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Lay Abstract

Graphs are important data structures to model real networks like social net-
works, communication networks, hyperlink networks, and model-checking net-
works. These network graphs are becoming larger and larger. Analyzing large
data graphs requires efficient parallel algorithms executed on multicore ma-
chines. In this thesis, we focus on two graph problems, graph trimming and
core maintenance. The graph trimming is to remove the vertices without out-
going edges, which may repeatedly cause other vertices to be removed. For
each vertex in the graph, the core number is a parameter to indicate the den-
sity; the core maintenance is to maintain the core numbers of vertices when
edges are inserted or removed dynamically, without recalculating all core num-
bers again. We evaluate our methods on a 16-core or 64-core machine over a
variety of real and synthetic graphs. The experiments show that our parallel
algorithms are much faster compared with existing ones.
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Abstract

Large sizes of real-world data graphs, such as social networks, communica-
tion networks, hyperlink networks, and model-checking networks, call for fast
and scalable analytic algorithms. The shared-memory multicore machine is a
prevalent parallel computation model that can handle such volumes of data.
Unfortunately, many graph algorithms do not take full advantage of such a
parallel model. This thesis focuses on the parallelism of two graph problems,
graph trimming and core maintenance. Graph trimming is to prune the ver-
tices without outgoing edges; core maintenance is to maintain the core numbers
of vertices when inserting or removing edges, where the core number of a ver-
tex can be a parameter of density in the graph. The goal of this thesis is to
develop fast, provable, and scalable parallel graph algorithms that perform on
shared-memory multicore machines. Toward this goal, we first discuss the se-
quential algorithms and then propose corresponding parallel algorithms. The
thesis adopts a three-pronged approach of studying parallel graph algorithms
from the algorithm design, correctness proof, and performance analysis. Our
experiments on multicore machines show significant speedups over various real
and synthetic graphs.
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Chapter 1

Introduction

Graphs are fundamental data structures in computer science. They have
been studied and analyzed for hundreds of years beginning with the famous
Königsberg Bridge problem studied by Euler in 1736. Essentially, graphs are
mathematical representations of relationships between objects such as indi-
viduals, knowledge, and positions. In the graph, each vertex represents an
object and each edge represents some relationship between a pair of objects.
Graphs are used to model a real system in numerous applications, like social
networks (Takac and Zabovsky, 2012), graph pattern matching (Chen et al.,
2019), communication networks (Kumar et al., 2010), knowledge graphs (Xi-
aoping et al., 2021), and model verification (Hojati et al., 1993), data is orga-
nized into graphs with vertices for objects and edges for their relationships.

The data graphs can be static graphs, which can not be changed after
generated. However, in many real-world applications, such as determining
the influence of individuals in spreading epidemics in dynamic complex net-
works (Miorandi and De Pellegrini, 2010) and tracking the actual spreading
dynamics in dynamic social media networks (Pei et al., 2014), the data graphs
continuously change over time. The changes correspond to the insertion and
deletion of edges. That means each edge has a time stamp to indicate the time
of updating. Graphs of this kind are called dynamic graphs.

Since many real-world applications can be modeled as graphs, graph ana-
lytics has attracted much attention from both research and industry commu-
nities. Many algorithms are proposed to analyze large data graphs, including
graph trimming, Strong Connected Component (SCC) decomposition, k-core
decomposition, k-truss decomposition, etc. One big issue is that data graphs
are growing rapidly in today’s data-driven world. For example, 2.9 billion peo-
ple use Facebook each day; the 2016 release of the DBpedia data set already
has 6.6 million entities (vertices) and 13 billion pieces of information (edges).
Reducing the running time of programs lowers overall costs. For example,
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the rental costs of machines on Amazon EC211 is proportional to the usage
time. In addition, reducing the time-to-completion of tasks has been shown to
increase worker productivity as well as end-user experience.

The Parallel Model. One naive method to handle such large data graphs
is to increase the clock speeds of single-core machines. Moore’s law states
that the transistor density doubles approximately every 18 months, and along
with Dennard scaling, which states that transistor power density is constant
(Moore, 1998). This has historically corresponded to increases in clock speeds
of single-core machines of roughly 30% per year since the mid-1970s. However,
since around the mid-2000s, Dennard scaling no longer continued to hold due
to physical limitations of the hardware. As a result, hardware vendors have
turned to developing processors with multiple cores for delivering improved
performance. In other words, processor frequency is no longer increasing due
to the power wall and single-thread performance is no longer increasing as
the benefits of caching, pipelining, etc. are maxed out. However, the number
of transistors per processor is still increasing–linearly on a logarithmic scale,
i.e. exponentially, doubling every 18 months as predicted by Gordon Moore.
That is why multicore machines have become prevalent in recent years. These
machines are referred to as shared-memory multicore machines for the different
cores access to a shared global memory (Shun, 2017a). We analyze parallel
algorithms in the work-depth model (Cormen et al., 2009; Shun, 2017b), where
the work, denoted as W , is the total number of operations that are used by
the algorithm and the depth, denoted as D, is the longest length of sequential
operations (JéJé, 1992). The expected running time is O(W/P + D) when
using P workers. Here, a worker is a working process corresponding to a
physical core for a multicore processor. The formal definition of the above
model is provided in Section 2.2.

Our Goal. Due to the prevalence of shared-memory multicore machines
and the rapidly increased data graphs, it is urgent to parallelize graph ana-
lytic algorithms. Normally, we can not trivially transform an algorithm from
a sequential version to an efficient parallel version. There are four challenges
in finding efficient parallel algorithms for the share-memory multicore model.
First, compared with the existing work, we desire new parallel or concurrent
algorithms with improved work, depth, and space complexities. Second, par-
allel or concurrent algorithms are hard to argue for correctness, and testing
is not reliable to detect all errors (Andrews, 1991; Herlihy et al., 2020). This
is because the concurrent execution leads to nondeterministic interleaving of
steps and may cause data races, e.g. multiple working processes access the

1http://aws.amazon.com/ec2/pricing/
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same memory locations for writing. Third, these parallel or concurrent al-
gorithms should minimize synchronization overhead, requiring a combination
of locks, atomic primitives, software transactional memory, etc. Forth, the
parallel strategies should achieve work-load balance on multiple cores for im-
plementation. Our research focuses on parallelizing various graph algorithms
on multicore architecture. The goal is not just the theoretical improvements,
e.g. devising new parallel algorithms and also proving the correctness, but the
experimental studies on multicore machines, e.g. cache-friendly algorithms al-
ways have good performance since the cache hit rate is high. The goal of this
thesis is the following:

We seek to develop fast, provable, and scalable parallel graph algorithms
that perform on shared-memory multicore machines.

In this thesis, we take two-steps toward this goal. First, we propose a fast
sequential algorithm. Second, we parallelize such sequential algorithms on
shared-memory multicore machines. The thesis adopts a three-pronged ap-
proach of studying parallel graph algorithms from the algorithm design, cor-
rectness proof, and performance analysis.

1.1 Studied Problems

In this thesis, we study two graph problems, Graph Trimming and Core Main-
tenance. For Core Maintenance specifically, we study the problem of Order
Maintenance.

Graph Trimming. Given a direct graph G = (V,E), graph trimming is
about removing vertices without outgoing edges. Removing such unqualified
vertices may continuously cause other vertices u ∈ V without outgoing edges
to be trimmed. The trimming process will terminate when no vertices can be
trimmed.

The large size of data graphs motivates graph trimming approaches, such
as cycle detection (Lowe, 2016), k-core decomposition (Batagelj and Zaversnik,
2003), and in particular graph decomposition (Hong et al., 2013). For instance,
for the communication network wiki-talk (Kumar et al., 2010) with 2.4 million
vertices, surprisingly 94.5% of the vertices can be trimmed, which greatly
reduces the graph size for subsequent processing.

Order Maintenance. The Order-Maintenance (OM) data structure (Dietz
and Sleator, 1987; Bender et al., 2002; Utterback et al., 2016) maintains a
total order of unique items in an order list, denoted as O, by three operations
including inserting, deleting, and comparing the order of two items. The naive
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idea is to use a balanced binary search tree (Cormen et al., 2022). All three
operations can be performed in O(logN) time, where N is the total number of
items in O. In (Dietz and Sleator, 1987; Bender et al., 2002), by using labels
to indicate the order, all three operations are optimized to O(1) amortized
running time.

There are many applications that require manipulating an ordered list of
items. In (Marchetti-Spaccamela et al., 1996; Haeupler et al., 2012), given
a directed graph, a topological order of all vertices are maintained, where u
precedes v in topological order for all edges (u, v) in the graph. In (Zhang
et al., 2017; Guo and Sekerinski, 2022c), given a undirected graph, a k-order
of all vertices are used for core maintenance, where u is precedes v in the peel-
ing steps of core decomposition (Batagelj and Zaversnik, 2003; Cheng et al.,
2011; Khaouid et al., 2015; Montresor et al., 2012; Wen et al., 2016) for all
edges (u, v) in the graph. Similarly, such k-order can be used for truss main-
tenance (Zhang and Yu, 2019a). Also, ordered sets are widely used in Unified
Modeling Language (UML) Specification (Martin et al., 2003), e.g., a display
screen (an OS’s representation) has a set of windows, but furthermore, the set
is ordered, so do the ordered bag and sequence.

In this thesis, we apply the OM data structure to maintain the order of
all vertices in a graph, which can be used in the core maintenance problem to
improve its performance.

Core Maintenance. Given an undirected graph G = (V,E), the k-core is
the maximal subgraph of G where each vertex has a degree at least k. The
core number of each vertex u ∈ V is the largest k such that u is contained in
the k-core of G (Batagelj and Zaversnik, 2003; Kong et al., 2019). The core
decomposition of G is to compute the core number for each u ∈ V . Addition-
ally, the k-shell is the set of vertices that are part of the k-core but not part
of the (k + 1)-core. In other words, a k-shell includes all vertices that have
core numbers equal to k. The k-core is to find the dense subgraphs from data
graphs. Such a dense part of a data graph always has special properties in
real networks.

The core decomposition is incredibly useful in static graphs (Batagelj and
Zaversnik, 2003; Cheng et al., 2011; Khaouid et al., 2015; Montresor et al.,
2012; Wen et al., 2016) due to its linear running time (Batagelj and Zaver-
snik, 2003). In (Kong et al., 2019), Kong et al. summarize a large number of
applications in biology, social networks, community detection, ecology, infor-
mation spreading, etc. Especially in (Burleson-Lesser et al., 2020), Lesser et
al. investigate the k-core robustness in ecological and financial networks. In a
survey (Malliaros et al., 2020), Malliaros et al. summarize the main research
work related to k-core decomposition from 1968 to 2019. In static graphs,
the core decomposition has been extensively studied (Batagelj and Zaversnik,

5
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2003; Cheng et al., 2011; Khaouid et al., 2015; Montresor et al., 2012; Wen
et al., 2016).

However, in many real-world applications, such as determining the influ-
ence of individuals in spreading epidemics in dynamic complex networks (Mio-
randi and De Pellegrini, 2010) and tracking the actual spreading dynamics in
dynamic social media networks (Pei et al., 2014), the data graphs are dynamic
graph and continuously change over time. The changes correspond to the in-
sertion and deletion of edges, which may have an impact on the core numbers
of some vertices in the graph. When each time an edge is inserted or removed,
it is time-consuming to recalculate the core numbers of all vertices by travers-
ing the whole graphs. A better approach is only to update the core number of
affected vertices. The problem of maintaining the core numbers for dynamic
graphs is called core maintenance (Sarıyüce et al., 2016; Zhang et al., 2017;
Wu et al., 2015; Saŕıyüce et al., 2013).

There are two main proposed algorithms Traversal (Sarıyüce et al.,
2016) and Order (Zhang et al., 2017). For edge insertion, by efficiently
maintaining the order of all vertices in a graph, the Order algorithm has a
significantly smaller searching range and thus has a better performance com-
pared with the Traversal algorithm.

1.1.1 Application Examples

Ecological Networks. As an example, in Figure 1.1, we show an ecolog-
ical network where the vertices are plants and pollinators and the edges are
plant-pollinator interactions (Burleson-Lesser et al., 2020). After k-core de-
composition, there are 1-shell to 5-shell. and the maximum k-core is 5-core.
The maximum k-core is 5-core, so we find the densest subgraph that is 5-core.
For different k-core, a larger k provides more stability and thus a more ro-
bust network. Here is the quotation for this ecological network analytics after
k-core decomposition in (Burleson-Lesser et al., 2020):

“For ecological networks, the extinction of species in k-shells2 in-
creasingly close to the tipping point changes the mutualistic struc-
ture of the network. As more and more species are removed and
the outermost shells collapse, species closer and closer to the core
of the network become commensalists (which only receive a bene-
fit from other species) rather than symbionts (which both give and
receive a benefit). At some point, the core species are providing
too much for the rest of the network and not receiving enough of
a benefit in return; as this continues and there cease to be any

2The k-shell is the set of vertices that are part of the k-core but not part of the (k+ 1)-
core.
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species providing benefits to the others, the network is rendered
unsustainable and totally collapses.”

Figure 1.1: The k-core decomposition for an ecological network showing the
interaction between plants and pollinators, where the ks is the k-shell and

kmax
core is the maximum k-core(Burleson-Lesser et al., 2020).

Social Networks. As an example, In Figure 1.2, we show the influential
spreaders by tracking the actual spreading dynamics in social networks, in-
cluding Live Journal, APS Journals, Facebook, and Twitter (Pei et al., 2014;
Kong et al., 2019). Pei et al. (Pei et al., 2014) found that the widely used
Degree and PageRank (an algorithm used by Google Search to measure the
importance of website pages) could not rank the impact of users, and the
spreading is larger for vertices with higher k-shell. They discover that the
best communicators have been on k-core on different social platforms, such as
Facebook and Twitter. In Figure 1.2, we observe that for a vertex a larger
k-shell and larger in-degree (or PageRank) always indicates higher influence
over many social networks.

7
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Figure 1.2: The k-shell index can predict the average influence of spreading,
where ks is the k-shell for the x-axis and the kin is the in-degree of a vertex

for the y-axis (Pei et al., 2014).

1.2 Summary of Contributions

In this section, we give a high-level summary of the contribution. In Parts II
and IV, we provide the technical components. The main contributions are
summarized as follows:

8
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• In Part II, Chapter 3 discusses three graph trimming algorithms. In-
spired by three Arc-Consistency algorithms, AC-3, AC-4, and AC-6, we
classify two existing graph trimming algorithms as AC-3-based and AC-
4-based trimming algorithms. We also propose an AC-6-based trimming
algorithm. Furthermore, we parallelize these three trimming algorithms.

• Part IV discusses the core maintenance algorithms. First, Chapter 4 pro-
poses a parallel OM data structure, which supports inserting, removing,
and comparing the order of two items in parallel. Second, based on the
sequential OM data structure, we can efficiently maintain the order of
vertices in a graph and then propose a simplified order-based core main-
tenance algorithm in Chapter 5, which has an improved running time
compared with the order-based algorithm. Finally, based on the work
of Chapter 4 and Chapter 5, we propose a parallel core maintenance
algorithm in Chapter 6.

Chapter 3Chapter 5 Chapter 4

Chapter 6

Sequential Parallel

Figure 1.3: A pictorial representation of each chapter for the sequential and
parallel algorithms.

For each part, we first discuss the sequential graph algorithm and parallelize
them. Figure 1.3 illustrates each chapter focuses on sequential or parallel
algorithms.

1.3 Research Work Presented in This Thesis

This thesis contains the following research work (in the order they are pre-
sented in this thesis):

• (Guo and Sekerinski, 2022a) Bin Guo, Emil Sekerinski. Efficient Parallel
Graph Trimming by Arc-Consistency. (Chapter 3)

• (Guo and Sekerinski, 2022b) Bin Guo, Emil Sekerinski. New Parallel
Order Maintenance Data Structure. (Chapter 4)
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• (Guo and Sekerinski, 2022c) Bin Guo, Emil Sekerinski. Simplified Algo-
rithms for Order-Based Core Maintenance. (Chapter 5)

• Bin Guo, Emil Sekerinski. Parallel Order-Based Core Maintenance in
Dynamic Graphs. (Chapter 6)
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Chapter 2

Preliminaries and Notation

This chapter presents the definitions and notation that will be used throughout
the thesis. Individual chapters have additional definitions and notations that
are specific to the chapter.

2.1 Graph Definitions and Notations

In this thesis, we consider simple, finite graphs with no self-loops or multi-
edges. Given a directed graph G = (V,E), let n = |V | and m = |E| be the
numbers of vertices and edges, respectively. A vertex v in graph G is also
denoted as v(G). Of course, for a directed graph, (v, w) ∈ E does not imply
that (w, v) ∈ E. The post of vertex v in G is the set of all the successors
(outgoing edges) of v, defined by v.post = {w | (v, w) ∈ E}; when the context
is clear, we use v.post instead of v(G).post . The pre of vertex v is the set of all
the predecessors (ingoing edges) of v, defined by v.pre = {w | (w, v) ∈ E}. For
each vertex v ∈ V , its out-degree is the number of successors |v.post | and its
in-degree is the number of predecessors |v.pre|. We define the set of neighbors
of a vertex u ∈ V as u.adj , formally u.adj = {v ∈ V : (u, v) ∈ E}. We denote
the degree of u in G as u.deg = |u.adj |.

A transposed graph GT = (V,ET ) is equivalent to the graph G = (V,E)
with all its edges reversed, ET = {(w, v) | (v, w) ∈ E}. It is easy to see
that v(G).post = v(GT ).pre and v(G).pre = v(GT ).post for each v ∈ V . A
transposed graph GT can be generated in order to efficiently obtain v(G).pre
without traversing the whole original graph G.

For an undirected graph, an edge (v, w) ∈ E is equivalent to an edge
(w, v) ∈ E. Therefore, for a vertex v ∈ V , it only has neighbors v.adj , but no
successors v.post and predecessors v.pre.

We define a graph G′ to be a subgraph of G, denoted as G′ ⊆ G, if V (G′) ⊆
V (G) and E(G′) ⊆ E(G). Given a subset V ′ ⊆ V , the subgraph induced by V ′,
denoted as G(V ′), is defined as G(V ′) = (V ′, E ′) where E ′ = {(u, v) ∈ E :
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u, v ∈ V ′}.
In this thesis, we use the above G as the definition of graphs. Other special

cases of graphs, e.g. bipartite graphs in which a set of vertices decomposed
into two disjoint sets such that no two graph vertices within the same set are
adjacent, are still covered by the definition G.

2.2 Shared-Memory Work-Depth Model

We analyze our parallel algorithms in the work-depth model (Cormen et al.,
2009; Shun, 2017b). An algorithm in the work-depth model is characterized
by two complexity measures, work and depth, which are standard measures for
analyzing shared-memory algorithms. The work, denoted as W , is the total
number of operations that are used by the algorithm. It is impossible that
the parallel algorithm can perform less work than the best-known sequential
algorithm since any parallel algorithm can be made sequential by performing
each parallel step sequentially. Thus, the gold standard for parallel algorithms
are algorithms whose work matches the running time of the best-known se-
quential algorithm. We call such algorithms work-efficient algorithms. The
depth, denoted as D, is the longest chain of sequential operations (JéJé, 1992).
For sequential algorithms, the depth is equal to the work. For parallel algo-
rithms, the depth of the algorithm is often much smaller than the work of
the algorithm. An efficient parallel graph algorithm in this model should be
work-efficient and has polynomial log n depth.

This model is particularly convenient for analyzing nested parallel al-
gorithms. Assuming that a scheduler dynamically load-balances a paral-
lel computation across all available workers, the expected running time is
O(W/P+D) when using P workers. For the multi-core architecture, a worker
is a working process corresponding to a physical core. In particular, for se-
quential algorithms, the work and the depth terms are equivalent. A parallel
algorithm is work-efficient if its work is asymptotically equal to the work of
the fastest sequential algorithm for the same problem (Blelloch and Maggs,
2010).

2.3 Graph Storage

In this work, explicit graphs and implicit graphs are discussed. Explicit graphs
are typically stored in the compressed sparse row (CSR) format (Hong et al.,
2012, 2013). This format uses two arrays to represent the graph: an O(n)-sized
array stores an index to the beginning of each vertex’s adjacency list and an
O(m)-sized array stores each vertex’s adjacency list. The CSR representation
is compact, memory bandwidth-friendly, and thus suitable for efficient graph
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traversals. It is easy to see that successors of each vertex v ∈ V are ordered
and thus can be traversed one by one in order.

On modern computers, registers can move data around in single clock cy-
cles. However, registers are very expensive since a CPU typically has a limited
number of registers available, e.g. the x86 architecture has 8 General-Purpose
Registers (GPR) and 6 Segment Registers. The dynamic random access mem-
ory is very cheap but takes hundreds of cycles after a request to receive the
data. To bridge this gap between them are the cache memories, named L1,
L2, L3 in decreasing speed and cost. If the data is stored in memory sequen-
tially, the CPU can prefetch the data into the cache for fast accessing, which is
cache-friendly. For a graph stored in CSR format, we can see that sequentially
traversing all edges is cache-friendly as the cache hit rate is high, but randomly
traversing all edges is not cache-friendly as the cache hit rate is low.

Implicit graphs are defined as G = (v0, POST) assuming that all the vertices
in G are reachable from vertex v0, where v0 is the initial vertex and POST(v) is a
function that returns all of the successors of vertex v, that is, POST(v) = v.post .
One kind of implicit graphs are model checking graphs (Pelánek, 2007) such
that for each vertex v in a graph G, all the edges are calculated online by
POST(v). Another kind of implicit graphs are external graphs such that all
the edges are stored on disks sequentially; once a vertex v is traversed, the
edges of v are loaded into memory. The advantage of implicit graphs is that
they allow handling large graphs with limited memory usage. However, much
running time is spent on generating the edges via POST(v). If an algorithm
can run on implicit graphs without loading the whole graphs into memory, we
say this algorithm has the on-the-fly property

2.4 Parallel Programming

2.4.1 OpenMP

OpenMP1 (Open Multi-Processing) (Dagum and Menon, 1998) is an appli-
cation programming interface (API) that supports multi-platform shared-
memory multiprocessing programming in C, C++, and Fortran, on many
platforms, instruction-set architectures and operating systems. In this pa-
per, OpenMP (version 4.5) is used as the threading library to implement the
parallel algorithms. The task-level parallelism is implemented by using the
clause “#pragma omp parallel for” (C++ code). Given an input graph,
this implementation statically assigns the same number of vertices to each
worker p. For data-level parallelism, however, it is critical to handle a poten-
tial workload imbalance problem. Note that real-world graphs can be highly

1https://www.openmp.org/
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irregular because of their scale-free property, e.g., a few vertices can have a
huge number of successors while many vertices have only several successors.
Therefore, statically assigning the same number of vertices to each worker
naturally induces workload imbalance since the work of each vertex involves
immediate propagation.

There is a better strategy. All of the vertices in the graph can be
dynamically assigned to each worker p by the clause “#pragma omp for

schedule(dynamic, s)”. That means each worker executes a chunk of it-
erations with size s and then requests another chunk until no chunks remain
to distribute. If one of the workers finishes processing a chunk of vertices early,
it applies to the next chunk of vertices at once without waiting for other work-
ers. In this way, we realize a relatively balanced load for each worker without
difficulties. Note that the chunk size cannot be either much large or small; the
too large chunk size may cause work-load imbalance for multiple workers; the
too small chunk size may cause much running time spent on scheduling.

2.4.2 Atomic Primitives

Our algorithms in this thesis make use of the atomic to reduce the synchro-
nization overhead. The compare&swap (CAS) and fetch&add (FAA) operations
are universal atomic primitives that are supported on the majority of current
parallel architectures (Valois, 1995; Michael, 2002; Milman et al., 2018).

As shown in Algorithm 4, the CAS atomic primitive takes three arguments,
a variable (location) x, an old value a and a new value b. It checks the value of
the variable x, and if it equals to the old value a, it updates the pointer to the
new value b and then returns true; otherwise, it returns false to indicate that
the updating fails. Here, we use a pair of angular brackets, ⟨...⟩, to indicate
that the operations in between are executed atomically.

Algorithm 1: CAS(x, a, b)

1 ⟨ if x = a then
2 x← b; return true
3 else return false ⟩ /* ⟨...⟩ atomic */

The FAA atomic primitive is shown in Algorithm 2. The old value of x is
fetched and added by a. The new value of x is returned. For instance, there
is a race condition when one worker is executing “x = x + a” and the other
worker is executing “x = x+ b” concurrently. Using FAA can efficiently get the
correct result without workers affecting each other.
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Algorithm 2: FAA(x, a)

1 ⟨x← x+ a⟩ /* ⟨...⟩ atomic */

2.4.3 Lock Implementation

OpenMP (Open Multi-Processing) (Chandra et al., 2001) is an application
programming interface (API) that supports multi-platform shared-memory
multiprocessing programming in C, C++, and Fortran, on many platforms,
instruction-set architectures, and operating systems. This paper uses OpenMP
(version 4.5) as the threading library to implement the parallel algorithms. In
this work, the key issue is how to implement the locks for synchronization. One
solution is to use the OpenMP lock, “omp set lock” and “omp unset lock”.
Each worker will suspend the working task until the specified lock is available.
The OpenMP lock will be efficient if a lot of work is within the locked region.

The other solution is the spin lock, which can be implemented by the
atomic primitive CAS. Given a variable x as a lock, the CAS will repeatedly
check x, and set x from false to true if x is false. In other words, one
worker will busy-wait the lock x until it is released by other workers without
suspension. The spin lock will be efficient if significantly little work within
the locked region exists. In this case, suspending has a higher cost than busy
waiting for multiple workers.

Algorithm 3: Lock(x)

1 i← 1
2 while true do
3 if x.lock = false ∧ CAS(x.lock , false, true) then return
4 j ← i
5 while j > 0 do j ← j − 1
6 i← 2× i

Algorithm 3 shows an implementation of the spin lock. To reduce the bus
traffic, x.lock is tested before using CAS to set x.lock from false to true (line
3). Additionally, it is more effective for other workers to back off for some
duration, giving competing workers a chance to acquire the lock. Typically,
especially for our use cases, the large number of unsuccessful tries indicates
the longer the worker should back off. Here, we use a simple strategy that
exponentially increases the back off time for each try (lines 1 and 4 - 6), where
i and j are local variables without increasing the bus traffic (Herlihy et al.,
2020).

We implement a condition-lock as in Algorithm 5. The condition c is
checked before and after the CAS lock (lines 1 and 3). It is possible that other
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workers may update the condition c simultaneously. If c is changed to false

after locking x, x will be unlocked and then return false immediately (line
4). Such a conditional Lock can atomically lock x by satisfying c and thus can
avoid blocking on a locked x that does not satisfy the condition c.

Algorithm 4: Lock(x) with c

1 while c do
2 if CAS(x, false, true) then
3 if c then return true
4 else x← false

5 return false

2.5 C++

In the experiments, all tested algorithms are implemented in C++. The most
important reason is that it is fair to compare the running time of all tested
algorithms by implementing them with the same programming language like
C++.

There are four other reasons. First, C++ is a compiled language that
produces highly optimized machine code, making it well-suited for algorithms
that require high performance. We compare the running time of different al-
gorithms and C++ is the best choice. Second, C++ provides low-level control
over atomic primitives, such as CAS; also, C++ supports the parallel program-
ming interface OpenMP. Third, C++ supports object-oriented programming
(OOP) concepts, such as classes, inheritance, and polymorphism. OOP can
help organize code and make it easier to maintain and extend over time Fi-
nally, C++ has a Standard Template Library (STL), which is a collection of
generic algorithms, data structures, and containers that are part of the C++
Standard Library.

2.6 Random Selection

In the experiment, we always randomly select a bunch of items for testing,
e.g. we randomly select 100,000 edges from a graph for insertion and removal
operations. In this case, we require a large size of random numbers. Our
implementation is based on the pseudo-random number generator, e.g. the
rand() function supported by C++ after including the head file “stdlib.h”,
which can produce numbers that are uniformly distributed in a certain range.
With these sources of pseudo-random numbers, we can randomly select items
for testing our algorithms.

16



Part II

Graph Trimming
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Chapter 3

Graph Trimming

Given a large data graph, trimming techniques can reduce the search space
by removing vertices without outgoing edges. One application is to speed
up the parallel decomposition of graphs into strongly connected components
(SCC decomposition), which is a fundamental step for analyzing graphs. We
observe that graph trimming is essentially a kind of arc-consistency problem,
and AC-3, AC-4, and AC-6 are the most relevant arc-consistency algorithms for
application to graph trimming. The existing parallel graph trimming methods
require worst-case O(nm) time and worst-case O(n) space for graphs with n
vertices and m edges. We call these parallel AC-3-based as they are much like
the AC-3 algorithm. In this chapter, we propose AC-4-based and AC-6-based
trimming methods. That is, AC-4-based trimming has an improved worst-case
time of O(n+m) but requires worst-case space of O(n+m); compared with
AC-4-based trimming, AC-6-based has the same worst-case time of O(n+m)
but an improved worst-case space of O(n). We parallelize the AC-4-based and
AC-6-based algorithms to be suitable for shared-memory multi-core machines.
The algorithms are designed to minimize synchronization overhead. For these
algorithms, we also prove the correctness and analyze time complexities with
the work-depth model.

In experiments, we compare these three parallel trimming algorithms over
a variety of real and synthetic graphs on a multi-core machine, where each
core corresponds to a worker. Specifically, for the maximum number of tra-
versed edges per worker by using 16 workers, AC-3-based traverses up to 58.3
and 36.5 times more edges than AC-6-based trimming and AC-4-based trim-
ming, respectively. That is, AC-6-based trimming traverses much fewer edges
than other methods, which is meaningful especially for implicit graphs. In
particular, for the practical running time, AC-6-based trimming achieves high
speedups over graphs with a large portion of trimable vertices.
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3.1 Introduction

Given a large data graph, the graph trimming is to remove vertices without
outgoing edges. One issue is that trimming such unqualified vertices may
cause other vertices to become useless. Naively repeating the trimming pro-
cess may lead to a quadratic worst-case time complexity. Thus, linear time
bounded graph trimming methods are desired. Additionally, the availability of
multi-core processors motivates efficient parallelization of such graph trimming
methods. Here, a worker is a working process corresponding to a physical core
for a multi-core processor.

To the best of our knowledge, there exists little work on parallel trimming
over large data graphs, except for (III et al., 2005; Hong et al., 2013; Slota
et al., 2014; Ji et al., 2018; Chen et al., 2018). In these studies, the graph
trimming is adopted to quickly remove the vertices without out-going edges so
that can speed up the strongly connected component (SCC) decomposition.
In (III et al., 2005), McLendon et al. first apply a linear time graph trimming
method to remove size-1 SCCs; however, a parallel version is not provided.
In (Hong et al., 2013), Hong et al. propose a quadratic time graph trimming
technique by “peeling” size-1 and size-2 SCCs, i.e. SCCs with only 1 or 2
vertices. The “peeling” step is straightforward: (1) all vertices are checked in
parallel and the trimmable ones are removed, which may cause other vertices to
become trimmable; (2) this process is repeated until no vertex can be removed
from the graph. The advantage of this graph trimming technique is that it can
be highly parallelized without difficulties. However, it has a quadratic worst-
case time complexity of O(nm/P + α), where n is the number of vertices, m
is the number of edges, P is the number of workers, and α is the depth of the
algorithm (explained in the next section). This parallel trimming technique is
widely used in later SCC decomposition methods (Slota et al., 2014; Ji et al.,
2018; Chen et al., 2018).

In this work, we apply the well-known arc-consistency (AC) algorithms to
graph trimming. Based on that, we not only classify existing graph trimming
algorithms but also propose a new graph trimming algorithm that improves
the time and space complexities by an order of magnitude. Before discussing
these contributions, we first show an application of graph trimming, the SCC
decomposition in large graphs (III et al., 2005; Hong et al., 2013; Slota et al.,
2014; Ji et al., 2018; Chen et al., 2018).
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3.1.1 An Application of Graph Trimming

Detecting the strongly connected components in directed graphs, the so-called
SCC decomposition, is one of the fundamental analysis steps in many ap-
plications such as social networks (Kumar et al., 2010), communication net-
works (Sun et al., 2016), knowledge networks (Auer et al., 2007), and model
checking graphs (Hojati et al., 1993). Given a directed graph G = (V,E), a
strongly connected component of G is a maximal set of vertices C ⊆ V such
that every two vertices u and v in C are reachable from each other. The early
SCC algorithms are based on depth-first search (DFS) (Tarjan, 1972; Cormen
et al., 2009). However, lexicographical-first DFS is P-complete and even the
random DFS is hard to parallelize (Reif, 1985; Aggarwal and Anderson, 1988).
The breadth-first search (BFS) based Forward-Backward (FW-BW) algorithm
has been proposed. Unlike DFS, BFS can be parallelized without difficulty.
Starting from a selected pivot vertex, FW-BW performs a forward BFS to
identify the vertex set FW that the pivot can reach, followed by a backward
BFS to identify the set BW that can reach the pivot. The intersection between
FW and BW is an SCC that contains the pivot (Fleischer et al., 2000). In the
worst case, each vertex can be selected as a pivot to travel the whole graph
in O(m), which yields a quadratic time complexity of O(mn) (Fleischer et al.,
2000). In (Coppersmith et al., 2003; Fleischer et al., 2007), the worst-case time
complexity is improved to O(m log n) by using a divide-and-conquer approach.

Interestingly, real-world graphs demonstrate SCC features that follow the
power-law property (Hong et al., 2013), that is, several large SCCs take the
majority of vertices and the rest of them are trivial SCCs. More importantly,
most of the trivial SCCs are size-1 SCCs. The key observation is that a size-1
SCC is easy to identify: it has zero incoming edges or zero outgoing edges.
Therefore, graph trimming can be used to remove such size-1 SCCs in parallel
with less computational effort than FW-BW and thus in practice can speed up
FW-BW. Analogously to size-1 SCCs, size-2 (Hong et al., 2013) and size-3 (Ji
et al., 2018) SCCs also can be trimmed but with more computational effort.

1

6

23

4
7

8
9

5
10

11

12

6

7

8
9

10

11

12

6

7

(a) (c)(b)

Figure 3.1: A graph that can use graph trimming to remove size-1, size-2 and
size-3 SCCs.
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Figure 3.1 illustrates the FW-BW algorithm with graph trimming. Fig-
ure 3.1(a) shows that there are altogether two large SCCs, SCC1 and SCC2

(whose sizes are greatly larger than 3) and the other trivial SCCs. It is easy
to see that vertices v1 to v7 are size-1 SCCs, vertices v8 and v9 compose one
size-2 SCC, and vertices v10 to v12 compose one size-3 SCC. In Figure 3.1(b),
we first try to trim all size-1 SCCs: (1) in the first repetition, vertices v5 and v2
are removed since they have no outgoing edge, which causes vertex v4 to have
no outgoing edges; (2) in the second repetition, vertex v4 is removed, which
causes vertex v3 to have no outgoing edges; (3) in the third repetition, vertex
v3 is removed, which causes vertex v1 to have no outgoing edges; (4) in the
final repetition, vertex v1 is removed. Similarly, in Figure 3.1(c), size-2 and
size-3 SCCs can also be removed. Note that vertices v6 and v7, located be-
tween two large SCCs, are size-1 SCCs, but they can not be directly trimmed.
After the first round of graph trimming, the FW-BW algorithm can identify
two large SCCs, SCC1 and SCC2, which also can be deleted from the graph.
After removing the two large SCCs, the second round of trimming can remove
vertices v6 and v7 with two iterations.

The naive trimming method as used in FW-BW (Fleischer et al., 2007) has
a quadratic time complexity of O(mn) in the worst case. The drawback of such
trimming is that it sacrifices the better worst-case time complexity of FW-BW,
O(m log n) (Fleischer et al., 2007). From our experiments, we noticed that the
running time of such trimming will dramatically increase with the number of
peeling steps α because of the increasing number of repetitions. This is why
FW-BW with trimming as in (Hong et al., 2013) is only efficient for small-word
graphs. The small-world property states that the diameters (greatest shortest-
path distance between any pair of vertices) of graphs are very small even for
very large graph instances (Watts and Strogatz, 1998), which always implies a
small number of peeling steps. The focus of this paper is to improve traditional
graph trimming so that algorithms based on FW-BW with trimming (III et al.,
2005; Hong et al., 2013; Slota et al., 2014; Ji et al., 2018; Chen et al., 2018)
can be more efficient, especially for non-small-world graphs.

For instance, in (Ji et al., 2018), the parallel SCC decomposition algorithm
ISPAN is proposed. It combines the power of graph trimming and FW-BW,
both of which can be efficiently parallelized. In particular, graph trimming is
used at two places; before large SCC detection, trimming is used to remove the
size-1 SCCs; after the large SCC is detected, trimming is again used to remove
size-1, size-2, and size-3 SCCs. The evaluation uses 56 workers over 16 graphs
and shows that ISPAN achieves a significant speedup of 171 - 6591 times over
the sequential DFS-based Tarjan’s algorithm (Cormen et al., 2009) and of 85
- 1475 times over the parallel DFS-based UFSCC algorithm (Bloemen et al.,
2016).
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3.1.2 The New Method

Essentially, graph trimming is a kind of Constrain Satisfaction Problem (CSP),
that is, a set of vertices must satisfy a number of constraints or limitations,
e.g. each vertex needs at least one outgoing edge or it will be removed as a
size-1 SCC. Many filtering algorithms (Dib et al., 2010) have been proposed
to remove values that obviously do not belong to the solution of a CSP and
thus reduce the search space. The closest related filtering algorithms to graph
trimming are Arc-Consistency (AC) algorithms for binary CSPs, in particular
AC-3 (Mackworth and Freuder, 1985), AC-4 (Mohr and Henderson, 1986), and
AC-6 (Freuder and Régin, 1999).

The key observation is that the graph trimming technique in (III et al.,
2005) is like AC-4 (AC-4-based). Also, the other widely used graph trimming
technique in (Hong et al., 2013; Slota et al., 2014; Ji et al., 2018; Chen et al.,
2018) is like AC-3 (AC-3-based). Stimulated by AC-6, we design a novel graph
trimming algorithm (AC-6-based). Compared to AC-3-based and AC-4-based
trimming, our new AC-6-based trimming is more complicated and not easy to
parallelize. To the best of our knowledge, there exists little work on parallel
AC algorithms (Cooper and Swain, 1992; Kirousis, 1993). In this work, we
design efficient sequential and parallel versions of AC-6-based trimming for a
multi-threaded shared memory architecture.

Table 3.1 summarizes the complexities of different parallel graph trim-
ming algorithms in the work-depth model, where the work is the number of
operations used by the algorithm and the depth is the length of the longest
sequential dependence in the computation. We can see that all three trimming
algorithms have the different parallel depth, and AC-3-based trimming has a
smallest depth. AC-3-based trimming has larger worst-case work and time
complexities than the other two algorithms. The AC-6-based and AC-4-based
algorithms have the same worst-case work and time complexities. We show
that AC-6-based trimming traverses fewer edges and uses less space. For ex-
ample, over all tested graphs in our first experiments, AC-6-based trimming
reduces the number of traversed edges 3.3 - 192.5 times compared with AC-4-
based trimming and 1.5 - 44 times compared with AC-3-based trimming.

To parallelize the AC-4-based and AC-6-based algorithms, the conventional
way is with mutual exclusion by using Lock and Unlock operations that guar-
antee exclusive access to data structures shared by multiple workers. In this
work, however, we use atomic primitives to minimize the synchronization over-
head.
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Worst-Case (O)
Trimming On-The-Fly W D Space

AC-3-based ✓ α(n+m) αDegout n
AC-4-based ✗ n+m |Qp|DeginDegout n+m
AC-6-based ✓ n+m |Qp|Degin

2 n

Table 3.1: The worst-case work, depth, and space complexities of parallel
graph trimming algorithms, where n is the number of vertices, m is the
number of edges, P is the number of total workers, α is the number of

peeling steps, Degout is the maximal out-degree for all vertices, Degin is the
maximal in-degree for all vertices, |Qp| is the upper-bound size of waiting

sets among P workers such that sometimes |Qp|≥ α.

3.1.3 On-the-fly Property

The on-the-fly property (Bloemen et al., 2016) means an algorithm can run
on an implicit graph defined as G = (v0, POST), where v0 is the initial ver-
tex and POST(v) is a function that returns all of the successors of vertex v.
One drawback of the FW-BW method is that the backward search requires
reverse edges, which means all edges have to be loaded into memory; stor-
ing the graph as an adjacent list with only outgoing edges is not sufficient.
The on-the-fly property is necessary when handling large graphs that occur in
e.g. verification (Merz, 2001), as it may allow the algorithm to terminate early
after processing only a fraction of the graph without needing memory space
for loading the whole graph. It also benefits algorithms that rely on implicit
graphs (Pelánek, 2007), in which the edges are calculated online by function
POST(v).

The on-the-fly properties of three graph trimming algorithms are summa-
rized in Table 3.1. It is easy to see that the AC-4-based trimming cannot run
on-the-fly as it requires reverse edges and thus the whole graph must be loaded
into the memory. AC-3-based and AC-6-based trimming can run on-the-fly as
they only rely on the post of vertex v when traversing each vertex v ∈ V and
their space usage is bounded by O(n). However, compared with AC-3-based
trimming, AC-6-based trimming needs much less work. Note that on implicit
graphs, all the edges are computed online by the function POST(v), which typ-
ically costs more running time than directly loading edges from memory like
with explicit graphs. The proposed AC-6-based trimming traverses fewer edges
than AC-3-based trimming and thus performs better on implicit graphs.

3.1.4 Contribution

The contributions of this work are summarized below:
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• We provide a formal definition of graph trimming based on the Con-
straint Satisfaction Problem (CSP) and Arc-Consistency (AC). Follow-
ing three well-known arc-consistency algorithms, that is, AC-3, AC-4,
and AC-6, we categorize the existing graph trimming algorithms as AC-
3-based (Hong et al., 2013; Slota et al., 2014; Ji et al., 2018; Chen et al.,
2018) and AC-4-based algorithms (III et al., 2005).

• We revisit the existing parallel AC-3-based algorithm. We give the de-
tailed steps of the AC-4-based algorithm and parallelize it using atomic
primitives.

• We propose a novel AC-6-based algorithm that has optimized time and
space complexities. We further parallelize the AC-6-based algorithm
using atomic primitives. These are the main contributions of this work.

• For all three graph trimming algorithms, we formally discuss their cor-
rectness, time complexity, and space complexity. The time complexities
for parallel algorithms are analyzed in the work-depth model.

• Finally, for all three parallel trimming algorithms, our experiments com-
pare the number of traversed edges and practical running time with 1 to
16 workers over a variety of real and synthetic graphs.

3.2 Related Work

Parallel DFS-based SCC Decomposition. In Section 1, several methods
for BFS-based SCC decomposition were introduced. Although DFS is inher-
ently sequential (Reif, 1985), there is a lot of work based on Tarjan’s algorithm.
In (Lowe, 2016), Lowe proposed a synchronized Tarjan’s algorithm, that is,
multiple instances of Tarjan’s algorithm run without overlapping stacks. To
do this, a worker is suspended on a vertex which is located in another worker’s
stack and then both workers’ stacks can be merged if necessary. The draw-
back is that this stack merging leads to a worst-case quadratic time complex-
ity of O(n2). Lowe’s experiments show decent speedups on model checking
graphs with trivial SCCs, but not for graphs with large SCCs. In (Renault
et al., 2015), Renault et al. present a novel algorithm without sacrificing
the linear time complexity, O(n + m), and the on-the-fly property. Multi-
ple instances of Tarjan’s algorithm run and communicate completely explored
SCCs via a shared union-find structure. Bolomen et al. (Bloemen et al., 2016;
Bloemen, 2015) proposed an improved UFSCC algorithm which communicates
partially found SCCs by using a modified union-find data structure. In their
experiments, UFSCC shows a significant speedup compared to Renault’s algo-
rithm (Renault et al., 2015) on implicit model checking inputs and synthetic

24



Ph.D. Thesis—B. Guo McMaster University—Computer Science

graphs. One notable property of these algorithms is that they can run on-the-
fly on implicit graphs.

However, above DFS-based SCC algorithms do not utilize graph trimming
techniques to remove trivial SCCs. A possible reason is that the traditional
graph trimming technique has quadratic worst-case time complexity and, more
importantly, it is hard to run on-the-fly. The proposed parallel AC-6-based
graph trimming algorithm has linear running time and has the on-the-fly prop-
erty, so it can be used to quickly trimming a high ratio of size-1 SCCs for above
DFS-based SCC algorithms.

Graph Trimming. Generally, the term “graph trimming” is widely used
in graph algorithms to minimizing the search space and the trimming rules
may be different for different problems. For example, in (Heule, 2019), “graph
trimming” computes a smaller and smaller unsatisfiable core for a propositional
formula; in (Gao et al., 2015), “graph trimming” is used to minimize the
number of vertices as monitors to identify all interesting links; in (Erlebach
et al., 2010), given a graph in which each vertex has a nonnegative weight,
“graph trimming” deletes vertices with a small total weight such that the
remaining graph does not contain any long simple paths. Note that, in the
current work, given a directed graph, the terminology “graph trimming” is
specifically confined as each vertex has at least one outgoing edge.

Another related term is “graph pruning”. For example, in (Harabor and
Grastien, 2011), given a geographical graph, “graph pruning” can dynamically
jump over some searching branches by some simple rules for finding the path
between two nodes.

3.3 Preliminary

A constraint satisfaction problem (CSP) (Russell and Norvig, 2009; Dib et al.,
2010) can be defined as a triple P = (X,D,C), where X = {X1, ..., Xn} is a
set of n variables, D = {D(X1), ..., D(Xn)} is the set of n domains such that
D(Xi) is a set of possible values of variable Xi, and C is a set of constraints
that specify allowable combinations of values. A solution of a constraint set
C is an instantiation of the variables such that all constraints are satisfied.
Here, we restrict to binary constraints Cij between pairs (Xi, Xj) of variables,
i.e. C = {Cij | i, j ∈ 1...n}.

A value vi ∈ Di is binary consistent with a constraint Cij if there exists
vj ∈ Dj such that (vi, vj) satisfies Cij. Then vj ∈ Dj is called a support of
vi ∈ Dj over Cij. A value vi ∈ Di is viable if it has supports for every Dj such
that each Cij ∈ C is satisfied. A variable in a CSP is arc-consistent (AC) if
every value in its domain satisfies each binary constraint Cij ∈ C.
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Several AC algorithms have been proposed for removing values that are
not viable. AC-1 (Mackworth, 1977) revisits all the binary arcs that have to
be revisited once some domains are reduced. Improving on AC-1, algorithm
AC-2 (Mackworth, 1977) only revisits the arcs that are affected by reducing
some domains. Algorithm AC-3 (Mackworth, 1977; Mackworth and Freuder,
1985) generalizes and simplifies AC-2.

Algorithm 5 shows the detailed steps of AC-3. Initially, the global set Q
includes all constraint arcs Cij ∈ C (line 1). Each constraint arc Cij is picked
and then removed from the set Q (line 3), and each pair of values in the
domains D(Xi) and D(Xj) are checked by the procedure Revise (line 4), that
is, for each value vi ∈ D(Xi), if D(Xj) does not contain a value vj such that
(vi, vj) satisfies the constraint Cij, the value vi is repeatedly removed from
D(Xi) (lines 7 - 13). If D(Xi) is changed, the associated constraints Cij are
placed into Q again (lines 5 and 6). This process is repeated until the set Q
becomes empty (line 2). It is easy to see that AC-3 is not efficient since the
revision of any domain will force neighbor constraints to be revisited again.

Algorithm 5: AC-3

input : An arc-consistency problem P = (X,D,C)
output: A filtered domain set D

1 Q← C
2 while Q ̸= ∅ do
3 remove a constraint Cij from Q
4 if Revise(Xi, Xj, D) then
5 for Xk ∈ {Xk′ : Ck′i ∈ C} \ {Xj} do
6 Q← Q ∪ {Cki}

7 procedure Revise(Xi, Xj, D)

8 revised ← false
9 for vi ∈ D(Xi) do

10 if no value vj in D(Xj) satisfies Cij then
11 delete vi from D(Xi)
12 revised ← true

13 return revised

AC-4 (Mohr and Henderson, 1986) improves the worst-case time complexity
of AC-3 by using auxiliary data structures, supports and counters, but its
average running time is close to the worst-case time complexity. However, AC-
3 has better average running time and space usage than AC-4 and thus AC-3
is always preferred to AC-4 (Russell and Norvig, 2009) in practice. Algorithm
AC-6 (Bessière, 1994) combines AC-3 and AC-4. It only records one support
for each value, unlike AC-4 which records all supports, since a single support

26



Ph.D. Thesis—B. Guo McMaster University—Computer Science

is enough to prove that a value is viable. Because of this, AC-6 has the same
worst-case time complexity as AC-4 but averagely performs much better than
AC-4 in many applications. Further, AC-6 needs less space than AC-4 since
for each value only a single support is recorded.

Table 3.2 summarizes the time and space complexities of these three al-
gorithms. AC-6 has the best worst-case time and space complexities. AC-4
and AC-6 have the same time complexity. However, in reality, AC-3 and AC-6
perform sometimes better than AC-4 due to AC-4 always running close to its
worst-case time. The details are explained in the next section.

Algorithm Time (O) Space (O)

AC-3 ed3 e+ kd
AC-4 ed2 ed2

AC-6 ed2 ed

Table 3.2: The worst-case time and space complexities of three
arc-consistency algorithms, where e is the number of arcs, k is the number of

variables, and d is the size of the largest variable’s domain.

3.4 Graph Trimming

Definition 3.4.1 (Trimmed Graph). Given a directed graph G = (V,E),
the trimmed graph G′ = (V ′, E ′) with V ′ ⊆ V and E ′ ⊆ E is a maximal
subgraph of G, where each vertex has at least one outgoing edge, formally
∀v ∈ V ′ : v.post ̸= ∅.

The graph trimming is to obtain trimmed graphs according to Definition
3.4.1. Without changing the original graph G = (V,E), each vertex v ∈ V is
assigned a status, denoted as v .status , with values LIVE and DEAD, which indi-
cates if vertex v is located in the graph (live) or removed (dead), respectively.

3.5 Graph Trimming as Arc Consistency

Intuitively, we can regard graph trimming as a graph with a constraint that
each vertex has at least one outgoing edge. Based on this observation, we
define graph trimming as an arc-consistency problem with one single variable,
viz. the set of all vertices, and a single binary constraint, viz. each vertex
must have at least one outgoing edge as one support. Then, trimming a graph
means determining the domain of available vertices.
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More formally, given a directed graph G = (V,E), graph trimming can
be defined as an arc-consistency problem (X,D,C) with variables X = {X1},
domains D = {D(X1)} and constraint C = {C11}. Here, we assume that
X1 = V and C11 = E, that is, each vertex v1 ∈ D(V ) must has at least one
support vertex v′1 ∈ D(V ) in the same domain, where (v1, v

′
1) ∈ E.

Consequently, three important AC algorithms, AC-3, AC-4, and AC-6,
can be applied to graph trimming. Interestingly, we find that one widely
used graph trimming method (Hong et al., 2013; Slota et al., 2014; Ji et al.,
2018; Chen et al., 2018) is analogous to AC-3 (we call it AC-3-based). The
other (III et al., 2005) is analogous to AC-4 (we call it AC-4 based); however,
the detailed steps are not discussed, and a parallel version is not provided. As
a contribution, we design a novel graph trimming algorithm based on AC-6
(we call it AC-6-based).

3.6 AC-3-Based Graph Trimming

In the graph trimming problem, there exists only a single variable and a single
constraint. Therefore, AC-3, as shown in Algorithm 5, can be simplified when
applied to graph trimming. The idea is straightforward: (1) for all vertices
in a graph, the vertices with zero out-degrees are removed; (2) this process
is repeated until the graph does not change. This naive trimming method is
widely used (Hong et al., 2013; Slota et al., 2014; Ji et al., 2018; Chen et al.,
2018) for quickly removing the size-1 SCCs, but the correctness and complex-
ities are not formally discussed. In this section, we revisit the existing parallel
AC-3-based algorithm for graph trimming and formally discuss the correctness
and complexities. The sequential AC-3-based algorithm is immediate and not
discussed further.

3.6.1 The Parallel AC-3-Based Algorithm

Algorithm 6 shows the detailed steps of the parallel AC-3-based algorithm
for graph trimming. The procedure ZeroOutDegree(v) (lines 11 - 14) returns
TRUE if vertex v has at least one available outgoing edge and FALSE otherwise.
All vertices in V are initialized as LIVE. After partitioning V into V1 . . . VP ,
we have P workers execute the procedure Trimp(Vp) in parallel (lines 4 and 5).
The main procedure Trimp(Vp) (lines 7 - 10) removes the vertices in Vp that
have an out-degree of zero. The removing process repeats until the graph does
not change (lines 2 - 6). One advantage of this algorithm is that it is easy to
parallelized: each copy of procedure Trimp(Vp) for a worker p (line 5) can run
in parallel with only change as the sole shared variable.

For the specific implementations in (Hong et al., 2013; Ji et al., 2018; Chen
et al., 2018), there are two strategies to improve the AC-3-based algorithm for
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Algorithm 6: Parallel AC-3-based Graph Trimming

input : Graph G = (V,E)
output: Trimmed Graph G

1 for v ∈ V do v.status ← LIVE

2 repeat
3 change ← false
4 partition V into V1 . . . VP
5 Trim1(V1)∥ . . . ∥ TrimP(VP)

6 until ¬ change

7 procedure Trimp(Vp)

8 for v ∈ Vp : v.status = LIVE do
9 if ZeroOutDegree(v) then

10 v.status ← DEAD; change ← true

11 procedure ZeroOutDegree(v)
12 for w ∈ v.post with w.status = LIVE do
13 return false
14 return true

graph trimming.

• If the transposed graph GT is loaded in memory, another constraint can
be considered, that each vertex v ∈ V must have at least one available
incoming edge. That means the in-degree also be checked (line 9). In
this case, more size-1 SCCs can be quickly trimmed. The problem is
that the transposed graph is required, which costs O(n + m) memory
space.

• The number of repetitions can be limited to a constant number like 3
or the repetitions stop when the number of removed vertices is less than
a threshold like 100 (line 6). The problem is that some of the trimable
vertices may not be removed. This strategy is sometimes effective at
reducing the computational time but sometimes not, since the worst-
case time complexity is not improved.

Correctness. For the correctness, trimming has to be sound and complete.
Soundness means that all removed vertices, which are assigned a status of
DEAD, must have no outgoing edges or only edges to removed vertices:

sound(V ) ≡ ∀v ∈ V : v.status = DEAD =⇒
(∀w ∈ v.post : w.status = DEAD)

(3.6.1)

29



Ph.D. Thesis—B. Guo McMaster University—Computer Science

Completeness means that all vertices that have no outgoing edges or have only
outgoing edges to removed vertices are removed:

complete(V ) ≡ ∀v ∈ V : (∀w ∈ v.post : w.status = DEAD) =⇒
v.status = DEAD

(3.6.2)

The algorithm has to ensure both soundness and completeness for all vertices
in the graph:

sound(V ) ∧ complete(V ) (3.6.3)

which is equivalent to:

∀v ∈ V : v.status = DEAD ≡ (∀w ∈ v.post : w.status = DEAD) (3.6.4)

For arguing about the correctness of for-loops, we use following rule: con-
sider the loop for x ∈ X do S and let P (X ′) be a predicate. If (1) initially
P (∅) holds and (2) under precondition P (X ′) the body S establishes postcon-
dition P (X ′ ∪ {x}) for any X ′ ⊂ X and x ∈ X \X ′, then finally P (X) holds;
X ′ is the set of visited elements and P (X ′) is the loop invariant.

Theorem 3.6.1 (Soundness). For any G = (V,E) Algorithm 6 terminates
with sound(V ).

Proof. The invariant of the for-loop of Trimp (lines 8-10) is sound(V
′): initially

that holds as the universal quantification in sound(V ′) is empty. The invariant
is preserved as v.status is only set to DEAD if the status of all w ∈ v.post
is DEAD (lines 9 and 10). We use the fact that ZeroOutDegree(v) returns
(∀w ∈ v.post : w.status = DEAD). The postcondition of Trimp(Vp) is therefore
sound(Vp). The postcondition (line 5) is then sound(V1) ∧ . . . ∧ sound(VP),
which is equivalent to sound(V ). Thus sound(V ) is the invariant of the repeat-
until loop (lines 2 - 6) and therefore holds on termination.

Theorem 3.6.2 (Completeness). For any G = (V,E) Algorithm 6 terminates
with complete(V ).

Proof. The invariant of the for-loop of Trimp (lines 8-10) is ¬change =⇒
complete(V ′), where V ′ is the set of visited vertices. If change is TRUE, the
invariant is obviously preserved as change is not set to FALSE in this or any
other parallel copy of Trimp. Suppose change is FALSE and complete(V ′) holds.
For v ∈ V \ V ′ that remains LIVE, the procedure ZeroOutDegree(v) (line 9),
which computes (∀w ∈ v.post : w.status = DEAD), must return false. Since
setting v .status to DEAD may invalidate complete(V ′ ∪ {v}) for this or some
other parallel copy of Trimp, variable change is set to TRUE, which re-establishes
the invariant for this and all other parallel copies of Trimp.
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Complexities. The complexity of parallel AC-3-based graph trimming has
been discussed in existing work (Hong et al., 2013; Slota et al., 2014; Ji et al.,
2018; Chen et al., 2018), but not with the work-depth model. We adopt the
work-depth model to analyze the time complexity.

Theorem 3.6.3. Algorithm 6 requires O(α(n+m)) expected work, O(αDegout)
depth, and thus O(α(n+m)/P + αDegout) time complexity.

Proof. For the inner for-loop (lines 8 - 10), checking the out-degree of each
vertex v ∈ V requires O(n + m) work in the worst case since all edges may
need to be traversed in case of some vertices are removed. For the outer repeat-
loop (lines 2 - 6), all vertices must be checked again once at least one vertex is
removed. The repetition is carried out α times. Therefore, the expected work
is O(α(n+m)).

We analyze the working depth. For the procedure Trimp, the inner for-loop
(lines 12 and 13) in procedure ZeroOutDegree run in sequential with depth
O(Degout). The repetition (lines 2 - 6) is carried out α times. Therefore,
the theoretical working depth is O(αDegout), and thus the theoretical time
complexity is O(α(n+m)/P + αDegout).

Theorem 3.6.4. The space complexity of Algorithm 6 is O(n).

Proof. Each vertex v ∈ V requires status in memory to record if vertex v is
LIVE or DEAD. Besides status , no other auxiliary data structures are utilized.
Therefore, the space complexity is O(n).

3.7 AC-4-Based Graph Trimming

AC-4 improves the worst-case time complexity of AC-3 by using auxiliary data
structures, supports and counters. Specifically, for each value in its domain,
its supports are recorded, and its total number of supports is recorded with
a counter. When removing one value, the corresponding counters located by
supports are decreased by one. The values whose counters are reduced to zero
must be removed, which may cause other values to be removed. In a word,
the supports and counters are used for efficient propagation after unqualified
values are removed.

The AC-4 algorithm can be applied to graph trimming, which we call
AC-4-based trimming. For a directed graph G = (V,E), the supports can
be simplified as the transposed graph GT = (V,ET ), and the counters can be
implemented by out-degree counters for all vertices v ∈ V , denoted as v.degout .
AC-4-based graph trimming is used in (III et al., 2005) for quickly removing
size-1 SCCs to speed up SCC decomposition; nevertheless, the details of this
algorithm are not discussed, and its parallel version is not given. In this
section, we provide both sequential and parallel AC-4-based algorithms.
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3.7.1 The Sequential AC-4-Based Algorithm

Algorithm 7 shows the detailed steps of the sequential AC-4-based algorithm.
Compared to the AC-3-based algorithm, there are two new data structures:
1) the transposed graphGT = (V,ET ) is required for accessing the predecessors
of a vertex v ∈ V (line 6); 2) a waiting set Q is required for propagation when
processing removed vertices (line 3). The procedure DoDegree(v,Q) (lines 9
- 11) removes the vertex v and puts it into Q for propagation if v is LIVE and
its out-degree counter v.degout is zero. That means all vertices in the waiting
set Q are dead.

Now we explain Algorithm 7. Initially, for all vertices, their status and
out-degree counters are correctly initialized (line 1). For each vertex v ∈ V ,
the out-degree counter is checked by calling procedure DoDegree(v,Q) (line
3). The removed vertices are added into the wait set Q and then propagated to
update the out-degree counters of other vertices (lines 4 - 8). That is, for each
vertex w ∈ Q, all its predecessors’ out-degree counters are off by 1 and then
checked by the procedure DoDegree(v,Q) (lines 6 - 8). During this process,
new vertices may be removed and added into the waiting set Q so that the
algorithm does not terminate until Q becomes empty (line 4).

Algorithm 7: Sequential AC-4-based Graph Trimming

input : Graph G = (V,E) and its transposed graph GT = (V,ET )
output: Trimmed graph G

1 for v ∈ V do v .status , v .degout ← LIVE, |v(G).post |
2 for v ∈ V with v.status = LIVE do
3 Q← ∅; DoDegree(v,Q)

4 while Q ̸= ∅ do
5 remove a vertex w from Q
6 for v′ ∈ w(GT ).post do
7 v′.degout ← v′.degout − 1
8 DoDegree(v′, Q)

9 procedure DoDegree(v,Q)

10 if v.degout = 0 ∧ v.status = LIVE then
11 v.status ← DEAD;Q← Q ∪ {v}

Correctness. We show soundness and completeness together.

Theorem 3.7.1 (Soundness and Completeness). For any G = (V,E) Algo-
rithm 7 terminates with sound(V ) and complete(V ).

Proof. Let V ′ be the set of vertices visited by the outer for-loop (lines 2 - 8).
The invariant of the outer for-loop (lines 2 - 8) is that all vertices are sound,
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all visited vertices are complete, and that for each vertex v ∈ V ′ the counter
v.degout is the number of live vertices of outgoing edges:

sound(V ) ∧ complete(V ′)
∧ (∀v ∈ V : v.degout = |{w ∈ v.post | w.status = LIVE}|)

The invariant holds initially as setting all vertices to LIVE makes them sound
and V ′ is initially empty.

The invariant of the while-loop (lines 4 - 8) is that all states are sound, but
setting a vertex to DEAD may lead to its predecessors being incomplete; also,
all vertices in Q have been set to DEAD and all v′.degout are off by one where
v′ are all vertices with a successor in Q,

sound(V ) ∧ complete(V ′ \Q.pre) ∧ (∀v ∈ Q : v.status = DEAD)
∧ (∀v ∈ V : v.degout = |{u ∈ v.post | u.status = LIVE ∨ u ∈ Q}|)

where Q.pre = (∪ q ∈ Q : q.pre). Since the while-loop terminates only when
Q = ∅, it follows that the invariant of the outer for-loop is preserved. We now
argue that the while-loop preserves this invariant:

– sound(V ) is preserved as v ∈ V is set to DEAD only if v.degout = 0, which
implies that there cannot be LIVE vertices in v.post .

– complete(V ′\Q.pre)) is preserved as v ∈ V ′\Q.pre is completed vertices
and v is indeed set to DEAD if v.degout = 0, which implies that there
cannot be LIVE vertices in v.post .

– ∀v ∈ Q : v.status = DEAD is preserved as v is added to Q only after v is
set to DEAD.

– ∀v ∈ V : v.degout = |{u ∈ v.post | u.status = LIVE∨u ∈ Q}| is preserved
as v.degout is initialized as the number of available out-going edges and
decremented only when removed successors propagated.

At the termination of the outer for-loop (lines 2 - 8 ), we getQ = ∅ and V ′ =
V . The postcondition of the outer for-loop is sound(V ) ∧ complete(V ).

Complexities.

Theorem 3.7.2. The worst-case time complexity of Algorithm 7 is O(n+m).

Proof. The out-degree counter v.degout for all vertices can be initially calcu-
lated within O(n+m) time (line 1) as each edge is traversed once. Each vertex
v ∈ V can be removed and then added into the waiting set Q at most once
(lines 10 and 11); each reversed edge in v(GT ).post is traversed at most once
(lines 6 - 8). In this case, in lines 2 - 8, we get a running time of O(n +m).
Therefore, the total worst-case running time is O(n+m).
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Theorem 3.7.3. The space complexity of Algorithm 7 is O(n+m).

Proof. In line 7, the transposed graph GT = (V,ET ) is used. In this case, in
order to generate GT , the whole graph G = (V,E) must be stored in memory,
which requires O(n + m) space. For all vertices v ∈ V , storing v.degout and
v.status uses O(n) space. Therefore, the total used space is O(n+m).

3.7.2 The Parallel AC-4-Based Algorithm

Algorithm 8 shows the detailed steps of the parallel AC-4-based algorithm.
All vertices in V are partitioned into V1 . . . VP (line 2) so that P workers can
execute the procedure Trimp(Vp) in parallel (line 3). Compared with Algorithm
7, there are three refinements. First, each worker p ∈ [1...P ] has its private
waiting set Qp for propagation (line 6) so that the operations on Qp do not
require to be synchronized. Secondly, the out-degree counter degout has to be
updated by the atomic primitive fetch&add FAA since multiple workers may
decrease such a counter (line 11). Thirdly, it is possible that v.degout = 0 (in
line 13) is detected by multiple workers; we use the atomic primitive CAS to set
the v.status from LIVE to DEAD (line 13) and return TRUE if successful, which
ensures that v is added into a single one waiting set Qp (line 14).

Algorithm 8: Parallel AC-4-based Graph Trimming

input : Graph G = (V,E) and its transposed graph GT = (V,ET )
output: Trimmed graph G

1 for v ∈ V do v.status , v.degout ← LIVE, |v.post |
2 partition V into V1, . . . , VP
3 Trim1(V1) ∥ . . . ∥ TrimP(VP)

4 procedure Trimp(Vp)

5 for v ∈ Vp with v.status = LIVE do
6 Qp ← ∅; DoDegreep(v)
7 while Qp ̸= ∅ do
8 remove a vertex w from Qp

9 for v′ ∈ w(GT ).post do
10 FAA(v′.degout ,−1)
11 DoDegreep(v

′, Qp)

12 procedure DoDegreep(v,Qp)

13 if v.degout = 0 ∧ CAS(v.status, LIVE, DEAD) then
14 Qp ← Qp ∪ {v}
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Correctness. We show the soundness and completeness together.

Theorem 3.7.4 (Soundness and Completeness). For any G = (V,E) Algo-
rithm 8 terminates with sound(V ) and complete(V ).

Proof. The invariant of the while-loop (lines 4 - 8) in procedure Trimp(Vp) is
the same as that in Algorithm 7 except that it adds one more conjunct. That
is, a removed vertex can only be added into a single one Qp for propagation.

sound(Vp) ∧ complete(V ′
p \Qp.pre) ∧ (∀v ∈ Qp : v.status = DEAD)

∧ (∀v ∈ V : v.degout = |{u ∈ v.post | u.status = LIVE ∨ u ∈ ∪Q1..P}|)
∧ (∀i, j ∈ {1..P} : i ̸= j =⇒ Qi ∩Qj = ∅)

We now argue that the while-loop preserves this invariant:

– (∀v ∈ V : v.degout = |{u ∈ v.post | u.status = LIVE ∨ u ∈ ∪Q1..P}|) is
preserved as v.degout is off by one atomically when a worker is decreasing.

– (∀i, j ∈ {1..P} : i ̸= j ∧Qi ∩Qj = ∅) is preserved as v.status is set from
LIVE to DEAD by the atomic primitive CAS and only when successful, v
is added to one Qp.

The postcondition of line 3 is then sound(V1)∧complete(V1) . . . sound(VP)∧
complete(VP), which is equivalent to sound(V ) ∧ complete(V ).

Complexities.

Theorem 3.7.5. Algorithm 8 requires O(n + m) expected work,
O(|Qp|DeginDegout) depth, and thus O((n + m)/P + |Qp|DeginDegout)
time complexity.

Proof. This algorithm has the same framework as Algorithm 7, so the total
expected work equals the running time of Algorithm 7, that is O(n + m).
The initial for-loop (lines 1) can easily run in parallel within expected depth
O(Degout).

We analyze the working depth for the procedure Trimp. For each round of
the outer while-loop (lines 7 - 11), it runs with depth |Qp| which is the upper-
bound size of waiting sets among P workers. As Qp is private for worker p
without synchronization, it is possible that |Qp|≥ α. The most inner for-loop
(line 9) runs sequentially with depth O(Degin), and the out-degree counters
have to concurrently update with depth Degout . Therefore, the total working
depth is O(αDeginDegout) and thus the worst-case time complexity is O((n +
m)/P + αDeginDegout).

Theorem 3.7.6. The space complexity of Algorithm 8 is O(n+m).
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Proof. By using the atomic primitive CAS in line 12, each vertex v ∈ V may
be removed at most once and then put into at most single one waiting set
Qp, so all waiting set for P workers require O(n) space. Similar to Algorithm
7, storing degout and status requires O(n) space and the reverse edges require
O(n+m) space (line 8). Therefore, the total used space is O(n+m).

3.8 AC-6-Based Graph Trimming

As mentioned, AC-4 has better worst-case time complexity than AC-3, but
AC-4 always has a worse average running time than AC-3. Additionally, AC-4
does not have the on-the-fly property. AC-6 improves AC-4 by only recording
one support for each value since one support is enough to guarantee that a
value is viable. In this case, compared with AC-4, AC-6 performs better in
many applications, requires less space usage, and has the on-the-fly property.

To the best of our knowledge, we are the first to introduce AC-6 to graph
trimming and call it the AC-6-based algorithm. The idea is novel: 1) each
vertex v maintains a set of vertices v.S that choose v as an available outgoing
edge; 2) when removing v as it has no outgoing edges, each vertex w ∈ v.S
has to find another available outgoing edge to replace v; otherwise, w has
to be removed; 3) this process repeats until no vertices can be removed. In
this section, we propose new sequential and parallel AC-6-based algorithms
for graph trimming, which is the main contribution of this work.

3.8.1 The Sequential AC-6-Based Algorithm

Analogous to AC-6, the AC-6-based trimming algorithm is based on the con-
cept of support. That is, for each vertex v in a given directed graph G, the
support of v is one of v’s available outgoing edges and v cannot be removed if
v’s support exists. One auxiliary data structure, the supporting set, is needed
to store all the supports for propagation, which is formally defined below.

Definition 3.8.1 (Supporting Set). Given a directed graph G = (V,E), for
a vertex v ∈ V , the supporting set v.S of v is the set of predecessors that
choose v as their single one support: (∀v ∈ V : v.S ⊆ {u ∈ v.pre | u.status =
LIVE}) ∧ (∀v ∈ V : v.S ̸= ∅ =⇒ v.status = LIVE) ∧ (∀u, v ∈ V : u ̸=
v =⇒ u.S ∩ v.S = ∅).

In other words, v.S records all LIVE vertices that have v as their support.
Absolutely, v must be LIVE if the vertices in v.S choose v as a support as an
existing support has to be an available outgoing edge; a vertex can be added
into at most one supporting set as each vertex only needs to maintain single
one support.
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Figure 3.2: Steps of the sequential AC-6-based trimming algorithm based on
part of the graph in Figure 3.1.

Figure 3.2 illustrates the AC-6-based algorithm based on the part of the
example graph in Figure 3.1. The dashed red arrows are the edges visited to
find available supports and then added to the corresponding supporting set
v.S. Each vertex is successively visited from v1 to v5 as shown in Figure 3.2 (a)
to (e). In Figure 3.2 (a), v1 is visited and its first support v4 is found with
vertex v1 added into v4.S. In Figure 3.2 (b), v2 is removed since v2 has no
outgoing edges; no propagation happens as v2.S is empty. In Figure 3.2 (c),
v3 is visited and its first support v5 is found with v3 added into v5.S. In
Figure 3.2 (d), v4 is visited and its first support v5 is found with v3 added into
v4.S. In Figure 3.2 (e), v5 is removed as it cannot find any support; since v5.S
includes v3 and v4 the propagation happens as follow: v3 finds a next available
support v4 with v3 added into v4.S, and the v4 is failed to find a next available
support so that v4 should be removed in the next step. In Figure 3.2 (f),
v4 is removed; since the supporting set v4.S includes vertices v1 and v3 the
propagation happens as follow: v1 finds a next available support, v3, which is
added into v4.S, and v3 fails to find a next available support so that v3 should
be removed in the next step. In Figure 3.2 (g), the vertex v3 is removed and
v1 ∈ v3.S should be further propagated. Finally, v1 should also be removed
as it has no outgoing edges. As we can see, AC-6-based trimming can remove
some of the vertices without propagation, e.g. v2.

Algorithm 9 shows the detailed steps of the sequential AC-6-based algo-
rithm. For each vertex v in the graph, a supporting set v.S is required for
recording the vertices that choose v as an available support. We first consider
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Algorithm 9: Sequential AC-6-based Graph Trimming

input : Graph G = (V,E)
output: Trimmed graph G

1 for v ∈ V do v.status , v.S ← LIVE, ∅
2 for v ∈ V do
3 Q← ∅; DoPost(v)
4 while Q ̸= ∅ do
5 remove a vertex w from Q
6 for v′ ∈ w.S do
7 w.S ← w.S \ {v′}
8 DoPost(v′)

9 procedure DoPost(v)
10 for w ∈ v.post with w.status = LIVE do
11 w.S ← w.S ∪ {v}; v.post← v.post \ {w}; return
12 v.status ← DEAD; Q← Q ∪ {v}

the procedure DoPost(v) (lines 9 - 12). If v successfully finds a live succes-
sor w, then w is added to v.S and the procedure finishes (lines 10 and 11).
Otherwise, v has to be removed from the graph as v has no available outgoing
edges, and v is set to DEAD and then put into the waiting set Q (line 12). Note
that, the visited vertex w is removed from v.post to avoid redundant checking
(line 11), which can ensure that each edge is visited at most once. Now we
explain the main algorithm (lines 1 - 8). Initially, all vertices are LIVE and
their supporting sets are empty (line 1). For each vertex v ∈ V , the support
v.s is checked by the procedure DoPost(v) (line 3) and the removed vertices are
added into Q for propagation (lines 4 - 8). That is, a vertex w ∈ Q is removed
from Q (line 5) and for all the vertices in w.S are checked by the procedure
DoPost(v′) (lines 6 - 8). This propagation is repeated until Q is empty (line
4), as vertices may be removed and added into Q by the procedure DoPost(v′)
(line 8).

Correctness. We show the soundness and completeness together.

Theorem 3.8.1 (Soundness and Completeness). For any G = (V,E) Algo-
rithm 9 terminates with sound(V ) and complete(V ).

Proof. Let V ′ be the set of vertices visited by the outer for-loop (lines 2 - 8).
The invariant of the outer for-loop is that all vertices are sound, all visited
vertices are complete, all visited LIVE vertices must have a support, and that
for each vertex v ∈ V the supporting set v.S includes all visited vertices that
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choose v as their single one support:

sound(V ) ∧ complete(V ′) ∧ (∀v ∈ V ′ : v.status = LIVE =⇒ v ∈ S)

∧ (∀v ∈ V : v.S ⊆ {u ∈ v.pre | u.status = LIVE ∧ u ∈ V ′})
∧ (∀v ∈ V : v.S ̸= ∅ =⇒ v.status = LIVE)
∧ (∀u, v ∈ V : u ̸= v =⇒ u.S ∩ v.S = ∅)

where S = (∪ v ∈ V : v.S). The invariant holds initially as setting all vertices
to LIVE and V ′ is empty.

The invariant of the while-loop (lines 4 - 8) is that all states are sound but
setting a vertex to DEAD may lead to its predecessors to be incomplete; also,
all vertices w ∈ Q are set to DEAD and all vertices in w.S have to update their
support.

sound(V ) ∧ complete(V ′ \Q.S) ∧ (∀v ∈ Q : v.status = DEAD)

∧ (∀v ∈ V ′ : v.status = LIVE =⇒ v ∈ S)

∧ (∀v ∈ V : v.S ⊆ {u ∈ v.pre | u.status = LIVE ∧ u ∈ V ′})
∧ (∀v ∈ V : v.S ̸= ∅ =⇒ v.status = LIVE ∨ v ∈ Q)
∧ (∀u, v ∈ V : u ̸= v =⇒ u.S ∩ v.S = ∅)

where S = (∪ v ∈ V : v.S) and Q.S = (∪ q ∈ Q : q.S). Since the while-loop
terminates only when Q = ∅, it follows that the invariant of the outer for-loop
is preserved.

We now argue that the while-loop preserves this invariant:

– sound(v) is preserved as v ∈ V is set to DEAD if w cannot find a support
in v.post, which implies that there cannot be LIVE vertices in v.post.

– complete(V ′ \ Q.S) is preserved as v ∈ V ′ \ Q.S is indeed set to DEAD

if the support of v not exists, which implies that there cannot be LIVE

vertices in v′.post.

– ∀v ∈ Q : v.status = DEAD is preserved as v is added to Q only after v is
set to DEAD.

– ∀v ∈ V ′ : v.status = LIVE =⇒ v ∈ S is preserved as v has to find a
support after being visited if v is LIVE.

– ∀v ∈ V : v.S ⊆ {u ∈ v.pre | u.status = LIVE ∧ u ∈ V ′} is preserved as
the visited vertices u ∈ V ′ is LIVE when choosing v as a support.

– ∀v ∈ V : v.S ̸= ∅ =⇒ v.status = LIVE ∨ ∧v ∈ Q is preserved as new
vertices can be added into v.S if v is LIVE, and after setting v to DEAD

and adding into Q all vertices in v.S will find next available support.
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– ∀u, v ∈ V : u ̸= v =⇒ u.S ∩ v.S = ∅ is preserved as each vertex
maintains at most single one support.

At termination of the outer for-loop (lines 2 - 8), we get Q = ∅ and V ′ = V .
The postcondition of the outer for-loop is sound(V ) ∧ complete(V ).

Complexities.

Theorem 3.8.2. The time complexity of the Algorithm 9 is O(n+m).

Proof. Each vertex v ∈ V can be removed and then added into the waiting
set Q at most once. In the procedure DoPost(v), each outgoing edge of v
is traversed at most once to find the support (lines 10 and 11) as the visited
vertex w is removed from v.post to avoid repetitive visiting. In this case, The
most inner for-loop (lines 6 - 8) calls procedure DoPost(v) to find a support
for vertex v. Therefore, with this assumption, the worst-case time complexity
is O(n+m).

Theorem 3.8.3. The space complexity of the Algorithm 9 is O(n).

Proof. The global waiting set Q has a maximum size of O(n) as each vertex
v ∈ V can be set to DEAD and added into Q at most once. The supporting sets
have the total size at most O(n) as each vertex v ∈ V has at most one support
recorded in a corresponding supporting set. Obviously, status requires O(n)
space. Therefore, the worst-case space complexity is O(n).

3.8.2 The Parallel AC-6-Based Algorithm

Algorithm 10 shows the detailed steps of the parallel AC-6-based trimming
algorithm. Compared with the sequential AC-6-based trimming in Algorithm
9, there are two refinements. First, each worker p ∈ [1 . . .P ] has its private
waiting setQp for propagation so that the synchronization onQp is unnecessary
(lines 6, 8, and 19). Secondly, the supporting set w.S for each vertex w ∈ V
can concurrently have new vertices added by multiple workers synchronized
by locking (lines 14 - 17). When adding vertices to w.S, vertex w has to be
LIVE (line 15) as no vertices can be added to w.S after setting w to DEAD. When
setting vertex v to DEAD, we have to lock v to ensure that no other workers
are adding vertices to v.S; otherwise, after v is added into Q and propagated
(lines 19 and 8 - 11), other workers still have possibility to add vertices into
v.S which can never be propagated. In other words, we lock v.S when setting
v from LIVE to DEAD to ensure that all vertices in v.S are propagated together.
Note that, when removing vertices from w.S (line 10), it is unnecessary to lock
w.S as currently w is DEAD so that no workers can add vertices into w.S and
w is only accessed by a single worker, p.
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We implement the lock by the CAS primitive with busy waiting (lines 20 and
21). Here, the busy waiting is suitable as there are at most two operations
within locking (lines 15 and 16) so that the expected waiting time is really
short.

Algorithm 10: Parallel AC-6-based Graph Trimming

input : G = (V,E)
output: Trimmed graph G

1 for v ∈ V do v.S, v.status ← ∅, LIVE; Unlock(v)
2 partition V into V1, . . . , VP
3 Trim1(V1) ∥ . . . ∥ TrimP(VP)

4 procedure Trimp(Vp)

5 for v ∈ Vp do
6 Qp = ∅; DoPostp(v,Qp)

7 while Qp ̸= ∅ do
8 remove a vertex w from Qp

9 for v′ ∈ w.S do
10 w.S ← w.S \ {v′}
11 DoPostp(v

′, Qp)

12 procedure DoPostp(v,Qp)

13 for w ∈ v.post with w.status = LIVE do
14 Lock(w)
15 if w.status = LIVE then
16 w.S ← w.S ∪ {v}; Unlock(w); return
17 Unlock(w)

18 Lock(v); v.status ← DEAD; Unlock(v)
19 Qp ← Qp ∪ {v}

20 procedure Lock(w)
21 while ¬ CAS(w.lock , FALSE,TRUE) do skip

22 procedure Unlock(w)
23 w.lock ← FALSE

Correctness.

Theorem 3.8.4 (Soundness and Completeness of Parallel AC-6-based Trim-
ming). For any G = (V,E) Algorithm 10 terminates with sound(V ) and
complete(V ).

Proof. The invariant of the while-loop (lines 4 - 8) in procedure Trimp(Vp) is
the same as that in Algorithm 7 except that it adds one more conjunct. That
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is, a removed vertex can only be added into a single one Qp for propagation.

sound(Vp) ∧ complete(V ′
p \Qp.S) ∧ (∀v ∈ Qp : v.status = DEAD)

∧ (∀v ∈ V ′
p : v.status = LIVE =⇒ v ∈ S)

∧ (∀v ∈ Vp : v.S ⊆ {u ∈ v.pre | u.status = LIVE ∧ u ∈ V ′})
∧ (∀v ∈ Vp : v.S ̸= ∅ =⇒ v.status = LIVE ∨ v ∈ Qp)

∧ (∀u, v ∈ Vp : u ̸= v =⇒ u.S ∩ v.S = ∅)
∧ (∀i, j ∈ {1..P} : i ̸= j =⇒ Qi ∩Qj = ∅)

where S = (∪ v ∈ V : v.S), Qp.S = (∪ q ∈ Qp : q.S), and V ′ = ∪V ′
1..P . In

the algorithm, for each vertex v, multiple workers add new vertices into v.S
concurrently, and during this time v cannot be set to DEAD. We now argue that
the while-loop preserves this invariant:

– ∀v ∈ Vp : v.S ⊆ {u ∈ v.pre | u.status = LIVE ∧ u ∈ V ′} is preserved as v
is locked when a worker is adding new vertices to v.S.

– ∀v ∈ Vp : v.S ̸= ∅ =⇒ v.status = LIVE ∨ (v.status = DEAD ∧ v ∈ Qp) is
preserved as 1) v is locked when the worker p setting v to DEAD to ensure
that after setting v to DEAD no vertices can be added into v.S by other
workers, and 2) only the current worker p can set v to DEAD and add v
to the private set Qp.

– ∀i, j ∈ {1..P} : i ̸= j ∧ Qi ∩ Qj = ∅ is preserved as only single one
worker p can add v to Qp after setting v to DEAD.

At the termination of outer for-loop (lines 2 - 8), we get Qp = ∅ and
V ′
p = Vp. The postcondition of line 3 is then sound(V1) ∧ complete(V1) ∧ . . . ∧

sound(VP)∧complete(VP), which is equivalent to sound(V )∧complete(V ).

Complexities.

Theorem 3.8.5. The Algorithm 10 requires O(n + m) expected work,
O(|Qp|Degin2) depth, and O((n+m)/P + |Qp|Degin2) time complexity.

Proof. This algorithm has the same framework as Algorithm 9, so the total
expected work equals the running time of Algorithm 9, that is O(n+m). The
initial for-loop (lines 1) can run in parallel within expected depth O(1).

We analyze the working depth for procedure Trimp. For each round of the
outer while-loop (lines 7 - 11), it runs with depth |Qp| which is the upper-
bound size of waiting sets among P workers. As Qp is private for a worker
p without synchronization, it is possible that |Qp|≥ α. The most-inner for-
loop (line 9) runs sequentially with depth Degin as Degin is the upper-bound
size for a supporting set. The supporting sets concurrently add new vertices
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with depth Degin (line 16). The locking operation (lines 14 and 18) needs
to busy-check by the CAS primitive only a few times with high probability as
there are at most two operations within the lock. Therefore, the total working
depth is O(|Q|Degin2) with high probability and the worst-case running time
is O((n+m)/P + |Q|Degin2) with high probability.

Theorem 3.8.6. The space complexity of Algorithm 10 is O(n), which equals
to its sequential version Algorithm 9.

Proof. Each vertex v ∈ V may be removed at most once and then put into at
most one waiting set Qp, so all waiting sets require O(n) space. Each vertex
has at most one support which is stored into the corresponding supporting
set and thus the total size of all supporting sets is O(n). The status for each
vertex v ∈ V has the size of O(n). Therefore, the total space complexity is
O(n).

3.9 Implementation

Parallelism. For simplicity, our parallel trimming algorithms sacrifice some
parallelism. That is, the most inner for-loop can run in parallel (lines 12 - 13
in Algorithm 5, lines 9 - 11 in Algorithm 8, and lines 9 -11 in Algorithm 10);
the private waiting set Qp for a worker p can be balanced in Algorithm 8 and
Algorithm 10) so that Qp has at most α vertices. As shown in Table 3.3, the
working depth can be improved if we achieve full parallelism. However, the
scheduler will be challenged to parallel inside each worker p efficiently. One
solution is to maintain a frontier (subset) of all affected vertices, and in each
step all vertices in a frontier can be processed in parallel (Defo et al., 2019).

Worst-Case (O)
Trimming Work Depth Space

AC-3-based α(n+m) α n
AC-4-based n+m αDegout n+m
AC-6-based n+m αDegin n

Table 3.3: The worst-case work, depth, time, and space complexities of full
parallelized graph trimming algorithms.

In practice, our algorithms can be highly parallelized. There are two rea-
sons. First, most real graphs always have millions of edges, and |Q|, Degin ,
and Degout are relatively much smaller than n+m. Secondly, multi-core ma-
chines always have a limited number of workers, e.g. P = 32. Therefore, our
trimming algorithms can achieve a load balance among multiple workers with
high probability.
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Traverse Edges. Since the edges are linearly stored in memory, we can
optimize the implementation of trimming algorithms. In the procedure
ZeroOutDegree of Algorithm 6, for vertex v only the first LIVE edge needs
to be found. In this case, each vertex can maintain an index edge index to
record the position of visited edges. In the next round, we can “jump” over
the edges that have already visited. By doing this, we can reduce the number
of traversed edges to a certain degree. Similarly, we can apply this strategy to
the procedure DoPost of Algorithm 9 and Algorithm 10; by doing this, each
edge can be traversed at most once.

Cache-Friendliness. For multi-core architectures, contiguous memory ac-
cessing is much faster than random memory accessing because of the possibility
of pre-fetching by L1, L2, and L3 caches. Of course, accessing cache is faster
than accessing the memory by an order of magnitude. For explicit graphs
stored in memory, the cache can affect the running time by an order of mag-
nitude. A cache-friendly program has a large portion of contiguous memory
accessing that can fully utilize the cache to obtain speedup. In contrast, a
cache-unfriendly program has a large portion of random memory accessing
that can not efficiently utilize the cache.

Since all edges are stored in contiguous memory as CSR format for a tested
graph, we compare the cache property of three different graph trimming meth-
ods together as follow:

• AC-3-based Graph Trimming is cache-friendly as all edges are stored in
an array and can be traversed sequentially with a high cache hit rate.

• AC-4-based Graph Trimming is less cache-friendly as each vertex v are
traversed almost randomly, but v’s edges are traversed sequentially with
a medium cache hit rate.

• AC-6-based Graph Trimming is least cache-friendly as for each vertex v,
both v and v’s edges are traversed almost randomly with low cache hit
rate.

Memory Usage. We compare the practical memory usage in Table 3.4.
Assume that storing a vertex or an integer takes H bits. All three algorithms
require 1 bit for the status of each vertex, in total n bits. For both AC4Trim
and AC6Trim, there are P waiting sets Q1 . . . QP , in total nH bits, since each
vertex can be put into Qp at most once. For AC4Trim, a reversed graph has
to be loaded into memory, in total (n +m)H bits; each vertex maintains an
out-degree counter degout , in total nH bits. For AC6Trim, each vertex has a
supporting set S, in total nH bits, since each vertex can be put into a set S
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at most once. For AC3Trim and AC6Trim, each vertex maintains an index
edge index to “jump” over the visited edges, in total nH bits.

AC3-based AC4-based AC6-based

bit[n]: ∀v.status bit[n]: ∀v.status bit[n]: ∀v.status
bit[nH]:∀v.edge index bit[nH]: ∀v.degout bit[n]: ∀v.lock

bit[nH]: Q1 . . . QP bit[nH]:∀v.edge index
bit[(n+m)H]: GT bit[nH]: ∀v.S

bit[nH]: Q1 . . . QP

Table 3.4: Compare the memory usage for AC3Trim, AC4Trim and
AC6Trim, where storing a vertex takes H bits.
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3.10 Experiments

In this section, we evaluate three different parallel algorithms for graph trim-
ming:

• the AC-3-based trimming algorithm (Hong et al., 2013; Ji et al., 2018)
(AC3Trim for short),

• the AC-4-based trimming algorithm (III et al., 2005) (AC4Trim for
short),

• the AC-6-based trimming algorithm (AC6Trim for short).

The experiments are performed on a server with an AMD CPU (16 cores,
32 hyper-threads, 32 MB of last-level cache) and 96 GB main memory. The
server runs the Ubuntu Linux (18.04) operating system. All tested algorithms
are implemented in C++ and compiled with g++ version 7.3.0 with the -
O3 option 1. OpenMP (Dagum and Menon, 1998) version 4.5 is used as the
threading library. We perform every experiment at least 50 times (at least 10
times for time-consuming experiments) and calculate their means with 95%
confidence intervals.

We first give in total 15 real and synthetic benchmark graphs. Before the
evaluation, we discuss the workload balance. Then, over these tested graphs,
we evaluate the number of traversed edges and then compare the real running
times by varying the workers from 1 to 32. We also evaluate the stability and
scalability by using 16 workers.

3.10.1 Graph Benchmarks

We evaluate the performance of our method on a variety of model checking,
real-world, and synthetic graphs shown in Table ??.

• The cambridge.6, bakery.6 and leader-filters.7 graphs come from the
model checking problems in the BEEM database (Pelánek, 2007), which
are implicit and can be generated on-the-fly. For convenience, these
graphs are converted to explicit graphs (Bloemen et al., 2016) and stored
in files.

• The livej, patent, and wikitalk graphs are obtained from SNAP (?)
2; they represent the Live-Journal social network (?), the U.S patent
dataset is maintained by the National Bureau of Economic Research (?),

1All our implementations, benchmarks, and results are available at https://github.

com/Itisben/graph-trimming.git
2https://snap.stanford.edu
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and Wikipedia Talk (communication) network (?), respectively. The db-
pedia, baidu, and wiki-talk-en graphs are collected from the University of
Koblenz-Landau (?); they represent the DBpedia network (Auer et al.,
2007), the hyperlink network between the articles of the Baidu (?) ency-
clopedia, and the communication network of the English Wikipedia (Sun
et al., 2016), respectively.

• The com-friendster, twitter and twitter-mpi are three super large graphs
with billions of edges obtained from the Network Repository (?) 3; they
represent the online gaming social network (?), the follower network from
Twitter (?), the Twitter follow data collected in 2009 (?), respectively.

• The ER, BA, and RMAT graphs are synthetic graphs; they are generated
by the SNAP (?) system using the Erdös-Rényi graph model (which
generates a random graph), the Barabasi-Albert graph model (which
generates a graph with power-law degree distribution), and the R-MAT
graph model (which generates large-scale realistic graph similar to social
networks), respectively; for these generated graphs, the average degree
is fixed to 8 by choosing 1, 000, 000 vertices and 8, 000, 000 edges.

All these graphs are stored in the Compressed Sparse Row (CSR) binary for-
mat (Hong et al., 2012, 2013), which is compact and memory bandwidth-
friendly. Taking the super large graph twitter for example, the text file that
includes all edges requires 30 GB while the CSR binary format only requires
6 GB.

Table ?? provides an overview of the 15 tested graphs. For some graphs,
e.g. cambridege.6 and ER, less than 1% of vertices can be trimmed. However,
for most of the other graphs, a high ratio of vertices can be trimmed, especially
for leader-filters.7, BA, and com-friendster, whose vertices can be trimmed al-
together. More importantly, for most graphs, the trimming steps α, maximum
in-degree Degin , and maximum out-degree Degout are always small. When an-
alyzing the parallel time complexity, these three values are associated with the
parallel depths. The small values of the depths indicate that the execution can
be highly parallelized (Blelloch and Maggs, 2010).

3.10.2 Workload Balance

Given a tested graph, all vertices are partitioned into multiple chunks, which
can be dynamically assigned to workers for workload balance. One issue is how
to determine the size of chunks. A large size of chunks may lead to workload
imbalance, while a small size of chunks may lead to a high cost of scheduling.
Since the trend is similar for all tested graphs, we select three typical graphs

3http://networkrepository.com
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Name |V | |E| Degin Degout α %Trim

cambridge.6 3.3M 9.5M 15 6 65 0.25%
bakery.6 11.8M 40.4M 24 4 47 22.26%
leader-filters.7 26.3M 91.7M 12 6 73 100.00%
dbpedia 4.0M 13.8M 473.0K 1.0K 116 36.23%
baidu 2.1M 17.8M 98.0K 2.6 9 27.97%
livej 4.8M 69.0M 14.0K 20.3K 8 12.23%
patent 6.0M 16.5M 779 770 5 100.00%
wiki-talk-en 3.0M 25.0M 121.3K 488.2K 7 87.42%
wikitalk 2.4M 5.0M 3.3K 100.0K 5 94.49%
com-friendster 125M 1.8B 4.2K 3.6K 11.7K 100.00%
twitter 41.4B 1.4B 770.2K 3.9M 6 10.05%
twitter-mpi 52.6B 2.0B 3.5M 780.0K 7 17.52%
ER 1.0M 8.0M 25 24 3 0.03%
BA 1.0M 8.0M 8 5.2K 122 100%
RMAT 1.0M 8.0M 335 1.9K 7.0K 99.98%

Table 3.5: The characteristics for model checking, real-world, and synthetic
graphs. Here, columns denote the number of vertices n, the number of edges
m, the maximum in-degree, the maximum out-degree, the number of peeling

steps, and the percentage of trimmable vertices, respectively.

with a variety of Degin , Degout , and α for the evaluation. In Figure ??, we test
three trimming algorithms over three selected graphs, leader-filters.7, livej, and
wiki-talk-en, that have millions of vertices, by using 16 workers and varying
the chunk size from 1 to 220. All three trimming algorithms tend to be efficient
when choosing a chunk size between 210 and 216. Therefore, in our experiments,
we fix the chunk size to 212 = 4096 for both workload balance and efficient
scheduling.
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Figure 3.3: The practical running time for AC3Trim, AC4Trim and
AC6Trim with 16 workers by varying the chunk size.

The other issue is the upper-bound size of the waiting set Qp for each
worker p in AC4Trim and AC6Trim. Here, Qp is private to worker p, and
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thus the vertices in Qp are processed sequentially by worker p without syn-
chronization. A large size of Qp may lead to workload imbalance. In Table
??, over all tested graphs we show the upper-bound size of Qp, denoted as
|Qp|, for AC4Trim and AC6Trim by using 16 workers. We can see that |Qp|
is relatively small compared with millions of vertices. Further, over all tested
graphs AC6Trim has |Qp| bounded by 900, while AC4Trim has |Qp| up to
20761. Especially, AC6Trim has much smaller values of |Qp| than AC4Trim
for graphs like dbpedia and twitter-mpi. That means that AC6Trim on average
has better workload balance than AC4Trim.

Name AC4Trim |Qp| AC6Trim |Qp|

cambridge.6 17 6
bakery.6 21 52
leader-filters.7 16 103
dbpedia 20761 852
baidu 439 108
livej 274 8
patent 95 55
wiki-talk-en 84 5
wikitalk 33 7
com-friendster 646 677
twitter 293 287
twitter-mpi 15217 327
ER 1 1
BA 66 27
RMAT 299 411

Table 3.6: The upper-bound size of Qp for AC4Trim and AC6Trim by using
16 workers. The best and worst cases are in bold for each column.

3.10.3 Evaluating the Number of Traversed Edges

To evaluate the Arc-Consistency algorithms, the traditional approach is to
count the total number of checked constraints. For each constraint check, a
pair of values in the domain D(Xi) and D(Xj) is checked. Such an evaluation
is reasonable because 1) most of the running time is spent on checking nu-
merous constraints, 2) the time used for checking each constraint significantly
varies for different kinds of arc-consistency problems. Analogous to evaluating
Arc-Consistency algorithms, we compare the total number of traversed edges
of three trimming algorithms. This is especially meaningful for the implicit
graphs since their edges are generated on-the-fly, costing most of the running
time.

In this experiment, we exponentially increase the number of workers from
1 to 32 and count the largest number of traversed edges per worker over graphs
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in Table ??. The plots in Figure ?? depict the maximum number of traversed
edges per worker for the three compared methods. The x-axis is the number
of workers and the y-axis is the number of traversed edges. Also, we choose
the total number of edges in a graph as a baseline (denoted as m). Note that,
for the AC-4-based trimming algorithm, the out-degree counter of each vertex
v in graph is initialized as v.degout = |v.post |. To calculate v.degout , there are
two cases: 1) we can traverse all v’s successors one by one to count the total
numbers of successors (denoted as AC4Trim), which means all v’s edges of
are traversed once; 2) if v′ successors are stored successively, we can take the
difference between the index of v’s first successor and v’s last successor without
traversing the edges (denoted as AC4Trim* ), which means only v is traversed
once and all v’s edges are not traversed. Absolutely, AC4Trim traverses a
higher number of edges than AC4Trim*.

In Figure ??, a first look over nearly all testing graphs reveals that the
number of traversed edges of all three algorithms is linearly decreasing with an
increasing number of workers, which achieves a good load balance. Over most
of the testing graphs, AC6Trim traverses fewer edges compared with AC4Trim
and AC3Trim. AC3Trim sometimes traverses more edges than the baseline m
for some graphs with large α. Specifically, we make four observations:

- Over graphs with a higher value of α, e.g. cambridge.6, bakery.6, leader-
filter.7, dbpedia, com-friendster and RMAT, AC3Trim always traverses much
more edges than both AC4Trim and AC6Trim and even more than the baseline
m. This is because AC3Trim has the worst work complexity O(α(n + m))
which requires α number of repetitions, but AC4Trim and AC6Trim have a
linear work complexity of O(n+m).

- Over the graphs with a lower value of α, e.g. wiki-talk-en and wikitalk,
AC3Trim traverses fewer edges than AC4Trim. This is because AC3Trim ex-
ecutes always close to the best-case time complexity, but AC4 executes always
close to the worst-case time complexity. This is why AC3Trim is sometimes
more powerful than AC4Trim in real-world graphs with a relatively low value
of α.

- Over all graphs, AC6Trim always traverses much fewer edges than
AC4Trim even if they have nearly the same time complexity. The reason is
that AC6Trim can traverse only part of the edges of removed vertices, which
is close to the best-case time complexity. However, AC4Trim has to traverse
all edges to initialize the counters ∀v ∈ V : v.degout and all ingoing edges of re-
moved vertices, which is close to the worst-case time complexities. Therefore,
AC6Trim certainly traverses fewer edges than AC4Trim.

- Over all graphs, for all three methods, the number of traversed edges
is well bounded without obvious variation even these three methods are non-
deterministic. That is, for the number of traversed edges, the affect of non-
determinism can be omitted.
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1-worker vs 16-worker AC3Trim vs AC4Trim vs
Name AC3Trim AC4Trim AC6Trim AC6Trim AC6Trim

cambridge.6 13.04 15.97 11.74 58.29 2.08
bakery.6 12.90 15.61 12.58 25.44 2.22
leader-filters.7 13.22 15.15 13.23 4.71 1.75
dbpedia 14.13 5.94 10.26 42.43 6.69
baidu 13.49 13.07 11.19 5.79 9.35
livej 13.69 15.90 13.38 7.58 13.51
patent 14.63 8.09 15.07 1.04 3.72
wiki-talk-en 13.33 15.76 13.17 4.87 35.33
wikitalk 10.89 15.55 11.05 4.31 36.51
com-friendster 16.78 2.00 1.07 5.57 1.00
twitter 14.54 15.92 14.95 5.45 33.31
twitter-mpi 13.66 15.87 13.56 5.77 32.00
ER 20.00 16.00 12.47 1.87 6.24
BA 5.90 4.84 1.33 0.43 0.55
RMAT 10.23 2.07 1.05 10.39 1.02

Table 3.7: Compare the ratio for the maximum number of traversed edges
per worker. The best and worst cases are in bold for each column.

In Table ??, columns 2 - 4 compare the ratio of the maximum number of
traversed edges per worker between using a single worker and using 16 workers
for AC3Trim, AC4Trim and AC6Trim, respectively. We can see that for
AC3Trim, the ratio is at least 5.9 as AC3Trim is easy to be parallelized without
using locks or atomic primitives. We also can see that for AC3Trim the ratio
is larger than 16 in some graphs, e.g. com-friendster and ER. The reason is
that parallel AC3Trim is non-deterministic; that is, different trimming orders
lead to different numbers of traversed edges; if numerous vertices are early
determined as DEAD, the time complexity is close to the best case. For AC4Trim
and AC6Trim, the ratio is relatively low in some graphs with large α, e.g.
RMAT and com-friendster, as large α always leads to high working depths.

In columns 5 and 6 of Table ??, we fix using 16 workers and compare the
ratio of traversed edge numbers between AC3Trim and AC6Trim and between
AC4Trim and AC6Trim. We can see that AC6Trim traverses much fewer
edges than AC3Trim, up to 58 times over the graph cambridge.6 ; AC6Trim
traverses much fewer edges then AC4Trim, up to 36 times over the graph
wikitalk. AC3Trim traverses the fewest edges in some graphs, e.g. BA, as the
time complexity is close to the best case.
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3.10.4 Evaluating the Real Running Time

In this experiment, we exponentially increase the number of workers from 1 to
32 and evaluate the real running time over graphs in Table ??. The plots in
Figure ?? depict the performance of the three compared methods. The x-axis
is the number of workers and the y-axis is the execution time (millisecond).
The first look over all testing graphs reveals that the trends for the running
time are much different from the trends for the number of traversed edges
shown in Figure ??. This can be explained as follow:

- Although AC6Trim always traverses the fewest numbers of edges,
AC6Trim is slower than AC4Trim in some graphs, e.g. cambridge.6, livej,
pokec and ER, and even AC3Trim is the fastest in some graphs, e.g. BA.
The main reason is that AC6Trim is cache-unfriendly while AC3Trim and
AC4Trim are cache-friendly. That means AC6Trim cannot fully use caches
to archive the best performance even if AC6Trim traverse the least number of
edges. The other reason is that maintaining the supporting sets in AC6Trim
costs much more computational time than maintaining the out-degree coun-
ters in AC4Trim; there is no auxiliary data structure in AC3Trim so that no
computational time is spent on this part.

- In AC4Trim, the running times have a wide variation in certain graphs,
e.g. bakery.6, leader-filter.7, livej. The reason is that AC4Trim is sometimes
less cache-friendly. The unexpected missing cache leads to the performance
decreased. However, AC3Trim is always cache-friendly and AC6Trim is always
cache-unfriendly so that their performance is more stable than AC3Trim.

- In AC6Trim, the running times begin to increase when using more than
4 workers in certain graphs, e.g. dbpedia and baidu. The reason is that the
supporting set shared by multi-worker is synchronized by busy waiting, which
leads to contention. At the same time, AC4Trim still has not obvious speedup
as there is less contention to use atomic primitive updating the out-degree
counters. However, AC3Trim always has a speedup by multiple workers and
even has the best performance with 16 workers in some graphs, e.g. BA, as
AC3Trim has no shared data structures and thus no contention.

In columns 2 - 4 of Table ?? we compare the running time speedup be-
tween using one worker and 16 workers for AC3Trim, AC4Trim and AC6Trim,
respectively. It is clear that AC3Trim achieves the best speedup and AC4
achieves the worst speedup. This is because of the contention on shared data
structures with multiple workers. In columns 5 and 6 of Table ?? we fix using
16 workers and compare the speedups for the running time between AC6Trim
and AC3Trim and between AC6Trim and AC4Trim. We can see that our
AC6Trim is up to 24 times faster than AC3Trim over RMAT and up to 7.8
times faster than AC4Trim over leader-filters.7. However, in some graphs,
AC4Trim and AC3Trim have better performances than AC6Trim.
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16-workers speedup vs 1-worker AC6Trim speedup vs
Name AC3Trim AC4Trim AC6Trim AC3Trim AC4Trim

cambridge.6 2.42 2.72 2.37 7.15 0.13
bakery.6 2.54 771.96 2.87 7.39 0.33
leader-filters.7 2.04 58.42 2.32 6.27 0.71
dbpedia 3.31 2.67 0.84 4.71 0.34
baidu 3.34 11.38 1.14 0.58 0.33
livej 3.07 3.11 2.36 1.00 0.30
patent 4.71 44.02 7.11 1.03 4.65
wiki-talk-en 3.45 54.85 3.37 1.02 2.10
wikitalk 3.20 2.28 3.21 0.82 2.12
com-friendster 8.09 1.13 1.28 19.62 1.00
twitter 6.42 4.32 5.80 0.70 0.39
twitter-mpi 5.85 5.79 2.99 0.62 0.18
ER 3.68 3.79 1.86 0.19 0.12
BA 5.32 1.94 1.92 0.18 0.36
RMAT 6.62 1.09 1.18 20.97 0.88

Table 3.8: Compare the speedups for running times between using 1-worker
and 16-worker for AC3Trim, AC4Trim, and AC6Trim, respectively; by fixing
with 16 workers, compare the running time speedup between AC6Trim and
AC3Trim and between AC6Trim and AC4Trim. The best and worst cases

are in bold for each column.

3.10.5 Evaluating Stability

One issue is the stability of the trimming algorithms when executing the same
algorithm multiple times. In this experiment, we compare 50 testing result
over three chosen graphs, leader-filters.7,livej, and wiki-talk-en. In Figure ??,
the x-axis of plots is the index of the repeating times. The upper three plots in
Figure ?? depict the number of traversed edges for three trimming methods, in
which the y-axis is the number of traversed edges. We observe that the number
of traversed edges is well bounded for all three trimming methods. The lower
three plots in Figure ?? depict the running time for three trimming methods,
in which the y-axis is the running time. We observe that AC4Trim always has
a wider variation than other methods. The reason is that parallel AC4Trim
is non-deterministic, which means each time the order of removed vertices is
different; AC4Trim is not always cache-friendly as vertices are not sequentially
traversed; there is a high probability that the performance decreases due to
the unexpected missing cache. Even AC3Trim and AC6Trim are also non-
deterministic, AC3Trim is cache-friendly and AC6Trim is cache-unfriendly;
cache-friendliness does not always lead to a wide performance variation.
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3.10.6 Evaluating Scalability

An issue is the scalability of the trimming algorithms when the size of graphs is
varied. In this experiment, we test the scalability of the trimming algorithms
over the three largest graphs, i.e., com-friendster, twitter, and twitter-mpi.
Using 16 workers, we vary the number of edges and vertices by randomly
sampling at a ratio from 10% to 100%, respectively. By sampling the edges,
we simply remove the unsampled edges. By sampling the vertices, we simply
set the unsampled vertices to DEAD. As shown in Figure ??, we can see that
the smaller ratio of sampling edges or vertices always leads to the higher ratio
of trimable vertices, e.g. twitter and twitter-mpi ; but for com-friendster all
vertices are always trimmable with any ratio of sampling. Especially when
sampling 10% edges or vertices, nearly 60% of vertices can be trimmed for
twitter and twitter-mpi, and without sampling less than 20% of vertices can
be trimmed. This is result is reasonable as more unsampled edges or vertices
will lead to more vertices without out-going edges and thus can be trimmed.

We show the result of sampling edges in Figure ??, in which the x-axis
of plots is the ratio of sampled edges. The upper three plots in Figure ??
depict the maximum number of traversed edges per worker. We observe that
the number of traversed edges is generally increasing with the ratio of the
sampled edges. Not surprisingly, AC6Trim traverses the least number of edges,
and AC3Trim traverses the highest number of edges. But for AC3Trim the
number of traversed edges fluctuates when increasing the sampling ratio of
edges as the number of peeling steps α may fluctuate with a different sampling
ratios of edges. The lower three plots in Figure ?? depict the real running time.
We make three observations.

- Over com-friendster, AC6Trim has the best performance. The reason is
that 100% of vertices can be trimmed so that AC4Trim accesses all vertices
almost randomly. In this case, AC4Trim is likely too cache-unfriendly, and
the cache can not provide an obvious speedup.

- Over twitter and twitter-mpi, AC4Trim has a wide variation and
AC4Trim performs worse than AC6Trim in most of cases. The reason is
that for AC4Trim more trimmable vertices lead to the cache being less effec-
tive, and sometimes the cache can provide a speedup but sometimes not; but
AC6Trim is cache-unfriendly, and the cache cannot affect the running time.

- Over twitter and twitter-mpi, AC3Trim always has as good performance
as AC6Trim even if AC3Trim traverse much more edges than AC6Trim. The
reason is that AC3Trim is cache-friendly and achieve a high speedup with
caching.

Analogously, we show the result of sampling vertices in Figure ??, in which
the x-axis of plots is the ratio of sampling vertices. There are almost the same
trends as shown in Figure ??. One difference is in upper three plots; that
is, over twitter and twitter we can see AC4Trim traverse more edges than
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AC6Trim as the the unsampled vertices are set to DEAD and their out-degree
counters are still calculated. The other difference is in lower three plots; that
is, over twitter and twitter we can see AC6Trim performs much better than
AC4Trim, except when vertices are 100% sampled. In this experiment, for
implicit graphs loaded into memory, we can see that AC6Trim is most scalable
no matter how many vertices are trimmed and how many edges or vertices are
sampled.
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Figure 3.4: The maximum number of traversed edges per worker for
AC3Trim, AC4Trim, AC4Trim* and AC6Trim by varying the number of

workers. The number of edges m in a graph is chosen as a baseline.
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Figure 3.5: The real running time for AC3Trim, AC4Trim and AC6Trim by
varying the number workers.

57



Ph.D. Thesis—B. Guo McMaster University—Computer Science

AC3Trim AC4Trim AC6Trim

10 20 30 40 50

223

224

225

Repeat Times

N
u
m
b
er

of
tr
av
er
se
d
ed
ge
s

leader-filters.7

10 20 30 40 50
218

219

220

221

222

Repeat Times

N
u
m
b
er

of
tr
av
er
se
d
ed
ge
s

livej

10 20 30 40 50

216

217

218

219

220

221

Repeat Times

N
u
m
b
er

of
tr
av
er
se
d
ed
ge
s

wiki-talk-en

10 20 30 40 50

28

29

210

211

Repeat Times

T
im

e
u
se
d
(m

s)

leader-filters.7

10 20 30 40 50

25

26

27

Repeat Times

T
im

e
u
se
d
(m

s)

livej

10 20 30 40 50

24

25

Repeat Times

T
im

e
u
se
d
(m

s)

wiki-talk-en

Figure 3.6: The stability of the traversed edge number and the running time
for AC3Trim, AC4Trim and AC6Trim.
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Figure 3.7: The ratio of trimmable vertices.
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Figure 3.8: The scalability of AC3Trim, AC4Trim and AC6Trim by using 16
workers. The number of edges is varied by randomly sampling from 10% to

100%

AC3Trim AC4Trim AC6Trim

20 40 60 80 100
223

225

227

229

231

233

Vertex sample ratio (%)

N
u
m
b
er

of
tr
av
er
se
d
ed
ge
s

com-friendster

20 40 60 80 100

217

219

221

223

225

227

Vertex sample ratio (%)

N
u
m
b
er

of
tr
av
er
se
d
ed
ge
s

twitter

20 40 60 80 100
217

219

221

223

225

227

Vertex sample ratio (%)

N
u
m
b
er

of
tr
av
er
se
d
ed
ge
s

twitter-mpi

20 40 60 80 100
210

212

214

216

218

220

Vertex sample ratio (%)

T
im

e
u
se
d
(m

s)

com-friendster

20 40 60 80 100
27

29

211

213

215

Vertex sample ratio (%)

T
im

e
u
se
d
(m

s)

twitter

20 40 60 80 100
27

29

211

213

215

Vertex sample ratio (%)

T
im

e
u
se
d
(m

s)

twitter-mpi

Figure 3.9: The scalability of AC3Trim, AC4Trim and AC6Trim by using 16
workers. The vertices are varied by randomly sampling at radio from 10% to

100%
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Chapter 4

Parallel Order Maintenance

The Order-Maintenance (OM) data structure maintains a total order list of
items for insertions, deletions, and comparisons. As a basic data structure, OM
has many applications, such as maintaining the topological order, core num-
bers, and truss in graphs, and maintaining ordered sets in Unified Modeling
Language (UML) Specification. The prevalence of multicore machines suggests
parallelizing such a basic data structure. This chapter proposes a new parallel
OM data structure that supports insertions, deletions, and comparisons in par-
allel. Specifically, parallel insertions and deletions are synchronized by using
locks efficiently, which achieve up to 7x and 5.6x speedups with 64 workers.
One big advantage is that the comparisons are lock-free so that they can exe-
cute highly in parallel with other insertions and deletions, which achieve up to
34.4x speedups with 64 workers. Typical real applications maintain order lists
that always have a much larger portion of comparisons than insertions and
deletions. For example, in core maintenance, the number of comparisons is up
to 297 times larger compared with insertions and deletions in certain graphs.
This is why the lock-free order comparison is a breakthrough in practice.

4.1 Introduction

The well-known Order-Maintenance (OM) data structure (Dietz and Sleator,
1987; Bender et al., 2002; Utterback et al., 2016) maintains a total order of
unique items in an order list, denoted as O, by following three operations:

• Order(O, x, y): determine if x precedes y in the ordered list O, supposing
both x and y are in O.

• Insert(O, x, y): insert a new item y after x in the ordered list O, sup-
posing x is in O and y is not in O.

• Delete(O, x): delete x from the ordered list O, supposing x is in O.
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In the sequential case, the OM data structure has been well studied. The
naive idea is to use a balanced binary search tree (Cormen et al., 2022), all
three operations can be performed in O(logN) time, where there are at most
N items in the ordered list O. In (Dietz and Sleator, 1987; Bender et al., 2002),
the authors propose an OM data structure that supports all three operations
in O(1) time. The idea is that all items in O are linked as a double-linked
list. Each item is assigned a label to indicate its order. We can perform the
Order operation by comparing the labels of two items by O(1) time. Also,
the Delete operation also costs O(1) time without changing other labels. For
the Insert(x, y) operation, y can be directly inserted after x with O(1) time,
if there exists label space between x and x’s successors; otherwise, a relabel
procedure is triggered to rebalance the labels, which costs amortized O(logN)
time per insertion. After introducing the list of sublists structure, the amor-
tized running time of the relabel procedure can be optimized to O(1) per
insertion. Thus, the Insert operation has O(1) amortized time.

In the parallel or concurrent case, however, there exists little work (Gilbert
et al., 2003; Utterback et al., 2016) to the best of our knowledge. In this thesis,
we present a new parallelized OM data structure that supports Insert, Order,
and Delete operations executing in parallel. In terms of parallel Insert and
Delete operations, we use locks for synchronization without interleaving with
each other. In the average case, it is a high probability that the multiple
Insert or Delete operations occur in different positions of O so that both
operations can execute highly in parallel. Especially for the Order operations,
we adopt a lock-free mechanism, which can always execute highly in parallel
for any pair of items in O. To implement the lock-free Order, we devise
a new algorithm for Insert operation that can always maintain the Order
Invariant for all items, even if many relable procedures are triggered. Here,
the Order Invariant means the labels of items indicate their order correctly.
When Insert operations always maintain the Order Invariant, we do not need
to lock a pair of items when comparing their labels in parallel. In other words,
lock-free Order operations are based on Insert operations that preserve the
Order Invariant.

Our new parallel lock-free Order operation is a breakthrough for real ap-
plications. Typically, for the OM data structure, a large portion of operations
are comparing the order of two items. For example, in Figure 4.1, we show the
number of OM operations for the core maintenance in (Guo and Sekerinski,
2022c) by randomly inserting 100, 000 edges over 12 tested data graphs. We
observe that the number of Order operations is much larger than the number
of Insert and Delete operations, e.g., for the RMAT graph, the number of
Order operations is about 287 times of the number of other operations. The
reason is that graphs always have a much larger number of edges than vertices.
The big advantage of our parallel Order operation is that it can execute highly
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Figure 4.1: The number of OM operations for core maintenance by inserting
100, 000 random edges into each graph.

in parallel without locking items, which is essential when trying to parallel the
core maintenance algorithms.

Parallel Worst-case (O) Best-case (O)
operation W D time W D time

Insert m† m† m
P +m† m† 1† m

P
†

Delete m m m
P +m m 1 m

P
Order m 1 m

P m 1 m
P

Table 4.1: The worst-case and best-case work, depth complexities of parallel
OM operations, where m is the number of operations executed in parallel, P

is the total number of workers, and † is the amortized complexity.

Table 6.1 compares the worst-case and best-case work and depth complex-
ities for three OM operations, given m operations in parallel. In the best case,
all three operations have O(m) work and O(1) depth. However, the parallel
Insert has worst-case O(m) work and O(m) depth; such a worst-case is easy
to construct, e.g. m items are inserted into the same position of O and thus
all insertions are reduced to sequential. The parallel Delete also has worst-
case O(m) work and O(1) depth; but such a worst case only happens when all
deletions cause a blocking chain, which has a very low probability. Especially,

63



Ph.D. Thesis—B. Guo McMaster University—Computer Science

since the parallel Order is lock-free, it always has O(m) work and O(1) depth
whatever in the worst or best case. This is why the parallel Order always
has great speedups for multicore machines. The lock-free parallel Order is an
important contribution in this work.

Additionally, we conduct extensive experiments on a 64-core machine over
a variety of test cases to evaluate the parallelism of the new parallel OM data
structure.

4.2 Related Work

In (Dietz, 1982), Dietz proposes the first order data structure, which has
Insert and Delete in O(log n) amortized time and Order in O(1) time.
In (Tsakalidis, 1984), Tsakalidis improves the update bound. In (Dietz and
Sleator, 1987), Dietz et al. propose a fastest order data structure, which has
Insert in O(1) amortized time, Delete in O(1) time, and Order in O(1)
time. In (Bender et al., 2002), Bender et al. propose significantly simplified
algorithms that match the bounds in (Dietz and Sleator, 1987).

The special case of OM is the file maintenance problem. The file mainte-
nance is to store n items in an array of size O(n). It supports four operations,
i.e., insert, delete, scan-right (scan next k items starting from e), and scan-left
(analogous to scan-right).

In (Utterback et al., 2016), Utterback et al. propose a parallel OM data
structure specifically used for series-parallel (SP) maintenance, which identi-
fies whether two accesses are logically parallel. Several parallelism strategies
are present for the OM data structure combined with SP maintenance. We
apply the strategy of splitting a full group into our new parallel OM data
structure.

4.3 Preliminary

The well-know Order-Maintenance (OM) data structure (Dietz and Sleator,
1987; Bender et al., 2002; Utterback et al., 2016) maintains a total order of
unique items in an order list, denoted as O, by following three operations:

• Order(O, x, y): determine if x precedes y in the ordered list O, supposing
both x and y are in O.

• Insert(O, x, y): insert a new item y after x in the ordered list O, supposing
x is in O and y is not in O.

• Delete(O, x): delete x from the ordered list O, supposing x is in O.
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The idea is that items in the total order are assigned labels to indicate the
order. Typically, each label can be stored as an O(logN) bits integer, where N
is the maximal number of items in O. Assume it takes O(1) time to compare
two integers. The Order operation requires O(1) time by comparing labels;
also, the Delete operation requires O(1) time since all other labels are not
affected.

In terms of the Insert operation, efficient implementations provide O(1)
amortized time. First, a two-level data structure (Utterback et al., 2016)
is used. That is, each item is stored in the bottom-list, which contains a
group of consecutive elements; each group is stored in top-list, which can
contain Ω(logN) items. Both the top-list and the bottom-list are organized as
double-linked lists, and we use x.pre and x.next to denote the predecessor and
successor of x, respectively. Second, each item x has a top-label Lt(x), which
equals to x’s group label denoted as Lt(x) = L(x.group), and bottom-label
Lb(x), which is x’s label. The Lt is in the range [0, N2] and Lb in the range
[0, N ].

Initially, there are N ′ items contained in N ′ groups (N ′ ≤ N), separately,
where each group can have a top-label L with a N gap between neighbors and
each item has a bottom-label Lb as ⌊N/2⌋.

Definition 4.3.1 (Order Invariant). The OM data structure maintains the
Order Invariant for x precedes y in the total order, denoted as

x ⪯ y ≡ Lt(x) < Lt(y) ∨ (Lt(x) = Lt(y) ∧ Lb(x) < Lb(y))

The OM data structure maintains the Order Invariant defined in Defini-
tion 4.3.1. In order words, to determine the order of x and y, we first compare
their top-labels (group labels) of x and y; if they are the same, we continually
compare their bottom labels.

4.3.1 Sequential Order Insert

An Insert(O, x, y) is implemented by inserting y after x in x’s bottom-list,
assigning y an label Lb(y) = ⌊(Lb(x.next)− Lb(x))/2⌋, and set y in the same
group as x with y.group = x.group such that Lt(y) = Lt(x). If y can success-
fully obtain a new label, then the insertion is complete in O(1) time. Other-
wise, e.g. x.next has label Lb(x) + 1, the group is full, which triggers a relabel
operation. Specifically, the relabel operations have two steps:

– Rebalance: if there has no label space after x’s group g, we have to
rebalance the top-labels of groups. From g, we continuously traverse the
successors g′ until L(g′)−L(g) > j2, where j is the number of traversed
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groups. Then, new group labels can be assigned with the gap j, in
which newly created groups can be inserted. Finally, a new group can
be inserted after g.

– Split : when x′ group g is full, g is split out one new group, which contains
at most logN

2
items and new bottom-labels Lb are uniformly assigned for

items in new groups. Newly created groups are inserted after g, where
we can create the label space by the above rebalance operation.

Such rebalance and split operations will continue until less than logN
2

items
are left in g. Also, new bottom-labels Lb are uniformly assigned for items in
g.

For the implementation of the Insert operation, there are three important
features: (1) each group, stored in the top-list, contains Ω(logN) items, so
that the total number of insertions is O(N/logN); (2) the amortized cost of
splitting groups is O(1) per insert; (3) the amortized cost of inserting a new
group into top-list is O(logN) per insert. Thus, each Insert operation only
costs amortized O(1) time.

Example 4.3.1 (Insert). In Figure 4.2, we show a simple example of OM
data structure. The squares are groups located in a single double-linked top-
list with a head ht and a tail tt. The cycles are items with pointers to their
own groups, located in a single double-linked bottom-list. For simplicity, we
choose N = 24 = 16, so that for items the top-labels Lt are 8-bit integers
(above groups as group labels), and the bottom labels are 4-bit integers (below
items).

Figure 4.2(a) shows an initial state of the two-level lists and labels. The
top-list has head ht and tail tt labeled by 0 and 162 − 1, respectively, and
includes four groups g1 to g4 labeled with gap 16. The bottom-list has head
hb and tail tb without labels, and includes four items v1 to v4 located in four
groups g1 to g4 with same labels 7.

Figure 4.2(b) shows an intermediate state after a lot of Insert and
Delete operations. We can see that there not exist label space between v1
and v2. Both v1 and v2 are located in the group g1. We get that g1 is full when
inserting a new item after v1.

In Figure 4.2(c), a new item u will insert after v1. But the group g1 is
full (no label space after v1), which will trigger a relabel process. That is,
the group g1 is split into two groups, g1 and g; the old group g1 only has
v1; the new created group g contains v2 and v3; also, v1 to v3 are average
assigned Lb within their own group. However, there is no label space between
g1 and g2 to insert the new group g, which will trigger a rebalance process.
That is, we traverse groups from g1 to g4, where g4 is the first that satisfies
L(g4) − L(g1) = 15 > j2 (j = 3). Then, both g2 and g3 are assigned new
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Figure 4.2: A example of the OM data structure with N = 16.

top-labels as 20 and 25, respectively, which have the gap as 5. Now, g can be
inserted after g1 with L(g) = L(g2) + (L(g2)− L(g1))/2 = 17. Finally, we can
insert u successfully after v1 in g1, with Lb(u) = Lb(v1)+(15−Lb(v1))/2 = 11.

4.4 Parallel OM Data Structure

In this section, we present the parallel version of the OM data structure.
We start from the parallel Delete operations. Then, we discuss the parallel
Insert operation and show that the Order Invariant is preserved at any steps
including the relable process, which is the main contribution of this work.
Finally, we present the parallel Order operation, which is lock-free and thus
can be executed highly in parallel.

67



Ph.D. Thesis—B. Guo McMaster University—Computer Science

4.4.1 Parallel Delete

The detailed steps of parallel Delete operations are shown in Algorithm 11.
For each item x in O, we use a status x.live to indicate x is in O or removed.
Initially x.live is true. We use the atomic primitive CAS to set x.live from
true to false, and the repeated deleting x will return error (line 1). In lines
2 - 6 and 13, we remove x from the bottom-list in O. To do this, we first lock
y = x.pre, x, and x.next in order to avoid deadlock (lines 2 - 4). Here, after
locking y, we have to check that y still equals x.pre in case x.pre is changed by
other workers (line 3). Then, we can safely delete x from the the bottom-list,
and set x’s pre, , Lb, and group to empty (line 6). Finally, we unlock all locked
items in reverse order (line 13). Do not forget that, for the group g = x.group,
we need to delete g when it is empty, which is analogous to deleting x (lines 7
- 12).

Algorithm 11: Parallel-Delete(O, x)

1 if not CAS(x.live, true, false) then return error
2 y ← x.pre; Lock(y)
3 if y ̸= x.pre then Unlock(y); goto line 1
4 Lock(x); Lock(x.next)
5 g ← x.group
6 delete x from bottom-list; set x.pre, x.next , Lb(x), and x.group to ∅
7 if |g|= 0 ∧ CAS(g.live, true, false) then
8 g′ ← g.pre ; Lock(g′)
9 if g′ ̸= g.pre then Unlock(g′); goto line 8

10 Lock(g); Lock(g.next)
11 delete g from top-list; set g.pre, g.next , and L(g) to ∅
12 Unlock(g.next); Unlock(g); Unlock(g′)

13 Unlock(x.next); Unlock(x); Unlock(y);

We logically delete items by setting their flags (line 1). One benefit of such
a method is that we can delay the physical deleting of items (lines 2 - 13). The
physical deleting can be batched and performed lazily at a convenient time,
reducing the overhead of synchronization. Typically, this trick is always used
in linked lists for delete operations (Herlihy et al., 2020). In his paper, we will
not test the delayed physical delete operations.

Obviously, during the parallel Delete operations, the labels of other items
are not affected and the order invariant is maintained.

Correctness. For deleting x, we always lock three items, x.pre, x, and
x.next in order. Therefore, there are no blocking cycles, and thus it is deadlock-
free.
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Complexities. Suppose there are m items to delete in the OM data struc-
ture. The total work is O(m). In the best case, m items can be deleted
in parallel by P workers with O(1) depth, so that the total running time is
O(m/P). In the worst-case, n items have to be deleted one by one, e.g. P
workers are blocked as a chain, with O(m) depth, so that the total running
time is O(m/P +m).

However, when deleting multiple items in parallel, the blocking chain is
unlikely to appear, and thus the worst-case has a low probability to happen.

4.4.2 Parallel Insert

The detailed steps of parallel Insert are shown in Algorithm 12 for inserting
y after x. Within this operation, we should lock x and its successor z = x.next
in order (lines 1 and 7). For obtaining a new bottom-label for y, if x and z is
in the same group, Lb(z) is the right bound; otherwise, N is the right bound
supposing Lb is a (logN)-bit integer (line 2). If there does not exist a label
gap in the bottom-list between x and x.next , we know that x.group is full,
and thus the Relabel procedure is triggered to make label space for y (line
3). Then, y is inserted into the bottom-list between x and x.next (line 6), in
the same group as x (line 4), by assigning a new bottom-label (line 5).

In the Relabel(x) procedure, we will split the full group of x. We lock
x’s group g0 and g0’s successor g.next (line 9). We also lock all items y ∈ g0
except x, as x is already locked in line 1 (line 10). To split the group g0 into
multiple new smaller groups, we traverse the items y ∈ g0 in reverse order by
three steps (lines 11 - 15). First, if there does not exist a label gap in the
top-list between g0 and g0.next , the Rebalance procedure is triggered to make
label space for inserting a new group with assigned labels (lines 12 and 13).
Second, we split logN

2
items y from g0 in reverse order to the new group g,

which maintains the Order Invariant (line 14). Third, we assign new Lb to
all items in the new group g by using the AssignLable procedure(line 15),
which also maintains the Order Invariant. The for-loop (lines 11 - 15) stops if
less than logN

2
items are left in g0. We assign new Lb to all left items in g0 by

using the AssignLable procedure(line 16). Finally, do not forget to unlock all
locked groups and items (line 17).

In the Rebalance(g) procedure, we make label space after g to insert new
groups. Starting from g.next , we traverse groups g′ in order until w > j2 by
locking g′ if necessary (g and g.next are already locked in line 9), where j is
the number of visited groups and w is the label gap L(g′) − L(g) (lines 19 -
22). That means j items will totally share w > j2 label space. All groups,
whose labels should be updated, are added to the set A (line 21). We assign
new labels to all groups in A by using the AssignLabel procedure (line 23),
which maintains the Order Invariant. Finally, do not forget to unlock groups
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locked in line 21.
Especially, in the AssignLable(A,L, l0, w) procedure, we assign labels

without affecting the Order Invariant, where the set A includes all elements
whose labels need to update, L is the label function, l0 is the starting label,
and w is the label space. Note that, L can correctly return the bounded labels,
e.g., Lb(x.next) = N when x is at the tail of its group x.group. For each z ∈ A
in order, we first correctly assign a temporary label L(z) (line 27), which can
replace its real label L(z) at the right time by using stack S (lines 28 - 32).
Specifically, for each z ∈ A in order, if its temporary label L(z) is between
L(z.pre) and L(z.next), we can safely replace its label by updating L(z) as
L(z) (lines 29 and 30), which maintains the Order Invariant; otherwise, z is
added into the stack S for further propagation (line 32). For the propagation,
when one element z replaces the labels (line 30), which means all elements in
stack S can find enough label space, each x ∈ S can be popped out by replacing
its label (line 31). This propagation still maintains the order Invariant.

Example 4.4.1 (Parallel Insert). Continually, we use Figure 4.2 to show an
example for the parallel Insert. In Figure 4.2(b), we lock v1 and lock v2 in
order when inserting u after v1. However, there is no label space, and the
group g1 is full, which triggers the Relabel procedure. For the first step of
relabel, the other item v3 in group g1 is locked to split the group g1.

In Figure 4.2(c), we lock g1 and g2 in order when inserting a new group g
after g1, which triggers the Rebalance procedure on the top-list. For rebalance,
g3 and g4 are locked in order. The new temporal labels Lt of g2 and g3 are
generated as 20 and 25. To replace real labels with temporal ones, we traverse
g2 and g3 in order. First, we find that L(g1) < L(g2) < L(g3) as 15 < 20 < 17
is false, so that g2 is added to the stack such that S = {g2}. Second, when
traversing g3, we find that L(g2) < L(g3) < L(g4) as 16 < 25 < 30 is true, so
that L(g3) is replaced as 25. In this case, the propagation of S begins and g2
is popped out with L(g2) replace as 20. Finally, g3 and g4 are unlocked and
the Rebalance procedure finishes.

After rebalance, the new group g can be inserted after g1 with L(g1) = 17.
The relabeling continue. The item v3 is spitted out to g with Lb(v3) = 15 ∧
Lt(v3) = 17 maintaining the Order Invariant; similarly, v2 is also spitted out
to g. Now, both v2 and v3 require to assign new Lb by the AssignLable

procedure. The new temporal label Lb of v2 and v3 are generated as 5 and 10,
respectively. For replacing, we traverse v2 and v3 in order by two steps. First,
for v2, we find that Lb(v2) < Lb(v3) is true, so that Lb(v2) is replaced as 5.
Second, for v3, we find that Lb(v2) < Lb(v3) is true, so that Lb(v3) is replaced
as 10 It has no propagation since the stack S is empty.
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Algorithm 12: Parellel-Insert(O, x, y)

1 Lock(x); z ← x.next ; Lock(z)
2 if x.group = z.group then b← Lb(z) else b← N
3 if b− Lb(x) < 2 then
4 Relabel(x);
5

6 insert y into bottom-list between x and x.next
7 Lb(y) = Lb(x) + ⌊(b− Lb(x))/2⌋
8 y.group ← x.group
9 Unlock(x); Unlock(z)

10 procedure Relabel(x)
11 g0 ← x.group; Lock(g0); Lock(g0.next);
12 Lock all items y ∈ g0 with y ̸= x in order

13 for y ∈ g0 in reverse order until less than logN
2 items left in g0 do

14 if L(g0.next)− L(g0) < 2 then Rebalance(g0)
15 insert a new group g into the top-list after g0 with

L(g) = (L(g0.next)− L(g0))/2

16 split out logN
2 items y into g

17 AssignLabel(g, Lb, 0, N)

18 AssignLabel(g0, Lb, 0, N)

19 Unlock g0.next , g0, and all items y ∈ g0 with y ̸= x

20 procedure Rebalance(g)
21 g′ ← g.next; j ← 1; w ← L(g′)− L(g); A← ∅
22 while w ≤ j2 do
23 A← A ∪ {g′}; g′ ← g′.next ; Lock(g′)
24 j ← j + 1; w ← L(g′)− L(g)

25 AssignLabel(A,Lt, Lt(g), w)
26 Unlock all locked groups in line 23.

27 procedure AssignLabel(A,L, l0, w)
28 S ← empty stack; k ← 1; j ← |A|+1

29 for z ∈ A in order do L(z) = l + k · w/j; k ← k + 1
30 for z ∈ A in order do

31 if L(z.pre) < L(z) < L(z.next) then
32 L(z)← L(z)
33 while S ̸= ∅ do x← S.pop(); L(x)← L(x)
34 else S.push(z )

Correctness. We prove that the Order Invariant is preserved during parallel
Insert operations. In Algorithm 12, there are two cases where the labels are
updated, splitting groups (lines 11 - 15) and assigning labels (lines 15, 16, and
23) by using the AssignLabel procedure (lines 25 - 32).
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Example 4.4.2 (Assign Label). In Figure 4.3, we show an example that how
the AssignLabel procedure preserves the Order Invariant. The label space is
from 0 to 15 shown as indices. There are four items v1, v2, v3, and v4 with
initial old labels 1, 2, 3, and 14, respectively; also, four temporal labels, 3, 6, 9,
and 12, are averagely assigned for them. We traverse items from v1 to v4 in
order. First, v1 and v2 are added into the stack S. Second, v3 can safely
replace its old label with its new temporal label 9, which makes space for v2
that is at the top of S. So, we pop out v2 from S and v2 gets a new label
6, which makes space for v1 that is at the top of S. So, we pop out v1 from
S and v1 gets a new label 3. Finally, v4 can safely get its new label 12. In
a word, updating the v3’s label will repeatedly make space for v2 and v1 in
the stack. During such a process, we observe that when each time one old
label updates as a new temporal label, the labels always correctly indicate the
order. Therefore, the Order Invariant is always preserved.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 14

3 6 9 12

old label

tempral
label

index

Figure 4.3: A example of the AssignLable procedure.

Theorem 4.4.1. When splitting full groups (line 14), the Order Invariant is
preserved.

Proof. The algorithm splits logN
2

items y out from g0 into the new group g (line
14), where each y ∈ g0 is traversed in reverse order within the for-loop (lines
11 - 15). For this, the invariant of the for-loop is that y has largest Lb within
g0; the new group g has L(g) > L(g0); also, y satisfies the Order Invariant:

(∀x ∈ g0 : x ̸= y =⇒ Lb(y) > Lb(x))

∧ (L(g0) < L(g)) ∧ (y.pre ⪯ y ⪯ y.next)

We now argue the for-loop preserve this invariant:

– ∀x ∈ g0 : x ̸= y =⇒ Lb(y) > Lb(x) is preserved as y is traversed in
reserve order within g0 and all other items y′ that have Lb(y) < Lb(y

′)
are already spitted out from g0.

– L(g0) < L(g) is preserved as g is new inserted into top-list after g0.

– y.pre ⪯ y is preserved as we have y ∈ g ∧ y.pre ∈ g0 and L(g0) < L(g).
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– y ⪯ y.next is preserved as if y and y.next all in the same group g, we
have Lb(y) < Lb(y.next); also, if y and y.next in different groups, we
have y is the first item moved to g or y is still located in g0, which their
groups indicates the correct order.

At the termination of the for-loop, the group g is split into multiple groups
preserving the Order Invariant.

Theorem 4.4.2. When assigning labels by using the AssignLable procedure
(lines 25 - 32), the Order Invariant is preserved.

Proof. The AssignLabel procedure (lines 25 - 32) assigns labels for all items
z ∈ A. The temporal labels are first generated in advance (line 27). Then,
the for-loop replaces the old label with new temporal labels (lines 28 - 32).
The key issue is to argue the correctness of the inner while-loop (line 31). The
invariant of this inner while-loop is that the top item in S has a temporal label
that satisfies the Order Invariant:

(∀y ∈ S : (y ̸= S.top =⇒ y ⪯ S .top) ∧ y ⪯ z )

∧ x = S.top =⇒ L(x .pre) < L(x ) < L(x .next)

The invariant initially holds as L(z) is correctly replaced by the temporal
label L(z) in line 30 and z is x.next , so that L(x) < L(z); also, we have
(x.pre) < L(x) as if it is not satisfied, x should not be added into S, which
causes a contradiction. We now argue the while-loop (line 31) preserves this
invariant:

– ∀y ∈ S : (y ̸= S.top =⇒ y ⪯ S .top) ∧ y ⪯ z is preserved as all items
in S are added in order, so the top item always has the largest order;
also, since all item in A are traversed in order, so z has the larger order
than all item in S.

– x = S.top =⇒ L(x ) < L(x .next) is preserved as L(x.next) is already
replace by the temporal label L(x.next) and x is precede x.next by using
temporal labels.

– x = S.top =⇒ L(x .pre) < L(x ) is preserved as if such invariant is not
satisfied, x should not be added into S and can safely replace its label
with its temporal label, which causes a contradiction.

At the termination of the inner while-loop, we get S = ∅, so that all items
that precede z have replaced new labels maintaining the Order Invariant. At
the termination of the for-loop (lines 28 -32), all items in A have been replaced
with new labels.
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Complexities. For the sequential version, it is proven that the amortized
time is O(1). The parallel version has some refinement. That is, the
AssignLable procedure traverses the locked items two times for generating
temporal labels and replacing the labels, which cost amortized time O(1).
Thus, supposing m items are inserted in parallel, the total amortized work is
O(m). In the best case, m items can be inserted in parallel by P workers with
amortized depth O(1), so that the amortized running time is O(m/P). In the
worst-case, m items have to be inserted one-by-by, e.g. P workers simultane-
ously insert items at the head of O with amortized depth O(m), and thus the
amortized running time is O(m/P +m).

The worst-case is easy to happen when all insertions accrued in the same
position of O. Such worst-case can be improved by batch insertion. The idea
is that we first allocate enough label space for m/P items per worker, then
P workers can insert items in parallel. However, this simple strategy requires
pre-processing of O and does not change the worst-case time complexity.

4.4.3 Parallel Order

The detailed steps of the parallel Order are shown in Algorithm 13. When
comparing the order of x and y, they can not be deleted (line 1). We first
compare the top-labels of x and y (lines 2 - 5). Two variables, t and t′, obtain
the values of Lt(x) and Lt(y) for comparison (line 2) and the result is stored
as r. After that, we have to check Lt(x) or Lt(y) has been updated or not;
if that is the case, we have to redo the whole procedure (line 5). Second, we
compare the bottom-labels of x and y, if their top-lables are equal (lines 6
- 9). Similarly, two variables, b and b′, obtain the value of Lb(x) and Lb(t)
for comparison (line 7) and the result is stored as r. After that, we have to
check whether four labels are updated or not; if anyone label is the case, we
have to redo the whole procedure (line 9). We can see our parallel Order is
lock-free so that it can execute highly in parallel. We return the result at line
11. During the order comparison, x or y can not be deleted (line 19).

Example 4.4.3 (Order). In Figure 4.3, we show an example to determine the
order of v2 and v3 by comparing their labels. Initially, both v2 and v3 have
old labels, 2 and 3. After the Relabel procedure is triggered, both v2 and v3
have new labels, 6 and 9, in which the Order Invariant is preserved. However,
it is possible that Relabel procedures are triggered in parallel. We first get
t = L(v3) = 3 (old label) and second get t′ = L(v2) = 6 (new label), so that
it is incorrect for L(v2) > L(v3). After we get t′ = L(v2) = 6, the value of
L(v2) have to be updated to 9 since the Order Invariant is maintained. In this
case, we redo the whole parallel Order until t and t′ are not updating during
comparison and thus get the correct result.
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Algorithm 13: Parallel-Order(O, x, y)

1 if x.live = false ∨ y.live = false then return fail
2 t, t′, r ← Lt(x), Lt(y),∅
3 if t ̸= t′ then
4 r ← t < t′

5 if t ̸= Lt(x) ∨ t′ ̸= Lt(y) then goto line 1

6 else
7 b, b′ ← Lb(x), Lb(y); r ← b < b′

8 if t ̸= Lt(x) ∨ t′ ̸= Lt(y) ∨ b ̸= Lb(x) ∨ b′ ̸= Lb(y) then
9 goto line 1

10 if x.live = false ∨ y.live = false then return fail
11 return r

Correctness. We have proven that the parallel Insert preserves the Order
Invariant even though relabel procedures are triggered, by which labels cor-
rectly indicate the order. In this case, it is safe to determine the order for x
and y in parallel. We first argue the top-labels (lines 2 - 5). The problem is
that we first get t ← Lt(x) and second get t′ ← Lt(y) successively (line 2),
by which l and l′ may be inconsistent, due to a Relabel procedure may be
triggered. To argue the consistency of labels, there are two cases: 1) both t
and t′ obtain old labels or new labels, which can correctly indicate the order;
2) the t first obtains an old label and t′ second obtains a new label, which may
not correctly indicate the order as x may already update with a new label,
and vice versa; if that is the case, we redo the whole process.

On the termination of the parallel Order, the invariant is that t and t′

are consistent and thus correctly indicate the order. The bottom-labels are
analogous (lines 6 - 9).

Complexities For the sequential version, the running time is O(1). For the
parallel version, we have to consider the frequency of redo. It has a significantly
low probability that the redo will be triggered. This is because the labels are
changed by the Relabel procedure, which is triggered when inserting Ω(logN)
items. Even if the labels of x and y are updating when comparing their order,
it still has a small probability that such label updating happens during the
comparison of labels (lines 3 - 4 and 7 - 8).

Thus, supposing m items are comparing orders in parallel, the total work
is O(m), and the depth is O(1) with a high probability. So that the running
time is O(m/P) with high probability.
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4.5 Experiments

We report on experimental studies for our three parallel order maintenance
operations, Order, Insert, and Delete. We generate four different test cases
to evaluate their parallelized performance. All the source code is available on
GitHub1.

Experiment Setup The experiments are performed on a server with an
AMD CPU (64 cores, 128 hyperthreads, 256 MB of last-level shared cache) and
256 GB of main memory. The server runs the Ubuntu Linux (22.04) operating
system. All tested algorithms are implemented in C++ and compiled with
g++ version 11.2.0 with the -O3 option. OpenMP 2 version 4.5 is used as the
threading library. We choose the number of workers exponentially increasing
as 1, 2, 4, 8, 16, 32, and 64 to evaluate the parallelism. With different numbers
of workers, we perform every experiment at least 100 times and calculate the
mean with 95% confidence intervals. Note that, the error bars are too small
to see in our experiments.

In our experiment, for easy implementation, we choose N = 232, a 32-bit
integer, as the capacity of O. In this case, the bottom-lables Lb are 32-bit
integers, and the top-lables Lt are 64-bit integers. One advantage is that
reading and writing such 32-bit or 64-bit integers are atomic operations in
modern machines. There are initially 10 million items in the order list O. To
test our parallel OM data structure, we do four experiments:

– Insert : we insert 10 million items into O.

– Order : for each inserted item, we compare its order with its successive
item, so that it has 10 million Order operations.

– Delete: we delete all inserted items, a total of 10 million times.

– Mixed : again, we insert 10 million items, mixed with 100 million Order

operations. For each inserted item, we compare its order with its ten
successive items, a total of 100 million times order comparison. This
experiment is to test how often “redo” occurs in the Order operations
when there are parallel Insert operations. The reason for this exper-
iment is that many Order operations are mixed with few Insert and
Delete operations in real applications, as shown in Figure 4.1.

For each experiment, we have four test cases by choosing different numbers
of positions for inserting:

1https://github.com/Itisben/Parallel-OM.git
2https://www.openmp.org/
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– No case: we have 10 million positions, the total number of initial items
in O, so that each position averagely has 1 inserted item. Thus, it almost
has no Relabel procedures triggered when inserting.

– Few case: we randomly choose 1 million positions from 10 million items
in O, so that each position averagely has 10 inserted items. Thus, it is
possible that a few Relabel procedures are triggered when inserting.

– Many case: we randomly choose 1,000 positions from 10 million items
in O, so that each position averagely has 10,000 inserted items. Thus, it
is possible that many Relabel procedures are triggered when inserting.

– Max case: we only choose a single position (at the middle of O) to
insert 10, 000, 000 items. In this way, we obtain a maximum number of
triggered relabel procedures.

All items are inserted on-the-fly without preprocessing. In other words, 10
million items are randomly assigned to multiple workers, e.g 32 workers, even
if in the Max case all insertions are reduced to sequential execution.

4.5.1 Evaluating Relabelling

In this test, we evaluate the Relabel procedures that are triggered by Insert

operations over four test cases, No, Few, Many, and Max. For this, different
numbers of workers will have the same trend, so we choose 32 workers for this
evaluation.

In Table 4.2, columns 2 - 4 show the details in the Insert experiment, where
Relabel# is the times of triggered Relabel procedures, Lb# is the number of
updated bottom-labels for items, Lt# is the number of updated top-labels
for items, and AvgLabel# is the average number of updated labels for each
inserted items when inserting 10 million items. We can see that, for four cases,
the amortized numbers of updated labels increase slowly, where the average
numbers of inserted items for each position increase by 1, 10, 10 million, and
10 billion. This is because our parallel Insert operations have O(1) amortized
work.

Insert Mixed
Case Relabel# Lb# Lt# AvgLabel# OrderRedo#

No 0 10,000,000 0 1 0
Few 2,483 10,069,551 4,967 1 0
Many 356,624 19,985,472 5,754,501 2.6 0
Max 357,142 19,999,976 99,024,410 11.8 0

Table 4.2: The detailed numbers of the relabel procedure.
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In Table 4.2, the last column shows the numbers of redo for Order opera-
tions in the Mixed experiment, which are all zero. Since the Mixed has mixed
Order and Insert operations, we may redo the Order operation if the cor-
responding labels are being updated. However, Relabel happens with a low
probability; also, it is a low probability that related labels are changed when
comparing the order of two items. This is why the numbers of redo are zero,
leading to high parallel performance.

4.5.2 Evaluating the Running Time

In this experiment, we exponentially increase the number of workers from 1 to
64 and evaluate the real running time. We perform Insert, Order, Delete, and
Mixed over four test cases, No, Few, Many and Max.
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Figure 4.4: Evaluate the running times by varying the number of workers.

The plots in Figure 4.4 depict the performance. The x-axis is the number of
workers and the y-axis is the execution time (millisecond). Note that, we com-
pare the performance by using two kinds of lock: the OpenMP lock (denoted
by solid lines) and the spin lock (denoted by dash lines). A first look reveals
that the running times normally decrease with increasing numbers of workers,
except for the Max case over Insert and Mixed experiments. Specifically, we
make several observations:
– Three experiments, Insert, Delete, and Mixed, that use the spin lock are
much faster than using the OpenMP lock. This is because the lock regions
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always have few operations, and busy waiting (spin lock) is much faster than
suspension waiting (OpenMP lock). Unlike the above three experiments, the
Order experiment does not show any differences since Order operations are
lock-free without using locks for synchronization.

– For the Max case of Insert and Mixed, abnormally, the running time is
increasing with an increasing number of workers. The reason is that the
Insert operations are reduced to sequential in the Max Case since all items
are inserted into the same position. Thus it has the highest contention on
shared positions where multiple workers access at the same time, especially
for 64 workers.

– For the Many case of Insert and Mixed, the running times are decreasing
until using 4 workers. From 8 workers, however, the running times begin to
increase. This is because the Insert operations have only 1,000 positions
in the Many case, and thus it may have high contention on shared positions
when using more than 4 workers.

– Over the Order and Delete experiments, we can see the Many and Max
cases are always faster than the Few and No cases. This is because the Few
and No cases have 1, 000 and 1 operating positions, respectively; all of these
positions can fit into the CPU cache with high probability, and accessing
the cache is much faster than accessing the memory.

4.5.3 Evaluating the Speedups

The plots in Figure 4.5 depict the speedups. The x-axis is the number of
workers, and the y-axis is the speedups, which are the ratio of running times
(by using spin locks) between the sequential version and using multiple work-
ers. The dotted lines show the perfect speedups as a baseline. The numbers
beside the lines indicate the maximal speedups. A first look reveals that all
experiments achieve speedups when using multiple cores, except for the Max
case over insert and Mixed experiments.

Specifically, we make several observations:

– For all experiments, we observe that the speedups are around 1/4 to 1
when using 1 worker in all cases. This is because, for all operations of
OM, the sequential version has the same work as the parallel version.
Especially, for Delete, such speedups are low as 1/2 - 1/4, as locking
items for deleting costs much running time.

– For Insert and Mixed, we achieve around 7x speedups using 32 workers
in No and Few cases, and around 2x speedups using 4 workers in Many
cases. This is because all CPU cores have to access the shared memory
by the bus, which connects memory and cores, and the atomic CAS oper-
ations will lock the bus. Each Insert operation may have many atomic
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Figure 4.5: Evaluate the speedups by increasing the number of workers from
1 to 64.

CAS operations for spin lock and many atomic read and write operations
for updating labels and lists. In this case, the bus traffic is high, which
is the performance bottleneck for Insert operations.

– For Order, all four cases achieve almost perfect speedups from using 1
to 32 workers, as Order operations are lock-free.

– For Delete, it achieves around 4x speedups using 64 workers in four cases.
This is because, for parallel Delete operations, the worst case, which is
all operations are blocking as a chain, is almost impossible to happen.

4.5.4 Evaluating the Scalability

In this experiment, we increase the scale of the initial order list from 10 million
to 100 million and evaluate running times with fixed 32 workers. We test three
cases, No, Few, and Many, by fixing the average number of items per insert
position. For example, given an initial order list with 20 million items, the No
case has 20 million insert positions, the Few case has 2 million positions, and
the Many case has 2,000 insert positions. Since the Max case is reduced to
sequential and can be optimized by using a single worker, we omit it in this
test.
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Figure 4.6: Evaluate the scalability by using 32 workers

The plots in Figure 4.6 depict the performance. The x-axis is the initial
size of the order list, and the y-axis is the time ratio of the current running
time to the “10 million” running time. The dotted lines show the perfect time
ratio as a baseline. Obviously, the beginning time ratio is one. We observe
that the time ratios are roughly close to linearly increasing with the scales of
the order list. This is because all parallel Insert, Delete, and Order have
best-case time complexity O(mP ) and their running times are always close to
the best case.

Specifically, for Order, we can see the time ratio is up to 20x with a scale
of 100 million in No case. This is because No case has 100 million positions
for random Order operations, which is not cache friendly; also, by increasing
the scale of data, the cache hit rate decreases, so the performance is affected.

4.5.5 Evaluating the Stability

In this experiment, by using 32 workers, we repeatedly test Insert, Order,
and Delete operations 100 times, to evaluate the stability. Each time, we
randomly choose positions and randomly insert items for the NO, Few, and
Many cases, so that the test is different. However, it is always the same for
the Max case, since there is only one position to insert all items. The plots in
Figure 6.6 depict the running time by performing the experiments 100 times.
The x-axis is the index of repeating times and the y-axis is the running times
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(milliseconds). We observe that the performance of Insert, Order, Delete, and
Mixed are all well-bounded for all four cases. We observe that the Max case
has wider variation than other cases over Insert andMixed. This is because the
parallel Insert operations always have contention on shared data in memory.
Such contention causes the running times to variate within a certain range.
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Figure 4.7: Evaluate the stability of running times over 32 works by
repeatedly testing all operations 100 times.
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Chapter 5

Sequential Core Maintenance

Graph analytics attract much attention from both research and industrial
communities. Due to its linear time complexity, the k-core decomposition is
widely used in many real-world applications such as biology, social networks,
community detection, ecology, and information spreading. In many such ap-
plications, the data graphs continuously change over time. The changes corre-
spond to edge insertion and removal. Instead of recomputing the k-core, which
is time-consuming, we study how to maintain the k-core efficiently. That is,
when inserting or deleting an edge, we need to identify the affected vertices
by searching for more vertices. The state-of-the-art order-based method main-
tains an order, the so-called k-order, among all vertices, which can significantly
reduce the searching space. However, this order-based method is complicated
for understanding and implementing, and its correctness is not formally dis-
cussed.

In this chapter, we propose a simplified order-based approach by introduc-
ing the classical Order Data Structure to maintain the k-order, which signif-
icantly improves the worst-case time complexity for both edge insertion and
removal algorithms. Also, our simplified method is intuitive to understand
and implement; it is easy to argue the correctness formally. Additionally, we
discuss a simplified batch insertion approach. The experiments evaluate our
simplified method over 12 real and synthetic graphs with billions of vertices.
Compared with the existing method, our simplified approach achieves high
speedups up to 7.7x and 9.7x for edge insertion and removal, respectively.

5.1 Introduction

Given an undirected dynamic graph G = (V,E), after inserting an edge into
or removing an edge from G, the problem is how to efficiently update the core
number for the affected vertices. To do this, we first need to identify a set of
vertices whose core numbers need to be updated (V ∗) by traversing a possibly
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larger set of vertices (V +). Then it is easy to re-compute the new core numbers
of vertices in V ∗. Clearly, an efficient edge insertion algorithm should have a
small cost for identifying V ∗, which means a small ratio |V +|/|V ∗|. In this
work, we mainly discuss the edge insertion algorithms for core maintenance.

In (Sarıyüce et al., 2016), Sariyüce et al. propose a Traversal algorithm.
The Traversal insertion algorithm searches V ∗ only in a local region near
the edge that is inserted, which can be much faster than recomputing the
core numbers for the whole graph. However, this insertion algorithm has a
high variation in terms of performance due to the high variation of the ratio
|V +|/|V ∗|. In (Zhang et al., 2017), Zhang et al. propose an Order algorithm,
which is the state-of-the-art method for core maintenance.

However, this Order approach has two drawbacks. First, the Order
insertion algorithm is so complicated that it is not intuitive for easy under-
standing. This complexity further brings difficulties to the correctness and
implementation; actually, the proof of correctness for the edge-insert algo-
rithm is not formally discussed in (Zhang et al., 2017). Second, the k-order
of the vertices in a graph is maintained by two specific data structures: 1) A
(double linked lists combined with balanced binary search trees) for operations
like inserting, deleting, comparing the order of two vertices, all of which re-
quires worst-case O(log|V |) time; and 2) B (double linked lists combined with
heaps) for searching the ordered vertices by jumping unnecessary ones, which
requires worst-case O(log|V |) time; both data structures are complicated to
implement.

We try to overcome the above drawbacks in (Zhang et al., 2017) by propos-
ing our Simplified-Order approach. The idea behind our new approach is
that we introduce the well-known Order Maintenance Data Structure (Dietz
and Sleator, 1987; Bender et al., 2002) to maintain the k-order of vertices
in a graph G. By doing this, there are several benefits. First, this classical
OM data structure only requires amortized O(1) time for order operations,
including inserting, deleting, and comparing the order of two vertices; this is
faster than the A data structure in (Zhang et al., 2017) especially when |V | is
large. Also, the original order-based insertion algorithm can be introduced to
maintain each affected vertex in k-order in worst-case O(log|E+|) time (|E+|
is the number of edges adjacent to vertices in V +); this is also faster than the
B data structure in (Zhang et al., 2017) since normally we have |E+|≪ |V |.
Second, compared with the method in (Zhang et al., 2017), when introducing
the OM data structures and priority queues, the A and B data structures can
be abandoned and so that the Order approach can be significantly simpli-
fied; also, our new approach simplifies the proof of correctness. Finally, our
simplified order-based insertion algorithm can be easily extended to handle a
batch of insertion edges without difficulties since it is common that a great
number of edges are inserted or removed simultaneously; by doing this, the
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vertices in V + \V ∗ are possibly avoided to be repeatedly traversed so that the
total size of V + is smaller compared to unit insertion. The main contributions
are summarized below:

• We investigate the drawbacks of the state-of-the-art Order core main-
tenance algorithms in (Zhang et al., 2017).

• Based on (Zhang et al., 2017), by introducing the OM data structure
(Dietz and Sleator, 1987; Bender et al., 2002), we propose a simplified
order-based insertion algorithm. Not only can the worst-case time com-
plexity be improved, but also the proof of correctness is simplified.

• We extend our simplified core insertion algorithm to handle a batch of
edges, with a smaller size of V ∗ compared to unit insertion.

• Finally, we conduct extensive experiments with different kinds of real
data graphs to evaluate different algorithms.

5.2 Related Work

In (Cheng et al., 2011), Cheng et al. propose an external memory algorithm,
so-called EMcore, which runs in a top-down manner such that the whole graph
does not have to be loaded into memory. In (Wen et al., 2016), Wen et
al. provide a semi-external algorithm, which requires O(n) size memory to
maintain the information of vertices. In (Khaouid et al., 2015), Khaouid et al.
investigate the core decomposition in a single PC over large graphs by using
GraphChi and WebGraph models. In (Montresor et al., 2012), Montresoret
et al. consider the core decomposition in a distributed system. In addition,
Parallel computation of core decomposition in multi-core processors is first
investigated in (Dasari et al., 2014), where the ParK algorithm was proposed.
Based on the main idea of ParK, a more scalable PKC algorithm has been
reported in (Kabir and Madduri, 2017).

In (Li et al., 2013), an algorithm that is similar to Traversal algo-
rithm (Sarıyüce et al., 2016) is given, but this solution has quadratic time
complexity. In (Wen et al., 2016), a semi-external algorithm for core main-
tenance is proposed in order to reduce the I/O cost, but this method is not
optimized for CUP time. In (Wang et al., 2017; Hua et al., 2019; Jin et al.,
2018; Wang et al., 2017), parallel approaches for core maintenance are pro-
posed for both edge insertion and removal. There exists some research based
on core maintenance. In (Yu et al., 2021), the authors study computing all
k-cores in the graph snapshot over the time window. In (Lin et al., 2021), the
authors explore the hierarchical core maintenance.
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5.3 Preliminary

Definition 5.3.1 (k-Core). Given an undirected graph G = (V,E) and an
integer k, a subgraph Gk of G is called a k-core if it satisfies the following
conditions: (1) for ∀u ∈ V (Gk), u.deg ≥ k; (2) Gk is maximal. Moreover,
Gk+1 ⊆ Gk, for all k ≥ 0, and G0 is just G.

Definition 5.3.2 (Core Number). Given an undirected graph G = (V,E), the
core number of a vertex u ∈ G(V ), denoted as u.core, is defined as u.core =
max{k : u ∈ V (Gk)}. That means u.core is the largest k such that there
exists a k-core containing u.

Definition 5.3.3 (Subcore). Given an undirected graph G = (V,E), a max-
imal set of vertices S ⊆ V is called a k-subcore if (1) ∀u ∈ S, u.core = k; (2)
the induced subgraph G(S) is connected. The subcore that contains vertex u
is denoted as sc(u).

Definition 5.3.4 (k-Core Decomposition). Given a graph G = (V,E), the
problem of computing the core number for each u ∈ V (G) is called core de-
composition.

In (Batagelj and Zaversnik, 2003), Batagelj and Zaversnik propose an al-
gorithm with a linear running time of O(m+ n), the so-called BZ algorithm.
The general idea is the peeling process. That is, to compute the k-core Gk of
G, the vertices (and their adjacent edges) whose degrees are less than k are
repeatedly removed. When there are no more vertices to remove, the resulting
graph is the k-core of G.

Algorithm 14: BZ algorithm for core decomposition

input : an undirected graph G = (V,E)
output: the core number u.core for each u ∈ V

1 for u ∈ V do u.d← |u.adj |; u.core = ∅
2 Q← a min-priority queue by u.d for all u ∈ V
3 while Q ̸= ∅ do
4 u← Q.dequeue()
5 u.core ← u.d; remove u from G
6 for v ∈ u.adj do
7 if u.d < v.d then v.d← v.d− 1
8 update Q

Algorithm 14 shows the steps of the BZ algorithm. In initialization, for
each vertex u ∈ V , the auxiliary degree u.d is set to |u.adj | and the core
number u.core is not identified (line 1). The postcondition is that for each
vertex u ∈ V , the u.d equals to the core number, formally u.d = u.core. We
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state informally lines 3 - 8 as a loop invariant: (1) the vertex u always has the
minimum degree u.d since u is removed from the min-priority queue Q (line
4); and (2) if u obtains its core number, u.core equals to u.d (line 5). The key
step is updating v.d for all v ∈ u.adj. That is, v.d are decremented by 1 if u.d
is smaller than v.d (lines 6 and 7). In this algorithm, the min-priority queue
Q can be efficiently implemented by bucket sorting (Batagelj and Zaversnik,
2003), by which the total running time is optimized to linear O(m+ n).

Definition 5.3.5 (Core Maintenance for Edge Insertion). Given an undirected
graph G = (V,E), the candidate set V ∗ is identified after an edge is inserted.
The core numbers of vertices in V ∗ are increased.

Definition 5.3.6 (Core Maintenance for Edge Deletion). Given an undirected
graph G = (V,E), the candidate set V ∗ is identified after an edge is removed.
The core numbers of vertices in V ∗ are decreased.

Definition 5.3.7 (Candidate Set V ∗ and Searching Set V +). Given an undi-
rected graph G = (V,E), when an edge is inserted or removed, a candidate set
of vertices, denoted as V ∗, have to be computed so that the core numbers of
all vertices in V ∗ must be updated. In order to identify V ∗, a minimal set of
searching vertices, denoted as V +, is traversed by repeatedly accessing their
adjacent edges.

Definition 5.3.7 says that V ∗ is identified by traversing a minimum num-
ber of vertices in V +, so that V ∗ has to belong to V +, denoted as V ∗ ⊆ V +.
Further, the vertices v ∈ V + \ V ∗, are searching vertices but not candidate
vertices. Efficient core maintenance algorithms should have a small ratio of
|V +|/|V ∗| in order to minimize the cost of computing V ∗. After V ∗ is identi-
fied, the core number of vertices in V ∗ can be updated accordingly. In (Zhang
and Yu, 2019b), Zhang et al. prove that the core maintenance is asymmetric:
the edge removal is bounded for V ∗ = V +, but the edge insertion is unbounded
for V ∗ ⊆ V +. In other words, to identify V ∗, the edge removal only needs to
traverse V ∗; however, the edge insertion may traverse a much larger set of
vertices than V ∗.

Example 5.3.1. Consider the graph G in Figure 5.1. The numbers inside
the vertices are the core numbers. Three vertices, v1 to v3, have same core
numbers of 2; the other vertices, u1 to u1000, have same core numbers of 1. The
whole graph G is the 1-core of since each vertex has a degree of at least 1; the
subgraph induced by {v1, v2, v3} is the 2-core since each vertex in this subgraph
has a degree of at least 2. After inserting an edge, for example (u1, u500), we
observe that the core numbers of all vertices are not changed according to
the peeling process. In this case, the candidate set V ∗ = ∅. However, the
searching set V + is different for different edge insertion algorithms, e.g., the
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Figure 5.1: A sample graph G with O = O1O2 in k-order.

order-based algorithm may have V + = {u1, u2, u3} and the traversal algorithm
may traverse all vertices in sc(u1) and sc(u500) with V + = {u1, u2, . . . , u1000}.

We present two theorems given in (Li et al., 2013; Sarıyüce et al., 2016;
Zhang et al., 2017).

Theorem 5.3.1. (Li et al., 2013; Sarıyüce et al., 2016; Zhang et al., 2017)
After inserting an edge in or removing an edge from G = (V,E), the core
number of a vertex u ∈ V ∗ increases or decreases by at most 1, respectively.

Theorem 5.3.2. (Li et al., 2013; Sarıyüce et al., 2016; Zhang et al., 2017)
Suppose an edge (u, v) with K = u.core ≤ v.core is inserted to (resp. removed
from) G. Suppose V ∗ is non-empty. We have the following: (1) if u.core <
v.core, then u ∈ V ∗ and V ∗ ⊆ sc(u) (as in Definition 5.3.3); (2) if u.core =
v.core, then both vertices u and v are in V ∗ (resp. at least one of u and v is
in V ∗) and V ∗ ⊆ sc(u)∪ sc(v); (3) the induced subgraph of V ∗ ∈ G∪{(u, v)}
is connected.

Theorem 5.3.2 suggests that: (1) V ∗ only includes the vertices u ∈ V with
u.core = K; (2) V ∗ can be searched in a small local region near the inserted
or removed edge rather than in a whole graph. That is, to identify V ∗, all
vertices in V + are located in the subcores containing u and v.

5.3.1 The Order-Based Core Maintenance

In this section, we discuss the state-of-the-art sequential order-based core
maintenance approach in (Zhang et al., 2017), so-called the Order algorithm.
It is based on the k-order, which can be generated by the BZ algorithm for
core decomposition (Batagelj and Zaversnik, 2003) as in Algorithm 14. The
k-order is defined as follows.
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Definition 5.3.8 (k-Order ⪯). (Zhang et al., 2017) Given a graph G, the
k-order ⪯ is defined for any pairs of vertices u and v over the graph G as
follows: (1) when u.core < v.core, u ⪯ v; (2) when u.core = v.core, u ⪯ v if
u’s core number is determined before v’s by the BZ algorithm (Algorithm 14,
line 5).

A k-order ⪯ is an instance of all the possible vertex sequences produced by
Algorithm 14. For the k-order, transitivity holds, that is, u ⪯ v if u ⪯ w∧w ⪯
v. For each edge insertion and removal, the k-order will be maintained.

Here, Ok denotes the sequence of vertices in k-order whose core numbers
are k. A sequence O = O0O1O2 · · · over V (G) can be obtained, where Oi ⪯ Oj

if i < j. It is clear that ⪯ is defined over the sequence of O = O0O1O2 · · ·. In
other words, for all vertices in graph, the sequence O indicates the k-order ⪯.

Example 5.3.2. Continually consider the graphG in Figure 5.1. The numbers
inside the vertices are the core numbers. The k-order of G is shown by O1

and O2, which is the order of core numbers determined by the BZ algorithm
(Algorithm 14 line 5); also, O1 is determined before O2, so that we have
O1 ⪯ O2.

Edge Insertion. The key step for the insertion algorithm is to determine
V ∗. To do this, two degrees, u.d+ and u.d∗, for each vertex u ∈ V (G) are
maintained in order to identify whether u can be added into V ∗ or not:

• remaining degree u.d+: the number of the neighbors after vertex u in O
that can potentially support the increment of the current core number.

• candidate degree u.d∗: the number of the neighbors before vertex u in O
that can potentially have their core number increased.

Assume that an edge (u, v) is inserted with K = u.core ≤ v.core. The
intuition behind the order-based insertion algorithm is as follows. Starting
from u, all affected vertices with the same core number K (Theorem 5.3.2) are
traversed in O. For each visited vertex w ∈ V +, the value of w.d∗ + w.d+ is
maximal as w is visited by k-order. In this case, w will be added into V ∗ if
w.d∗+w.d+ > K; otherwise, w is impossibly in V ∗, which may repeatedly cause
other vertices to be removed from V ∗. When all vertices with core number K
are traversed, this process terminates and V ∗ is identified. Finally, the core
numbers for all vertices in V ∗ are updated by increasing by 1 (Theorem 5.3.1).
Obviously, for all vertices u ∈ V , the order O along with u.d+ and u.d∗ must
be maintained accordingly.

Compared with the Traversal insertion algorithm (Sarıyüce et al., 2016),
the benefit of traversing with k-order is that a large number of unnecessary

89



Ph.D. Thesis—B. Guo McMaster University—Computer Science

vertices in V +\V ∗ can be avoided. This is why the Order insertion algorithm
is generally more efficient.

The Order insertion algorithm is not easy to implement as it needs to tra-
verse the vertices in O efficiently. There are three cases. First, given a pair of
vertices u, v ∈ Ok, the order-based insertion algorithm needs to efficiently test
whether u ⪯ v or not. For this, Ok is implemented as a double linked list asso-
ciated with a data structureAk which is a binary search tree and each tree node
holds one vertex. For all u, v ∈ Ok, we can test the order u ⪯ v in O(log|Ok|)
time by using Ak. Second, the order-based insertion algorithm needs to effi-
ciently “jump” over a large number of non-affected vertices that have u.d∗ = 0.
To do this, Ok is also associated with a data structure B, which is a min-heap.
Here, B supports finding a affected vertex u with u.d∗ > 0 sequentially in Ok

with O(1) time; but it requires O(log|Ok|) time to maintain the min-heap.
Therefore, when maintaining O, both A and B requires to updated accord-
ingly, which requires worst-case O(|V +|· log|Ok|+O(|V ∗|) log|Ok+1|) time for
removing v ∈ V ∗ from Ok and then inserting v ∈ V ∗ at the head of Ok+1.

As we can see, the A and B data structures are complicated, which com-
plicates understanding and implementation. Additionally, the operations on
A and B are time-consuming, especially when handling a data graph with a
large sizes of Ok or Ok+1.

Edge Removal. The order-based removal algorithm adopts the same rou-
tine used in the traversal removal algorithm (Sarıyüce et al., 2016) to compute
V ∗. This order-based removal algorithm is based on the max-core degree.

Definition 5.3.9 (max-core degree mcd). (Sarıyüce et al., 2016; Zhang et al.,
2017) Given a graph G = (V,E), for each vertex v ∈ V , the max-core degree,
v.mcd , is the number of v’s neighbors w such that w.core ≥ v.core, defined as
v.mcd = |{w ∈ v.adj : w.core ≥ v.core}|.

As discussed, the edge removal is much simpler than the edge insertion since
edge removal is bounded for V ∗ = V +. Assuming an edge (u, v) is removed
from the graph, both u.mcd and v.mcd are updated accordingly. This may
repeatedly affect other adjacent vertices’ mcd . When the process terminates,
all affected vertices u that have u.mcd < u.core can be added into V ∗ and
then their core numbers are off by 1. Obviously, for all vertices u ∈ V ∗, the
sequence O along with u.mcd must be maintained accordingly.

Compared with the Traversal removal algorithm (Sarıyüce et al., 2016),
the difference is that the Order removal algorithm needs to maintain the
k-order O for all vertices in V ∗. That is, all vertices in V ∗ with core number k
are deleted from Ok and then appended to Ok−1 in the corresponding k-order.
Recall that two associated data structures, A and B, are used for the order-
based insertion algorithm. Both A and B must be updated accordingly, which
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requires worst-case O(|V ∗|·(log|Ok|+ log|Ok−1|)) time for removing v ∈ V ∗

from Ok and appending v ∈ V ∗ at the tail of Ok−1. Analogously to the order-
based insertion, the operations on A and B are time-consuming when handling
a data graph with a large size of Ok or Ok−1.

The Order removal algorithm is presented in Algorithm 15. After an edge
is removed, the affected vertices, u and v, have to be put into V ∗ if their mcd
less than core (lines 2 to 4), which may repeatedly cause the other vertices’
mcd decrease and then added to V ∗ (lines 5 to 9). The queue R is used to
propagate the vertices added to V ∗ whose mcd are less than their core numbers
(lines 5 and 6). The k-order is maintained for inserting an edge next time (line
11). Also, all vertices’ mcd have to be updated for removing an edge next time
(line 12).

Algorithm 15: RemoveEdge(G,O, (u, v))

1 R,K, V ∗ ← an empty queue, Min(u.core, v.core), ∅
2 remove (u, v) from G⃗ with updating u.mcd and v.mcd
3 if u.mcd < K then V ∗ ← V ∗ ∪ {u};R.enqueue(u)
4 if v.mcd < K then V ∗ ← V ∗ ∪ {v};R.enqueue(v)
5 while R ̸= ∅ do
6 w ← R.dequeue()
7 for w′ ∈ w.adj with w′.core = K ∧ w /∈ V ∗ do
8 w′.mcd← w′.mcd− 1
9 if w′.mcd < K then V ∗ ← V ∗ ∪ {w′};R.enqueue(w′)

10 for w ∈ V ∗ do w.core ← w.core − 1
11 Remove all w ∈ V ∗ from OK and append to OK−1 in k-order
12 update mcd for all related vertices accordingly

5.4 The Simplified Order-Based Algorithm

The main reason for the order-based algorithm being complicated and ineffi-
cient is that two data structures, A and B, are used to maintain O in k-order
for all vertices in a graph. In this section, we adopt the Order Maintenance
(OM) data structure (Dietz and Sleator, 1987; Bender et al., 2002) to maintain
the k-order for all vertices. There are two benefits: one is that the k-order op-
erations, such as inserting, deleting, and comparing the order of two vertices,
can be optimized to O(1) amortized running time; the other is that the orig-
inal order-based method (Zhang et al., 2017) can be simplified, which makes
it easier to implement and to discuss the correctness.

Before introducing the new method, we propose a constructed Directed
Acyclic Graph (DAG) to simplify the statement of our algorithms. Given an
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undirected graph G = (V,E) with O in k-order, each edge (u, v) ∈ E(G)
can be assigned a direction such that u ⪯ v. By doing this, a direct acyclic
graph (DAG) G⃗ = (V, E⃗) can be constructed where each edge u 7→ v ∈ E⃗(G⃗)

satisfies u ⪯ v. Of course, the k-order of G is the topological order of G⃗. The
post of a vertex v in G⃗(V, E⃗) is all its successors (outgoing edges), defined by

u(G⃗).post = {v | u 7→ v ∈ E⃗(G⃗)}; the pre of a vertex v in G⃗(V, E⃗) is all its

predecessors (incoming edges), defined by u(G⃗).pre = {v | v 7→ u ∈ E⃗(G⃗)}.
When the context is clear, we use u.post instead of u(G⃗).post and u.pre instead

of u(G⃗).pre.

In other words, the constructed DAG G⃗ = (V, E⃗) is equivalent to the
undirected graph G(V,E) by associating the direction for each edge in k-

order. This newly defined constructed DAG G⃗ is convenient for describing our
simplified order-based insertion algorithm.

Lemma 5.4.1. Given a constructed DAG G⃗ = (V, E⃗), for each vertex v ∈ V ,
the out-degree |v.post| is not greater than the core number, |v.post |≤ v.core.

Proof. Since the topological order of G⃗ is the k-core of G, when removing the
vertex v by executing the BZ algorithm (Algorithm 14, line 5) all the vertices
in v.pre are already removed. In such a case, the out-degree of v is its current
degree. If there exist |v.post |> v.core the value v.core should equal to |v.post |,
which leads to a contradiction.

If inserting an edge into a constructed DAG G⃗ does not violate Lemma
5.4.1, no maintenance operations are required. Otherwise, G⃗ has to be main-
tained to re-establish Lemma 5.4.1.

5.4.1 The Simplified Order-Based Insertion

Theory Background. With the concept of the constructed DAG G⃗, we
can introduce our simplified insertion algorithm to maintain the core numbers
after an edge is inserted to G⃗. For convenience, based on the constructed DAG
G⃗, we first redefine the two concepts of candidate degree and remaining degree
as in (Zhang et al., 2017).

Definition 5.4.1 (candidate in-degree). Given a constructed DAG G⃗(V, E⃗),
the candidate in-degree v.d∗

in is the total number of its predecessors located in
V ∗, denoted as

v.d∗
in = |{w ∈ v.pre : w ∈ V ∗}|

Definition 5.4.2 (remaining out-degree). Given a constructed DAG G⃗(V, E⃗),
the remaining out-degree v.d+

out is the total number of its successors without
the ones that are confirmed not in V ∗, denoted as

v.d+
out = |{w ∈ v.post : w /∈ V + \ V ∗}|
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In other words, assuming that K = v.core, the candidate in-degree v.d∗
in

counts the number of predecessors that are already in the new (K + 1)-core;
v.d+

out counts the number of successors that can be in the new (K + 1)-core.
Therefore, v.d∗

in + v.d+
out upper bounds the number of v’s neighbors in the new

(K + 1)-core.

Theorem 5.4.2. Given a constructed DAG G⃗ = (V, E⃗) by inserting an edge
u 7→ v with K = u.core ≤ v.core, the candidate set V ∗ includes all possible
vertices that satisfy: 1) their core numbers equal to K, and 2) their total
numbers of candidate in-degree and remaining out-degree are greater than K,
denoted as

∀w ∈ V : w ∈ V ∗ ≡ (w.core = K ∧ w.d∗
in + w.d+

out > K)

Proof. According to Theorem 5.3.1 and Theorem 5.3.2, for all vertices in V ∗,
we have 1) their core numbers equal to K, and 2) their core numbers will
increase to K+1 and they can be added to new (K+1)-core. By the definition
of k-core, for a vertex v ∈ V ∗, v must have at least K+1 adjacent vertices that
can be in the new (K+1)-core. As v.d∗

in + v.d+
out is the number of v’s adjacent

vertices that can be in the new (K + 1)-core, we get v.d∗
in + v.d+

out > K for all
vertices v ∈ V ∗.

Theorem 5.4.3. Given a constructed DAG G⃗ = (V, E⃗) by inserting an edge
u 7→ v with u in OK, all affected vertices w are after u in OK. Starting
from u, when w is traversed in OK and the V +, V ∗, w.d∗

in , w.d
+
out are updated

accordingly, each time the value of w.d∗
in + w.d+

out is maximal.

Proof. For all the vertices in the constructed DAG G⃗, O is the topological
order in G⃗ according to the definition of G⃗. When traversing affected vertices
w in G in such topological order, each time for w all the affected predecessors
must have been traversed, so that we get the value of w.d∗

in is maximal; also,
all the related successors are not yet traversed, so that the value of w.d+

out is
also maximal. Therefore, the total value of w.d∗

in + w.d+
out is maximal.

In other words, when traversing the affected vertices w in O, w.d∗
in +w.d+

out

is the upper bound. That means, when traversing the vertices after w in O,
w.d∗

in + w.d+
out only can be decreased as some vertices can be removed from

V ∗. In this case, we can safely remove w from V ∗ if w.d∗
in +w.d+

out ≤ K, since
w is impossibly in V ∗ according to Theorem 5.4.2. This is the key idea behind
the order-based insertion algorithm.

The Algorithm. Algorithm 16 shows the detailed steps when inserting an
edge u 7→ v. One issue is the implementation of traversing the vertices in Ok.
We propose to use a Min-Priority Queue combined with the OM data structure
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(line 4). The idea is as follows: 1) Ok is maintained by the OM data structure
(Dietz and Sleator, 1987; Bender et al., 2002), by which each vertex is assigned
a label (an integer number) to indicate the order, and 2) all adjacent vertices
are added into a Min-Priority Queue by using such labels as their keys. By
doing this, each time we can dequeue a vertex from the Min-Priority Queue
to “jump” over not-affected vertices efficiently. Further, three colors are used
to indicate the different status for each vertex v in a graph:

• white: v has initial status, v /∈ V ∗ ∧ v /∈ V +.

• black: v is traversed and identified as a candidate vertex, v ∈ V ∗ ∧ v ∈
V +.

• gray: v is traversed and identified impossibly as a candidate vertex,
v /∈ V ∗ ∧ v ∈ V + ≡ v ∈ V + \ V ∗.

Before executing, we assume that for all vertices v ∈ V (G⃗) their d+
out and d∗

in

are correctly maintained, that is v.d+
out = |v.post | ∧ v.d∗

in = 0. Initially, both
V ∗ and V + are empty (all vertices are white) and K is initialized to u.core
since u ⪯ v for u 7→ v (line 1). After inserting an edge u 7→ v with u ⪯ v
in O, we have u.d+

out increase by one (line 2). The algorithm will terminate
if u.d+

out ≤ u.core as Lemma 5.4.1 is satisfied (line 3). Otherwise, u is added
into the Min-Priority Queue Q (line 4) for propagation (line 8 to 13). For each
w removed from Q (line 6), we check the value of w.d∗

in + w.d+
out . That is, if

w.d∗
in+w.d+

out > K, vertex w can be added to V ∗ and may cause other vertices
added in V ∗, which is processed by the Forward procedure (line 7). Otherwise,
w cannot be added to V ∗, which may cause some vertices to be removed from
V ∗ processed by the Backward procedure (line 8). Here, w.d∗

in > 0 means w is
affected, or else w can be omitted since w has no predecessors in V ∗ (line 8).
When Q is empty, this process terminates and V ∗ is obtained (line 5). At the
ending phase, for all vertices V ∗, their core numbers are increased by one (by
Theorem 5.3.1) and their d∗

in are reset (line 9). Finally, the O is maintained
(line 10).

The detailed steps of the Forward procedure are shown in Algorithm 17.
At first, u is added to V ∗ and V + (set from white to black) since u has
u.d∗

in+u.d+
out > K (line 1). Then, for each u’s successors v whose core numbers

are equal to K (by Theorem 5.3.2), v.d∗
in is increased by one (lines 2 and 3). In

this case, v is affected and has to be added into Q for subsequent propagation
(line 4).

The detail steps of the Backward procedure are shown in Algorithm 18. In
the DoPre(u) procedure, for all u’s predecessors v that are located in V ∗ (line
11), v.d+

out is decreased by one since u is set to gray and cannot be added into
V ∗ any more (line 12); in this case, v has to be added into R for propagation
if v.d∗

in + v.d+
out ≤ K(line 13). Similarly, in the DoPost(u) procedure, for all
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Algorithm 16: InsertEdge(G⃗,O, u 7→ v)

input : A DAG G⃗(V, E⃗); the corresponding O; an edge u 7→ v to be
inserted.

output: An updated DAG G⃗(V, E⃗); the updated O.
1 V ∗, V +,K ← ∅, ∅, u.core // all vertices are white

2 insert u 7→ v into G⃗ with u.d+
out ← u.d+

out + 1
3 if u.d+

out ≤ K then return
4 Q← a min-priority queue by O; Q.enqueue(u)
5 while Q ̸= ∅ do
6 w ← Q.dequeue()
7 if w.d∗

in + w.d+
out > K then Forward(w,Q,K)

8 else if w.d∗
in > 0 then Backward(w,O,K)

// Ending Phase

9 for w ∈ V ∗ do w.core ← K + 1; w.d∗
in ← 0

10 for w ∈ V ∗ do remove w from OK and insert w at the beginning of OK+1

in k-order (the order w added into V ∗)

Algorithm 17: Forward(u,Q,K)

1 V ∗ ← V ∗ ∪ {u}; V + ← V + ∪ {u} // u is white to black

2 for v ∈ u.post : v.core = K do
3 v.d∗

in ← v.d∗
in + 1

4 if v /∈ Q then Q.enqueue(v)

u’s successors v that have v.d∗
in > 0 (line 15), v.d∗

in is decreased by one (line
16) and added into R for propagation if v.d∗

in + v.d+
out ≤ K (lines 17 and 18).

The detailed steps of the Backward procedure are shown in Algorithm 18.
The queue R is used for propagation (line 2). The DoPre(u) procedure updates
the graph when setting u from white to gray or from black to gray, that is,
for all u’s predecessors in V ∗, all d+

out are off by 1 and then added to R for
propagation, if its d∗

in+d+
out ≤ K since they cannot be in V ∗ any more (lines 10

- 13). Similarly, the DoPost procedure updates the graph when setting u from
black to gray, that is, for all u’s successors with d∗

in > 0, all d∗
in are off by 1

and then added to R for propagation if it is in V ∗ and its d∗
in + degout ≤ K

(lines 14 - 18). Now, we explain the algorithm step by step. At first, w is
just added to V + (set from white to gray) since w has w.d∗

in + w.d+
out ≤ K

(line 1). The queue R is initialized as empty for propagation (line 2) and w is
propagated by the DoPre procedure. Of course, w’s d+

out and d∗
in are updated

(line 3) since all black vertices causing w.d∗
in increased will be moved after w

in O eventually. All the vertices in R are black waiting to be propagated (lines
26 to 31). For each u ∈ R, vertex u is removed from R (line 5) and removed
from V ∗, which sets u from black to gray (line 6). This may require d∗

in and
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d+
out of adjacent vertices to be updated, which is done by the procedures DoPre

and DoPost, respectively (line 7). To maintain OK , u is first removed from
OK and then inserted after p in OK , where p initially is w or the previous
moved vertices in OK (line 8). Of course, u’s d+

out and d∗
in are updated (line

3) since all black vertices causing u.d∗
in increased will be moved after w in O

eventually. This process is repeated until R is empty (lines 26 to 31).

Algorithm 18: Backward(w,O, K)

1 V + ← V + ∪ {w}; p← w // w is white to gray

2 R← an empty queue; DoPre(w)
3 w.d+

out ← w.d+
out + w.d∗

in ; w.d
∗
in ← 0

4 while R ̸= ∅ do
5 u← R.dequeue()
6 V ∗ ← V ∗ \ {u} // u is black to gray

7 DoPre(u); DoPost(u)
8 DELETE (OK , u); INSERT(OK , p, u); p← u
9 u.d+

out ← u.d+
out + u.d∗

in ; u.d
∗
in ← 0

10 procedure DoPre(u)
11 for v ∈ u.pre : v ∈ V ∗ do
12 v.d+

out ← v.d+
out − 1

13 if v.d∗
in + v.d+

out ≤ K ∧ v /∈ R then R.enqueue(v)

14 procedure DoPost(u)
15 for v ∈ u.post : v.d∗

in > 0 do
16 v.d∗

in ← v.d∗
in − 1

17 if v ∈ V ∗ ∧ v.d∗
in + v.d+

out ≤ K ∧ v /∈ R then
18 R.enqueue(v)

Example 5.4.1. Consider inserting an edge to a constructed graph in Fig-
ure 6.1 obtained from Figure 5.1. The numbers inside the vertices are the core
numbers, and the two numbers beside the vertices u1, u2, u3 and u500 are their
d∗
in + d+

out . Initially, we have the min-priority queue Q = ∅ and K = 1. In
Figure 6.1(a), after inserting an edge u1 7→ u500, we get u1.d

+
out = 2 > K

and therefore u1 is added to Q as Q = {u1}. We begin to propagate Q.
First, in Figure 6.1(a), u1 is removed from Q to do the Forward procedure
since u1.d

+
out + u1.d

∗
in = 0 + 2 > K, by which u1 is colored by black, all

u1.post ’s d
∗
in add by 1, and all u1.post are put into Q as Q = {u2, u500}. Sec-

ond, in Figure 6.1(b), u2 is removed from Q to do the Forward procedure since
u2.d

+
out + u2.d

∗
in = 1 + 1 > K, by which u2 is colored by black, all u2.post ’s

d∗
in add by 1, and all u1.post are added into Q as Q = {u3, u500}. Third, in

Figure 6.1(c), however, u3 is removed from Q to do the Backward procedure
since u3.d

∗
in + u3.d

+
out = 1 + 0 ≤ K, by which u3 is colored by gray and we

have Q = {u500}.
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Figure 5.2: Insert one edge u1 7→ u500 to a constructed graph G⃗ obtained
from Figure 5.1.

The Backward procedure continues. In Figure 6.1(d), we get u2.d
+
out off by

1 and u2.d
∗
in + u2.d

+
out = 1 + 0 ≤ K, so that u2 is set to gray, by which

u2 is moved after u3 in O1. In Figure 6.1(e), we get u1.d
+
out off by 1 and

u1.d
∗
in + u1.d

+
out = 0 + 1 ≤ K, so that u1 is also set to gray, by which

u1 is moved after u3 in O1; also, we get u500.d
∗
in off by 1 and the Backward

procedure terminate. Finally, we still need to check the last u500 in Q, which
can be safely omitted since its d∗

in is 0. In this simple example, we have
V ∗ = ∅ ∧ V + = {u1, u2, u3} and only 4 vertices added to Q. A large number
of vertices in O1, e.g. u4 . . . u1000, are avoided being traversed.

Correctness. The key issue of the Algorithm 16 is to identify the candidate
set V ∗. For correctness, the algorithm has to be sound and complete. The
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soundness implies that all vertices in V ∗ are correctly identified,

sound(V ∗) ≡ ∀v ∈ V : v ∈ V ∗ ⇒ v.d∗
in + v.d+

out > K ∧ v.core = K

The completeness implies that all possible candidate vertices are added into
V ∗,

complete(V ∗) ≡ ∀v ∈ V : v.d∗
in + v.d+

out > K ∧ v.core = K ⇒ v ∈ V ∗

The algorithm has to ensure both soundness and completeness

sound(V ∗) ∧ complete(V ∗),

which is equivalent to

∀v ∈ V : v ∈ V ∗ ≡ v.d∗
in + v.d+

out > K ∧ v.core = K

To argue the soundness and completeness, we first define the vertices in
V (G) to have correct candidate in-degrees and remaining out-degrees as

in∗(V ) ≡ ∀v ∈ V : v.d∗
in = |{w ∈ v.pre : w ∈ V ∗}|

out+(V ) ≡ ∀v ∈ V : v.d+
out = |{w ∈ v.post : w /∈ V + \ V ∗}|

We also define the sequence O for all vertices in V are in k-order as

∀vi ∈ V : O(V ) = (v1, v2, . . . , vi)⇒ v1 ⪯ v2 ⪯ . . . ⪯ vi

Theorem 5.4.4 (soundness and completeness). For any constructed graph

G⃗(V, E⃗), The while-loop in Algorithm 16 (lines 8 to 13) terminates with
sound(V ∗) and complete(V ∗).

Proof. The invariant of the outer while-loop (lines 8 to 13 in Algorithm 16) is
that all vertices in V ∗ are sound, but adding a vertex to V ∗ (white to black)
may lead to its successors to be incomplete; for all vertices, their d∗

in and d+
out

counts are correctly maintained. All vertices in Q have their core numbers as
K and their d∗

in must be greater or equal to 0, and all vertices v ∈ V must be
greater than 0 if v is located in Q; also, the k-order for all the vertices not in
V ∗ is correctly maintained:

sound(V ∗) ∧ complete(V ∗ \Q) ∧ in∗(V ) ∧ out+(V )

∧ (∀v ∈ Q : v.core = K ∧ v.d∗
in ≥ 0)

∧ (∀v ∈ V : v.d∗
in > 0⇒ v ∈ Q)

∧ O(V \ V ∗)

The invariant initially holds as V ∗ = ∅ and for all vertices their d∗
in , d

+
out and

k-order are correctly initialized; also u is first add to Q for propagation only
when u.core = K ∧ u.d+

out > K ∧ u.d∗
in = 0. We now argue that the while-loop

preserves this invariant:
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– sound(V ∗) is preserved as v ∈ V is added to V ∗ only if v.d∗
in+v.d+

out > K
by the Forward procedure; also, v is safely removed from V ∗ if v.d∗

in +
v.d+

out ≤ K by the Backward procedure according to Theorem 5.4.3.

– complete(V ∗ \ Q) is preserved as all the affected vertices v, which may
have v.d∗

in + v.d+
out > K, are added to Q by the Forward procedure for

propagation.

– in∗(V ) is preserved as each time when a vertex v is added to V ∗, all
its successors’ d∗

in are increased by 1 in the Forward procedure; also
each time when a vertex v cannot be added to V ∗, the O may change
Backward procedure.

– out∗(V ) is preserved as each time when a vertex v cannot be added to V ∗,
the O may change and the corresponding d+

out are correctly maintained
by the Backward procedure.

– (∀v ∈ Q : v.core = K ∧ v.d∗
in ≥ 0) is preserved as in the Forward

procedure, the vertices v are added in Q only if v.core = K with v.d∗
in

add by 1; but v.d∗
in may be reduced to 0 in the Backward procedure when

some vertices cannot in V ∗.

– (∀v ∈ V : v.d∗
in > 0 ⇒ v ∈ Q) is preserved as v can be added in Q only

after adding v.d∗
in by 1 in the Forward procedure.

– O(V \ V ∗) is preserved as the k-order of all vertices v ∈ V + \ V ∗ is
correctly maintained by the Backward procedure and the k-order of all
the other vertices v ∈ V \ V + is not affected.

We also have to argue the invariant of the inner while-loop in the Backward
procedure (lines 26 to 31 in Algorithm 18). The additional invariant is that
all vertices in R has to be located in V ∗ but not sound as their d∗

in +d+
out ≤ K:

sound(V ∗ \R) ∧ complete(V ∗ \Q) ∧ in∗(V ) ∧ out+(V )

∧ (∀v ∈ R : v.core = K ∧ v ∈ V ∗ ∧ v.d∗
in + v.d+

out ≤ K)

∧ (∀v ∈ Q : v.core = K ∧ v.d∗
in ≥ 0)

∧ (∀v ∈ V : v.d∗
in > 0⇒ v ∈ Q)

∧ O(V \ V ∗)

The invariant initially holds as for w, all its predecessors’ d+
out are off by 1

and added in R if their d∗
in +d+

out ≤ K since w is identified in V + \ V ∗ (gray).
We have w ⪯ all vertices in V ∗ in O, denoted as w ⪯ V ∗, as 1) v can be moved
to the head of OK+1 and v.core is add by 1 if v is still in V ∗ when the outer
while-loop terminated, and 2) v is removed from V ∗ and moved after w in OK .
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In this case, w.d+
out and w.d∗

in are can be correctly updated to (w.d+
out +w.d∗

in)
and 0, respectively. We now argue that the while-loop preserves this invariant:

– sound(V ∗\R) is preserved as all v ∈ V ∗ are added to R if v.d∗
in+v.d+

out ≤
K.

– in∗(V ) is preserved as each time for a vertex u ∈ R setting from black

to gray, for all its affected successor, which have d∗
in > 0, their d∗

in are
off by 1; also, u.d∗

in is set to 0 when setting from black to gray since
u ⪯ all vertices in V ∗ in the changed O.

– out∗(V ) is preserved as each time for a vertex u ∈ R setting from black

to gray, for all its affected predecessor, which are in V ∗, their d+
out are

off by 1; also, u.d+
out is set to u.d+

out + u.d∗
in since u ⪯ all vertices in V ∗

in the changed O.

– (∀v ∈ R : v.core = K ∧ v ∈ V ∗ ∧ v.d∗
in + v.d+

out ≤ K) is preserved as
each time for a vertex v ∈ V ∗, v is checked when v.d∗

in or v.d+
out is

off by 1, and v is added to R if v.d∗
in + v.d+

out ≤ K.

– O(V \V ∗) is preserved as each vertex v that removed from V ∗ by pealing
are moved following p in OK , where p is w or the previous vertex removed
from V ∗.

At the termination of the inner while-loop, we get R = ∅. At the termi-
nation of the outer while-loop, we get Q = ∅. The postcondition of the outer
while-loop is sound(V ∗) ∧ complete(V ∗).

At the ending phase of Algorithm 16, the core numbers of all vertices in
V ∗ are increased by 1, and O in k-order is maintained. On the termination of
Algorithm 16, all core numbers are correct and O(V ) ∧ in∗(V ) ∧ out+(V ) are
preserved, which provides a correct initial state for the next edge insertion.

Complexity.

Theorem 5.4.5. The time complexity of the simplified order-based insertion
algorithm is O(|E+|· log|E+|) in the worst case, where |E+| is the number of
adjacent edges for all vertices in V + defined as |E+|=

∑
v∈V + v.deg.

Proof. As the definition of V +, it includes all traversed vertices to identify V ∗.
In the Forward procedure, the vertices in V + are traversed at most once, so
do in the Backward procedure, which requires worst-case O(|E+|) time. In the
while-loop (Algorithm 16 lines 5 - 10), the min-priority queue Q includes at
most |E+| vertices since each related edge of vertices in V + is added into Q at
most once. The min-priority queue can be implemented by min-heap, which
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requires worst-case O(|E+|· log|E+|) time to dequeue all the values. All the
vertices in O are maintained with OM data structure so that manipulating
the order of one vertex requires amortized O(1) time; there are totally at
most |V +| vertices whose order are manipulated, which requires worst-case
O(|V +|) amortized time. Therefore, the total worst-case time complexity is
O(|E+|+|E+|· log|E+|+|V +|) = O(|E+|· log|E+|).

Theorem 5.4.6. The space complexity of the simplified order-based insertion
algorithm is O(n) in the worst-case.

Proof. Each vertex v is assigned three counters that are v.core, v.d∗
in and

v.d+
out , which requires O(3n) space. Both Q and R have at most n vertices,

respectively, which require worst-case O(2n) space together. Two arrays are
required for V + and V ∗, which requires worst-case O(2n) space. All vertices
in O are maintained by OM data structure. For this, all vertices are linked
by double linked lists, which requires O(2n) space; also, vertices are assigned
labels (typically 64 bits integer) to indicate the order, which requires O(2n)
space. Therefore, the total worst-case space complexity is O(3n + 2n + 2n +
2n+ 2n) = O(n).

5.4.2 The Simplified Order-Based Removal

Our simplified order-based removal Algorithm is mostly the same as the orig-
inal order-based removal Algorithm in (Zhang et al., 2017; Sarıyüce et al.,
2016), so that the details are omitted in this section. The only difference is
that our simplified order-based removal algorithm adopts the OM data struc-
ture to maintain O, instead of the complicatedA and B data structures (Zhang
et al., 2017). In this case, the worst-case time complexity can be improved
as the OM data structure only requires amortized O(1) time for each order
operation.

Complexities.

Theorem 5.4.7. The time complexity of the simplified order-based removal
algorithm is O(Deg(G) + |E∗|) in the worst case, where |E∗|=

∑
w∈V ∗ w.deg.

Proof. Typically, the data graph G is stored by adjacent lists. For removing
an edge (u, v), all edges of the vertex u and v are sequentially traversed, which
requires at most O(Deg(G)) time. We know that V + includes all traversed
vertices to identify the candidate set V ∗ and V ∗ = V + in this algorithm. The
vertices in V ∗ are traversed at most once, which requires worst-case O(|E∗|)
time. All vertices in V ∗ are removed from the OK and appended to OK−1 in
k-order, which requires O(|V ∗|) time as each insert or remove operation only
requires amortized O(1) time by the OM data structure. Since it is possible
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that Deg(G) > |E∗| in some cases like V ∗ = ∅, the total worst-case time
complexity is O(Deg(G) + |E∗|+|V ∗|) = O(Deg(G) + |E∗|).

Theorem 5.4.8. The space complexity of the simplified order-based removal
algorithm is O(n) in the worst-case.

Proof. For each vertex v in the graph, v.mcd is used to identify the V ∗, which
requires O(n) space. All vertices in O are maintained by OM data structure,
which requires O(4n) space. A queue is used for the propagation, which re-
quires worst-case O(n) space. One array is required for V ∗, which requires
O(n) space. Therefore, the total worst-case space is O(n + 4n + n + n) =
O(n).

5.5 The Simplified Order-Based Batch Inser-

tion

In practice, it is common that a great number of edges are inserted into a
graph together. If multiple edges are inserted one by one, the vertices in
V + \ V ∗ may be repeatedly traversed. Instead of inserting one by one, we can
handle the edge insertion in batch. In this section, we extend our simplified
order-based unit insertion algorithm to batch insertion.

Let ∆G = (V,∆E) be an inserted graph to a constructed DAG G⃗. That

is, ∆E(∆G) contains a batch of edges that will be inserted to G⃗. Each edge

u 7→ v ∈ ∆E satisfies u ⪯ v in the k-order of G⃗.

Theorem 5.5.1. After inserted a graph ∆G = (V,∆E) to constructed DAG

G⃗ = (V, E⃗), the core number of a vertex v ∈ V (G⃗) increases by at most 1 if v
satisfies |v.post|≤ v.core + 1.

Proof. For each v ∈ V (G⃗), Lemma 5.4.1 proves that the out-degree of v sat-

isfies |v.post |≤ v.core. Analogies, when inserting ∆G into G⃗ with |v.post |≤
v.core + 1, the core number can be increased by at most 1, as after inserting
the new graph has to satisfy v.dout ≤ v.core for all vertices v ∈ V (G⃗).

Theorem 5.5.1 suggests that in each round we can insert multiples edges
u 7→ v ∈ ∆E into G⃗ only if |u(G⃗).post |≤ u(G⃗).core + 1; otherwise, u 7→ v
has to be inserted in next round until all edges are inserted. In the worst-
case, there are Deg(∆G) round required if each edges u 7→ v ∈ ∆E satisfy

u(G⃗).d+
out = u(G⃗).core.
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The Algorithm. Algorithm 19 shows the detailed steps. A batch of edges
u 7→ v ∈ ∆E can be inserted into G⃗ only if u.d+

out ≤ u.core (lines 3 and 4).
When u.d+

out = u.core + 1, we can put u into the Min-Priority Queue Q for
propagation (line 5). Of course, the inserted edges are removed from ∆G (line
6). After all possible edges are inserted, the propagation is the same as in lines
5 - 10 of Algorithm 16 (line 7), where K is the core numbers of local k-subcore
with K = u.core ≤ v.core for an inserted edge u 7→ v. This process repeatedly
continues until the ∆G becomes empty (line 1).

Algorithm 19: BatchInsertEdge(G⃗,O,∆G)

input : A constructed DAG G⃗ = (V, E⃗); the corresponding O; An inserted
graph ∆G = (V,∆E).

output: A updated DAG G⃗(V, E⃗); A updated O.
1 while ∆G ̸= ∅ do
2 V ∗, V +, Q← ∅, ∅, a min-priority queue by O
3 for u 7→ v ∈ ∆E(∆G) : u.d+

out ≤ u.core do

4 insert u 7→ v into G⃗ with u.d+
out ← u.d+

out + 1
5 if u.d+

out = u.core + 1 then Q.enqueu(u)
6 remove u 7→ v from ∆G

7 same code as lines 5 - 10 in Algorithm 16 with K as the core number of
local subcore

Example 5.5.1. Consider inserting two edges in the constructed graph in
Figure 5.3. Initially, the Min-Priority Queue Q is empty and K is the core
number of the corresponding k-subcore. In Figure 5.3(a), after inserting two
edges, u1 7→ v2 and u2 7→ v2, we get u1.d

+
out = K + 1 = 2 and u2.d

+
out =

K+1 = 2, so that these two edges can be inserted in batch and we put u1 and
u2 in Q as Q = {u1, u2}. We begin to propagate Q. First, in Figure 5.3(a),
u1 is removed from Q to do the Forward procedure since u1.d

∗
in + u1.d

+
out =

0 + 2 > K = 1, by which u1 is colored by black; within subcore sc(u1),
all u1.post ’s d∗

in are added by 1, and all u1.post are put in Q as Q = {u2}.
Second, in Figure 5.3(b), u2 is removed from Q to do the Forward procedure
since u2.d

∗
in+u2.d

+
out = 0+2 > K = 1, by which u2 is colored by black; within

subcore sc(u2), all u2.post ’s d
∗
in are added by 1, and all u2.post are put in Q as

Q = {u3}. Third, in Figure 5.3(c), u3 is removed from Q to do the Backward

procedure since u3.d
∗
in + u3.d

+
out = 1 + 0 ≤ K = 1, by which u3 is colored by

black and u2.d
+
out off by 1; however, since u2.d

∗
in +u2.d

+
out = 1+1 > K = 1, we

have u2 still black and the Backward procedure terminates. Finally, in Figure
5.3(d), two black vertices, u1 and u2, have increased core numbers as 2; then,
they are removed from O1 and inserted before the head of O2 to maintain the
k-order.
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Figure 5.3: Insert a batch of two edges u1 7→ v2 and u2 7→ v2 to a constructed
graph G⃗ obtained from Figure 5.1.
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In this example, we have V ∗ = {u1, u2} ∧ V + = {u1, u2, u3} by batch
inserting two edges together. If we insert u1 7→ v2 first and then insert u2 7→ v2
second, the final V ∗ is same; but V + is {u1, u2, u3} and {u2, u3} for two inserted
edges, respectively. In this case, both u2 and u3 are repeatedly traversed, which
can be avoided by batch insertion.

Correctness. For each round of the while-loop (lines 2 - 7), the correctness
argument is totally the same as the single edge insertion in Algorithm 16.

Complexities. The total worst-case running time of line 7 is the same as
in Algorithm 16, which is O(|E+|· log|E+|). Typically, for Q, the running
time of enqueue and dequeue are larger than in Algorithm 16 since each time
numerous vertices can be initially added into Q for propagation (line 5). The
outer while-loop (line 1) runs at most ∆E rounds, so that ∆E is checked at
most O(Deg(∆G) · |∆E|) round as O can be changed and thus the directions
of edges in ∆E can be changed. Typically, the majority of edges can be
inserted in the first round of the while-loop. Therefore, the time complexity
of Algorithm 19 is O(|E+|· log|E+|+Deg(∆G) · |∆E|) in the worst case.

The space complexity of Algorithm 19 is the same as Algorithm 16.

5.6 Experiments

In this section, we conduct experimental studies using 12 real and synthetic
graphs and report the performance of our algorithm by comparing it with the
original order-based method:

– The order-based algorithm (Zhang et al., 2017) with unit edge insertion (I)
and edge removal (R); Before running, we execute the initialization (Init)
step.

– Our simplified order-based with unit edge insertion (OurI) and edge removal
(OurR); Before running, we execute the initialization (OurInit) step.

– Our simplified order-based batch edge insertion (OurBI).

The experiments are performed on a desktop computer with an Intel CPU (4
cores, 8 hyperthreads, 8 MB of last-level cache) and 16 GB of main memory.
The machine runs the Ubuntu Linux (18.04) operating system. All tested
algorithms are implemented in C++ and compiled with g++ version 7.3.0
with the -O3 option. All implementations and results are available at github1.

1https://github.com/Itisben/SimplifiedCoreMaint.git
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Tested Graphs. We evaluate the performance of different methods over a
variety of real-world and synthetic graphs, which are shown in Table 6.2. For
simplicity, directed graphs are converted to undirected ones in our testing; all
of the self-loops and repeated edges are removed. That is, a vertex cannot con-
nect to itself, and each pair of vertices can connect with at most one edge. The
livej, patent, wiki-talk, and roadNet-CA graphs are obtained from SNAP2. The
dbpedia, baidu, pokec and wiki-talk-en wiki-links-en graphs are collected from
the KONECT3 project. The ER, BA, and RMAT graphs are synthetic graphs;
they are generated by the SNAP4 system using Erdös-Rényi, Barabasi-Albert,
and the R-MAT graph models, respectively. For these generated graphs, the
average degree is fixed to 8 by choosing 1,000,000 vertices and 8,000,000 edges.

Graph n m AvgDeg Max k

livej 4,847,571 68,993,773 14.23 372
patent 6,009,555 16,518,948 2.75 64
wikitalk 2,394,385 5,021,410 2.10 131
roadNet-CA 1,971,281 5,533,214 2.81 3

dbpedia 3,966,925 13,820,853 3.48 20
baidu 2,141,301 17,794,839 8.31 78
pokec 1,632,804 30,622,564 18.75 47
wiki-talk-en 2,987,536 24,981,163 8.36 210
wiki-links-en 5,710,993 130,160,392 22.79 821

ER 1,000,000 8,000,000 8.00 11
BA 1,000,000 8,000,000 8.00 8
RMAT 1,000,000 8,000,000 8.00 237

Table 5.1: Tested real and synthetic graphs.

In Table 6.2, we can see all graphs have millions of edges, their average
degrees are ranged from 2.1 to 22.8, and their maximal core numbers range
from 3 to 821. For each tested graph, the distribution of core numbers for all
the vertices is shown in Figure 5.4, where the x-axis is the core numbers, and
the y-axis is the size of the vertices. For most graphs, many vertices have small
core numbers, and few have large core numbers. Specifically, wiki-link-en has
the maximum core numbers up to 821, so that for most of its Ok, the sizes
are around 1000; BA has a single core number as 8 so that all vertices are in
the single Ok. Since all vertices with core number k in Ok are maintained in
k-order, the size of Ok is related to the performance of different methods.

2http://snap.stanford.edu/data/index.html
3http://konect.cc/networks/
4http://snap.stanford.edu/snappy/doc/reference/generators.html
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Figure 5.4: The distribution of core numbers.

5.6.1 Running Time Evaluation

In this experiment, we compare the performance of our simplified order-based
method (OurI and OurR) with the original order-based method (I and R).
For each tested graph, we first randomly select 100,000 edges out of each
tested graph. For each graph, we measure the accumulated time for inserting
or removing these 100,000 edges. Each test runs at least 50 times, and we
calculate the means with 95% confidence intervals. Note that, the error bars
are too small to see in our experiments.

The results for edge insertion are shown in Figure 6.4(a). We can see
OurI outperforms I over all tested graphs. Specifically, Table 5.2 shows the
speedups of OurI vs. I, which ranges from 1.29 to 7.69. The reason is that
the sequence Ok in k-order is maintained separately for each core number k.
Each time insert v into or remove v from Ok, OurI only requires worst-case
O(1) amortized time while I requires worst-case O(log|Ok|) time. Therefore,
over BA we can see OurI gains the largest speedup as 7.69 since all vertices
have single one core number with |O8|= 8, 000, 000; over wiki-links-en we can
see OurI gains the smallest speedup as 1.29 since vertices have core numbers
ranging from 0 to 821 such that a large portion of order lists has |Ok| around
1000.

Similarly, we can see that the edge removal has almost the same trend of
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Figure 5.5: Compare the running times of two methods.

speedups in Figure 6.4(b), which ranges from 1.16 to 5.26 in Table 5.2. How-
ever, we observe that the speedups of removal may be less than the insertion
over most graphs. The reason is that edge removal requires fewer order oper-
ations compared with edge insertion. That is, unlike the edge insertion, it is
not necessary to compare the k-order for two vertices by Order(O, x, y) when
reversing the vertices. The main order operations are Remove(O, x) and then
Insert(O, x, y), when the core numbers of vertices x ∈ V ∗ are off by 1.

In Table 5.2, for the batch insertion, we can see the speedups of OurBI

vs. I are much less than the speedups of OurI vs. I, although OurBI may
have smaller size of V + than OurI. One reason is that OurBI has to traverse
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inserted graph ∆G at most Deg(∆G) round, which is the maximum degree of
the inserted graph ∆G. The other reason is that compared with OurI, OurBI
has a larger size of priority queue Q, which OurBI requires more running time
on enqueue and dequeue operations.

In Table 5.2, we also observe that the speedups of OurInit vs. Init

is a little larger than 1. The reason is that for initialization, most of the
running time is spent on computing the core number for all vertices by the
BZ algorithm. After running the BZ algorithm, OurInit assigns labels for
all vertices to construct O in k-order, which requires worst-case O(n) time.
However, Init has to add all vertices to binary search trees, which requires
worst-case O(n log n) time.

Table 5.2: Compare the speedups of our method for all graphs.

Graph OurI vs I OurBI vs I OurR vs R OurInit vs Init

livej 2.04 1.66 1.87 1.02
patent 3.37 2.68 4.41 1.04
wikitalk 1.34 1.63 1.15 1.26
roadNet-CA 4.51 2.95 8.56 1.17

dbpedia 2.49 2.14 1.49 1.08
baidu 1.70 1.68 1.33 1.04
pokec 2.67 2.37 2.87 1.03
wiki-talk-en 1.36 1.45 1.04 1.20
wiki-links-en 1.31 1.16 1.09 1.02

ER 3.97 2.76 9.72 1.08
BA 7.69 5.26 7.42 1.15
RMAT 1.29 1.31 0.97 1.09

5.6.2 Stability Evaluation

We test the stability of different methods over two selected graphs, i.e., wik-
italk and dbpedia as follows. First, we randomly sample 5, 000, 000 edges and
partition them into 50 groups, where each group has totally different 100, 000
edges. Second, for each group, we measure the accumulated running time of
different methods. That is, the experiments run 50 times, and each time has
totally different inserted or removed edges.

Figure 6.6 shows the results over two selected graphs. We can see that OurI
and OurR outperform I and R, respectively. More important, the performance
of OurI and OurR is as well-bounded as I and R, respectively. The reason
is that I and R are well-bounded as the variation of V + is small for different
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inserting or removal edges; also, OurI and OurR have the same size of traversed
vertices V + and thus have similar well-bounded performance.
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Figure 5.6: The stability of all methods over selected graphs.

5.6.3 Scalability Evaluation

We test the scalability of different methods over two selected graphs, i.e.,
wikitalk and dbpedia. We vary the number of edges exponentially by randomly
sampling from 100,000 to 200,000, 400,000, 800,000, 1,600,000, etc. We keep
incident vertices of edges for each sampling to generate the induced subgraphs.
Over each subgraph, we further randomly selected 100,000 edges for insertion
or removal. For example, over wikitalk, the first subgraph has 100,000 edges,
all of which can be inserted or removed; the last subgraph has 3,200,000 edges,
only 100,000 of which can be inserted or removed. Over each subgraph, we
measure the accumulated time for the insertion or removal of these 100,000
edges. Each test runs at least 50 times, and we calculate the average running
time.

We show the result in Figure 5.7, where the x-axis is the number of sampled
edges in subgraphs increasing exponentially, and the y-axis is the running times
(ms) for different methods by inserting or removing 100,000 edges. Table 5.3
shows the details of scalability evaluation, where m′ is the number of edges in
subgraphs, #lb is the number of updated labels used by the OM data structures
of our methods, and #rp is the number of outer while-loop repeated rounds
for OurBI. We make several observations as follows:

- In Figure 5.7, a first look reveals that the running time of OurI grow
more slowly compared with I. The reason is that OurI improves the worst-
case running time of each order operation of Ok from O(log|Ok|) to O(1).
In this case, the larger sampled graphs have a larger size of Ok, which can
lead to higher speedups. However, we can see that the running time of OurR
always grows with a similar trend compared with R. The reason is that a large
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percentage of the running time is spent on removing edges from the adjacent
lists of vertices, which requires traversing all the corresponding edges. Because
of this, even OurR has more efficient order operations forO than R, the speedups
are not obvious.

– In Figure 5.7, we observe that OurBI sometimes runs faster than OurI. The
reason is as follows. From Table 5.3, compared with OurI, OurBI has less
traversed vertices (V +), as some repeated traversed vertices can be avoided;
also, OurBI has less number of updated labels (#lb), as the number of relabel
process can be reduced. However, compared with OurI, OurBI may add
much more vertices into priority queue Q, which costs more the running
time of enqueue and dequeue. Also, OurBI may require several times of
repeated rounds (#rp), which may cost extra running time. Typically, this
extra running time is acceptable as most of the edges can be inserted in the
first round, e.g., for dbpedia with 6.4M sampled edges, the number of batch
inserted edges is 100000, 1555, 12, and 0 in four rounds, respectively. This
is why OurBI sometimes runs faster but sometimes slower compared with
OurI.

– In Figure 5.7, we observe that OurR is always faster than OurI. The reason
is as follows. From Table 5.3, compared with OurI, OurR has less number
of traversed vertices (V ∗), as OurR has V ∗ = V +; OurR has less number of
updated labels (#lb), as vertices are removed from OK and then appended
after OK−1 and thus the relabel process is not always triggered.
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Figure 5.7: The scalability of all methods over selected graphs.
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OurI OurBI OurR

m′ |V ∗| |V +| #lb |V ∗| |V +| #lb #rp |V ∗| #lb

0.1M 107K 131K 1.5M 107K 123K 116K 10 107K 107K
0.2M 101K 118K 1.4M 101K 109K 111K 11 101K 101K
0.4M 101K 116K 1.3M 101K 107K 107K 9 101K 101K
0.8M 101K 113K 1.3M 101K 106K 104K 10 101K 101K
1.6M 100K 110K 1.2M 100K 106K 103K 11 100K 100K
3.2M 101K 110K 1.1M 101K 106K 103K 9 101K 101K

0.1M 146K 149K 2.6M 146K 151K 149K 4 146K 146K
0.2M 129K 136K 2.1M 129K 136K 132K 3 129K 129K
0.4M 117K 131K 1.8M 117K 130K 124K 3 117K 117K
0.8M 109K 127K 1.6M 109K 126K 118K 3 109K 109K
1.6M 105K 127K 1.4M 105K 125K 116K 4 105K 105K
3.2M 102K 124K 1.3M 102K 122K 113K 4 102K 102K
6.4M 100K 124K 1.2M 100K 122K 112K 4 100K 100K

Table 5.3: The details of scalability evaluation by varying the number of
sampled edges over wikitalk and dbpedia.
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Chapter 6

Parallel Core Maintenance

The core numbers of vertices in a graph are one of the most well-studied co-
hesive subgraph models because of the linear running time. In practice, many
data graphs are dynamic graphs that are continuously changing by inserting or
removing edges. The core numbers are updated in dynamic graphs with edge
insertions and deletions, which is called core maintenance. When a burst of a
large number of inserted or removed edges come in, we have to handle these
edges on time to keep up with the data stream. There are two main sequential
algorithms for core maintenance, Traversal and Order. The experiments
show that the Order algorithm significantly outperforms the Traversal
algorithm over a variety of real graphs.

To the best of our knowledge, all existing parallel approaches are based
on the Traversal algorithm. These algorithms exploit parallelism only for
vertices with different core numbers; they reduce to sequential algorithms when
all vertices have the same core numbers. In this chapter, we propose a new
parallel core maintenance algorithm based on the Order algorithm. More
importantly, our new approach always has parallelism, even for graphs where
all vertices have the same core numbers. Extensive experiments are conducted
over real-world, temporal, and synthetic graphs on a multicore machine. The
results show that for inserting and removing a batch of edges using 16 workers,
our method achieves up to 289x and 10x times speedups compared with the
most efficient existing method, respectively.

6.1 Introduction

Many sequential algorithms are devised on core maintenance in dynamic
graphs (Guo and Sekerinski, 2022c; Zhang et al., 2017; Sarıyüce et al., 2016;
Wu et al., 2015; Saŕıyüce et al., 2013; Li et al., 2013). The main idea for core
maintenance is that we first need to identify a set of vertices whose core num-
bers need to be updated (denoted as V ∗) by traversing a possibly larger cope
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of vertices (denoted as V +). There are two main algorithms, Order (Zhang
et al., 2017) and Traversal (Sarıyüce et al., 2016). Given an inserted edge,
theOrder algorithm has to traverse much fewer vertices than theTraversal
algorithm by maintaining the order for all vertices. That is why the Order
algorithm has significantly improved running time. In (Guo and Sekerinski,
2022c), a Simplified-Order algorithm is proposed for easy understanding
and implementation based on the Order algorithm.

All the above methods are sequential for maintaining core numbers over
dynamic graphs, which means each time only one insert or removal edge is
handled. The problem is that when a burst of a large number of inserted or re-
moved edges come in, these edges may not be handled on time to keep up with
the data stream (Gabert et al., 2021). The prevalence of multi-core machines
suggests parallelizing the core maintenance algorithms. Many multi-core par-
allel batch algorithms for core maintenance have been proposed in (Hua et al.,
2019; Jin et al., 2018; Wang et al., 2017). All above methods have similar
ideas: 1) they use an available structure, e.g. Join Edge Set (Hua et al., 2019)
or Matching Edge Set (Jin et al., 2018), to preprocess a batch of inserted or re-
moved edges avoiding repeated computations, and 2) each worker performs the
Traversal algorithm. There are two drawbacks to these approaches. First,
they are based on the sequential Traversal algorithm (Saŕıyüce et al., 2013;
Li et al., 2013), which is much less efficient than the Order algorithm (Hua
et al., 2019; Guo and Sekerinski, 2022c). Second, they exploit the parallelism
only for vertices with different core numbers, that is, they reduce to sequential
algorithms when all affected vertices have the same core numbers.

To overcome the above drawbacks, inspired by the Simplified-Order al-
gorithm (Guo and Sekerinski, 2022c), we propose a new parallel algorithm to
maintain core numbers for dynamic graphs, so-called the Parallel-Order
algorithm. That is, each worker handles one inserted or removed edge at a
time and propagates the affected vertices in order, and we lock vertices for
synchronization. The parallel order maintenance data structure (Guo and
Sekerinski, 2022b) is adopted to maintain the order for all vertices. For edge
insertion and removal, our parallel approach has the same work as the sequen-
tial Simplified-Order algorithm (Guo and Sekerinski, 2022c). The main
contributions of our work are summarized below:

• For edge insertion and removal, we design novel mechanisms for synchro-
nization by only locking vertices in V + instead of locking all accessed
edges. In other words, all the neighbors of vertices in V + are not neces-
sarily locked. This is meaningful considering real graphs always have a
much larger number of edges than vertices, let alone dense graphs. Ad-
ditionally, for each inserted or removed edge, the size of V + is typically
less than 10. Thus, it has a low probability that multiple workers block
as a chain and then reduce to sequential execution. Fewer locked vertices
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will lead to higher parallelism.

• For edge insertion, we lock all vertices in order to avoid deadlocks. For
edge removal, we design a conditional lock mechanism to avoid deadlocks.
We prove that deadlocks will never happen.

• We conduct extensive experiments on a multicore machine over vari-
ous graphs. Our method achieves significant up to 5x times speedups
by using 16 workers for edge insertion and removal. Compared with
the existing most efficient parallel approach in (Hua et al., 2019), our
method achieves up to 289x and 10x times speedups for edge insertion
and removal, respectively.

Worst-case (O) Best-case (O)
Parallel W D W D
Insert m′|E+|log|E+| m′|E+|log|E+| m′|E+|log|E+| |E+|log|E+|+m′|V ∗|
Remove m′|E∗| m′|E∗| m′|E∗| |E∗|+m′|V ∗|
Table 6.1: The worst-case and best-case work, depth complexities of our
parallel core maintenance operations for inserting and removing a batch of
edges, where m′ is the total number of edges that are inserted or removed in
parallel, E+ is adjacent edges for all vertices in V +, and E∗ is adjacent edges

for all vertices in V ∗.

Table 6.1 shows the work and depth of our Parallel-Order algorithm
for inserting or removing m′ edges in parallel. For both edge insertion and
removal, one big issue is the depth D equal to the work W in the worst case;
that is, all workers execute as one blocking chain such that only one worker is
active. However, with a high probability, such a worst-case does not happen
as the number of locked vertices is always small for each insertion or removal.
For our method, all vertices in V + or V ∗ are locked together for each insertion
or removal.

6.2 Related Work

In (Saŕıyüce et al., 2013; Li et al., 2013), an algorithm that is similar to the
Traversal algorithm is given, but this solution has quadratic time complex-
ity. In (Sun et al., 2020), Sun et al. design algorithms to maintain approximate
cores in dynamic hypergraphs in which a hyteredge may contain one or more
participating vertices compared with exactly two in graphs. In (Gabert et al.,
2021), Gabert et al. propose parallel core maintenance algorithms for main-
taining cores over hypergraphs. There exists some research based on core
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maintenance. In (Yu et al., 2021), the authors study computing all k-cores in
the graph snapshot over the time window. In (Lin et al., 2021), the authors
explore the hierarchy core maintenance. In (Weng et al., 2021), the distributed
approaches to core maintenance are explored.

All the above work focus on unweighted graphs, but graphs are weighted
in a lot of realistic applications. For an edge-weighted graph, the degree of a
vertex is the sum of the weights of all its incident edges. But it has a large
search range to maintain the core numbers after the change by using the tra-
ditional core maintenance algorithms directly, as the degree of a related vertex
may change widely. In (Zhou et al., 2021), Zhou et al. extend the coreness
to weighted graphs and devise weighted core decomposition algorithms; also
they devise weighted core maintenance based on the k-order (Zhang et al.,
2017; Guo and Sekerinski, 2022c). In (Liu and Zhang, 2020), Liu et al. im-
prove the core decomposition and incremental maintenance algorithm to suit
edge-weighted graphs.

6.3 Parallel Core Maintenance

The existing parallel core maintenance algorithms are based on the sequen-
tial Traversal algorithm which is experimentally shown much less efficient
than the sequential Order algorithm. In this section, based on the Order
algorithm, we propose a new parallel core maintenance algorithm, so-called
Parallel-Order, for both edge insertion and removal.

The main steps for parallel edges in parallel are shown in Algorithm 20.
Given an undirected graphG, the core number and k-order can be initialized by
the BZ algorithm (Batagelj and Zaversnik, 2003) in linear time. A batch ∆E
of edges will insert intoG. We split these edges ∆E into P parts, ∆E1 . . .∆EP ,
where P is the total number of workers (line 1). Each worker p inserts multiple
inserted edges of ∆Ep in parallel with other workers (line 2). One by one, a
worker p deals with a single edge in InsertEdgep (line 4). The key issue is
how to implement InsertEdgep executed by a worker p in parallel with other
workers.

Algorithm 20: Parallel-InsertEdges(G,O,∆E)

1 partition ∆E into ∆E1, . . . ,∆EP
2 DoInsert1(∆E1) ∥ . . . ∥ DoInsertP(∆E)

3 procedure DoInsertp(∆Ep)

4 for (u, v) ∈ ∆Ep do InsertEdgep(G,O, (u, v))

For removing edges in parallel, it is analogous to Algorithm 20, and the
key issue is RemoveEdgep. Note that, the insertion and removal can not run
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in parallel simultaneously, which can greatly simplify the synchronization of
algorithms.

One benefit of our method is that, unlike the existing parallel core main-
tenance methods (Hua et al., 2019; Jin et al., 2018; Wang et al., 2017), the
prepossessing of ∆Ep is not required so that edges can be inserted or removed
on-the-fly.

6.3.1 Parallel Edge Insertion

Algorithm. The detailed steps of InsertEdgep are shown in Algorithm 22,
which is analogous to Algorithm 16. We introduce several new data structures.
First, the min-priority queue Qp, the queue Rp, the candidate set V

∗
p , and the

searching set V +
p are all private to each worker p, so cannot be accessed by

other workers and synchronization is not necessary (lines 3, 7). Second, for
each vertex u ∈ V , we introduce a status u.s, initialized as 0, and atomically
incremented by 1 before and after the k-order operation (lines 16 and 30). In
other words, when u.s is an odd number, the k-order of u is being maintained.
By using such a status of each vertex, we obtain v ∈ u.post (u ⪯ v) or v ∈ u.pre
(v ⪯ u) by the parallel Order(u, v) operation. As shown in Algorithm 21, when
comparing the order of u and v, we ensure that u and v are not updating their
k-order.

Algorithm 21: Parallel-Order(O, u, v)

1 do
2 do s← u.s; s′ ← v.s while s mod 2 = 0 ∨ s′ mod 2 = 0
3 r ← u ⪯ v

4 while s = u.s ∧ s′ = v.s
5 return r

Given an inserted edge u 7→ v where u ⪯ v, we lock both u and v together
when both are not locked (line 1). We redo the lock of u and v if they are
updated by other workers as v ⪯ u (line 2). After locking, K is initialized
to the smaller core number of u and v. After inserting the edge u 7→ v into
the graph G (line 4), v can be unlocked (line 5). If u.d+

out ≤ K, we unlock
u and terminate (line 6); otherwise, we set w as u for propagation (line 7).
In the do-while-loop (lines 8 - 13), initially, w equals u, which was already
locked in line 1 (line 7). We calculate w.d∗

in by counting the number of w.pre
located in V ∗

p (line 9). If w.d∗
in + w.d+

out > K, vertex w does Forwardp (line
10). If w.d∗

in + w.d+
out ≤ K ∧ w.d∗

in > 0, vertex w does Backwardp (line 11). If
w.d∗

in +w.d+
out ≤ K ∧w.d∗

in = 0, we skip w and unlock w since w cannot be in
V + (line 11). Successively, we dequeue a vertex w from Qp with w.core = K
and lock w at the same time (line 12). The do-while-loop terminates when no
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more vertices can be dequeued from Qp (line 13). All vertices w ∈ V ∗
p have

their core numbers increased by 1 and their w.d∗
in is reset to 0 (line 15); also,

all w are removed from OK and inserted at the head of OK+1 to maintain the
k-order by using the parallel OM data structure, where all w.s are atomically
increased by 1 before and after this process (line 16). Before termination, we
unlock all locked vertices w (line 17).

The Forward(u) and Backward(w) procedures are almost the same as their
sequential version since all vertices in V + are locked. There are only several
differences. In Forwardp(u), for each v in u.post whose core numbers equal
to K, we add v into the priority queue Qp (line 21); but v.d∗

in is not main-
tained by adding 1 since it will be calculated in line 9 when it is used. In the
Backwardp(w) procedure, w is removed from OK and appended after pre to
maintain the k-order by using the parallel OM data structure, where w.s are
atomically increased by 1 before and after this process (line 30).

3
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Figure 6.1: An example graph maintains the core numbers after inserting
three edges, e1, e2, and e3. The letters inside the circles are vertices’ IDs and
the Ok is the k-order of vertices with core numbers k. The beside numbers
are corresponding remaining out-degrees d+

out . The direction for each edge
indicates the k-order of two vertices, which is constructed as a DAG. (a) an
initial example graph. (b) insert 3 edges. (c) the core numbers and k-orders

update.

Example 6.3.1. Sequential. In Figure 6.1, we show an example graph that
maintains the core numbers of vertices after inserting edges, e1 to e3, succes-
sively. Figure 6.1(a) shows an example graph constructed as a DAG where
the direction of edges indicates the k-order. After initialization, v has a core
number 1 with k-order O1 and u1 to u5 have a core number 2 with k-order O2.

Figure 6.1(b) shows edges, e1 to e3, are inserted. (1) For e1, we increase
v.d+

out to 2 so that v.d
+
out > v.core and V ∗ = {v}. Then, we stop since all v.post

have core numbers larger than v.core. Finally, we increase v.core from 1 to 2.
(2) For e2, we increase v.d

+
out to 3 so that v.d

+
out > v.core and V ∗ = {u2}. Then,

we traverse u3 in k-order and find that u3.d
∗
in+u3.d

+
out = 1+1 = 2 ≤ K = 2, so
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Algorithm 22: InsertEdgep(G⃗,O, u 7→ v)

1 Lock u and v together if both are not locked
2 if v ⪯ u then Unlock u and v; goto line 1
3 V ∗

p , V
+
p ,K,← ∅, ∅, min(u.core, v.core)

4 insert u 7→ v into G⃗ with u.d+
out ← u.d+

out + 1
5 Unlock(v)

6 if u.d+
out ≤ K then Unlock(u); return

7 Qp, w ← a min-priority queue by O, u
8 do
9 w.d∗

in ← |{w′ ∈ w.pre : w′ ∈ V ∗
p }| // calculate d∗

in

10 if w.d∗
in + w.d+

out > K then Forwardp(w)
11 else if w.d∗

in > 0 then Backwardp(w) else Unlock(w)
12 w ← Qp.dequeue() with w.core = K and Lock(w)

13 while w ̸= ∅
14 for w ∈ V ∗

p do
15 w.core ← K + 1; w.d∗

in ← 0
// atomically add w.s

16 ⟨w.s++⟩; Delete(OK , w); Insert(OK+1, head ,w); ⟨w.s++⟩
17 Unlock all locked vertices

18 procedure Forwardp(u)
19 V ∗

p ← V ∗
p ∪ {u}; V +

p ← V +
p ∪ {u} // u is locked

20 for v ∈ u.post : v.core = K do
21 if v /∈ Qp then Qp.enqueue(v)

22 procedure Backwardp(w)
23 V +

p ← V +
p ∪ {w}; pre ← w // w is locked

24 Rp ← an empty queue; DoPrep(w,Rp)

25 w.d+
out ← w.d+

out + w.d∗
in ; w.d

∗
in ← 0

26 while Rp ̸= ∅ do
27 u← Rp.dequeue()
28 V ∗

p ← V ∗
p \ {u}

29 DoPrep(u,Rp); DoPostp(u,Rp)

// atomically add w.s
30 ⟨w.s++⟩; Delete (OK , u); Insert(OK , pre, u); ⟨w.s++⟩
31 pre ← u; u.d+

out ← u.d+
out + u.d∗

in ; u.d
∗
in ← 0

32 procedure DoPrep(u,Rp)

33 for v ∈ u.pre : v ∈ V ∗
p do

34 v.d+
out ← v.d+

out − 1

35 if v.d∗
in + v.d+

out ≤ K ∧ v /∈ Rp then Rp.enqueue(v)

36 procedure DoPostp(u,Rp)

37 for v ∈ u.post do
38 if v ∈ V ∗

p ∧ v.d∗
in > 0 then

39 v.d∗
in ← v.d∗

in − 1

40 if v.d∗
in + v.d+

out ≤ K ∧ v /∈ Rp then Rp.enqueue(v)
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that u3 cannot add to V ∗ which cause u2 to be removed from V ∗ (by Backward).
In this case, u2 is moved after u1 in the k-order as O2 = u1, u3, u2, u4, u5. (3)
For e3, we increase u1.d

+
out to 3 so that u1.d

+
out > K = 2 and V ∗ = {u2}. Then,

we traverse u3, u2, u4 and u5 in k-order, all of which are added into V ∗ since
their d∗

in + d+
out > K = 2. Finally, we increase the core numbers of u2 to u5

from 2 to 3.
Figure 6.1(c) shows the result after inserting edges. We can see all ver-

tices have their core numbers increased by 1. Orders O2 and O3 are updated
accordingly. All vertices’ d+

out are updated accordingly.
Parallel. Continuing with Figure 6.1, we show an example of maintaining

the core numbers of vertices in parallel after inserting three edges. Figure
6.1(b) shows three edges, e1, e2 and e3, being inserted in parallel by three
workers, p1, p2, and p3, respectively. (1) For e1, the worker p1 will first locks
v and u2 for inserting the edge. But if u2 is already locked by p2, worker p1
has to wait for p2 to finish and unlock u2. (2) For e2, worker p2 first locks u2

and u3 for inserting the edge, after which u3 is unlocked. Then, u3, u4, and
u5 are added to its priority queue Q2 for propagation. That is, u3 is locked
and dequeued from Q2 with u3.d

∗
in = 1 (assuming that p2 locks u3 before P3

lock u3). After propagation, we get that V ∗ is empty. Subsequently, u4 and
u5 are locked and dequeued from Q2, which are unlocked and skipped since
their d∗

in = 0. The k-order O2 is updated to u1, u3, u2, u4, and u5. (3) For e3,
the worker p3 will first lock u1 and u4 for inserting the edge, after which u4 is
unlocked. Then, u3, u4 and u5 are added to Q3 for propagation. That is, u3 is
locked and dequeued from Q2 (assuming that p3 waits for u3 to be unlocked
by p2) with u3.d

∗
in = 1, by which u3 is added to V ∗ and u2 is added to Q3 for

propagation. Subsequently, u3, u2, u4, and u5 are locked and dequeued from
Q3 for propagation, which are all added to V ∗ (assuming that p3 waits for u2

to be unlocked by p2).
We can see three vertices, u3, u4 and u5, can be added in Q2 and Q3 at

the same time. That is, when p3 removes u3 from Q2, it is possible that u3

has already been accessed by p2. In this case, we have to update Q3 before
dequeuing if we find that u3 is accessed by p2, in case the k-order of u3 in Q3

is changed by p2.

Correctness. We only argue the correctness of Algorithm 16 related to the
concurrent part. There are no deadlocks since both u and v are locked together
for an inserted edge u 7→ v (line 1) and the propagated vertices are locked in
k-order (line 12).

For each worker p, the accessed vertices are synchronized by locking. The
key issue is to ensure that a vertex w is locked and then dequeued from Qp

in k-order in the do-while-loop (lines 8 - 12). The invariant is that w has a
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minimal k-order in Qp:

∀v ∈ Qp : w /∈ Qp ∧ w ⪯ v

Initially, the invariant is preserved as w = u and Qp = ∅. When dequeuing w
from Q, the worker p will first lock w that has the minimum k-order and then
remove w. In this case, other vertices v ∈ Q can be accessed by other workers
q. For this, there are two cases. 1) Other vertices v may have increased core
numbers, which will be removed from Q and skipped. 2) Other vertices v may
have v.d∗

in + v.d+
out ≤ K and cannot be added to V ∗

q , which may cause other
vertices v′ to be removed from V ∗

q by the Backward procedure; also, all v′ are
moved after v in k-order, and all v′ cannot possibly be moved before v. In
a word, all vertices in Qp cannot have a smaller k-order than w when w is
locked.

The worker p traverses u.post in the for-loop (lines 20 - 21, 37 - 40), where
u is locked by p; but, all u.post are not locked by p and may be locked by other
workers for updating, so do u.pre in the for-loop (lines 33 - 35). The invariant
is that all u.post have k-order greater than u and all u.pre have k-order less
than u:

(v ∈ u.post =⇒ u ⪯ v) ∧ (v′ ∈ u.pre =⇒ v′ ⪯ u)

– v ∈ u.post =⇒ u ⪯ v is preserved as all vertices u.post may have increased
core numbers, but v will never be moved before u in k-order by other workers
q by the Backward procedure, which has been proved before.

– v′ ∈ u.pre =⇒ v′ ⪯ u is preserved as u is already locked by worker p so
that no other workers can access u and move v′ after u in k-order by the
Backward procedure.

In other words, the sets u.post and u.pre will not change until u is unlocked,
even when other workers access the vertices in u.post and u.pre.

Time Complexity. When m′ edges are inserted into the graphs, the to-
tal work is the same as the sequential version in Algorithm 16, which is
O(m′|E+|log|E+|), where E+ is the largest number of adjacent edges for all
vertices in V + among each inserted edge, defined as E+ =

∑
v∈V +

p
v.deg .

In the best case, m′ edges can be inserted in parallel by P workers with a
depth O(|E+|log|E+|+m′|V ∗|) as each worker will not be blocked by other
workers; but, all vertices in |V ∗| are removed from OK and inserted se-
quentially at the head of OK+1. Therefore, The best-case running time is
O(m′|E+|log|E+|/P+ |E+|log|E+|+m′|V ∗|). In the worst case, m′ edges have
to be inserted one by one, which is the same as the sequential execution, since
P workers make a blocking chain. Therefore, the worst-case running time is
O(m′|E+|log|E+|).

However, in practice, such a worst-case is unlikely to happen. The reason
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is that, given a large number of inserted edges, they have a low probability of
connecting with the same vertex; also each inserted edge has a small size of
V + (e.g. 0 or 1) with a high probability.

Space Complexity. For each vertex v ∈ V , it takes O(3) space to store
v.d∗

in , v.d
+
out , v.s, and locks, which makes O(3n) space in total. Each worker p

maintains their private V ∗
p , V

+
p , which takes O(2|V +|P) space in total. Simi-

larly, each worker p maintains Qp and Rp, which take O(|E+|P) space in total
since at most O(2|E+|) vertices can be added to Qp and Rp for each inserted
edge. The OM data structure is used to maintain the k-order for all vertices
in the graph, which takes O(n) space. Therefore, the total space complexity
is O(n+ |V +|+|E+|P) = O(n+ |E+|P).

6.3.2 Parallel Edge Removal

Algorithm. The detailed steps of RemoveEdgep are shown in Algorithm 23.
We introduce several new data structures. First, the queue Rp is privately used
by worker p and cannot be accessed by other workers without synchronization
(line 2). Second, each worker p adopts a set Ap to record all the visited vertices
w′ ∈ w.adj to avoid repeatedly revisiting w′ ∈ w.adj again. Third, each vertex
v ∈ V has a status v.t with four possible values:
– v.t = 2 means v is ready to be propagated (line 22).
– v.t = 1 means v is been propagated by the inner for-loop (lines 11 - 14).
– v.t = 3 means v has to be propagated again by the inner for-loop (lines 11 -
14), as some vertices v.adj have core numbers decreased by other workers.

– v.t = 0 means v is just initialized or already propagated (line 33).
Given a removed edge (u, v), we lock both u and v together when both are

not locked (line 1). After locking, K is initialized as the smaller core number
of u and v (line 2). We execute the procedure CheckMCDp for u or v to make
u.mcd and v.mcd non-empty (line 3). We remove the edge (u, v) safely from
the graph G (line 4). For u or v, if their core number is greater or equal to
K, we execute the procedure DoMCDp (lines 5 and 6), by which u and v may be
added in Rp for propagation. If u or v is not in Rp, we immediately unlock u or
v (line 7). The while-loop (lines 8 - 16) propagates all vertices in Rp. A vertex
w is removed from Rp and an empty set Ap is initialized (line 9). In the inner
for-loop (lines 11 - 14), the adjacent vertices w′ ∈ w.adj are condition-locked
with w′.core = K (lines 11 and 12), as w′.core can be decreased from K to
K − 1 by other workers. For each locked w′ ∈ w.adj , we first execute the
CheckMCDp procedure in case w′.mcd is empty and then execute the DoMCDp
procedure (line 13). The visited w′ are added into Ap to avoid visiting them
repeatedly (line 14). We atomically decrease w.t by 1 before and after such an
inner for-loop since other workers can access w.t in line 32 (lines 10 and 15).
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After that, if w.t > 0, we have to propagate w again as other vertices in w.adj
have core numbers decreased from K+1 to K by other workers (line 16). The
while-loop will not terminate until Rp becomes empty (line 8). Finally, all
vertices in V ∗ are appended to OK−1 to maintain the k-order (line 17). We
must not forget to unlock all locked vertices before termination (line 18).

In procedure DoMCDp(u), vertex u has already been locked by worker p
(line 19). We decrease u.mcd by 1 as u.mcd cannot be empty (line 20). If it
still has u.mcd ≥ u.core, we finally unlock u and terminate (line 21 and 25).
Otherwise, we first decrease u.core by 1 and set u.t as 2 together, which has
to be an atomic operation since v.t indicates v’s status for other workers (line
22). Then, we add u to Rp for propagation (line 23); also, we set u.mcd to
empty since the value is out of date, which can be calculated later if needed
(line 24).

In the procedure CheckMCD(u), we recalculate u.mcd if it is empty (line
27). We initially set temporarily mcd as 0 (line 28), and then we count u.mcd
(lines 29 - 33). Here, u.mcd is the number of v ∈ u.adj for two cases: 1)
v.core ≥ u.core, or 2) v.core = u.core − 1 and v.t > 0 (line 29); if either one
is satisfied,we add the temporal mcd by 1 (line 30). When v.core = K − 1,
it is possible that v.t is been updated by other workers. If v.t equals 1, we
know that v is been propagating. In this case, we have to set v.s from 1 to
3 by the atomic primitive CAS, which leads to v redo the propagation in line
16 by other workers (line 32). Here, we skip executing CAS when v = w (line
32) to avoid many useless redo processes in line 13. If v.t is reduced to 0, the
propagation of v is finished so that v cannot be counted as u.mcd and the
temporary mcd is off by 1 (line 33). Finally, we set u.mcd as the temporary
mcd and terminate (line 34). The big advantage is that we calculate u.mcd
without locking all neighbors u.adj of v.
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Figure 6.2: An example graph maintains the core numbers after removing 3
edges, e1, e2, and e3. The letters inside the cycles are vertices’ IDs and the
Ok is the k-order of vertices with core numbers k. The beside numbers are

corresponding mcd . (a) an initial example graph. (b) remove three edges. (c)
the core numbers and Ok update.
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Algorithm 23: RemoveEdgep(G,O, (u, v))

1 Lock u and v together if both are not locked
2 K,Rp, V

∗
p ← Min(u.core, v.core), an empty queue, ∅

3 CheckMCDp(u,∅); CheckMCDp(v,∅)
4 remove (u, v) from G
5 if v.core ≥ K then DoMCDp(u)
6 if u.core ≥ K then DoMCDp(v)
7 Unlock u if u /∈ Rp; Unlock v if v /∈ Rp

8 while Rp ̸= ∅ do
9 w,Ap ← Rp.dequeue(), ∅

10 ⟨w.t← w.t− 1⟩ // atomically sub

11 for w′ ∈ w.adj : w′ /∈ Ap ∧ w′.core = K do
12 if Lock(w′) with w′.core = K then
13 CheckMCDp(w

′, w); DoMCDp(w
′)

14 Ap ← Ap ∪ {w′}
15 ⟨w.t← w.t− 1⟩ // atomically sub

16 if w.t > 0 then goto line 10

17 Append all u ∈ V ∗
p at the tail of OK−1 in k-order

18 Unlock all locked vertices

19 procedure DoMCDp(u)
20 u.mcd ← u.mcd − 1 // u is locked

21 if u.mcd < K then
22 ⟨u.core ← K − 1; u.t = 2⟩ // atomic operation

23 Rp.enqueue(u); u.mcd ← ∅
24 V ∗

p ← V ∗
p ∪ {u}; Delete(O, u)

25 else Unlock(u)

26 procedure CheckMCDp(u,w)
27 if u.mcd ̸= ∅ then return
28 mcd ← 0
29 for v ∈ u.adj : v.core ≥ K ∨ (v.core = K − 1 ∧ v.t > 0) do
30 mcd ← mcd + 1
31 if v.core = K − 1 then
32 if v ̸= w ∧ v.t = 1 then CAS(v.t, 1, 3)
33 if v.t = 0 then mcd ← mcd − 1

34 u.mcd ← mcd

Example 6.3.2. Sequential. In Figure 6.2, we show an example graph that
maintains the core numbers of vertices after removing three edges, e1 to e3,
successively. Figure 6.2(a) shows that v has a core number of 2 with k-order
O2 and all u1 to u5 have core numbers of 3 with k-order O3. We can see that
for all vertices the core numbers are less or equal to mcd .
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Figure 6.2(b) shows edges, e1, e2 and e3, removed. (1) For e1, v.mcd is off
by 1 so that we have v.mcd < K = 2 and V ∗ = {v}, but u2.mcd is not affected.
Then, there is no propagation since all v.adj have core numbers larger than
K = 2. Finally, we decrease v.core from 2 to 1. (2) For e2, both u2.mcd and
u3.mcd are off by 1 and less than K = 3, so that V ∗ = {u2, u3}. Then, both u2

and u3 are added into R for propagation, and u1, u4 and u5 are consecutively
added into V ∗ with V ∗ = {u2, u3, u1, u4, u5}. Finally, we decrease the core
numbers of u1 to u5 from 3 to 2; also, the mcd of both u2 and u3 are updated
to 2, and the mcd of u1, u4 and u5 are updated to 3. (3) For e3, both u2.mcd
and u3.mcd are off by 1. But their mcd are still not less than K = 2 so that
V ∗ = ∅. The propagation stop. Finally, the mcd of both u1 and u4 are updated
to 2.

Figure 6.2(c) shows the result after removing edges. We can see that all
vertices have their core numbers decreased by 1. OrdersO1 andO2 are updated
accordingly. Also, all vertices’ mcd are updated accordingly.

Parallel. Continuing with Figure 6.2, we show an example of maintaining
the core numbers of vertices in parallel when removing three edges. Fig-
ure 6.2(b) shows three edges, e1, e2 and e3, being removed in parallel by three
workers, p1, p2, and p3, respectively. (1) For e1, worker p1 will lock v and u2

together for removing the edge. But u2 is already locked by p2, so p1 has to
wait for p2 to unlock u2. Then, u2 is unlocked without changing u2.mcd , and
the core number of v is off by 1 added to R1 for propagation. Since only one
u3 ∈ v.adj has a core number greater than v, the propagation of v terminates.
Finally, v is unlocked. (2) For e2, the worker p2 first locks u2 and u3 together
for removing the edge. Then, both u2.core and u3.core are off by 1, and u2

and u3 are added to R2 for propagation. For propagating u2, we traverse all
u2.adj ; the vertex u4 is locked by the worker p3. At the same time, u4.core
is decreased from 2 to 1 and p1 will skip locking u4 since the condition is not
satisfied for the conditional lock. Vertex u5 is locked by p2 and has u5.mcd
off by 1. Similarly, for propagating u3, we traverse all u3.adj by skipping u1

and decreasing u5.mcd . Now, we have u5.mcd = 2 < u5.core = 3, so u5.core is
off by 1. Finally, we unlock u2, u3, and u5; all their core numbers are 2 now.
(3) For e3, worker p3 will first lock u1 and u4 together for removing the edge.
Then both u1.core and u4.core are off by 1. Vertices u1 and u4 are added to
R3 for propagation. The propagation will stop since the neighbors of u1 and
u4 (u3, u2, and u5) are locked by p2 and have decreased core numbers. Finally,
we unlock u1 and u4; all their core numbers are 2 now. We can see p2 and p3
execute without blocking each other, and only vertices in V ∗ are locked.

The above example assumes that the mcd of all vertices is initially gener-
ated. Suppose u3.mcd = ∅ before removing e2, we have to calculate u3.mcd
by CheckMCD. At this time, u2 and u5 are counted as u3.mcd since they are not
locked by p3, but u1 is locked by p3 for propagation. The key issue is whether

125



Ph.D. Thesis—B. Guo McMaster University—Computer Science

u1 is counted as u3.mcd or not. There are two cases. (1) If u1.core = 3, we
increment u3.mcd by 1. (2) If u1.core is decreased to 2 and u1 is propagat-
ing, we also increment u3.mcd by 1. Since it is possible that u1 has already
propagated u3, we force u1 to redo the propagation by setting u1.t from 1 to
3 atomically.

Correctness. Algorithm 23 has no deadlocks. First, both u and v are locked
together for a removed edge (u, v) (line 1). Second, for all vertices w ∈ Rp, we
have w locked by the worker p and w.core = K − 1; also, worker p will lock
all w′ ∈ w.adj with w.core = K for propagation (lines 11 and 12). There are
four cases:

– if all w′ are not locked, there are no deadlocks;

– if w′ is locked by another worker q but w′.core is not decreased, there
are no deadlocks as w′ has no propagation and worker p will wait until
w′ is unlocked by q;

– if w′ is locked by another worker q and w′ always has w′.core > K, there
are no deadlocks as w′ is skipped for traversing.

– importantly, if w′ is locked by the other worker q and w′.core is decreased
from K to K − 1, there are no deadlocks as w has propagation stopped
on w′ for w′.core = K − 1 and w′ has propagation stopped on w for
w.core = K − 1. We use “Lock with” to conditionally lock w′ with
w′.core = K, which ensure to stop busy-waiting when w′.core decreases
from K to K − 1.

The key issue of Algorithm 23 is to correctly maintain themcd of all vertices
in the graph:

∀v ∈ V : v.mcd = |{w ∈ v.adj : w.core ≥ v.core}| (6.3.1)

All vertices v in the graph satisfy v.mcd ≥ v.core; when removing an edge, v
with v.mcd < v.core are repeatedly added to V ∗

p and have their core numbers
decreased by 1 in order to make v.mcd ≥ v.core. After deleting one edge,
the vertices with decreased core numbers are added into Rp for propagation.
The key issue is to argue the correctness of the while-loop (lines 8 to 16) for
propagation.

We first define some useful notations. For all vertices v ∈ V , we use v.lock ,
a boolean value, to denote v is locked and ¬v.lock to denote v is unlocked.
We use R to denote the union of all propagation queues Rp, denoted as R =
∪Pp=1Rp, and a vertex v ∈ R indicates v can be in one of the Rp for worker p.

The invariant of the outer while-loop (lines 8 - 16) is that all vertices w ∈ V
maintain a status w.t indicating w in R or not; for all vertices w ∈ Rp, which
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are locked and added into V ∗, their core numbers are off by 1 and mcd set as
empty (waiting to be recalculated); also, for all vertices w ∈ V , if w.mcd is
not empty, w.mcd is the number of neighbors u that have core numbers that
are 1) greater or equal w.core, or 2) equal to w.core − 1 with u in R waiting
to be propagated:

(∀w ∈ V : (w.t > 0 ≡ w ∈ R) ∧ (w.t = 0 ≡ w /∈ R))

∧ (∀w ∈ Rp : w.core = K − 1 ∧ w.mcd = ∅ ∧ w ∈ V ∗
p

∧ w.lock ∧ w.t > 0)

∧ (∀u ∈ V : u.mcd ̸= ∅ =⇒ u.mcd = |{v ∈ u.adj : v.core ≥
u.core ∨ (v.core = u.core − 1 ∧ v ∈ R)}|)

The invariant initially holds as vertices u and v may be added to Rp due
to deleting an edge (u, v) and u or v is locked if added into Rp. We now argue
the while-loop preserve the invariant:

– ∀w ∈ V : (w.s > 0 ≡ w ∈ R) ∧ (w.s = 0 ≡ w /∈ R) is preserved as w.t is set
to 2 and w is added to R at the same time by the atomic operation in line
22; also, w.s is off to 0 when w is removed from Rp for propagation.

– ∀w ∈ Rp : w.core = K − 1 ∧ w.mcd = ∅ ∧ w ∈ V ∗
p ∧ w.lock ∧ w.s > 0 is

preserved as when adding w to Rp, w.core is off by 1, w.mcd is set to empty,
w.t is set to 2, and w is added to V ∗; also, w is locked before added into R.

– ∀u ∈ V : u.mcd ̸= ∅ =⇒ u.mcd = |{v ∈ u.adj : v.core ≥ u.core∨(v.core =
u.core − 1 ∧ v ∈ R)}| is preserved as when u.mcd are calculated by the
CheckMCD procedure, u may have neighbors v ∈ u.adj whose core numbers
are off by 1 and added to R by other workers and the propagation has not
yet happened. Note that, the atomic operation in line 22 ensures that u has
the core number off by 1 and added to R at the same time.

At the termination of the while-loop, the propagation queue R = ∅, so that
all vertices w ∈ V have w.mcd correctly maintained.

We now argue the correctness of the inner for-loop (lines 11 - 14), which
is important to parallelism. There are two more issues with the inner for-
loop. One is that w′.core may be decreased from K + 1 to K concurrently by
other workers after visiting w′ (line 11), which may lead to some w′ that have
w′.core decreased to K to be skipped. The other is that v.core and v.s may
be updated concurrently by other workers (line 29).

We first define useful notations as follow. For the inner for-loop (lines 11 -
14), we denote the set of visited neighbors of w as w.V , so that w.V = ∅ before
the for-loop, w.V ⊆ w.adj when executing the for-loop, and w.V = w.adj after
the for-loop; also, we denote the set of Ap as w.Ap. Note that, we redo the
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for-loop if w.t > 0 by resetting w.V to empty (line 16). We use V ∗ to denote
the union of all V ∗

p , denoted as V ∗ = ∪Pp=1V
∗
p , and vertex v ∈ V ∗ indicates v

can be in one of the V ∗
p for worker p.

Of course, the outer while-loop (lines 8 - 16) invariant is preserved. The
additional invariant of the inner for-loop is that for all vertices u ∈ V , if u.mcd
is not empty, u.mcd is the number of neighbors v that have core numbers
that are 1) greater or equal to u.core, 2) equal to u.core − 1 with u ∈ R,
or 3) w.core − 1 which has u removed from R for propagation but v is not
yet propagated by u; also, a status of v.t = 1 indicates that v is doing the
propagation and v.t = 0 indicates that v has finished the propagation:

∀w ∈ V : (w.t = 1 ∨ w.t = 3 ≡ w.V ⊆ w.adj )

∧ (∀u ∈ V : u.mcd ̸= ∅ =⇒ u.mcd = |{v ∈ u.adj :

v.core ≥ u.core ∨ (v.core = u.core − 1 ∧ v ∈ R) ∨
(v.core = u.core − 1 ∧ v /∈ R ∧ v ∈ V ∗ ∧ v /∈ u.V ∧ v /∈ u.Ap)}|)

The invariant initially holds as we have w.t = 1∧w.V = ∅∧w.Ap = ∅. We
now argue that the inner for-loop preserves the invariant:

– ∀w ∈ V : (w.t = 1 ∨ w.t = 3 ≡ w.V ⊆ w.adj ) is preserved as w.t is set
to 2 when w is added to Rp and w.s is atomically off by 1 before and
after the for-loop; also, w.t may be atomically added by 2 by CAS when
a neighbor w′ in w.adj is calculating its mcd .

– ∀u ∈ V : u.mcd ̸= ∅ =⇒ u.mcd = |{v ∈ u.adj : v.core ≥
u.core ∨ (v.core = u.core − 1 ∧ v ∈ R) ∨ (v.core = u.core − 1 ∧ v /∈
R∧ v ∈ V ∗ ∧ v /∈ u.V ∧ v /∈ Ap) is preserved as when u.mcd is calculated
by the CheckMCD procedure, u may have neighbors v ∈ u.adj whose core
numbers are off by 1 and added to R for further propagation; also, it is
possible that v is added to V ∗ and already been removed from R before
the inner for-loop (line 9) for propagation, which has three cases:

1. if v not yet traversed u such that v.core = u.core−1 for propagation
as u /∈ v.Ap, u should count v as u.mcd .

2. if v has already traversed u such that v.core = u.core − 1 for prop-
agation as u ∈ v.Ap, u should not count v as u.mcd .

3. if v has already traversed u such that v.core ̸= u.core − 1 for
propagation, but after that u.core has been updated to v.core =
u.core − 1, u should count v as u.mcd .

The third case requires the repeated traversing of u. We use v.t = 1
to let u know that v is executing the inner for-loop (lines 11 - 14) for
propagating all vertices in v.adj . When v.t = 1, u will atomically add v.t
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by 1 (line 32) and the propagation of v can run again with v.Ap avoiding
repeated propagation (line 16).

At the termination of the inner for-loop by w.t = 0, we have w.V = w.adj
so that the invariant of the while-loop holds. At the termination of the outer
while-loop, the propagation queue R = ∅, so that all vertices v ∈ V have
v.mcd correctly maintained as in Equation 6.3.1.

Time Complexity. When m′ edges are removed from the graph, the total
work is the same as the sequential version in Algorithm 15, which is O(m′|E∗|)
where E∗ is the largest number of adjacent edges for all vertices in V ∗ among
each removed edge, defined as E∗ =

∑
v∈V ∗

p
v.deg . Analogies to edge insertion,

the best-case running time is O(m′|E∗|/P+ |E∗|+m′|V ∗|); the worst-case run-
ning time is O(m′|E∗|). In practice, such a worst-case is unlikely to happen.

Space Complexity. For each vertex v ∈ V , it takes O(1) space to store
v.mcd and locks, which makes O(n) space in total. Each worker p maintains
a private V ∗

p , which takes O(|V ∗|P) space in total. Each worker p maintains a
private Rp, which takes O(|E∗|P) space in total since at most O(|E∗|) vertices
can be added to Rp for each removed edge. The OM data structure is used
to maintain the k-order for all vertices in the graph, which takes O(n) space.
Therefore, the total space complexity is O(n+ |V ∗|P+ |E∗|P) = O(n+ |E∗|P).

6.4 Implementation

The min-priority queue Q is used in core maintenance for edge insertion to
efficiently obtain a vertex v ∈ Q with a minimum k-order O, where O is
maintained by the parallel OM data structure. The Q is implemented with
min-heap by comparing the labels maintained by the parallel OM data struc-
ture, which supports enqueue and dequeue in O(log|Q|) time.

The key issue is how to efficiently implement the enqueue and dequeue
operations, when the labels of vertices in Ok are updated by the relable proce-
dure (including rebalance and split) in OM data structure. The solution is to
re-make the min-heap of Q when each time the relable procedure is triggered
in Ok. For the implementation, we require the following structures:

– Each k-order Ok maintains a version number Ok.ver , which is atomically
added by 1 before and after one triggered relable procedure.

– Each k-order Ok maintains a counter Ok.cnt , which can atomically record
how many workers are executing the triggered relable procedure.
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– The vertex v is added to Q along with the current top-label (group label),
bottom-label, status, and version number, denoted as [Lb(v), L

t(v), v.s, ver ].
These two labels are used for min-priority in Q.

– All vertices v ∈ Q should have the same version number, which equals to
Q’s version number Q.ver .

Definition 6.4.1 (Version Invariant). All vertices v in Q maintain the in-
variant that all v.ver are the same version numbers as Q.ver , denoted as
∀u, v ∈ Q : u.ver = v.ver = Q.ver .

All vertices v in Q preserve the above Version Invariant for the dequeue

operation, as the inconsistent version numbers of vertices may lead to wrong
results. The detailed steps of updating Q.ver are shown in Algorithm 24.
Initially, we set ver ′ as the current version of OK (line 1). If ver′ ̸= Q.ver ,
all vertices v in Q will update their [Lb(v), L

t(v), v.s, ver ′] to the current new
values, with ver ′ as their version numbers (lines 4 - 7). We have to ensure that
Ok.cnt = 0 and ver ′ = Ok.ver during such updating; otherwise, we will redo
the updating (lines 2 and 8). We also have to ensure that v.s is an even number
and not changed during updating; otherwise, we have to redo the updating
(lines 5 and 7) since other workers have accessed the vertices in Q and their
k-order may be changed. In other words, no other workers can be executed
during the updating. Finally, we set Q.ver to ver ′ since all versions in Q have
the same version as ver ′ (line 6).

Algorithm 24: Q.update version(Ok)

1 ver ′ ← OK .ver
2 if Ok.cnt ̸= 0 ∨ ver ′ ̸= OK .ver then goto line 1
3 if ver ′ ̸= Q.ver then
4 for v ∈ Q do
5 s′ ← v.s
6 Update v with current [Lb(v), L

t(v), s′, ver ′]
7 if ¬Even(s′) ∨ s′ ̸= v.s then goto line 5

8 if OK .cnt ̸= 0 ∨ ver ′ ̸= OK .ver then goto line 1
9 Q.ver ← ver ′

Enqueue. The details steps of enqueue operation are shown in Algorithm
25. We set ver ′ as current version of OK (line 1). For the vertex v, we add the
values of [Lb(v), L

t(v), v.s, ver ′] to Q, with ver ′ as their version numbers (line
2), and then update the Q. If ver ′ is not consistent with Ok.ver or Qp.ver , we
set Qp.ver as ∅, which indicates the delayed version updating when executing
dequeue operations.
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Algorithm 25: Q.enqueue(Ok, v)

1 ver ′, s′ ← OK .ver , v.s
2 Add v into Q with [Lb(v), L

t(v), v.s, ver ′] and then update Q
3 if ver ′ ̸= OK .ver ∨ ver ′ ̸= Q.ver ∨ s′ ̸= s ∨ ¬Even(s) then
4 Q.ver ← ∅

Dequeue. Algorithm 26 shows the detailed steps of dequeue operations. If
Q.ver is empty, we will update the version of Q so that all vertices in Q have
consistent labels (line 2). In this case, we obtain v as Q.front() which has the
lowest k-order by comparing the labels(line 3). We conditionally lock v with
v.core = k as we will skip v when it has v.core ̸= k for the core maintenance
(lines 4 and 5), since v can be accessed by other workers and has an increased
core number. After locking v, it is necessary to check v’s current status value
v.s with v’s status value in Q (lines 6 and 7). If they are not equal, we know
that v has been accessed by other workers, v.core = k, and v’s k-order may be
changed; then Q.ver is set to empty to update the version in the next round
(line 7). We remove v from Q and then return v, which is locked with the
smallest k-order with v.core = k (line 11). The whole process continues until
we successfully obtain v from Q or Q is empty (lines 1 and 8). If no qualified
v exist in Q, it will return empty (line 9).

Algorithm 26: Q.dequeue(Ok)

1 while Q ̸= ∅ do
2 if Q.ver = ∅ then Qp.update version(Ok)
3 v ← Q.front()
4 if ¬(Lock v with v.core = k) then
5 Remove v from Q; continue
6 if v.s ̸= [v.s]Q then
7 Unlock(v); Qp.ver ← ∅; continue
8 Remove v from Qp; return v

9 return ∅

Running Time. The priority queue can be implemented by min-heap,
which requires worst-case O(log|Q|) time for both enqueuing and dequeuing
one item. For our implementation with updating versions, it requires worst-
case O(log|Q) time for enqueuing and O(|Q|log|Q|) time for dequeuing, as we
may rebuild the min-heap when removing a vertex. However, such a worst-
case can happen with a low probability, as vertices are always inserted into
the different positions of OK and a limited number of relable procedures can
be triggered. Also, when inserting a batch of edges, the sizes of Q are always
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small, e.g. less than 10, so that the process of updating versions tends to not
affect the dequeue performance.

6.5 Experiments

In this section, we experimentally compare the following core maintenance
approaches:
– The Join Edge Set based parallel edge insertion algorithm (JEI for short)
and removal algorithm (JER for short) (Hua et al., 2019)

– The Matching Edge Set based parallel edge insertion (MI for short) and
removal algorithm (MR for short) (Jin et al., 2018)

– Our parallel edge insertion algorithm (OurI for short) and removal algorithm
(OurR for short)

– As baselines, the sequential Simplified-Order edge insertion algorithm
(OI for short) and removal algorithm (OR for short) (Guo and Sekerinski,
2022c)

– As baselines, the sequential Traveral edge insertion algorithm (TI for
short) and removal algorithm (TR for short) (Sarıyüce et al., 2016)

The source code is available on GitHub1.

Experiment Setup. The experiments are performed on a server with an
AMD CPU (64 cores, 128 hyperthreads, 256 MB of last-level shared cache)
and 256 GB of main memory. Each core corresponds to a worker. The server
runs the Ubuntu Linux (22.04) operating system. All tested algorithms are
implemented in C++ and compiled with g++ version 11.2.0 with the -O3 op-
tion. OpenMP2 version 4.5 is used as the threading library. We perform every
experiment at least 50 times and calculate their means with 95% confidence
intervals. Note that, the error bars are too small to see in our experiments.

Tested Graphs. We evaluate the performance of different methods over a
variety of real-world and synthetic graphs shown in Table 6.2. For simplicity,
directed graphs are converted to undirected ones; all of the self-loops and
repeated edges are removed. That is, a vertex cannot connect to itself, and
each pair of vertices can connect with at most one edge. The livej, patent, wiki-
talk, and roadNet-CA graphs are obtained from SNAP3. The dbpedia, baidu,
pokec and wiki-talk-en wiki-links-en graphs are collected from the KONECT4

project. The ER, BA, and RMAT graphs are synthetic graphs generated by

1https://github.com/Itisben/Parallel-CoreMaint.git
2https://www.openmp.org/
3http://snap.stanford.edu/data/index.html
4http://konect.cc/networks/
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the SNAP5 system using Erdös-Rényi, Barabasi-Albert, and the R-MAT graph
models, respectively; the average degree is fixed to 8 by choosing 1,000,000
vertices and 8,000,000 edges. All the above twelve graphs are static graphs.
We randomly sample 100,000 edges for insertion and removal.

We also select four real temporal graphs, DBLP, Flickr, StackOverflow,
and wiki-edits-sh from KONECT; each edge has a timestamp recording the
time of this edge inserted into the graph. We select 100,000 edges within a
continuous time range for insertion and removal.

Graph n = |V | m = |E| AvgDeg Max k

livej 4,847,571 68,993,773 14.23 372
patent 6,009,555 16,518,948 2.75 64
wikitalk 2,394,385 5,021,410 2.10 131
roadNet-CA 1,971,281 5,533,214 2.81 3

dbpedia 3,966,925 13,820,853 3.48 20
baidu 2,141,301 17,794,839 8.31 78
pokec 1,632,804 30,622,564 18.75 47
wiki-talk-en 2,987,536 24,981,163 8.36 210

wiki-links-en 5,710,993 130,160,392 22.79 821
ER 1,000,000 8,000,000 8.00 11
BA 1,000,000 8,000,000 8.00 8
RMAT 1,000,000 8,000,000 8.00 237

DBLP 1,824,701 29,487,744 16.17 286
Flickr 2,302,926 33,140,017 14.41 600
StackOverflow 2,601,977 63,497,050 24.41 198
wiki-edits-sh 4,589,850 40,578,944 8.84 47

Table 6.2: Tested real and synthetic graphs.

In Table 6.2, we can see all graphs have millions of edges. Their average
degrees range from 2.1 to 24.4, and their maximal core numbers range from
3 to 821. In Figure 6.3, we can see that the core numbers of vertices are not
uniformly distributed in all tested graphs, where the x-axis is core numbers
and the y-axis is the number of vertices. That is, a great portion of vertices
have small core numbers, and few have large core numbers. For example,
wikitalk has 1.7 million vertices with a core number of 1; roadNet-CA has four
core numbers from 0 to 3; BA only has a single core number of 8. For JEI, JER,
MI and MR, such core number distribution is an important property since the
vertices with the same core number can only be processed by a single worker
at the same time, while OurI and OurR do not have this limitation.

5http://snap.stanford.edu/snappy/doc/reference/generators.html
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Figure 6.3: The distributions of vertices’ core numbers.

6.5.1 Running Time Evaluation

In this experiment, we exponentially increase the number of workers from
1 to 64 to evaluate the real running time over graphs in Table 6.2. For the
twelve static graphs, we randomly sample 100,000 edges. For the four temporal
graphs, we select the latest period of 100,000 edges. These edges are first
removed and then inserted. The accumulated running times are measured.

The plots in Figure 6.4 depict the performance of four compared algo-
rithms, where the running times above 3600 seconds are not depicted. Com-
paring three parallel methods, the first look reveals that OurI and OurR always
have the best performance and MI and MR always have the worst performance,
respectively. Compared with the two baseline methods, we find that OI and
OR are much more efficient than TI and TR, respectively. Specifically, we make
several observations:

– By using one worker, Our and OurR have the same running time as the
baselines of OI and OR, respectively. This is because OurI and OurR are
based on OI and OR and have the same work complexities, respectively.

– By using one worker, JEI and JER are always faster than TI and TR,
respectively. This is because although JEI and JER are based on TI and
TR, a batch of insertions or removals are processed together and thus
repeated computations can be avoided. Also, MI and MR have the same
trend.

– By using one worker, all algorithms are reduced to sequential, and OurI
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Figure 6.4: The real running time by varying the number of workers.
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performs much faster than JEI. This is because for edge insertion, OurI
is based on the OI, while JEI is based on TI. OI is much faster than TI.
Also, MI and MR have the same trend.

– By using one worker, OurR does not always perform better than JER. This
is because our method uses arrays to store edges, which can save space,
while the join-edge-set-based method uses binary search trees to store
edges. When deleting an edge (u, v), OurR has to traverse all vertices of
u.adj and v.adj , while JER only need to traverse log|u.adj | and log|v.adj |
vertices. That means OurR costs more running time than JER for deleting
an edge from the graph.

– By using multiple workers, OurI and OurR can always achieve better
speedups compared with other parallel methods, but JEI and JER have
no speedups over some graphs. This is because JEI and JER have lim-
ited parallelism, as affected vertices with different core numbers cannot
perform in parallel, while OurI and OurR do not have such a limitation.
Also, MI and MR have the same trend.

– By using multiple workers, the running time of OurI and OurR may begin
to increase when using more than 8 or 16 workers, e.g. livej, patent, and
dbpedia. This is because of the contention on shared data structures with
multiple workers, and more workers may lead to higher contention. In
addition, for JEI and JER, when the core numbers of vertices in graphs
are not well distributed, some workers are wasted, which results in extra
overheads.
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In Table 6.3, columns 2 to 7 compare the running time speedups between
using 1 worker and 16 workers for all tested algorithms. It is clear that OurI
and OurR always achieve better speedups up to 5x, compared with other par-
allel methods. Columns 8 to 11 compare the running time speedups between
our method and the other parallel methods by using 1 worker; columns 12
to 15 compare the running time speedups between our method and the other
parallel methods by using 16 workers. We first can see that compared with
MI and MR, OurI and OurR always achieve the highest speedups both using 1
worker and 16 workers. Compared with JEI, OurI achieves up to 50x speedups
even using 1 worker and achieves up to 289x speedups when using 16 workers.
We observe that compared with JER, OurR does not always achieve speedups
when using a single worker, but achieves up to 10x speedups when using 16
workers. Especially, over wiki-edits-sh, OurI and OurR run slightly slower than
JEI and JER when using 1 worker and 16 workers, respectively. The reason is
that the special properties of graphs may affect the performance of different
algorithms.

6.5.2 Scalability Evaluation

In this experiment, we test the scalability over four selected graphs, e.g., livej,
baidu, dbpedia, roadNet-CA. For each graph, we first randomly select from
100,000 to 1 million edges. By using 16 workers, we measure the accumulated
running time and evaluate the ratio of real running time between the corre-
sponding size of edges and 100,000 edges. The plots in Figure 6.5 depict the
performance of four compared algorithms. The x-axis is the size of inserted
or removed edges, and the y-axis is the time ratio. Ideally, 1 million edges
should have a ratio of 10 since the edge size is 10 times of 100,000. We observe
that over livej, four algorithms always have similar time ratios with increased
edge size. Over other graphs, OurI and OurR always have larger time ratios
compared with JEI and JER, respectively. Further, OurI has a time ratio of
up to 20 when applying 1 million edges. This is because JEI or JER adopts
the joint edge set structure to preprocess a batch of updated edges; if there
are more updated edges, they can process more edges in each iteration and
avoid unnecessary access. However, OurI and OurR do not preprocess a batch
of updated edges so more updated edges require more accumulated running
time.

We also observe that even with 1 million update edges, OurI and OurR

still have better performance than JEI and JER, respectively. Over four tested
graphs, OurI still has 2.6x, 1.9x, 3.8x and 3.0x speedups compared with JEI,
and OuR also has 7.8x, 5.5x, 0.9x and 3.3x speedups compared with JER, re-
spectively. The reason is that OurI and OurR (based on the Order algorithm)
have less work than JEI and JER (based on the Traversal algorithm; also,
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Figure 6.5: The running time ratio with 16-worker by varying the size of
inserted or removed edges.

unlike OurI and OurR, JEI and JER have an extra cost to preprocess the edges.

6.5.3 Stability Evaluation

In this experiment, we test the stability over four selected graphs, e.g., livej,
baidu, dbpedia, roadNet-CA, by using 16 workers. First, we randomly sample
5, 000, 000 edges and partition them into 50 groups, where each group has
totally different 100, 000 edges. Second, for each group, we measure the accu-
mulated running time of different methods. That is, the experiments run 50
times so each time it has totally different inserted or removed edges.

The plots in Figure 6.6 depict the result. The x-axis is the repeated times,
and the y-axis is the running times. We observe that the performance of OurI,
OurR, and JER are always well-bounded, but the performance of JEI always
has large fluctuations. The reason is that JEI is based on the Traversal
algorithm and OurI is based on the Order algorithm. It is proved that for
the edge insertion, the Traversal algorithm has large fluctuations for the
ratio of |V +|/|V ∗| for different edges with high probability, while the Order
algorithm does not have this problem. For the edge removal, both Our and
JER have V + = V ∗, so their running times remain stable for different batches
of edges.
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or removed edges for each time.
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Chapter 7

Conclusion

7.1 Summary

This thesis presents a set of parallel graph algorithms in the shared-memory
work-depth model. In Part II, Chapter 3 studies graph trimming algorithms for
removing vertices without outgoing edges. The arc-consistency algorithms, in
particular AC-3, AC-4, and AC-6, can be applied to graph trimming, leading to
the so-called AC-3-based, AC-4-based, and AC-6-based trimming algorithms,
respectively. Based on that, we propose parallel AC-4-based and AC-6-based
trimming algorithms that have better worst-case time complexities than AC-3-
based. The common existing graph trimming method is actually parallel AC-
3-based, which has the worst time complexity. Although AC-4-based and AC-
6-based algorithms have similar worst-case time complexities, the AC-6-based
algorithm traverses fewer edges per worker and requires less memory usage
than the AC-4-based one. For implicit graphs in which edges are generated on-
the-fly, the AC6-based algorithm does not rely on the reversed graphs, unlike
the AC4-based algorithm, and thus is more suitable for trimming implicit
graphs. For explicit graphs in which all edges are linearly stored in memory,
our AC-6-based algorithm does not always outperform the other methods,
but always traverses the least number of edges and has the best stability and
scalability.

In Part IV, we study the parallel core maintenance algorithms. In Chapter
4, we present a new parallel order maintenance (OM) data structure. The
parallel Insert and Delete are synchronized with locks efficiently. Notably,
the parallel Order is lock-free and can execute highly in parallel. Experiments
demonstrate significant speedups (for 64 workers) over the sequential version
on a variety of test cases. In Chapter 5, we simplify the state-of-the-art core
maintenance algorithm and also improve its worst-case time complexity by
introducing the sequential Order Data Structure (in Chapter 4) to maintain
the k-order of all vertices in the graph. Our simplified approach is easy to
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understand, implement, and argue the correctness. The experiments show
that our approach outperforms the existing methods over a variety of data
graphs. In Chapter 6, we parallelize our simplified core maintenance algorithm
(in Chapter 5) to handle a batch of inserted or removed edges in parallel. We
adopt the parallel OM data structure (in Chapter 4) to maintain the k-order of
all vertices in the graph. We also propose novel mechanisms to avoid deadlocks.
The experiments show that our parallel edge insertion is much faster than
the existing approaches even using a single worker over various data graphs;
also, for both edge insertion and removal, our parallel approach achieves high
speedups compared with the existing approach when using 16 workers. More
importantly, our parallel approach achieves high parallelism even when the
core numbers of vertices are not well-distributed, e.g. all vertices have the
same core numbers in a graph. However, in this case, existing approaches
have limited parallelism.

7.2 Future Work

There are a number of open questions that remain as a result of this thesis. We
can apply graph trimming to Strong Connected Components decomposition
as a great percentage of size-1 SCCs can be trimmed in parallel. We also can
apply graph trimming to cycle directions as the trimmable vertices cannot
be in cycles and can be trimmed in parallel. Both applications depend on
Depth First Search (DFS), which is hard to parallelize. However, our trimming
techniques can efficiently trim graphs in parallel if there is a large portion of
trimmable vertices in graphs. In particular, we can apply the AC-6-based
algorithm to trim the model-checking graphs in which edges are expensively
calculated on-the-fly; fewer traversed edges will likely save running time.

For both parallel Core Maintenance, we will investigate the insertions or
deletions in batches by preprocessing the edges to avoid unnecessary access. In
other words, we can process more edges in each iteration and each edge costs
less running time on average. Similarly, such batch insertion and removal can
also be applied to the parallel Order Maintenance data structure.

Our parallel methodology to core maintenance can be applied to truss
maintenance (Zhang and Yu, 2019a) since their definitions are analogous.
Specifically, given a graph G = (V,E), the k-truss Gk is defined as the maxi-
mal subgraph in which each edge is contained in at least k − 2 triangles. For
each edge (u, v) ∈ E, the truss decomposition is to compute the trussness,
which is defined as the maximum k such that (u, v) resides in the k-truss but
not in the (k + 1)-truss of G. Here, the truss maintenance is to maintain the
trussnesses when edges are inserted or removed. We can see all edges maintain
the order defined by the truss decomposition. When inserting an edge, such
an order for all edges can be used to reduce the searching range to obtain the
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edges whose trussnesses are increased. We can parallelize such a truss main-
tenance approach based on maintaining the order of edges by our parallel OM
data structure.
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Ahmet Erdem Saŕıyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu,
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