockdown on shape was estimated by fitting a model with the
procD.lm function (geomorph package) with terms for log centroid size, genotype of the
cross and the interaction of the two as well as a term for the replicate vial as predictors.
Males and females were considered separately in this analysis, as the altitudinal e�ect
vectors were also calculated separately. Least squared means for each cross genotype
were estimated and contrasts between RNAi crosses and the appropriate control (Table
A2.1) were calculated to get the e�ect vector for RNAi knock down for plotting shape
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changes. Bootstrapped distributions of vector correlations were calculated between the
altitude and e�ect vector and RNAi knockdown e�ect vector by first estimating the e�ect
of population on size from a model with terms for size, population and their interaction.
Then the RNAi e�ect vector was calculated for each RNAi knockdown and the appro-
priate control from the same model as was used in the geomorph analysis (the e�ects of
centroid size, genotype and their interaction plus the e�ect of replicate vial within geno-
type). Observations were sampled with replacement in a non-stratified manner, because
sample sizes between groups were approximately equal, for 1000 iterations.

3.3.5 Mapping of candidates on chromosome 3R

A genomic deletion series from both the Drosophila Deletion (DrosDel) (Ryder et al.
2007) and Exelixis (Parks et al. 2004) genomic deletion panels, spanning the region
of di�erentiation on chromosome 3R (22580970..22733819) in the Zi192 x Ef 96 and
Zi192 x Ef 81 crosses were used for quantitative complementation mapping of the con-
tributing allele. A full list of the deletion lines used, and the genes predicted to be
included in deleted regions, is included in supplementary file 2. In addition to the
lines used in mapping crosses, we included a number of other high and low altitude
lines: EF 43, 81, 96 and 119 ; ZI 192, 251, 360, 357, to test for e�ects at the popu-
lation level. Virgin females from African lines were crossed to deletion line males and
allowed to lay eggs for 2 days on Dworkin lab fly media (Supplemental file 1). Each
cross was done in two replicate vials. F1 heterozygotes were selected based on loss of
the balancer chromosome phenotype and preserved in 70% ethanol until males were dis-
sected and imaged following the standard protocol outlined above. Shape data were
collected using the 15-point landmark method. Each deletion panel was considered sep-
arately (as they were generated in di�erent isogenic wild type strains) for statistical
analysis, but using the same methods. A mixed model for the e�ect of size, deletion
line, and African population, all two-way interactions between these terms plus a ran-
dom e�ect for the replicate vial within cross and for genetic lines within background
( shapescore ~ (CS+delLine+background)^2 + (1 | delLine:background:rep) ) was
used to test associations with shape change. The response variable was the shape score
calculated by projecting superimposed shape data onto the vector based on the di�er-
ences between high and low altitude populations.

3.3.6 Analysis of wing shape and size variation

For all morphometric analyses, male wing shape data from three high altitude (EF43,
EF81, EF96) strains, three low altitude (ZI192, ZI251, ZI418) strains, and 3 crosses

49

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Katie Pelletier; McMaster University– Department of Biology

(ZI192 x EF43, ZI192 x EF81, ZI192 x EF96) was used. Each distinct group, whether
an inbred line or F20 intercross is referred to as a ‘genotype’ throughout the analysis for
convenience. All data for these analyses were collected using the 15 landmark method
and jointly superimposed.

We examined changes to the allometric (shape-size) relationship between di�erent
genotypes, within and between populations. Allometric e�ect vectors were estimated
at the level of line using a model regressing wing size, genotype, and the interaction
on shape. The projection of wing shape onto the estimated allometry vectors (shape
score) and predicted shape values (PC1 of fitted shape residuals), was calculated with
the plotAllometry function from the geomorph package. Using the pairwise() function
within RRPP/geomoph, vector correlations for allometric e�ects were calculated at the
strain level. Additionally, to understand group level changes (high altitude lines, low
altitude lines and F20 crosses), the e�ect vectors within group were estimated from a
linear model regressing the e�ect of wing size, population, and the interaction of the two
on shape. Confidence intervals for both statistics were estimated using non-parametric
bootstrapping of observations (not residuals).

To compare shape variation between groups, we calculated several statistics based on
the variance-covariance (VCV) matrix of allometry corrected shape residuals using the
EvolQG package in R (v0.3-2) (Melo et al. 2016). To describe the shape of the vari-
ation within each group, we calculated the integration (proportion of total variance in
the direction of greatest variance), eccentricity (standard deviation of the eigenvectors,
normalized by the mean of all eigenvectors) and total variance (sum of all eigenvectors)
for each group. The first two statistics measure how “spherical” the variance structure
is, with lower values indicating a more “ball shaped” structure and higher values in-
dicating a more elliptical or “pencil shaped” structure. 95% CI for all estimates were
calculated using bootstrapping. Pairwise correlations of VCV matrices were calculated
using the PCAsimilarity() function, which calculates the correlation in principal compo-
nents (subspace occupied by each group), weighted by the magnitude of variance in that
direction. These estimates were corrected by the replicability of each group’s VCV ma-
trix, which was measured using the BootstrapRep() function, which samples data within
group and measures the shared substance between samples and the observed data. Mean
correlations based on the type of pairwise comparison (for example: comparisons within
populations or between), were estimated. Finally, the e�ect of population on shape
score, calculated based on the e�ect vector between high and low altitude populations
was estimated using a model with main e�ects for wing size, group and their interaction
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and a random e�ect of genotypes within group.

To compare the selection vector used in this experiment with the direction of shape
variation in the population, mean line shape from 10 additional Zambian and 11 ad-
ditional Ethiopian lines was obtained from (Pesevski and Dworkin 2021) One line was
shared between studies to allow for the estimation of e�ects between the two data sets.
An approximate G matrix could then be calculated using a PCA of the line means of the
6 lines used in this study plus the additional lines. Shape change vectors were calculated
by finding the di�erence between mean shape vectors for the Zambian and Ethiopian
populations. The e�ect of lab rearing conditions and shape data collection from di�er-
ent people (known to have a significant e�ect on shape) and size were accounted for by
fitting a linear model with terms for size and experimental source.

3.4 Results

3.4.1 Size and shape adaptation have a polygenic basis

QTLs contributing to wing size variation were mapped by measuring genetic di�erenti-
ation between large and small pools using FST in a 5000bp windowed analysis. Overall,
the genetic basis of size adaptation to high altitude appears to be polygenic, with no
striking regions that would indicate alleles of large e�ect contributing (Figure 3.3). For
analysis, windows with an FST greater than 3 standard deviations from the genomic
mean FST for that cross were considered biologically relevant outliers. For the two
crosses sharing a lowland parent, Zi192xEf96 and Zi192xEf81, we see some similarities
between the two crosses with 112 outlier windows (total = Zi192xEf96: 421, Zi192xEf81:
552) shared between them. In contrast, the cross with no shared ancestry, Zi418xEf43
(total = 306) shared only 8 outlier windows with Zi192xEf96 and 4 with Zi192xEf81.
No windows were considered outliers in all three crosses. Shared windows could indicate
either a shared causative allele contributing to shape variation in both crosses or could
reflect chance with linked regions of the genome contributing. Because the mutational
target size for Drosophila wing shape is so large, it is possible that linked genes may
both contribute to wing size variation.

In contrast to size, mapping the change in shape between high and lowland popula-
tions revealed specific regions of the genome that likely contribute to the shape variation
variation (Figure 3.4). Although a large region of di�erentiation is shared on chromosome
3R in both the Zi192xEf96 and Zi192xEf81 crosses, this region is not di�erentiated in the
Zi418xEf43 cross (Figure 3.4, Figure A2.4). There is a large region of di�erentiation on
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chromosome 2R in the Zi418xEf43 cross that appears to be unique to this cross. No out-
lier windows, using the mean plus three standard deviations cuto�, are shared between
Zi418xEf43 and other crosses (total = Zi192xEf96: 366, Zi192xEf81: 722, Zi418xEf43:
700). There are 253 windows shared between Zi192xEf96 and Zi192xEf81, with all but
one of those windows on chromosome 3R. The large genomic regions contributing to
shape di�erentiation make it di�cult to identify specific alleles that may be contribut-
ing in these regions.

There is also evidence for sex specific alleles contributing to shape di�erentiation (Fig-
ure A2.5). Sexual shape and size dimorphism have been documented for the Drosophila
wing in these populations (Pesevski and Dworkin 2020). In the case of the QTL on 3R
in the Zi192xEf96 and Zi192xEf81 crosses, this region may contribute more in females
as the allelic di�erentiation in this region is greater. In males, regions of the X chro-
mosome are di�erentiated in males but not in females in the Zi192xEf81 cross. This
same pattern on the X chromosome, with the addition of another region on chromosome
2R appearing to contribute more in one sex than the other. These observations can be
explained by sampling variance, but it is more likely that there is varying expression of
allelic e�ects between sexes. The abundance of sites on the X in males indicates there
may be recessive segregating alleles contributing while on other chromosomes, and on
the X, indicating a sex by genotype e�ect.

3.4.2 Chromosome 3R has a candidate genomic region contributing to
shape divergence between populations

The QTL on chromosome 3R that is di�erentiated in two of the shape crosses is an
interesting candidate for future study. To investigate this, genes with alleles predicted to
influence gene function in this region were selected for follow up analysis (Supplementary
File 2). Knockdown of one gene, loco, had a substantial e�ect on wing shape when
compared to controls (Figure A2.6). Because of the large mutational target size of
wing shape, it is more useful to investigate the shared direction of the e�ect of gene
knockdown and the altitudinal e�ect vector. For all 6 examined genes, the correlation
between vectors was modest to small (Figure 3.5). The wge RNAi vector correlation
makes this an interesting candidate gene as it is the only case where the 95% CI does
not approach 0 (0.57; CI: 0.34 – 0.65). loco (0.46; CI: 0.20 – 0.62) and takl2 (-0.39; CI:
-0.57 - -0.16) knockdowns also demonstrate a moderate level of shared e�ect direction
with the altitudinal e�ect vector. The shape changes of these three genes is like that of
the altitudinal e�ect vector, making them good candidates for future work (Figures 3.5,
A2.7).
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In addition to candidate gene knockdowns, we also took a deletion mapping based
approach to find an association between smaller genomic regions and shape change.
Reaction norm plots showed little e�ect between populations for most tested deletions
(Figure 3.6). For both panels tested, there was no substantial e�ect of the interaction
between population and deletion line (Tables A2.2 A2.3). In the DrosDel panel, there
may be di�erent reaction norms between the two populations for the 20515 line (Figure
3.6). This line is predicted to have no deletions in genes that overlap with the previously
identified candidates (See supplementary file 2 for full list). In the Exelexis panel,
deletion line 7671 is a possible candidate for influencing shape (Figure 3.6). This region
contains both wake and wge. Additionally, deletion 7740 in the Exelexis panel may be a
candidate and contains the genes loco, btn and ef6a from the candidate list.

3.4.3 Size and shape divergence have unique genetic bases.

Because size and shape are tightly linked though allometry, we wanted to ask if there
was a change to allometric e�ect vectors in addition to the di�erences in shape between
crosses in this study. As we controlled the environment in these experiments, the major-
ity of phenotypic variation we observe should be explained by genetic variation. Wing
size is intermediate in the F20 cross genotypes compared to the parents (Figure A2.8).
Using three crosses with a shared Zambian parent but unique Ethiopian parents, we
calculated the allometric e�ect vectors to compare the relationship between size and
shape in crosses compared to parental genotypes. There is a significant e�ect of allom-
etry between genotypes; however, this only explains a small proportion of overall shape
variance (R2 = 0.0013, F = 4.36, p = 0.001, Table A2.4). Despite di�erent allometric
e�ects within Ethiopian parental lines and between Ethiopian and Zambian parents,
we observe a shared direction of allometry in all three F20 crosses (Figure 3.7A). How-
ever, the overall correlation of allometric e�ect vectors between the cross and parental
populations remains about the same (Figure A2.9). It is important to note the larger
magnitude of the allometric e�ect vector in the parental populations (ZI: 0.22 ,CI: 0.15
– 0.27; EF: 0.11, CI: 0.11 – 0.20) compared to the cross populations (0.06, CI: 0.06 –
0.07)(Figure A2.9). Most of this variation is related to a shift in the position of the L2
and L4 longitudinal veins and a posterior shift in the anterior cross vein between the
smallest and largest files (Figure 3.7C). There is a high degree of individual variation
within both the crosses and the parental lines (Figure 3.7B, Table 3.1).

We compared the variation in wing shape, after accounting for wing size between
genotypes. Overall, the parental lines had a higher variation between lines for all the
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estimated statistics (Figure 3.8, Figure A2.10). F20 crosses had lower integration and ec-
centricity (two measures of sphericity of the covariance matrix) than any of the parental
genotypes, indicating that variation within the matrix is spread over many directions,
rather than concentrated in a single direction (Figure 3.8A, Figure A2.10). It is im-
portant to note that there were far more individuals measured within each F20 cross
compared to each parental line, but also a much higher degree of genetic variation in
crosses than parental lines, which are near isogenic (Figure 3.7B). The degree of similar-
ity between shape variation within populations is much higher when comparing crosses
to each other (cor = 0.96, 95% CI: 0.83 – 1) than comparing inbred lines to other lines
from the same population (cor = 0.72, 95% CI: 0.66 – 0.79) (Figure 3.7C). There is also
a higher correlation between parental lines used and the F20 cross (cor = 0.89, 95% CI:
0.82 - 0.96) than the crosses and inbred lines that did not contribute (cor = 0.81, 95% CI:
0.76 – 0.86) (Figure 3.8C). Despite the observed shape di�erences between inbred lines
and F20 crosses, the variation along the axis of variation defined by the shape di�erence
between low- and high-altitude populations (altitudinal e�ect vector), responds as ex-
pected, with the F20 cross as an intermediate between high and low altitude populations
(Figure 3.8D).

The selection vector used to score wings in the F20 mapping crosses was defined
as the di�erence vector between the three Ethiopian and Zambian lines used for the
mapping populations. Because these lines were chosen at random regarding size and
shape diversity, this vector does not necessarily provide a perfect representation of the
shape change between highland and lowland populations. To address this, we calculated
the same shape change vector using additional data from 11 Ethiopian and 10 Zambian
lines. The shared direction between di�erence (altitudinal e�ect) vectors to the direction
of genetic variation in the population, using the approximate G matrix, was measured
by projecting the mean shape of each line onto the di�erence vector to calculate a
shape score and then calculating the relationship between these vectors and the axis of
variation, summarized in PCs. There is a stronger relationship between the direction
of greatest variation (PC1) and the altitudinal e�ect vector using the subset of lines
selected for this study (r = 0.61) than the total population (r = 0.22)(Figure A2.11).
There is also a relationship between both e�ect vectors and PC2 (subset: r = 0.54; all
data: r = 0.52).
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3.5 Discussion

The main goal of this study was to identify the genetic architecture that influences wing
shape and size during adaptation to a high-altitude environment, using a F20 advanced
intercross to map QTL. We demonstrate a polygenic architecture of adaption for both
traits, based on mapping of three crosses (Figure 3.3, 3.4). Analysis of the distribution
of shape and size phenotypes in F20 crosses compared to parents demonstrate an in-
termediate and consistent phenotypic distribution between crosses (Figures 3.8, A2.8).
Despite the intrinsic link between shape and size of traits though shape-size allometry, we
demonstrated that the alleles contributing to shape divergence and size divergence were
unique (Figure 3.3, 3.4). Additionally, despite di�erent allometric shape-size relation-
ships in parental inbred lines, crosses shared an allometric e�ect vector, indicating that
changes to shape or size may not necessarily correlate with changes to the relationship
between the two.

Overall, this work provides support for a model in which small shifts in allele fre-
quency for many genes rather than subsequent fixations in alleles for a small number
of genes contribute to adaptation for the traits of interest. Wild populations of D.
melanogaster have large e�ective population sizes with high genetic diversity (Duchen
et al. 2013; Sprengelmeyer et al. 2020). Therefore, new mutations that are concurrent
with selection are not required to create the genetic substrate on which selection can
act. In the Drosophila genetic resource panel (DGRP), SNPs with replicable e�ects on
wing size were identified in over 30 genes (Vonesch et al. 2016). For shape, over 500
SNPs contributing to variation were identified in the DGRP (Pitchers et al. 2019). In
both cases, this is likely an underestimate of the total number of genetic variants con-
tributing to trait variation, as polymorphisms with very small e�ect sizes are thought
to have a substantial e�ect on variation of complex traits and are di�cult to identify
with GWAS methods (Rockman 2012; Boyle et al. 2017). Although this study used a
modest number of parental inbred genotypes for QTL mapping, the results indicate that
there are no fixed e�ect alleles contributing to the adaptive divergence because there
are no QTL shared between all three crosses, representing a total of 3 Ethiopian and 2
Zambian genetic backgrounds, for either size or shape. Alleles may be segregating at a
high, but not yet fixed, frequency and we may have sampled from lines with alternate
alleles. However, this same polygenic pattern of rapid adaptation following an optimum
shift has been previously reported using both simulations (Jain and Stephan 2017) and
mapping of life history traits in guppies (Whiting et al. 2022).
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This work suggests that small e�ect alleles, as would be predicted if genetic vari-
ants were already segregating in a population, rather than large e�ect alleles contribute
to adaptation. First, the number of QTL contributing to shape variation on the X
chromosome identified in hemizygous males indicates that at least some proportion of
segregating variants are likely recessive (Figure A2.6). Secondly, the intermediate (rela-
tive to parental lines) and similar phenotypes in F20 crosses could be explained by many
alleles, each with relatively small phenotypic e�ects contributing. Previous work to map
the alleles contributing to size variation found a maximum estimated e�ect size of 25%
(Sprengelmeyer et al. 2022), however e�ect sizes in these types of mapping studies are
often overestimated (King and Long 2017; Xu 2003). Small phenotypic e�ects of alleles
and large e�ective population size are two predictors of rapid adaptation with many
alleles contributing (MacPherson and Nuismer 2017).

The intermediate phenotypes should also be interpreted with caution as an alternate
explanation for these results is di�ering environmental contributions to wing morphology
between cross and parental individuals. Both wing shape and wing size are plastic traits
with a large contribution of environmental e�ects to phenotype (Carreira et al. 2013;
Debat et al. 2009). Although it is tempting to understand the results based solely on
changes in genetic variation, it is likely that changes in environmental variation have a
substantial e�ect. This is made most clear by comparing the magnitude of the allometric
e�ect vectors between high altitude, low altitude, and cross individuals (Figure A2.9).
The larger magnitude of this vector in either parental population indicates a greater
size variation in individuals. Because these are nearly isogenic lines with low genetic
variance, it is likely that this variance is due to environmental variation.

In follow up experiments, we did investigate one QTL on chromosome 3R and at-
tempted to identify the gene or genes contributing to shape variation between high and
low altitude populations in this genomic region. Using both RNAi of candidate genes
and deletion mapping in this genomic region (Figure 3.5, 3.6), we were unable to identify
a single ‘stand out’ candidate but possibly identified multiple moderate candidates. One
possible explanation for this is that there is not a single allele or single gene in this region
contributing to divergence and rather several alleles in LD within the cross. Clusters of
many alleles of small e�ect grouped together in LD and contributing to divergence are
predicted both by theoretical (Yeaman 2013) and empirical studies (Orteu and Jiggins
2020). RNAi e�ect vectors had low to moderate correlations with the altitudinal e�ect
vector (Figure 3.5). It is possible that these e�ect vectors are poorly estimated and
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titrating the knock down e�ect may help to obtain better estimates. It is also possi-
ble that knock down does not correlate with the allelic e�ect in this region, although
previous studies have demonstrated correlation between segregating polymorphisms and
genetic knock down e�ects for wing shape (Pitchers et al. 2019). A quantitative deletion
mapping experiment identified two regions that may be related to shape change in the
same direction as the altitudinal e�ect vector (Figure 3.7). One of these regions overlaps
with wge; the same gene that demonstrated the highest correlation in the RNAi exper-
iment (Figure 3.5). wge has been shown to be important for expression of vestigial, a
key wing patterning gene, in the developing wing tissue (Katsuyama et al. 2005). Al-
though there is a candidate gene in this region, it is not likely “the” gene contributing
to divergence between populations as one single large e�ect allele likely does not exist
to explain variation in wing shape.

Changes to wing shape and wing size are linked though shape-size allometry. Al-
though there is evidence that the non-allometric component of shape varies along an
altitudinal cline (Pitchers et al. 2013), and we accounted for allometric shape variation
in our mapping study, changes in size and shape may be linked either though allometry
or through a shared genetic basis. For example, the Hippo developmental network is
best known for its role in regulation of organ size, including the size of Drosophila wings.
Hippo signaling variants are also indicated in influencing wing shape variation (Pitchers
et al. 2019)(chapter 2). However, an allele frequency change across many hippo signaling
loci following artificial selection for wing shape change did not result in a substantial
wing size change (chapter 2). In this study, we also see evidence for independent genetic
bases of wing size and wing shape change (Figures 3.3, 3.4). We observe a consistent
allometric size-shape relationship in F20 crosses (Figure 3.7), indicating that despite
shape changes, this relationship remains consistent. Again, these results should be in-
terrupted with caution as the same caveats of increased environmental variance applied
to the comparison of shape variance matrices should be applied here. That is, the envi-
ronmental e�ects contributing to shape and size variation may simply be more similar in
the crosses than in the parental lines, creating a common phenotypic variance. However,
because we still observe the unique genetic basis of both size and shape variation, this
is strong evidence that these traits have unique optima and the changes observed are
due to selection on the trait and are not explained simply though selection on the other
trait.

This study adds to the growing body of evidence that adaptive divergence does not
require alleles of large e�ect or sweeps of alleles and can instead be explained by small
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allele frequency shifts across many loci. Further mapping of specific loci contributing
to divergence in these populations will be an interesting element in understanding the
origin of these alleles, that is if they are segregating in lowland populations or if they
are in fact de novo mutations arising concurrently with adaptation that have not fixed
in high altitude populations. The importance of alleles of large e�ect contributing to
divergence is well established but future questions will need to address what patterns
exist that contribute to which alleles are “captured” by divergence.

3.6 Figures and Tables

Figure 3.1: Di�erences in wing size and shape within and between high
and low altitude lines used in mapping study. (Left) Distribution of wing
sizes, measured with centroid size, within sex for parental lines used for
intercrosses in the study. Ethiopian lines are on average larger than Zam-
bian lines. (Right) Distribution of wing shapes within sex between high
(red) and low (blue) Altitude populations. 150 wings plotted within
each sex and population.

Table 3.1: Pairwise correlations between estimated slope of allometric
e�ects. 95% CI for estimates are indicated in brackets. Vector correlation
and 95% CI estimated using residual permutations as implemented by
Geomorph package in R.

EF43 EF81 EF96 ZI192 Zi192Ef43 Zi192Ef81 Zi192Ef96

EF43 1 0.23 (-0.27, 0.75) 0.25 (-0.11, 0.80) 0.90 (0.12, 0.84) 0.71 (0.34, 0.91) 0.90 (0.35, 0.91) 0.79 (0.35, 0.91)

EF81 1 0.54 (-0.22, 0.78) 0.13 (-0.22, 0.78) 0.40 (-0.14, 0.84) 0.39 (-0.14, 0.84) 0.37 (-0.16, 0.84)

EF96 1 0.13 (-0.06, 0.81) 0.67 (0.08, 0.89) 0.58 (0.08, 0.88) 0.58 (0.09, 0.89)

ZI192 1 0.62 (0.42, 0.93) 0.82 (0.41, 0.93) 0.77 (0.44, 0.93)

Zi192Ef43 1 0.88 (0.96, 0.99) 0.82 (0.96, 0.99)

Zi192Ef81 1 0.91 (0.96, 0.99)

Zi192Ef96 1
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Figure 3.2: Selection of bulk pools used for sequencing from one F20
cross. (A) Distribution of individual phenotypes along the size and shape
score axis. The 50 most extreme individuals along each axis were selected
for sequencing and are indicated in red. Only males are plotted because
of the size dimorphism between males and females. (B) Mean shape
di�erence between individuals in the extreme pools along the shape score
axis. Shape change is magnified 2x for visualization. (C) Mean size
di�erence between pools selected for sequencing.
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Figure 3.3: Genetic di�erentiation between size bulk pools indicates a
polygenic basis of size divergence. FST between male pools measured in
a 5000 bp windowed analysis using PoPoolation2 (Kofler et al. 2019b).
Parental genotypes of crosses are indicated above each panel.
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Figure 3.4: Genetic di�erentiation between shape bulk pools indicates
a polygenic basis of size divergence. FST between male pools measured
in a 5000 bp windowed analysis using PoPoolation2 (Kofler et al. 2019b).
Parental genotypes of crosses are indicated above each panel.
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Figure 3.5: RNAi knockdown e�ects of genes in the chromosome 3R
candidate region. Bootstrapped distribution of vector correlation between
altitudinal e�ect vector and RNAi knock down vectors with observed value
noted with point. Correlation of 0 indicates no shared direction of e�ects,
noted with dashed lines. Wing shape changes plotted for altitudinal e�ect
and selected RNAi e�ect vectors. For altitudinal e�ect vector, black rep-
resents the low altitude and red the high altitude shape. For RNAi e�ect
vectors, black represents the control and red the RNAi knockdown. Shape
change e�ects have been magnified for visualization purposes: altitudinal
e�ect 20x; loco e�ect: 1.5x, takl2 e�ect: 3x, wge e�ect: 3x.
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Figure 3.6: Reaction norms for quantitative mapping crosses. Esti-
mated shape scores, calculated from projection onto altitudinal e�ect vec-
tor, between control and deletion cross. 4 high altitude and 4 low altitude
lines were used to estimate population means for high altitude (triangles)
and low altitude (circles) populations. Raw data for each population is
plotted behind (grey). Error bars represent 95% confidence intervals.
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Figure 3.7: Similar allometric component of shape in F20 intercross
despite unique relationship in parental lines. (A) Model predicted allom-
etry is represented by slope of lines. PC1 of model fitted shape residuals
plotted against wing size. (B) Shape scores of individuals calculated by
projection on to the allometric e�ect vector for each genotype to rep-
resent within line variation of allometric relationship. (C) Wire frames
demonstrate the shared allometric relationship in F20 crosses. The to-
tal diversity of wing shape is plotted in grey with the largest (blue) and
smallest (red) wings highlighted.
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Figure 3.8: Shape variation within and between crosses and parental
lines. (A) Integration of the VCV matrix for allometry corrected wing
shape, measured using the standard deviation of all eigenvalues normal-
ized by the mean eigenvalue. Bootstrapped 95% CI are indicated by violin
distribution with the observed value indicated by point. (B) Total vari-
ance of VCV matrix, measured by the sum of eigen values. Bootstrapped
95% CI are indicated by distribution with the observed value indicated by
point. (C) Estimated covariance matrix correlation with 95% CI between
genotypes, given the predicted degree of relatedness in comparison. Ma-
trix correlation was estimated based on the similarity of subspace between
two matrices based on principal components, with correlations between
PCs weighted by the magnitude of variation in that direction (eigenval-
ues). These correlations were also corrected for the degree of repeatability
of each genotype’s VCV matrix based on bootstrapped correlations. Be-
tweenPop comparisons (n = 9) include a comparison of a high altitude
line to low altitude, WithinPop comparisons (n = 6) include the compar-
isons between either high altitude or low altitude lines, CrossToNonparent
includes comparisons (n= 12) between F20 crosses and either high or low
altitude lines that are not the parents of the F20 cross, CrossToParent
includes comparisons (n = 6) between F20 crosses and either high or low
altitude lines that are are one of the parents and CrossToCross are com-
parisons (n = 3) of the crosses to other crosses. (D) Estimated shape
score, based on the projection of wing shape onto the altitudinal e�ect
vector. with 95% CI. Red points indicate actual values.
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Chapter 4

Quantitative changes in cell size
contribute to adaptative
divergence of wing shape and size
between two populations of
Drosophila melanogaster

4.1 Abstract

Small, quantitative changes in development lead to morphological variation between
populations. Expansion and contraction of signaling domains, cell polarity variation
and localized expansions in cell number are just some developmental processes that im-
pact morphology. When the number of alleles contributing to divergence is large, with
indifvidually small alleleic e�ects, changes to developmental systems can be assayed to
understand the important mechanisms underlying the morphologic change. Drosophila
populations living at high altitude have many adaptions, including a larger wings and
di�erent wing shape compared to lowland counterparts. Although phenotypic changes
have been extensively documented, underlying mechanisms contributing are not known.
For both traits, adaption to high altitude has a polygenic architecture. We demonstrate
that larger wings in highland populations are explained both by larger cells and more
cells in the wing. With two possible ‘traits’ for selection to act on, this helps to ex-
plain the polygenic basis observed in the mapping study. Additionally, we demonstrate
that variation in cell size within the wing co-varies with shape, indicating that this is
an important mechanism contributing to adaptive shape change. Together, this work

66



Doctor of Philosophy– Katie Pelletier; McMaster University– Department of Biology

demonstrates the important contribution of wing cell size to high altitude adaptation
and hints at a developmental mechanism important for this morphological variation in
a case where single loci are uninformative.

4.2 Introduction

Small, quantitative changes in development are common in nature and often have im-
portant consequences for adult fitness. For example, beak size variation in Galapagos
finches can be explained in part by quantitative changes to the expression domain of
bmp4 in the developing beak, with the size of the bmp4 expression domain in the devel-
oping beak correlated with adult beak size (Abzhanov et al. 2004). This is an example of
the relationship between genotype and phenotype being mediated in the developmental
space. The developmental space encompasses the creation and realization of develop-
mental signals, encoded in the genome, to create a structure, the phenotype (Orgogozo et
al. 2015; Félix and Barkoulas 2015). There is a non-linear relationship between genotype
and phenotype, with substantial perturbations needed to result in phenotypic changes
(Orgogozo et al. 2015). To this end, many studies map the alleles contributing to phe-
notypic change and then use forward genetics to understand changes to development
underlying phenotypic change.

For many studies mapping the ‘alleles of evolution’, this approach has been a success-
ful. For example mc1r and the regulation of melanin production in mice (Hubbard et al.
2010), pitx1 as a developmental regulator of pelvic spines development in sticklebacks
(Coyle et al. 2007) are two classic examples where alleles contributing to divergance
have been mapped. However, these single alleles of large e�ect explaining the majority
of phenotypic di�erence between populations may represent special cases. Increasingly,
the role of polygenic adaptation, many sites throughout the genome with small indi-
vidual e�ects contributing to di�erentiation, has become apparent (Barghi et al. 2020;
Höllinger et al. 2019; Pritchard and Di Rienzo 2010). In these cases, identifying particu-
lar alleles contributing to phenotypic divergence is nearly impossible without enormous
sample sizes (Rockman 2012). Rather than focusing on mapping all the alleles con-
tributing to divergence in these cases, understanding the changes to the developmental
program underlying the observed phenotype may help to provide a better understanding
of the processes of evolution (Travisano and Shaw 2013).

Developmental systems, or the morphogenic signals used to create adult structures,
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can be robust to genetic (mutational) perturbations. Mutations that reduce the ex-
pression of Fgf8 in mouse embryos by over 50% have little e�ect on the craniofacial
morphology of neonates (Green et al. 2017). With this high level of genetic robust-
ness, it may seem surprising that any allelic e�ect generates enough genetic variation
for selection to act upon. In Drosophila melanogaster, alleles of moderate e�ect along a
severity spectrum have increased variance both within and between genetic backgrounds
(Chandler et al. 2017). However, the alleles with the smallest e�ect on expression have
little e�ect on phenotype (Chandler et al. 2017). Both these examples use mutations in
single focal genes to study robustness in the developmental system; however, adaptation
is often polygenic with many alleles of small e�ect contributing. Genetic variation for
complex traits is thought to be concentrated though a small number of ‘core’ regulatory
pathways (Boyle et al. 2017) and in Drosophila it has been demonstrated that selection
can act on alleles with aligned e�ects within a developmental pathway (chapter 2). By
assaying changes at the developmental level, we may be able to make predictions about
important developmental pathways contributing to divergence between populations, even
when individual allelic e�ect sizes are very small.

Shape and size of the D. melanogaster wing are widely used for both evolutionary
and developmental studies. Not only are the developmental processes underlying these
traits well understood, but there is also extensive genetic and environmental variation
influencing quantitative morphological variation within and between populations found
in nature (Matamoro-Vidal et al. 2015). In some cases this variation is associated with
adaptive variation along latitudinal (Land et al. 1999) or altitudinal (Lack et al. 2016b;
Pitchers et al. 2013) clines. Populations of D. melanogaster in Sub-Saharan Africa have
adapted to a high-altitude environment with high altitude flies developing darker pig-
mentation (Bastide et al. 2014), greater thermal tolerance (Pool et al. 2016), larger body
size (Lack et al. 2016b), in addition to larger wings and distinct changes to wing shape
(Pitchers et al. 2013; Pesevski and Dworkin 2020) from low altitude ancestral popula-
tions. Identifying the genetic basis of wing shape and size adaptation to high altitude
has revealed a polygenic, but unique, basis of adaptation for these traits (Sprengelmeyer
et al. 2022)(chapter 3). With variants in many genes contributing, it can be hard to
identify specific developmental pathways that may be contributing and give context to
the identified alleles. Variation in the proteome of developing wing discs is much lower
than expected from genetic variation, suggesting that bu�ering mechanisms exist in the
developmental program (Hubbard et al. 2010). The variation that escapes these bu�er-
ing mechanisms and is expressed in developmental changes may provide clues to specific
developmental pathways that are important for adaptation.
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Strains derived from high-altitude population have a greater number of wing vein
abnormalities, due in large part to increased mutational sensitivity, rather than muta-
tion load (Groth et al. 2018; Lack et al. 2016a; Pesevski and Dworkin 2020). As a loss
of robustness in development is hypothesized to be associated with rapid adaptation
(Visser et al. 2003), it has been hypothesized that the rapid increase in wing size in
high-altitude populations relative to their low-altitude ancestors resulted in a loss of
robustness, and can explain the increased number of abnormalities. The large size of
high-altitude wings is explained both by the contribution of more cells in the wing and
larger cells in the wing. Interestingly the high altitude population has on average much
larger cells than are generally observed in other large bodied D. melanogaster strains
(Lack et al. 2016a; Pesevski and Dworkin 2020). It has been suggested that larger wing
cells are contributing to the loss of robustness; however, a simple examination suggested
that variation in cell size within the wing does not correlate with increased wing ab-
normalities (Pesevski and Dworkin 2020), but these studies used inbred strains derived
from each population. These analyses were not specifically suited for disentangling ge-
netic sources of variation influencing wing size, shape and the relative contribution of
cell size and number on overall wing morphology. Using the advanced intercross created
for the previous mapping study (chapter 3), we can specifically ask questions about the
relationship between cell size and abnormalities in the wing. If increased abnormalities
could be explained by larger cells in highland populations has yet to be tested because
previous work used inbred lines where changes in wing size and wing shape are linked.
Using an F20 intercross between inbred high and low altitude populations, we can ask
if these two processes can be separated, and if so, if large cells are associated with a loss
of robustness.

The developing Drosophila wing tissue, or wing disc, is composed of a monolayer
of columnar cells. By the end of the third larval instar, regions of the wing disc have
defined fates, with the nostrum going on to fuse with the body wall, the hinge forming
the region where the wing meets the body and the wing pouch fated to become the wing
blade (Bryant 1975). By this time in development, much of the pattern of the adult wing
has been established. Expression of Wingless and Notch mark the D/V boundary of the
wing, the region that will ultimately become the wing margin of the adult structure(Celis
and Bray 1997; Micchelli et al. 1997). Egfr, Dpp and Notch signalling is establishes the
relative locations of longitudinal veins and intervein regions (reviewed in: (Tripathi and
Irvine 2022)). In late third instar, three folds also develop in the epithelium of the wing
disc: one between the nostrum and hinge region, one within the hinge region and one
between the hinge region and wing pouch. Quantitative changes in wing morphology
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in adults can be related to quantitative changes in the developing wing; that is, similar
shape changes are seen in both structures (Matamoro-Vidal et al. 2018). This observation
allows us to investigate the relationship between quantitative changes in development of
the wing, using those changes to understand what genes expression may be altered to
create variation in the adult wing.

Over the course of development, cells in the developing wing undergo many rounds
of division, growing from about 30 cells in the embryo to 30000 cells (Martín et al.
2009) in the larvae to 50000 cells (Garcia-Bellido and Merriam 1971) in the adult
wing. Wing size is tightly regulated in Drosophila, with wings typically becoming larger
though increased cell number rather than larger cells in laboratory experiments (Bryant
and Levinson 1985; Partridge et al. 1999) and along latitudinal clines (Zwaan et al. 2000).
This makes the observation that an increase in wing size in high-altitude populations is
in part explained by an increase in cell size very interesting. By inhibiting cell division
in the disc, the loss of cell number can be compensated with larger cells so that regular
wing morphology is not inhibited (Neufeld et al. 1998; Weigmann et al. 1997). However,
increased cell size is associated with decreased fitness in artificially selected populations
(Trotta et al. 2007). Many of the genes involved in patterning the wing disc, including
wnt, dpp and vg, also have a role in regulating wing disc size (reviewed in: (Tripathi
and Irvine 2022)). One such example is that of Hippo signaling, a key pathway in
regulating the size of the wing (Pan et al. 2018). Polymorphisms in this pathway are
also important for wing shape variation in wild populations, independent of regulation
of wing size (Pitchers et al. 2019)(chapter 2)

We assayed quantitative di�erences between strains derived from high- and low-
altitude populations as well as an advanced intercross to help understand the relative
contributions of cell size and number on wing shape and size variation. With this, we
can provide better context to QTL mapping studies and understand what alleles may be
most important for the adaptive divergence between populations. Changes in cell size
and cell number can be separated though many generations of recombination in the F20
intercross, indicating that there is at least a partially distinct genetic basis for them, and
they can independently contribute to overall organ form variation, providing a partial
explanation for the polygenicity of wing size divergence observed in mapping studies.
Additionally, cell size variation across the wing is associated with shape variation in
the adult wing so that localized changes to cell cycle regulation may then represent
a candidate mechanism for changes to wing shape between populations. Despite the
clear changes in adult tissues, we did not observe the same changes in the larval wing

70

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Katie Pelletier; McMaster University– Department of Biology

disc. This may reflect technical limitations of the data collection or could indicate that
changes in cell size and number are not determined at the single timepoint assayed and
that observations need to me made over developmental time. Together, these results
indicate key developmental mechanisms that may be targets of selection and can help
to provide context to QTL mapping studies.

4.3 Methods

4.3.1 Generation of Synthetic Outbred Populations

To counter any e�ects of inbreeding on our traits of interest, two synthetic outbred (SO)
populations were created, one from low altitude lines (LA) and one from high altitude
lines (HA). HA inbred lines are derived from a population captured in Fiche, Ethiopia
( 3000m) while LA lines are derived from a population captured in Siavonga, Zambia
( 500m) (Lack et al. 2016b). Zambian lines used were: Zi445, Zi192, Zi337, Zi331,
Zi159, Zi360, Zi357, Zi124. Ethiopian lines used were: Ef117, Ef98, Ef81, Ef112, Ef119,
Ef43, Ef134, Ef16. Lines from within each population were crossed together using a
pairwise design for the first generation with reciprocal crosses used to ensure that the
contribution of X chromosomes was equal for each line. Progeny from these crosses
were crossed using a round robin design, again to create equal genetic contributions
from each line. In the final two generations of crosses, populations were again crossed
together as contributing lines had X chromosomes with mixed ancestry present at this
point. All crosses were performed in vials, using high protein food (3L water, 22.4g
blackstrap molasses, 22.4g fancy molasses, 142.8g RedStar yeast, 39.2g cornmeal, 15g
Carrageenan, 4.9mL Propionic Acid, 10mL 1% tegosept in 95% ethanol). High protein
food was chosen as it maximizes body size, and provides a clearer indication of variation
between populations. After the F4 generation, when all lines were combined, the SO
populations were maintained at low density in 175 ml bottles. To ensure low density, 20
males were crossed with 20 females that were allowed to lay eggs for 24-36 hours and then
transferred onto new food for 2-3 passages. Outcrossing populations were maintained
for 2 more non-overlapping generations in bottles until the start of the experiment.

To collect both larval discs and adult wings for experiments, adults from the SO
populations were allowed to lay eggs on apple juice agar plates seeded with a small
amount of yeast paste prepared with orange juice. Eggs were collected into vials of the
same high protein food on which crosses were maintained. Egg density was kept low in
vials ( 50 eggs) to limit environmental e�ects. Vials from the same cage were combined
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for analysis with di�erent cages treated as biological replicates. Wing imaginal discs
were dissected from late 3rd instar larvae that had been staged based on reaching the
wandering stage; when larvae stop feeding and wander up the sides of the vial prior
to pupation. For more details on the dissection and fixation of larvae, refer to the
immunostaining section below. Adults were collected 24-48 hours after eclosion, to allow
for sclerotization of the wings, and stored in 70% ethanol until wings were dissected for
imaging using the same methods as described in chapter 3. Only male individuals were
used in for both the larval and adult wing analysis to control for sex-specific e�ects. A
total of 28 HA and 28 LA discs were used for analysis and 54 HA and 48 LA adult wings.

4.3.2 Parental and F20 Outcrossed Individuals

All wings from the African inbred lines and F20 outcrossed individuals were collected
and imaged as part of a previous study (3, Figure A3.1). Three HA and three LA lines
were included in the analysis. HA lines, with sample sizes indicated in brackets, were
EF43 (males: 25; females: 27), EF81 (males: 22; females 19), EF96 (males: 18; females:
10). LA lines used were: ZI192 (males: 33; females: 26), ZI251 (males: 28; females:
27), and ZI418 (males: 29; females:27). For the Zi418 x Ef 43 cross, 942 females and
1026 males were included in the analysis and for the Zi192 x Ef96 cross 669 females
and 673 males were included in the analysis. For more specific details of the crossing
scheme used and husbandry conditions as well as an analysis of the wing shape and
size changes between these groups, refer to chapter 3. A single inbred high altitude and
single low altitude line were crossed for 20 non overlapping generations to create the F20
populations. All individuals were stored in 70% ethanol until dissected and mounted for
imaging, described in chapter 3. Defects were scored in images based on the presence of:
extra veins, loss of cross veins or loss of longitudinal veins (Figure A3.2). Wings with
vein loss that resulted in landmark loss for shape analysis were dropped from the data
set, with a total of 856 female and 912 male wings without abnormalities and 86 female
and 114 male wings with abnormalities included in this analysis.

4.3.3 Immunofluorescence

Late third instar larvae were bisected and the anterior component was inverted to expose
imaginal tissues to reagents. However, wing discs were not dissected away from other
tissues prior to fixation and staining. Only male larvae were dissected to control for
sex-specific e�ects. All staining steps were done on a nutator in “baskets” (created by
fastening fine mesh to the top of a screw topped vial with a hole drilled in the cap),
apart from the fixation step which was done in a 1.5mL microfuge tube. Inverted larval
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“heads” (parts of the larvae containing wing and other imaginal disc tissues) were fixed
in 4% paraformaldehyde in phosphate bu�ered saline (PBS) for 20 minutes at room
temperature. Following this, tissues were washed three times with PBT (2% Tween-20
in PBS) for 20 minutes per wash. To reduce non-specific binding of antibodies, tissues
were blocked overnight in blocking solution (2900 µL PBT, 60µL Goat Serum, 40µL
Bovine Serum Albumin (BSA)) at 4¶C. Primary antibodies were used at the following
concentrations: –-wingless (Developmental Studies Hybridoma Bank) 1:1000, –-patched
(Developmental Studies Hybridoma Bank) 1:50. Tissues were incubated at 4¶C with
primary antibodies overnight. Tissues were then washed four times for 15 minutes with
PBT before a secondary blocking step for 3 hours at room temperature. Tissues were
incubated overnight with secondary antibodies. Secondaries were used at the following
concentrations: –-mouse (GFP 475 flourofor) 1:2000. Then tissues were washed one
time in PBT for 15 minutes then incubated for 1 hour in a 1:5000 DAPI in PBS solution
to stain nuclei, followed by two more 15-minute PBT washes before tissues were stored
in antifade mounting solution until dissected. Fine dissections and mounting of wing
imaginal discs were done in antifade mounting solution. Discs were imaged with an
Olympus DP305 camera, mounted on a Olympus BX51 microscope with a 20X objective
lens (total 200X magnification) with samples illuminated and examined with appropriate
fluorescent filters (DAPI and GFP filters).

4.3.4 Wing shape, size and cell size measurements from adult wings

Collection of wing size and shape from adult wings was previously described in chap-
ter 3. For the inbred Ethiopian and Zambian lines and F20 crosses, the same shape
and size data was used for both analysis and was collected with the 48 landmark/semi
landmark WINGMACHINE pipeline. The SO data was collected as a part of this study
using the 15-landmark method. For each SO replicate, 20 wings per replicate within
each population (≥60 individuals per population) were measured using the 15 landmark
collection method. Cell density in the wing was estimated by counting trichomes on the
wing surface of each wing as each trichome originates from a single cell (Dobzhansky
1929; Garcia-Bellido and Merriam 1971). Trichomes were measured in 16 0.0065mm

2

(150x150 px) areas, distributed over the wing (Figure 4.1D) using the FijiWings macro
(v2.2) (Dobens and Dobens 2013).

4.3.5 Wing shape, size and cell size measurements from larval wings

All images were converted to 8-bit colour for downstream analysis. To count cell number,
the total number of maxima, each representing a single nucleus, were measured in a 16
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0.0065mm
2 (150x150 px) area of the wing, near the centre of the wing pouch. Three

measurements at slightly di�erent locations were taken and averaged to account for some
variation in cell density across the disc. Landmarks were chosen for wing discs based
on the immunofluorescence staining pattern of Wg and Ptc in the disc as well as the
location of the wing pouch-hinge fold (Figure 5A). Landmarking was done using the
program TPSdig (v2.3.2).

4.3.6 Association between wing shape and size and cell size in adults

To ensure our results for high and low altitude wing size and cell size matched previous
work (Pesevski and Dworkin 2020; Lack et al. 2016b), we estimated wing size and cell
density by fitting a linear mixed model with terms for population, sex and their inter-
action and random slopes for sex across isogenic lines. Estimated marginal means for
wing size or cell density, averaged over the entire wing, for each sex within population
were estimated using the emmeans package (v 1.7.2). Because cell density can vary over
the wing, we also wanted to analyze the variation in density between measured regions.
First, the variation structure between groups was explored using a PCA of the trichome
counts across 16 wing regions. Variation within regions was estimated using a mixed
model with main e�ects of population, sex and wing region plus a random slope for each
line within sex and random intercept for individual wings.

We took advantage of the 3 distinct F20 intercrosses generated as a part of chapter 3
to assay the relationship between wing size, shape and cell size following 20 generations
of recombination between the parental strains (each derived from either the Zambian
or Ethiopian population). First, to investigate the relationship between wing size and
cell density (proxy for cell number) in the wing we fit a linear model with the e�ects of
wing size, sex and the interaction on the average cell density of the wing. Additionally,
we fit a mixed model to test how much cell density varies over the wing, with terms
for wing size, sex and wing region as well as a random e�ect for individual wings to
account for repeated measures. A PCA was also used to examine the (co)variation of
cell densities across the wing and associations with overall wing size variation. The first
4 PCs from this model were then used as predictors in a model, along with sex and the
interaction between PCs and sex to test the relationship with wing size. To ask if there
is a relationship between cell density and wing shape, we fit a model testing the e�ects
of wing size, sex and cell density averaged over the entire wing on shape using the Geo-
morph package (v 4.0.7) (Adams and Otárola-Castillo 2013; Collyer and Adams 2018).
To assess multivariate covariation between patterns of local variation in cell density with
wing shape, a 2-block partial least squares (PLS) analysis was done using the methods
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proposed in (Rohlf and Corti 2000) and implemented in geomorph. This method de-
scribes the axes of greatest covariation between the data sets then projects data onto
these vectors for plotting, with the PLS1 vector in the direction of greatest covariation.
Correlation between data projections onto the first vector (greatest covariance) are re-
ported and significance determined by permutation testing, where individuals in one
block are randomly shu�ed and the PLS-1 correlation calculated for 999 iterations.

4.3.7 Association between cell density and wing abnormalities

We took advantage of the recombined genomes and separation of large cell size and
increased cell density in large wings as a test of the hypothesis that larger cells in high
altitude populations result in a loss of robustness. The Zi418 x Ef43 cross had an
increased incidence of wing abnormalities and was used in this study. Due to loss of
landmarks and technical limitations of shape collection, the lines missing cross veins
were dropped from this analysis; this does create a limitation of our tests as some of the
most extreme wing abnormalities were not included in analysis. To assess the e�ects of
wing size and cell density on abnormalities in the wing, we fit a generalized linear model
with a binomial distribution with sex, average cell density and wing size, as well as the
interactions between the three as predictors. Because wing size and cell density are on
vastly di�erent scales, z-scores for the predictors were calculated prior to model fitting.
The slope of the response (increase in probability per standard deviation of predictor) was
estimated using emtrends function within the emmeans package (V1.7.2) and plotted.
Because the crossveinless wings were both the most extreme wing abnormalities observed
and were dropped from the analyses as shape data could not be collected, we wanted to
test if including them changed the results of the wing size analysis. For a small subset of
Zi418 x Ef43 wings and Zi 251 x Ef 43 wings, we measured wing area using imageJ and
repeated the analysis. To ask if there was a shape change associated with having defects
in the wing, we fit a model with centroid size, sex and if the wing had an abnormality,
as well as all interaction terms using procD.lm in the geomorph package. Cell density
was not included in this model as it had a negligible e�ect on wing shape in the previous
analysis.

4.3.8 Changes in wing shape and cell size in developing and adult
wings in the SO

To test for di�erences in size in the SO population wing disc size, a linear mixed model
with the e�ect of wing size with a random e�ect of replicate collection was fit. Estimated
marginal means were estimated from this model. The relationship between cell density
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and wing disc size, a linear mixed model with e�ects for cell density, population and their
interaction plus a random e�ect for replicate collection was fit. The fitted line for each
population was estimated. Shape variation e�ects were estimated using a model fit with
procD.lm function in the geomorph package with the e�ects of cell density, population,
their interaction as well as replicate collection. Significance testing in this package uses
a residual resampling permutation procedure.

To demonstrate that wing size varied between the adults in the high and low altitude
SO populations, a mixed linear model was fit testing the e�ect of population with a
random e�ect of replicate collection and marginal means estimated. Trends of the rela-
tionship between cell density and wing size were tested using a mixed linear model with
the e�ects of cell density, population and their e�ect plus a random e�ect of replicate
vial.

4.4 Results

4.4.1 Wing Shape and Size Vary With Cell Density in Adult Wings

As seen in previous studies, we observe a lower cell density (‰2 = 16.9, df = 1, p = 4.0e-
05) and larger wing size (‰2 = 34.7, df = 1, p = 3.8e-09) in high altitude populations
when compared to low altitude (Figure 4.1)(Lack et al. 2016b; Pesevski and Dworkin
2020). There is substantial variation between regions within wings, as well as di�erences
between wing regions between sexes and populations (Figure A3.3). Variation in cell
density between wing regions is correlated with wing size variation (Figure A3.4). This
is seen most clearly with PC1, which explains 49% of total variance for wing cell density
and is correlated with wing size (r = 0.70, 95% CI: 0.63 – 0.75).

Using an F20 intercross derived from a cross between a high and low altitude strain,
we wanted to ask if the relationship between larger cells and larger wings was genetically
separable. Wing size variation is strongly correlated with cell density (Figure 4.2B, Table
4.1). However, the predictors of wing size, sex and their interaction only explain about
half of the variability in cell size variability (Rad

2
j = 0.51). Interestingly, we did not find

a significant e�ect of wing size by sex on cell density in the wing (Table 4.1). In addition,
when the distribution of cell densities in the largest and smallest wings and a subset of
intermediate wings are plotted, there is a clear bimodal distribution of cell densities in
the largest wings (Figure 4.2A). The right side of this distribution largely overlaps with
a sample taken from intermediate sized wings. Because higher density indicates more
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cells, rather than larger cells, this indicates that a subset of large wings have more cells
and a subset of wings have larger cells in the F20 population.

Variation in cell density between wing regions varies within wings regions (Figure
4.3C). Similarly, in the F20 the direction of greatest variation in cell density within the
wing (PC1 = 54% of variance) was correlated with wing size variation (r = 0.69, 95% CI:
0.66 – 0.71, Figure 4.2). Using the PCs for cell density variation within the wing, there
is a relationship between not only PC1 but also the other PCs (Table 4.2). However, the
estimated slope of the relationship between PC2 and PC4 appears to be sex dependent
(Figure 4.2D). The first 4 PCs were selected as model predictors as there was no clear
separation based on sex after PC4 (Figure A3.5).

As we observed di�erences in cell density across the wing, we wanted to test if there
were changes in wing shape associated with cell density variation. Although there was a
significant e�ect of average cell density over the entire wing on wing shape, the variation
accounted for by this relationship was very small (R2 = 0.002) and wing size and sex had
a much greater e�ect on shape (Table 4.3). Despite the lack of substantial relationship
between cell density and wing shape, there is substantial shared variation structure
between wing shape and variation of cell density across the wing (r = 0.58, p < 0.01,
Figure 4.3).

Because shape wing shape and size have at least partially independent genetic archi-
tectures (chapter 3), I wanted to replicate the initial findings in a second, genetically
distinct intercross. This second cross shares neither the high or low altitude parent with
the cross used in the above analysis. As in the first cross, cell density was associated with
wing size (F = 450.8, df = 1, p = 2.2e-16) (Figure A3.6) and the direction of greatest
variation in cell density was correlated with wing size (r = 0.77, 95% CI: 0.76 – 0.79
, Figure A3.6). When examining cell density in the largest and smallest wings in this
cross, we see a di�erent pattern than the first cross. There is no bimodal distribution
of the cell densities in the largest wings, with the distribution largely overlapping with
a sample of intermediate sized wings as well as a longer left tail (larger cells) in the
smallest wings (Figure A3.6A). Variation in cell density between regions is associated
with wing size and is sexually dimorphic in this genotype (Table A3.1, Figure A3.6D).
Although there is a significant e�ect of cell density on wing shape, the e�ect size is very
small (R2 = 0.002, Table 4.1). However, there is also significant covariation between cell
density variation within the wing and wing shape in this cross (Figure A3.7), even if
the e�ects of average cell density are subtle (Table A3.2). The direction of greatest co-
variation between wing shape and cell density is largely shared between the two crosses
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and demonstrated by a high correlation between PLS-1 vectors calculated in the two
cases (PLS ≠ 1shape r = 0.94; PLS ≠ 1density r = 0.83)

4.4.2 Loss of robustness in HA populations cannot be explained by
increased cell size

Because previous work had hypothesized that the loss of robustness could be explained
by larger cells in high altitude population (Groth et al. 2018; Pesevski and Dworkin
2020; Lack et al. 2016a), the F20 intercross gave us the unique opportunity to ask the
probability of wing abnormalities increases with larger cells. The Zi418 x Ef43 cross
showed increased levels of wing abnormalities compared to parental lines, while there
were a negligible number of abnormalities observed in the Zi192 x Ef96 cross (Figure
A3.2). Neither variation in wing size nor trichome count were particularly associated
with increased probability of wing abnormalities (Figure 4.4, Table A3.2). However,
there was a large degree of uncertainty in these estimates that may be explained by other
factors that we could not account for (Figure 4.4). Additionally, there was a significant
but very small shape change associated with the presence of defects in the wing (Table
4.5). However, there is more variance in shapes of wings with defects compared to those
without, within sex (di�erence in disparity = females: 3.93e-5, p = 0.045; males: 4.07e-5,
p = 0.022, Table A3.3).

Because wings missing cross veins were dropped from this study as shape data could
not be collected from these wings, we are excluding the wings with the most extreme
phenotypes in terms of wing abnormalities from the analysis. For a subset of the wings
for the Zi418 x Ef43 and Zi251 x Ef43 crosses, we measured wing size directly in all wings.
For the Zi251 x Ef43 cross, males were slightly more likely to have wing abnormalities
with larger wings, but this result was not seen in the Zi418 x Ef43, which was the
genotype used in the previous analysis (Figure A3.8).

4.4.3 No change in size of larval wing discs, despite larger adult wings

We created synthetic outcrossed populations from inbred high and low altitude lines to
decrease the e�ects of inbreeding when comparing high and low altitude populations.
After 6 generations of recombination between lines used for this study, the high altitude
SO remained substantially larger (—altitude = 0.402, 95% CI: 0.34 – 0.48) than the low
altitude population (‰2 = 225.43, df = 1, p < 2.2e-16, Figure 4.5E). As observed for the
inbred lines, there was an e�ect of cell density on wing size, with lower density (larger
cells) associated with larger wings (‰2 = 8.66, df = 1, p = 0.0033, Figure 4.5F). Within
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the SO populations, there was no association between average cell density in the wing
and shape change (p = 0.85, Table A3.4). However, like in the F20 populations, there
was significant co-variation between wing shape and variation in cell density within the
wings in the adult SO wings (r = 0.48, p = 0.003, figure A3.9).

In contrast, there was only a modest and non-statistically significant change in wing
disc size in the larval tissue, measured by centroid size (estimated di�rence = 25.4
centroids, 95% CI = -59.7 - 111, p = 0.44 Figure 4.5C). For wing discs, we observe
the opposite relationship in high altitude populations in the larval wing tissue when
compared to adults in the relationship between size and cell density (Figure 4.5D). In
this case, larger wing discs had lower cell density or more cells compared to smaller
discs but this same relationship was not observed for the low altitude population, which
trends in the expected direction. Although the overall relationship between cell density
and wing size remains positive (—CellDensity = 7.38, 95% CI: 3.49 - 11.3), none of the
tested predictors have a substantial e�ect on in larval wing disc shape (Figure 4.5B,
Figure A3.10, Table 4.6)

4.5 Discussion

Divergence of complex traits is often explained by allele frequency shifts at many loci,
as is the case for D.melanogaster wing shape and size. With many alleles contribut-
ing to divergence, it can be hard to identify individual alleles that may be important
for phenotypic change. Quantitative genetic models predict that although variation for
quantitative traits can be explained by many sites across the genome, particular core
pathways will contribute more to the variation than others, usually at the level of gene
or protein activity (Boyle et al. 2017). Thus, assaying quantitative changes to devel-
opmental processes may help to identify those important core pathways contributing
to adaptive divergence. The goal of this work was to assay and describe quantitative
changes in wing development between high and low altitude populations of Drosophila
that have diverged for both wing shape and wing size. We demonstrate that variation
in wing size due to cell size and cell number are, at least partially, genetically indepen-
dent (Figure 4.2, A3.6). Although there are no associations between average cell size
(averaged over the whole wing) and wing shape change, variation of cell size within the
wing co-varied with wing shape in the intercross (Figure 4.3, A3.7). Additionally, we
demonstrate no substantial di�erence in size or shape in larval wing discs (Figure 4.5)
across populations. However, there were some technical limitations of this experiment,
and the results should be interpreted with caution.
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Despite evidence from artificial selection on increased cell size in the wing showing
decreased fitness for populations with larger cell size (Trotta et al. 2007), high altitude
populations of Drosophila have evolved a larger wing size in part via this mechanism
(Lack et al. 2016b; Pesevski and Dworkin 2020). This work demonstrates that the
developmental program for cell size and number can be genetically separated, and thus
be (partially) independents targets for selection. Increasing the number of developmental
programs that can be selected on can facilitate rapid evolution as there becomes more
than one set of alleles that can be selected on to achieve the same outcome (Barghi
et al. 2019). As high altitude populations diverged from low altitude ancestors only
3000 years ago, phenotypic divergence has been rapid (Sprengelmeyer et al. 2020). It
is possible that the increased evolvability as a result of the increased mutational target
size may overcome the fitness drawbacks of utilizing larger wing cells to make the wing
bigger during the adaptive process. The large mutational target size is also in line with
the polygenic basis of adaptation observed for wing size adaptation (Sprengelmeyer et al.
2022)(chapter 3).

Wing shape and cell density within the wing co-vary in adults. To some degree, this
finding is unsurprising due to the influence of wing size on both shape and cell size vari-
ation. Trait shape and size are linked through size-shape allometry, which describes the
non-linear (non-isometric) changes in shape associated with size changes (Klingenberg
2016). Generally, this allometric shape-size variation is the greatest direction of shape
variation within a population. Here, we also demonstrated that the direction of greatest
variation in cell density across the wing was also correlated with size (Figure 4.2, A3.6).
It is not surprising that this direction of variation was shared between populations.
However, because co-variation between these two traits extended to other directions of
variation as well, this may provide clues to some of the developmental changes creating
shape changes in high altitude populations. As growth in a particular region of the de-
veloping wing, that is in any intervein regions, can be locally determined, changes to cell
proliferation within particular regions may drive shape changes in the adult wing (Resino
et al. 2002). Although other morphogenic processes, such as oriented cell divisions are
also probably related to shape changes (Baena-López et al. 2005).

Previous work has hypothesized that larger wing cells are the underlying cause of
increased wing abnormalities in the high altitude population (Lack et al. 2016a; Pe-
sevski and Dworkin 2020). Although there is a loss of robustness associated with the
rapid adaptation to high altitude (Lack et al. 2016a; Groth et al. 2018), it may not be
associated with cell size change. In the F20 intercross, both wing size and cell size were
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poor predictors of wing abnormalities (Figure 4.4). Additionally, in two F20 intercross
lines and the inbred high altitude parental line (EF43), wing abnormality frequency is
at about 25% (Figure A3.2), or what would be expected for a segregating Mendelian
polymorphism in the population. A seggregating allele in the population can create the
observed loss of robustness rather than as a by-product of having larger wings or larger
cells alone. Future mapping studies should be done to identify this polymorphism to
better understand the loss of robust wing development. It is also possible that there is
an e�ect of wing size and cell size on wing abnormalities but because we dropped the
most severe cases of abnormalities (those with vein loss as shape landmarks were no
longer present) we created a biased sample and could not detect these e�ects.

We did not observe any quantitative developmental changes to wing discs between low
and high synthetic outbred populations despite clear di�erences in adult wings (Figure
4.5). One di�erence we did observe was that in the high-altitude population, larger
wing discs appeared to have smaller cells, while this relationship was not seen in the low
altitude population. If we assume that the largest wing discs come the largest wings,
this finding may suggest that morphogenic changes later in development, specifically
during pupal development, are required to create larger cells in the larger wings. As an
important step in pupal development is the “flattening” of previously columnar cells by
morphogenic forces (Diaz de la Loza and Thompson 2017; Tripathi and Irvine 2022),
this is a plausible explanation. However, this is a strong assumption. Additionally, the
way that density was measured in the wing discs could not account for variation across
the disc, which this work has demonstrated is important in the adult wing. Because we
collected discs after the creation of morphogenic folds, it is impossible to count all the
cells in the disc using our methods as there is 3D structure. Counting cells earlier in
development across the whole disc or using a method that can capture the 3D structure,
such as confocal microscopy, to get a better picture of the total number of cells in the
wing disc may produce better estimates. The lack of shape change between samples
was not particularly surprising as the markers used in this study were important for the
formation of critical morphological structures such as the wing margin and wing hinge.
Rather, comparing the morphology of protoveins in the wing disc may be a better test
for shape changes in the adult wing. Because of these caveats, the lack of changes in the
larval discs should be interpreted with caution.

Although we did not observe the expected changes in wing discs, further work is
needed to test some of the technical shortcomings that could explain these results. The
changes observed in adult wings suggest variable developmental processes underlying
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the morphologic changes seen between populations. Understanding how changes to cell
density within the developing disc can be translated into di�erences in adult wings can
help to understand the developmental underpinnings of adaptive divergence between
high and low altitude populations. Additionally, the separation of cell size and cell
number to large wings in intercrosses is interesting and helps to explain the polygenicity
of wing size adaptation previously observed. However, an outstanding question is if
there is a fitness disadvantage of these larger cells in high altitude populations as has
been observed in other systems. Together, this work suggests that changes to cell size
between high and low altitude populations helps to explain the polygenicity of wing size
adaptation and regional variation in cell size within the wings may help to explain wing
shape divergence.

4.6 Figures and Tables

Figure 4.1: Wing size and cell Density varies between high and low alti-
tude populations. (A) Estimated mean wing size in mm, estimated based
on data from 3 high altitude (HA) and 3 low altitude (LA) inbred lines.
Error bars indicate 95% confidence intervals. (B) Estimated mean cell
density, averaged over the entire wing. Estimates are based on 3 HA and
3 LA wings. Error bars indicate 95% confidence intervals. (C) Landmark
(red) and semi-landmark (blue) location for shape data collection. (D)
Location of 16 0.0065mm

2 (150 x 150 px) regions used to measure cell
density across the wing.
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Figure 4.2: Relationship between wing size and cell density in Zi192 x
Ef96 F20 intercross. (A) Density plot of cell density in the largest (red),
smallest (black) and equal sized sample from the intermediate sized wings
(grey) in F20 intercross. Lower density is related to a larger cell size. (B)
e�ect of cell density on wing size, within sex. Estimates of the regression
are indicated by lines, with shaded 95% CI. (C) PC1 of variation in cell
density between wing regions is correlated with wing size. (D) Estimated
slope of regression of PCs from cell density onto wing size. Error bars
indicate 95% CI. Red line indicates a slope of 0, or no relationship.
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Table 4.1: ANOVA for e�ect of wing size on cell density in ZI192 x
EF96 F20 cross.

Sum Sq DF F-value Pr(>F)

Wing Size 1588.2 1 85.0 2.2e-16

Sex 1118.3 1 59.9 2.01e-14

Wing Size:Sex 0.9 1 0.046 0.83

Residuals 25023.5 1339

Table 4.2: ANOVA for the e�ect of cell density variation between wing
regions on wing size in ZI192 x EF96 F20 cross.

Chisq Df Pr(>Chisq)

Sex 1802.6 1 2.2e-16

PC1 111.7 1 2.2e-16

PC2 34.2 1 5.03e-09

PC3 8.58 1 3.4e-3

PC4 2.15 1 0.14

PC1:Sex 10.3 1 1.34e-3

PC2:Sex 12.0 1 5.44e-4

PC3:Sex 0.0070 1 0.93

PC4:Sex 4.89 1 2.71e-2
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Figure 4.3: Substantial co-variation between wing shape and wing cell
size in the Zi192 x Ef96 F20 intercross. (A) 2 block partial least squares
correlation between the first dimension of variation for wing shape and cell
density variation within the wing, indicated similar covariation structure.
Wire frames on the left demonstrate the shape change (red) from mean
shape (black) at the maximum and minimum wing shape PLS-1 values
(B) Cell density varies between wing regions.
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Table 4.3: ANOVA for the e�ect of size, cell density and sex on wing
shape in ZI192 x EF96 F20 cross. Model fit using residual resampling
permutation test using RRPP/Geomorph.

Df SS MS R
2 F Z P(>F)

WingSize 1 0.069 0.069 0.13 198.34 12.11 0.001

Sex 1 0.010 0.010 0.018 28.70 7.58 0.001

CellDensity 1 0.0013 0.0013 0.002 3.76 3.60 0.001

WingSize:Sex 1 4.9e-4 4.9e-4 7.1e-4 1.41 1.10 0.013

WingSize:CellDensity 1 7.1e-4 7.1e-4 0.0014 2.05 1.91 0.028

Sex:CellDensity 1 5.1e-4 5.1e-4 9.5e-4 1.48 1.13 0.13

WingSize:Sex:CellDensity 1 7.7e-4 7.7e-4 0.001 2.23 2.14 0.014

Residuals 1314 0.46 3.4e-4 0.85

Total 1321 0.54

Figure 4.4: Unclear relationship between increase in wing abnormalities
and cell density or wing size. Probability of increased wing abnormalities
with standard deviation increase in trait values (larger wings, increased
cell density), by sex. Z-scores are used for both wing size and cell density.
Error bars represent 95% confidence intervals.
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Table 4.4: ANOVA of wing size and cell size e�ects on presence of wing
abnormalities in Zi418 x Ef43 F20 intercross

Chisq Df Pr(>Chisq)

WingSize 0.36 1 0.55

CellDensity 3.51 1 0.061

Sex 5.29 1 0.021

WingSize:CellDensity 3.26 1 0.071

WingSize:Sex 0.044 1 0.83

CellDensity:Sex 5.17 1 0.023

WingSize:CellDensity:Sex 0.26 1 0.61

Table 4.5: ANOVA for the e�ect of size, wing abnormalities and sex on
wing shape in ZI418 x EF48 F20 cross. Model fit using residual resampling
permutation test using RRPP/Geomorph.

Df SS MS R
2 F Z P(>F)

WingSize 1 0.15 0.15 0.22 564.68 9.32 0.001

Sex 1 8.9e-3 8.9e-3 0.013 34.03 9.01 0.001

WingAbnormality 1 4.1e-3 6.0e-3 0.002 15.66 6.21 0.001

WingSize:Sex 1 1.6e-3 1.6e-3 2.3e-3 6.10 4.20 0.001

WingSize:WingAbnormality 1 4.2e-4 4.2e-4 6.2 e-4 1.59 1.32 0.103

Sex:WingAbnormality 1 2.6e-4 2.6e-4 3.8e-4 0.99 0.21 0.417

WingSize:Sex:WingAbnormality 1 4.5e-4 4.5e-4 6.6e-4 1.71 1.50 0.066

Residuals 1960 0.52 2.6e-4 0.76

Total 1967 0.68
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Figure 4.5: Wing size and cell size in larval and adult wings in syn-
thetic outbred populations. (A) Larval wing disc with DAPI (blue) and
patched/wingless (green) staining indicated. Landmark locations are indi-
cated on the right. (B) Mean shape change for larval discs for low altitude
(red) and high altitude (black) discs. E�ects magnified 5x. (C) Estimated
wing disc size, based on centroid size of wing data for high altitude (HA)
and low altitude (LA) populations indicated by black point, with error
bars representing 95% confidence intervals. Observed data is plotted in
grey. (D) Relationship between cell density and wing disc size (centroid
size) in larval discs. Fitted line with 95% confidence bands for each popu-
lation with observed data points plotted behind. (E) Estimated wing size
(centroid size) of low and high altitude SO population adult wings, error
bars representing 95% confidence intervals. (F) Relationship between cell
density and wing size for adult SO population wings. Fitted line with 95%
confidence bands for each population with observed data points plotted
behind. All analyses for SO population included only males.
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Table 4.6: ANOVA for the e�ect of centroid size of disc, population
and on wing disc shape of larval wing discs in synthetic outbred pop-
ulations. Model fit using residual resampling permutation test using
RRPP/Geomorph and type II sum of squares.

Df SS MS R
2 F Z P(>F)

Population 1 0.017 0.017 0.025 1.43 0.80 0.23

Size 1 0.010 0.010 0.014 0.83 0.015 0.49

Replicate 4 0.055 0.014 0.080 0.82 -0.54 0.71

Population:Size 1 0.0074 0.0074 0.011 0.44 -0.68 0.75

Residuals 49 0.58 0.012 0.84

Total 56 0.69
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Chapter 5

Conclusions

Drosophila melanogaster wing shape and size are two particularly well studied traits,
with some of the earliest mapped mutants in this species a�ecting the wing and making
Drosophila wing shape and size excellent models for understanding the genetic architec-
ture of complex traits. In this work, I used wild Drosophila populations to map alleles
contributing to phenotypic variation both within (chapter 2) and between populations
(chapter 3). I also used comparative developmental biology to investigate quantitative
changes between populations that may help to explain the alleles contributing to di-
vergence (chapter 4). Together this work has contributed to our understanding of the
genetic architecture of adaptation for complex traits.

From artificial selection experiments based on ds shape change in chapter 2, I demon-
strate that there is an alignment of genotypic e�ects within a developmental signaling
pathway and that selection can act on many loci simultaneously. However, the same
genetic e�ects could not be replicated in wild populations, despite a strong alignment
of phenotypic variation and ds shape change. These results demonstrate not only the
complexity of understanding genetic architecture of traits in wild populations due to low
allele frequencies and environmental factors but when alleles are segregating at a high
enough frequency on which selection can act, selection can simultaneously act on many
alleles with aligned e�ects. This results is further demonstrated with the experiment
based on emc shape change, where we observe a response at hippo (the developmental
pathway to which ds belongs) signaling loci but only a modest response at emc, likely
explained by the available genetic diversity within the starting population. Together,
these experiments demonstrated important factors influencing what alleles can be ‘used’
by selection.

Using altitudinally divergent populations, I mapped QTL contributing to divergence
for wing shape and size. This mapping study revealed a polygenic basis of adaptation,
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with evidence for many alleles of small e�ect contributing. In this study, I used two
unique lowland and three unique highland lines as parents for the advanced intercross.
For both size and shape, no QTL were shared between all three crosses, suggesting that
the adaptive alleles are not fixed in the high-altitude population. This work adds to the
growing evidence that rapid evolutionary divergence can be explained by small shifts in
the allele frequency at many sites, rather than requiring subsequent fixations of adaptive
alleles though selective sweeps (Barghi et al. 2020).

My final chapter examines the quantitative developmental changes between high and
low altitude populations, specifically focusing on changes to cell size and cell number in
the wing. As seen in previous work (Pesevski and Dworkin 2020; Lack et al. 2016b),
both cell size and cell number contribute to the larger wings in high-altitude populations.
Using F20 intercrosses, I demonstrated that these two programs can be separated though
recombination, and suggest that an increased mutational target can contribute to the
rapid phenotypic change observed between high and low altitude populations. I did not
observe this same change in developing wing tissue, but it is not clear if this is due to
technical limitations or reflective of the biology of the system. Further work should focus
on quantifying developmental changes between high and low altitude populations as this
may provide clues to the pathways contributing to adaptive divergence in this system.

Although many studies have successfully identified ‘alleles of evolution’ contributing
to adaptive divergence between populations, these large e�ect alleles explaining the
majority of variance may represent special cases and are not fully representative of the
genetic architecture of adaptation. As generation of genomic data has become cheaper
and easier, increasing our power to detect variants of smaller e�ect size and map variants
in more populations, it has become apparent that adaptive divergence of complex traits
often has a polygenic basis (Dittmar et al. 2016; Barghi et al. 2020). As more alleles
contribute to phenotypic variance, individual e�ects of alleles are expected to become
very small (Fisher 1930) and with models predicting that every site in the genome can
contribute to phenotypic variance (Boyle et al. 2017), individual allelic e�ects may be
very small. Because of this, mapping the individual alleles contributing to divergence in
many cases will not be informative as each allele contributes so little to overall variation
(Rockman 2012). Rather, focusing on mechanistic di�erences between populations and
patterns within alleles that do contribute to divergence may provide more fruitful insights
into the targets of selection between populations (Bomblies and Peichel 2022; Travisano
and Shaw 2013). These ideas are demonstrated in this thesis, as our mapping study
(chapter 3) revealed a polygenic basis of adaptive divergence for both wing size and
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wing shape. Using comparative developmental biology, I demonstrate the important
role of cell size variation to shape and size divergence (chapter 4). Additionally, using
artificial selection, we demonstrated the alignment and correlated selection of variants
within a single signaling pathway (chapter 3). By using these ‘inverted’ approaches,
artificial selection based on an important genetic e�ect and comparative developmental
biology, we were able to gain more insight into mechanisms of selection that can lead
to developmental divergence than if we used mapping alone to identify the alleles of
adaptation.
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Appendix A

Chapter 2 Supplement

Figure A1.1: Allele Frequency spectra demonstrate more variation at
ds compared with emc in the synthetic outbred population used for arti-
ficial selection. Figures show estimated alternate allele frequencies at ds
and emc. Alternate allele frequencies are estimated using parental strain
genotype data and assuming an equal contribution from each parent to
the founding population. Note the di�erent y axis scale between ds and
emc.
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Figure A1.2: Projection of FVW14 wings onto ds shape change vector
shows clear distinction between D. melanogaster and D. simulans. Clear
separation between the FVW14 samples (black) and D. simulans data
(gold) indicates that D. melanogaster females were accurately identified.

Table A1.1: Number of individuals used for BSA from each wild-caught
cohort

Collection Females Phenotyped Males Phenotyped Females – “up” pool Females – “down” pool Males – “up” pool Males – “down” pool

FVW13 0 2184 0 0 75 75

FVW14 403 797 59 0 16 75

PHO 0 1232 0 0 75 75

CMO 0 1001 0 0 75 75
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Figure A1.3: Principal component analysis of shape variation within
and among populations for wild collected Drosophila. First four axes
from the PCA for shape variation are shown. (A) and (B) PCA includes
all shape variation. (C) and (D) use the ‘allometry corrected’ landmarks,
(residuals from a model regressing landmarks onto centroid size of wings).
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Figure A1.4: Shape change e�ects due to RNAi knockdown of ds, emc
and neur. Scaling of e�ects provided to aid in visualization of shape
changes. Di�erent magnifications are provided to account for the dis-
parate magnitudes for estimated shape change vectors: ds = 5.5, emc =
0.44, neur = 2.8. The vectors from these analyses were used for projec-
tions in this study.

Table A1.2: Directions of major axes of variation di�er somewhat be-
tween the among line (DGRP) covariance matrix and the wild caught co-
horts, likely due to a combination of di�erences in allele frequencies and
the major contribution of environmental variation (and potentially GxE)
in the wild caught individuals. Correlations for the first three eigenvec-
tors computed from among the DGRP, wild-cohorts (all populations) and
CMO shape variation. |Estimates| < 10≠15 are treated as 0.

. dgrp.PC1 dgrp.PC2 dgrp.PC3 wild.PC1 wild.PC2 wild.PC3 cmo.PC1 cmo.PC2 cmo.PC3

dgrp.PC1 1 0 0 -0.17 -0.46 0.26 -0.35 -0.54
0.066

dgrp.PC2 1 0 -0.18 -0.21 0.61 -0.10 -0.60 -0.27

dgrp.PC3 1 0.56 -0.12 0.40 -0.32 0.27 -0.71

wild.PC1 1 0 0 -0.39 0.68 -0.29

wild.PC2 1 0 0.90 0.31 -0.061

wild.PC3 1 0.056 -0.55 -0.74

cmo.PC1 1 0 0

cmo.PC2 1 0

cmo.PC3 1

Table A1.3: Top 50 enriched GO terms of linked di�erentiated sites
following artificial selection based on ds shape change

See GitHub Data Repo
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Figure A1.5: Illustration of projections onto shape vectors to generate
shape scores used in this study. The ds shape change vector is used for
demonstration. (A) Calculating shape score using projection. y1 and y2
represent vectors of landmarks for two representative individuals. Dotted
arrows represent projection of y1 and y2 onto the shape change vector
defined by ds RNAi to generate the ds shape score. (B) Similarly, y1 and
y2 are projected onto the gmax(PC1) vector, representing the direction of
maximum genetic variation in the genetic variance-covariance matrix, G.
(C) Comparing gmaxand shape change vectors, using the correlation (r)
of vectors directly, or via the angle q, between vectors. (D) Hypothetical
relationship between ds shape scores and gmax, indicating a relationship
between directions of ds induced shape change and the direction of genetic
variation in shape variation.

Table A1.4: Top 50 enriched GO terms of linked di�erentiated sites
following artificial selection based on emc shape change

See GitHub Data Repo
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Figure A1.6: Including wild-caught females in the analyses does not
change interpretation for FVW14 data. Correlation between projection
of shape data from FVW14 population onto ds, emc and neur shape
change vectors and the first three PCs are calculated from shape data
from all wings in the FVW14 population. (A) male only data, (B) females
and male data. Inclusion of female data does not change the conclusions
drawn from the relationships between directions shape change vectors and
PCs. Note that the “flipped” directions of the PCs between (A) and (B)
represents the arbitrary sign of the set of eigenvectors for the PCA (i.e.
the set of eigenvectors can equivalently be multiplied by -1).
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Figure A1.7: Shape variation in field collected samples by projecting
individual shape data onto ds and neur shape change vectors. Projec-
tions were performed used size “adjusted” landmark data onto ds and
neur shape change vectors. The correlation between the ds and neur
shape scores is r = 0.12. In linear models with shape scores (ds and neur
respectively) regressed onto population and wing size, the partial R2 for
population e�ects is 0.040 (ds) and 0.18 (neur).

Table A1.5: Pairwise Procrustes (Euclidian approximation) distances
between mean shapes across wild cohorts. Pairwise comparisons between
population means estimated from a model with fixed e�ects for centroid
size and population. Z-score and p-value are calculated using permutation
of residuals as implemented in the RRPP package using a null model with
only the e�ect of centroid size. Comparisons to the PHO samples, which
show the largest pairwise di�erences are in bold.

Population Comparison Distance 95% permutation threshold Z-score p

CMO-FVW13 0.0070 0.0011 9.70 0.001

CMO-FVW14 0.0084 0.0014 11.0 0.001

CMO-PHO 0.021 0.0013 15.2 0.001

FVW13-FVW14 0.0065 0.0012 7.25 0.001

FVW13-PHO 0.022 0.0012 13.0 0.001

FVW14-PHO 0.022 0.0014 13.5 0.001
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Figure A1.8: Distribution of wing sizes (males only) in wild caught
cohorts. When size is linearly regressed onto population, model R

2 =
0.27.

Table A1.6: Significantly di�erentiated sites when PHO population is
left out of CMH test.

See GitHub Data Repo

Table A1.7: GO analysis of significantly di�erentiated sites found in
CMH test when PHO population is left out of analysis

See GitHub Data Repo
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Figure A1.9: Projections of data onto RNAi shape change vectors are
correlated with major axes of shape variation in wild-caught Drosophila
from each population. Correlation between projection of shape data from
wild cohorts onto ds, emc and neur shape change vectors and the first
three PCs are calculated from shape data from all wings in each cohort
independently. Note that the “flipped” directions of the PCs for FVW12
represents the arbitrary sign of the set of eigenvectors for the PCA (i.e.
the set of eigenvectors can equivalently be multiplied by -1). Note that
the eigenvectors representing PC1 and PC2 in FVW12 have “swapped”
because of similarities in variance accounted for.
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Figure A1.10: Variation in wing shape among individuals from artificial
selection along the ds shape change vector. All wings from generation 7 of
up (red) and down (blue) selection lineages plotted, with females in (A)
and males in (B). Black wireframe is mean shape from the experiment.

Table A1.8: Significantly di�erentiated variants for ds shape change
from the wild-caught cohorts (BSA).

Location CMH p-value (FDR corrected) Gene FlyBase ID Distance from ORF (bp)

X:14833408 5.42 x 10≠5 CG14411 FBgn0030582 0

X:14833412 3.29 x 10≠5 CG14411 FBgn0030582 0

X:15381676 7.54 x 10≠5 CG9164 FBgn0030634 0

X:16037404 2.21 x 10≠4 Muc14A FBgn0052580 0

X:22956575 4.58 x 10≠2 lncRNA:CR45502 FBgn0267058 1501

X:4118816 9.49 x 10≠3 tyf FBgn0026083 0

X:4130993 9.84 x 10≠3 GlcAT-I FBgn0066114 218

2L:14793860 1.15 x 10≠2 CG18420 FBgn0028866 656

2L:1480390 3.03 x 10≠2 CG31928 FBgn0051928 11905

2L:20626829 7.29 x 10≠4 lncRNA:CR44909 FBgn0266214 623

2L:4481772 1.54 x 10≠2 dpy FBgn0053196 0

2L:4481788 3.70 x 10≠2 dpy FBgn0053196 0

2L:4843588 4.62 x 10≠2 mxt FBgn0031637 0

2R:11876761 2.73 x 10≠2 CG13185 FBgn0033661 0

2R:16405045 3.70 x 10≠6 Sema2b FBgn0264273 0

2R:9943212 5.15 x 10≠3 Mef2 FBgn0011656 0

3L:19082031 4.49 x 10≠3 Mkp3 FBgn0036844 0

3L:19082032 2.73 x 10≠3 Mkp3 FBgn0036844 0

3L:23237904 3.05 x 10≠2 nAChRalpha4 FBgn0266347 0
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Figure A1.11: Response to artificial selection along the ds shape change
vector. Regression of cumulative selection di�erential onto cumulative
response was used to estimate realized heritability in both treatments
(“up” “down”) independently.

Table A1.9: Significantly di�erentiated variants for neur shape change
from the wild-caught cohorts (BSA).

Location CMH p-value (FDR corrected) Gene FlyBase ID Distance from ORF (bp)

2L:15775767 0.026 CG43760 FBgn0264260 675

2L:15967220 0.017 Beat-Ib FBgn0028645 4785

2L:15967222 0.017 Beat-Ib FBgn0028645 4787

2L:8651597 0.015 Sema1a FBgn0011259 0

3R: 21898160 0.024 CG6678 FBgn0038917 0
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Figure A1.12: Modest (and not significant) changes in wing size follow-
ing artificial selection based on ds shape change. Mean size estimated for
up and down ds selection lineages estimated from a linear mixed model
with replicate lineage fitted as a random e�ect. Shaded regions represent
95% confidence bands for the correlated response to selection.
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Figure A1.13: Genetic di�erentiation between artificial selection pools
(Figure 2.3), with core hippo signaling loci (red) and emc (purple) marked.
Genomic di�erentiation between up and down selection lineages (FST )
measured in 5000bp windows for the artificial selection along ds (A) and
emc shape change vectors (B). Horizonal grey lines represents 3sd from
mean FST .
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Figure A1.14: Alignment of sanger sequencing of the region containing
the ds polymorphism from several DGRP lines (line numbers indicated at
line starts) to reference sequence (from Drosophila melanogaster genome).
DGRP lines are indicated with DGRP 195, 28, 96, 48, 59 and 801 pre-
dicted to have the insertion, and, DGRP 129, 301, 69, 385, 75, 83, 491, 34
and 774 without. In addition to the insertion in these lines, several other
associated SNPs are found linked to the insertion.
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Figure A1.15: Permutation test for over representation of hippo signal-
ing terms in outlier regions. The red line represents the observed ratio of
significant to expected genes in outlier windows (FST greater than 3 stan-
dard deviations from the mean). The permutation test selected random
windows from the genome, equal in number to those identified as outliers.
For each random draw of loci, the ratio of significant to expected genes
in the term of interest was calculated for 1000 permutations.
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Figure A1.16: Response to selection based on projections onto emc
shape change vector. Regression of cumulative selection di�erential onto
cumulative response was used to estimate realized heritability in both
“up” and “down” selection regimes independently.
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Figure A1.17: Minimal genetic structure among wild populations used
in this study. Principal coordinate plot calculated from Bray’s distances
estimated from allele frequency data (altF), between the four wild cohorts
used in this analysis. Axis 1-3 explains 45%, 30% and 25% of the variance
in genetic distances respectively.
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Figure A1.18: Genetic distance is not correlated with phenotypic dis-
tance among wild cohorts used in this study. Phenotypic distances are
the Euclidian distances from model estimated shape vectors for each pop-
ulation from a multivariate regression of shape onto for population and
wing centroid size.

Figure A1.19: Shape variation within ds selected pools for bulk segre-
gant analysis by population. Wings within selected pools (one red and
one blue, representing the “up” and “down” pools) are plotted to show
the phenotypic extremes for the shape scores used for selecting individu-
als within and between pools. Black line indicates mean shape between
pools.
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Figure A1.20: Removing PHO from the BSA analysis increases the
number of di�erentiated sites between ds shape change pools. Genome-
wide scan for di�erentiated loci between pools selected based on ds shape
change vector using the CMH test using ACER. Variants in ds are still
not implicated in this analysis. Points in red indicate sites with significant
di�erentiation based with a FDR of 0.05.

Figure A1.21: Down sampling genome coverage does not impact results
for CMH tests substantially. When all pools are sampled to a coverage
depth of 75 reads, while preserving allele frequency, we do not find an
increase in number of di�erentiated sites. Although the sites identified as
significantly di�erentiated do change somewhat, in part due to sampling
procedure as any sites without a minimum depth of 75 reads in each of
the 4 populations was dropped from this analysis. Variants in ds are still
not implicated in this analysis.
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Figure A1.22: FST between pools of individuals selected along the ds
shape change axis within each population. Calculated in 100 bp windows
using PoPoolation2 program. Elevated FST on the X chromosome is due
to sampling of fewer X chromosomes, relative to autosomes as most pools,
with the exception of FVW14, consist of only males. Red line indicates
the mean FST for the chromosome, which as expected is very low.
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Figure A1.23: Shape variation within neur selected pools for bulk seg-
regant analysis by population. Wings within selected pools (one red and
one blue, representing “up” and “down” extreme pools respectively) are
plotted.
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Figure A1.24: Genome-wide scan for di�erentiated loci between pools
selected based on neur shape change vector using the CMH test imple-
mented with ACER. (A) Whole genome scan for di�erentiation. Points
in red indicate sites with significant di�erentiation based with a FDR
of 0.05. (B) No significantly di�erentiated sites within neur. (C) shape
change between selected pools based on neur shape change vector, e�ect
size is multiplied by 2 for visualization.
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Figure A1.25: FST between pools of individuals selected along the neur
shape change axis within each population. Calculated in 100 bp windows
using PoPoolation2 program. Elevated FST on the X chromosome is due
to sampling of fewer X chromosomes, relative to autosomes as most pools,
with the exception of FVW14, consist of only males. Red line indicates
the mean FST for the chromosome.
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Appendix B

Chapter 3 Supplement

Figure A2.1: Shape change between high and low altitude populations
is equivalent between methods. 15 point (top) and full spline method
(bottom) shape change is about equivalent between high (black) and low
(red) altitude populations. Before correcting for allometry, we observe a
posterior cross vein shift as well as a small shift in the L2 andL5 longitu-
dinal veins. After the allometric correction, there is a shift in the position
of both cross veins as well as a more prominent shift in the longitudinal
L2 and L5 veins. All e�ects are magnified by 2x.
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Table A2.1: RNAi lines and appropriate controls for RNAi exper-
iment. All experimental crosses were to the same nubbin-Gal-4 line
(BDSC:25754). In all cases, the TRiP control was (BDSC:36303), the
third chromosome insertion line. w- were flies carrying the white muta-
tion in the samerkand (SAM) background.

GOI RNAi line ID TRiP Panel Control

loco BDSC 32456 Y loco RNAi X w-

takl2 BDSC 53985 Y nb-GAL4 X TRiP Control

ef6a BDSC 64659 Y nb-GAL4 X TRiP Control

wge BDSC 26813 N wge RNAi X w-

wake BDSC 61232 Y nb-GAL4 X TRiP Control

btn BDSC 42530 Y nb-GAL4 X TRiP Control

Table A2.2: ANOVA table for the e�ect of deletion background from
the DrosDel panel and wing size on wing shape.

Chisq Df Pr(>Chisq)

Size 50.02 1 1.53e-12

Deletion Line 115.22 5 2.2e-16

Population 0.88 1 0.35

Size:Deletion line 20.62 5 0.00095

Size:Population 7.81 1 0.0052

Deletion line:Population 9.80 5 0.081
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Figure A2.2: Two methods of shape collection do not substantially
change the variance structure of parental populations. PCA of shape
residuals for variation in high (black/greys) and low (reds) altitude popu-
lations based on inbred lines used in this analysis. PC1 is not included in
this as it captures the allometric component of shape. Top panel is shape
residuals captured using the 15 landmark method and bottom panel is
shape residuals from the complete landmark and semi landmark method.
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Figure A2.3: Centroid size is correlated with PC1 when log(CS) is
included in PCA. Using this method, PC1 represents the allometric com-
ponent of shape variation in addition to size variation. Representative
data plotted for Zi192 x Ef96 cross and six inbred parental lines, but the
relationship is consistent between di�erent genotypes.

Figure A2.4: Region of genetic di�erentiation on chromosome 3R for
shape mapping crosses. Plotting of mean FST calculated between male
bulk pools in three di�erent F20 mapping crosses, measured in 5000bp
windows. X axis represents position. Shared genomic location of QTL
between Zi192 x Ef81 and Zi192 x Ef96 cross can be see (greys) while
small region of di�erentiation in Zi41 x Ef43 cross (black) is not in the
same genomic region.
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Figure A2.5: Sex specific contributions of to shape variation between
high and low altitude populations. FST measured in 5000 bp windows be-
tween bulk pools within sex. Comparison between male pools (black/grey)
and female pools (reds), show a similar but not completely overlapping
genetic basis . This is particularly apparent on the X chromosome, which
is hemizygous in males.
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Figure A2.6: PCA of shape variation in RNAi knockdown. For the cross
genotype, the nubbin-GAL4 line or white- control is indicated before the
underscore and the UAS-GOI-RNAi or TRiP control genotype is indicated
after the underscore.

Figure A2.7: E�ect on shape from knock down of candidate genes by
RNAi in males. Shape change between RNAi knockdown (red) and control
(black) is plotted. Altitude e�ect plots the shape change between high and
low altitude population means, estimated from three inbred lines within
each population. E�ects are magnified for visualization: altitude e�ect:
10x ; loco 1.5x; wge 3x; btn 5x; ef6a 3x; takl2 3x. Unequal magnification
required due to di�erent magnitudes of estimated e�ect vectors.
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Table A2.3: ANOVA table for the e�ect of deletion background from
the Exelixis panel and wing size on wing shape.

Chisq Df Pr(>Chisq)

Size 54.04 1 1.96e-13

Deletion Line 207.94 4 2.2e-16

Population 4.49 1 0.034

Size:Deletion line 13.12 4 0.011

Size:Population 0.56 1 0.45

Deletion line:Population 3.87 4 0.42

Table A2.4: ANOVA table for the e�ect of genotype, size and the in-
teraction on shape for the F20 cross genotypes compared to parental in-
bred lines. Model fit using residual resampling permutation test using
RRPP/Geomorph.

Df SS MS R
2 F Z P(>F)

Size 1 0.079 0.079 0.055 258.3 11.91 0.001

Genotype 8 0.22 0.028 0.16 93.4 18.32 0.001

Size:Genotype 8 0.010 0.0013 0.0074 4.37 7.36 0.001

Residuals 3655 1.12 0.000031 0.78

Total 3672 1.44
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Figure A2.8: Male size variation within and between parental isogenic
lines and F20 intercross males. Observed size, measured in centroid size
in parental (greys) and F20 cross lines (blue). Low altitude parent is in-
dicated in darker gray than high altitude parents. Estimated mean size
with 95% CI indicated within violin plot. It should be noted that sample
size is not equal between parental and cross groups, with parental lines
represented by 50 individuals and crosses represented by >800 individu-
als.
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Figure A2.9: Comparison of allometry vectors between parental popu-
lations and F20 crosses. (A) Pairwise comparisons of allometric vector of
shape variation between parental populations (3 HA, 3LA) or F20 cross
(3 genotypes). Red points indicate observed value from data with 95%
CI from 1000 bootstraps indicated in grey. (B) Magnitude (l2 norm) of
allometry e�ect vector estimated for parental and cross genotypes. Red
points indicate observed value from data with 95% CI from 1000 boot-
straps indicated in grey. LA: low altitude, HA: high altitude population.

Figure A2.10: Eccentricity of VCV matrix by genotype. Eccentricity
is measured by the proportion of variance in the direction of greatest
variance (PC1). Observed values are indicated with black points with
95% CI calculated by the distribution of 1000 bootstraps in represented
by the violin distribution.
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Figure A2.11: Correlation between shape scores and directions of phe-
notypic variation in African wings in males. Principal components of
shape variation estimated from allometry corrected shape residuals of
landmark data from inbred African lines from this study as well as Pe-
sevski and Dworkin 2022. Two shape scores calculated by projecting mean
line shapes onto the altitude e�ect vector were calculated to compare the
direction of shape variation assisted with adaptation to high altitude with
the directions of greatest shape variation within the populations. Kp.score
is calculated based only on the lines used in this paper while all.score uses
all the available lines.
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Figure A3.1: Spline and 15 point landmark locations. Locations of land-
marks for adult wing shape collection using WINGMACHINE method
(left) and 15 point shape collection (right) methods. Landmark locations
are indicated in red and semi-landmarks in blue. For a complete descrip-
tion of shape data collection methods, see chapter 3.
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Figure A3.2: Scoring wing abnormalities in African inbred lines and F20
intercross. Using wing images collected as part of the chapter 3 study,
wings were scored for abnormalities based in vein development. Examples
of abnormal development on the right, with specific abnormalities indi-
cated with an arrow. Frequencies of abnormalities indicated on the right
for parental lines and F20 crosses (with both parental genotypes indicated
on the x axis). In this work, the zi418 x ef43 cross was used for analysis.

Figure A3.3: Cell density varies between wing regions between both
populations and sexes. Points indicate mean cell density estimated from
three inbred high attitude (HA) and three low altitude (LA) lines across
16 wing regions.
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Figure A3.4: PCA of cell density across 16 wing regions for high altitude
(HA) and low altitude (LA) populations. Cell density among wing regions
is correlated with wing size variation across inbred lines. Proportion of
variance explained by PC1 = 0.49; PC2 = 0.067, PC3 = 0.056, PC4 =
0.044. Wing size is measured by centroid size from morphometric analysis.
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Figure A3.5: Variance of cell densities across 16 measured wing regions
in Zi192 x Ef96 F20 intercross wings. Proportion of variance explained
by PC1 = 0.55; PC2 = 0.056, PC3 = 0.040, PC4 = 0.036. Wing size is
measured in centroid size.
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Figure A3.6: Relationship between wing size and cell density in Zi418 x
Ef43 F20 intercross. (A) Density plot of cell density in the largest (red),
smallest (black) and equal sized sample from the intermediate sized wings
(grey) in F20 intercross. Lower density is related to a larger cell size. (B)
e�ect of cell density on wing size, within sex. Estimates of the regression
are indicated by lines, with shaded 95% CI. (C) PC1 of variation in cell
density between wing regions is correlated with wing size. (D) Estimated
slope of regression of PCs from cell density onto wing size. Error bars
indicate 95% CI. Red line indicates a slope of 0, or no relationship.
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Table A3.1: ANOVA for the e�ect of cell density variation between wing
regions on wing size in ZI418 x EF43 F20 cross.

Chisq Df Pr(>Chisq)

Sex 1246.81 1 2.2e-16

PC1 491.44 1 2.2e-16

PC2 5.12 1 0.023

PC3 18.07 1 2.13e-05

PC4 10.30 1 0.0013

PC1:Sex 10.3 1 5.51e-07

PC2:Sex 0.0026 1 0.96

PC3:Sex 6.11 1 0.013

PC4:Sex 4.74 1 0.030

Figure A3.7: Substantial co-variation between wing shape and wing
cell size in the Zi192 x Ef96 F20 intercross. 2 block partial least squares
correlation between the first dimension of variation for wing shape and cell
density variation within the wing, indicated similar covariation structure.
Wire frames on the left demonstrate the shape change (red) from mean
shape (black) at the maximum and minimum wing shape PLS-1 values
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Table A3.2: ANOVA for the e�ect of size, cell density and sex on wing
shape in ZI418 x EF43 F20 cross. Model fit using residual resampling
permutation test using RRPP/Geomorph.

Df SS MS R
2 F Z P(>F)

WingSize 1 0.15 0.15 0.22 564.0 8.61 0.001

Sex 1 0.0084 0.0084 0.012 31.81 6.56 0.001

CellDensity 1 0.0016 0.0016 0.0024 6.01 3.99 0.001

WingSize:Sex 1 0.0014 0.0014 0.0021 5.28 3.83 0.001

WingSize:CellDensity 1 0.00062 0.00062 0.00091 2.09 18.32 0.013

Sex:CellDensity 1 0.00079 0.00079 0.0012 2.97 2.61 0.003

WingSize:Sex:CellDensity 1 0.00026 0.00026 0.00038 0.98 0.30 0.377

Residuals 1944 0.52 0.00027 0.76

Total 1951 0.67764

Table A3.3: Pairwise distance between variances in shape (disparity)
for wings with and without abnormalities. Estimated disparity for each
group is: female, normal = 0.00027; male, normal = 0.00025; female,
abnormal = 0.00031; male, abnormal = 0.00029

d UL(95%) Z Pr >d

Female, Normal:Male, Normal 1.42e-05 1.69e-05 1.32 0.083

Female, Normal:Female Abnormal 3.93e-05 3.74e-05 1.68 0.045

Female, Normal:Male Abnormal 2.65e-05 3.48e-05 1.14 0.130

Male, Normal:Female Abnormal 5.35e-05 3.69e-05 2.31 0.007

Male, Normal:Male Abnormal 4.07e-05 3.46e-05 1.89 0.022

Female Abnormal:Male Abnormal 1.29e-05 4.69e-05 -0.21 0.589
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Figure A3.8: relationship between increase in wing abnormalities wing
size, including cross veinless wings. Probability of increased wing abnor-
malities with standard deviation increase in trait values (larger wings,
increased cell density), by sex. Z-scores are used for both wing size and
cell density. Error bars represent 95% confidence intervals.

Table A3.4: ANOVA for the e�ect of size, population and cell density
on wing shape of adult wings in synthetic outbred populations, using a
type II ANOVA.

Df SS MS R
2 F Z P(>F)

WingSize 1 0.0011 0.0011 0.032 4.42 3.04 0.003

Population 1 0.0011 0.0011 0.032 4.44 3.09 0.001

CellDensity 1 0.00014 0.00014 0.004 0.54 -0.98 0.82

Replicate 4 0.0025 0.00063 0.072 0.55 -1.31 0.90

WingSize:Population 1 0.00019 0.00019 0.0053 0.73 -0.33 0.62

WingSize:CellDensity 1 0.00024 0.00024 0.0067 0.91 0.068 0.47

Population:CellDensity 1 0.00038 0.00038 0.011 1.46 1.01 0.16

WingSize:Population:CellDensity 1 0.00033 0.00033 0.0095 0.68 0.30 0.26

Residuals 91 0.023 0.00023 0.66

Total 102 0.035
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Figure A3.9: Substantial co-variation between wing shape and wing
cell size in the SO adult wings. 2 block partial least squares correlation
between the first dimension of variation for wing shape and cell density
variation within the wing, indicated similar covariation structure. Wire
frames on the left demonstrate the shape change (red) from mean shape
(black) at the maximum and minimum wing shape PLS-1 values

Figure A3.10: Shape variation in larval wing discs from SO populations.
PCA of shape residuals for larval wing discs. Top right pannel shows
landmark variation in superimposed wing disc shape data, mean shape is
indicated by black points.
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