Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28495
Title: DEMOCRATISING DEEP LEARNING IN MICROBIAL METABOLITES RESEARCH
Other Titles: DEMOCRATISING DEEP LEARNING IN NATURAL PRODUCTS RESEARCH
Authors: Dial, Keshav
Advisor: Magarvey, Nathan
Department: Biochemistry
Keywords: Deep Learning;Cheminformatics;BERT;LLM;Bioinformatics;T5;genomic mining;GNN
Publication Date: 2023
Abstract: Deep learning models are dominating performance across a wide variety of tasks. From protein folding to computer vision to voice recognition, deep learning is changing the way we interact with data. The field of natural products, and more specifically genomic mining, has been slow to adapt to these new technological innovations. As we are in the midst of a data explosion, it is not for lack of training data. Instead, it is due to the lack of a blueprint demonstrating how to correctly integrate these models to maximise performance and inference. During my PhD, I showcase the use of large language models across a variety of data domains to improve common workflows in the field of natural product drug discovery. I improved natural product scaffold comparison by representing molecules as sentences. I developed a series of deep learning models to replace archaic technologies and create a more scalable genomic mining pipeline decreasing running times by 8X. I integrated deep learning-based genomic and enzymatic inference into legacy tooling to improve the quality of short-read assemblies. I also demonstrate how intelligent querying of multi-omic datasets can be used to facilitate the gene signature prediction of encoded microbial metabolites. The models and workflows I developed are wide in scope with the hopes of blueprinting how these industry standard tools can be applied across the entirety of natural product drug discovery.
URI: http://hdl.handle.net/11375/28495
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Dial_Keshav_202304_PhD.pdf
Access is allowed from: 2024-04-28
17.38 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue