Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28562
Title: MULTI-CORE PARALLEL GRAPH ALGORITHMS
Authors: GUO, BIN
Advisor: Emil, Sekerinski
Department: Computing and Software
Keywords: Parallel;Multi-Core;Graph Algorithm;Core Maintenance;Graph Trimming
Publication Date: 2023
Abstract: Large sizes of real-world data graphs, such as social networks, communication networks, hyperlink networks, and model-checking networks, call for fast and scalable analytic algorithms. The shared-memory multicore machine is a prevalent parallel computation model that can handle such volumes of data. Unfortunately, many graph algorithms do not take full advantage of such a parallel model. This thesis focuses on the parallelism of two graph problems, graph trimming and core maintenance. Graph trimming is to prune the vertices without outgoing edges; core maintenance is to maintain the core numbers of vertices when inserting or removing edges, where the core number of a vertex can be a parameter of density in the graph. The goal of this thesis is to develop fast, provable, and scalable parallel graph algorithms that perform on shared-memory multicore machines. Toward this goal, we first discuss the sequential algorithms and then propose corresponding parallel algorithms. The thesis adopts a three-pronged approach of studying parallel graph algorithms from the algorithm design, correctness proof, and performance analysis. Our experiments on multicore machines show significant speedups over various real and synthetic graphs.
URI: http://hdl.handle.net/11375/28562
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Guo_Bin_2023May_PhD.pdf
Open Access
3.36 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue