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Abstract

Deep learning models are dominating performance across a wide variety of tasks. 

From protein folding to computer vision to voice recognition, deep learning is changing 

the way we interact with data. The field of natural products, and more specifically 

genomic mining, has been slow to adapt to these new technological innovations. As we 

are in the midst of a data explosion, it is not for lack of training data. Instead, it is due to 

the lack of a blueprint demonstrating how to correctly integrate these models to maximise 

performance and inference. During my PhD, I showcase the use of large language models 

across a variety of data domains to improve common workflows in the field of natural 

product drug discovery. I improved natural product scaffold comparison by representing 

molecules as sentences. I developed a series of deep learning models to replace archaic 

technologies and create a more scalable genomic mining pipeline decreasing running 

times by 8X. I integrated deep learning-based genomic and enzymatic inference into 

legacy tooling to improve the quality of short-read assemblies. I also demonstrate how 

intelligent querying of multi-omic datasets can be used to facilitate the gene signature 

prediction of encoded microbial metabolites. The models and workflows I developed are 

wide in scope with the hopes of blueprinting how these industry standard tools can be 

applied across the entirety of natural product drug discovery. 
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Chapter 1. Introduction 

The cross-discipline research presented in this thesis requires a comprehensive 

understanding of natural products, bioinformatics and natural language processing. The 

importance of natural products in the field of medicine as well as the traditional 

techniques for their discovery are presented in Section 1.1. The impact of bioinformatics 

since its conception and its role in creating the exponential growth of biological data is 

presented in Section 1.2. The innovations in natural language processing resulting in 

revolutionary technologies such as ChatGPT and potential applications in natural product 

research are presented in Section 1.3.  

1.1 Natural Product Drug Discovery 

 Natural products can be characterised as organic molecules synthesised by living 

organisms. Primary metabolites are the molecules essential for life such as DNA, RNA 

and proteins. Secondary metabolites are the molecules used by microbes to interact with 

their environment. Microbial secondary metabolites exhibit a wide variety of 

bioactivities. To chelate and accelerate iron absorption they use siderophores such as 

enterobactin.[1] Through the release of quorum-sensing molecules, such as acyl-

homoserine lactone, bacteria can communicate with each other.[2] With the release of 

antifungal and antibacterial agents, neighbouring microbes can be killed and disrupted. 
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The myriad of specialised activities the metabolites exhibit has made them favourable 

drug candidates.[3] 

 Microbial natural products have played a pivotal role in the development of 

modern medicine. The first tuberculosis treatment was the aminoglycoside Streptomycin, 

isolated from Streptomyces griseus in 1943. [4] The discovery of the immunomodulating 

non-ribosomal peptide cyclosporine, isolated from the fungus Tolypocladium inflatum, 

enabled organ transplantation.[5] Avermectin was a macrocylic lactone isolated from 

Streptomyces avermitilis in 1974; its derivative Ivermectin is an effective treatment for 

river blindness and other parasitic infections. [6] Doxorubicin isolated from Streptomyces 

peucetius, is commonly used in the treatment of cancer. These drugs are still considered 

essential medicines by the World Health Organization, exemplifying the clinical 

importance of microbial natural products today.[7] 

 The field of natural products research has existed for over 90 years.[3] Rapid 

integration of advancements in biotechnology and algorithmics has led to a consistent rise 

in isolation rates of novel scaffolds with diverse chemistries (Figure 1.1). Initially, the 

protocol for secondary metabolite discovery was rooted in metabolomics and bioactivity 

screening. The process typically consisted of: (1) Growing a microbe, (2) Fractionating its 

extracts (3) Assaying for activity, and (4) Isolating the active compound.[8] From the 
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1950s to the 1970s bioactivity screening generated many antibiotics used today in a 

period referred to as “the golden age of antibiotic discovery”.[9] 

 Towards the mid-1980s to early 1990s, there were various innovations in 

analytical chemistry techniques making novel isolation easier; these included: 

electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI), the 

application of Two- Dimensional Nuclear Magnetic Resonance Spectrometry (2D NMR) 

to biological molecules, and the wide adoption of liquid chromatography paired to mass 

spectrometry (LCMS).[10-17] The integration of the high-performance instrumentation 

resulted in a large jump in the yearly rate of novel molecule isolation (from 1991’s 188 

novel scaffolds per year to 1995’s 644 novel scaffolds per year). 

 As molecular biology and DNA sequencing technologies evolved, a deeper 

understanding of the genetic basis for the biosynthetic process was acquired. In 1991, a 

landmark paper was published describing erythromycin biosynthesis.[18] All genes 

responsible for the biosynthesis of the polyketide chain were found within a single 

operon. Each gene was composed of repeating modules. Each module participated in a 

different step of the elongation process similar to an assembly line. The genomic 

organisation of the operon shared collinearity with the required biochemical ordering. 

This allowed for the prediction of the linear molecular scaffold based solely on the 

module organisation. Further exploration of other secondary metabolites showed this 
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genomic organisation was a common pattern in microbial genomes.[19-24] The term 

biosynthetic gene cluster was used to describe these operons. Beyond synthesis, clusters 

also contained genes related to metabolite resistance, regulation and decoration (tailoring 

enzymes). [20, 25-37] 

 Biosynthetic gene clusters encode many different secondary metabolite families; 

these include but are not limited to non-ribosomal peptides (NRP), ribosomally encoded 

post-translationally modified peptides (RiPP), terpenes, polyketides, nucleosides and 

aminoglycosides.[38] Many of these families are synthesised through separate enzymes 

including Type II and Type III Polyketide synthesis, and a minority of NRPs.[39-42] Type 

I polyketides and the majority of non-ribosomal peptides are synthesised by the multi-

module megasynthase structure found in the erythromycin gene cluster (via PKS and 

NRPS respectively).[43, 44] Because megasynthases have a modular order that directly 

reflects the step-wise synthesis of the metabolite, it is possible to predict the linear chain 

with high accuracy.[45-48] The PKS and NRPS megasynthases share many similarities, 

sometimes resulting in a hybridisation of the two families in the final molecular product.

[49, 50]  

 In an NRPS megasynthase, amino acid chain elongation is performed through a 

cycle of reactions facilitated by separate functional domains.[51] The adenylation (A) 

domain is used to select and activate a substrate amino acid. These amino acids can 
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include non-proteogenic amino acids resulting in highly variable peptide chains. The 

binding pocket sequence of the A domain conveys the substrate specificity. In 1999, the 

code for the substrate specificity was partially deciphered but many substrates still lack a 

reference sequence.[52] After activation, the amino acid is tethered to the assembly line 

for decoration or further elongation using the thiolation (T) domain or peptidyl/acyl 

carrier protein (PCP or ACP). Examples of substrate decoration include O- or N-

methylation. The tethered amino acid is then linked to an upstream monomer using the 

condensation (C) domain. When elongation is completed, a thioesterase (TE) domain is 

used for the esterification of the chain. The peptide chain is typically freed using 

hydration or another nucleophile with possible macrocyclisation. The domains facilitating 

each of the biochemical steps are highly conserved and easily recognised through 

sequence homology.[46, 48] 

 The Type I PKS performs chain elongation using a similar cycle of reactions also 

facilitated by conserved domains.[53] In PKSs, the adenylation domains are replaced with 

acyltransferase (AT) domains. The substrate specificity is also dictated by binding pocket 

sequences but instead of amino acids, the domain selects for the CoA-bound organic acids 

(e.g. malonyl-CoA). Ketosynthase (KS) domains replace condensation domains, 

facilitating the C-C bond to tether an extender unit to the polyketide chain. The ketone 

chain is highly reactive and can be further reduced; first by a ketoreductase (KR) domain 

- resulting in a β-hydroxyacyl, again by a dehydrotase (DH) domain - resulting in α,β-
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enoyl, and possibly further using an enolreductase (ER) domain - resulting in a saturated 

acyl. The system is simple but yields great diversity, with one group estimating the linear 

polyketide space as large as 800 million.[54] 

 The biosynthesis of RiPPs also shares conserved protein domains. RiPPs start as a 

precursor peptide comprised of a conserved leader motif and core peptide.[55, 56] 

Following translation, surrounding enzymes will recognise the leader motif and begin 

modifying the core peptide. Many different modifications can be made resulting in drastic 

structural changes. Examples of modifying enzymes include dehydratases and 

methyltransferases; macrocyclization and the formation of disulfides, thioethers, 

sulfoxides from cysteine residues are also very common. The complex structures of RiPPs 

result in a wide variety of activities including antibacterial, antifungal and anticancer.[57, 

58] 

 Biosynthetic gene clusters are a demonstration of nature’s tendency to reuse 

enzymes in various combinations resulting in wildly different molecular scaffolds. The 

simplicity of the mechanism enabled the prediction of encoded chemistries. Predicted 

natural products from genomic information removed the serendipity of chemical novelty 

typically associated with bioactivity screening alone.[59, 60] Instead of focusing on 

microbes isolated from under-explored niches with the hopes of finding novel chemistry, 

candidates could be selected based on their encoded biosynthetic potential.[61-64] Using 
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the model of the biosynthetic gene cluster, the workflow for natural product discovery 

underwent a large change. As bioinformatic techniques increased in accuracy and 

genomic sequencing decreased in cost, a field of pre-emptive genomic mining emerged.

1.2 Bioinformatics and the Genomic Mining Era 

 Genomic mining is a computational technique where biosynthetic gene clusters 

are detected within a genome. The field of genomic mining is closely tied to 

bioinformatics. A pattern that history has shown time and time again is as bioinformatic 

tools increase in accuracy and scalability so do the tools in genomic mining.  

 The birth of bioinformatics begins with the software COMPROTEIN in 1962.[65, 

66] It generated a peptide’s primary structure using Edman peptide sequencing data. This 

was one of the first examples of computational tooling creating a data explosion and 

facilitating the scientific inquiry of completely new research questions. As more protein 

sequences were discovered, there grew a need to explore the evolutionary relationships 

between sequences. There were many different attempts to standardise the comparison, 

but it was only in 1970 when Saul B. Needleman and Christian D. Wunsch solved this 

problem by creating a dynamic programming algorithm to align pairs of sequences.[67] 

While alignment algorithms remain important even today, they have a scalability issue 

requiring O(n2) comparisons between each pair of sequences. To address scaling issues, 

rapid sequence algorithms began to emerge in the mid-1980s and early 1990s. In 1985 
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FASTA was released, dramatically decreasing the amount of time required to compare a 

protein sequence to a database.[68, 69] In 1990, the BLAST algorithm was released; it 

remains a staple in sequence comparison even today. [70] 

 The era of genomics begins in 1995 when the first complete bacterial genome was 

sequenced (Haemophilus influenzae).[71] As sequencing projects grew, another data 

explosion occurs with the annotation of the incoming peptide sequences becoming 

unmanageable. Protein libraries grew at a rapid rate, with the SWISS-PROT library 

containing ~81,000 protein sequences by 1999.[72] In 1997, a library called Pfam was 

released to rapidly annotate and classify incoming peptide sequences into emerging 

families.[73] Pfam used HMMER’s profile Hidden Markov Models (pHMMs) to 

determine whether or not a sequence belonged to a protein family.[74] Each protein 

family was represented as a Markov chain. The sequence homology of a family was 

modelled as a transition matrix; the likelihood of each residue belonging to a position in 

the chain was determined using a seed sequence alignment.[75] The probability of an 

incoming sequence belonging to the modelled family was determined using the transition 

matrix. By modelling each family separately, pHMMs can personalise scoring for 

substitutions, insertions and deletions in a way BLAST cannot. Each pHMM could report 

probabilities, along with the start and end coordinates for matching regions. Pfam showed 

pHMMs were extremely useful for the scalable determination of protein motifs and 
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domains en masse. Libraries such as PANTHER, TIGRFAM, and SMART using pHMMs 

emerged soon after.[76-78] 

 In 2005, the first next-generation sequencing (NGS) platform was released called 

454 sequencing; it was much faster and cheaper than conventional Sanger sequencing for 

interrogating microbial genomes.[79] By 2006, the Genomes OnLine Database 

(GOLD) reported ∼250 completed microbial genomes, with ~700 other projects in 

progress.[80, 81] With an unprecedented amount of microbial genomic information 

available, natural product scientists release the first genomic mining pipelines. The 

proprietary DECIPHER was created in 2002 by Ecopia Biosciences.[82] They utilised 

public datasets such as GenBank, to create an internal library of gene clusters. Using 

BLAST, they were able to rapidly query microbial genomes for biosynthetic genes and 

identify encoded biosynthetic potential. In 2006, de Jong et al. released BAGEL, a web 

server for determining putative bacteriocins.[83] It used Pfam HMMs to determine motifs 

of interest from predicted open-reading frames. Using tools like these, candidates for 

fermentation could be selected with a greater likelihood of success. 

 Pfam and pHMMs continue to play a large part in the genomic mining tools of 

today. The two dominant genomic mining tools, PRISM and antiSMASH, both rely on 

pHMMs selected specifically from the Pfam library as well as in-house pHMMs 

specifically created for biosynthetic gene clusters.[46, 48] Genomic mining tools have 
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evolved from identifying bacteriocins to identifying many different types of BGCs 

including aminoglycosides, nucleosides, β-lactams, alkaloids, and lincosamides. 

Bioinformatic tools such as BLAST were also integrated into the pipelines, with PRISM 

still using BLAST to identify key residue differences in adenylation domain binding 

pockets. Beyond predicting linear scaffolds, PRISM has modelled out tailoring reactions 

allowing the accurate prediction of complex scaffold structures. The influence of smarter 

candidate selection using genomic mining was immediately evident. With genomic 

mining tools in hand, natural product research experienced a second renaissance with 

rates of novel molecule discovery reaching as high as 1,389 in 2015. With the 

enzymology of more and more gene clusters being modelled into the genomic mining 

pipelines, the scalability of the current workflow has come into question. PRISM 4 boasts 

a library of 1772 pHMMs while antiSMASH 6.0 has 354 pHMMs; in both pipelines, all 

pHMMs must be run against each protein sequence individually.[84, 85] As more BGCs 

are discovered, these libraries will continue to grow as will their running times. 

 Just as advances in biotechnology and bioinformatics created data explosions with 

DNA and proteins, genomic mining created a data explosion with gene clusters. 30 years 

after the discovery of the first biosynthetic gene cluster, the Integrated Microbial 

Genomes’ Atlas of Biosynthetic Gene Clusters (IMG-ABC) now reports 411,475.[86] The 
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same questions that arose when protein datasets grew exponentially are now being asked 

of gene clusters. 

 As Pfam was invented to quickly annotate incoming sequences with known 

protein families, there now exists tools to annotate incoming BGCs with known 

secondary metabolites. MultiGeneBLAST used the BLAST algorithm to map open 

reading frames from putative BGCs to gene clusters with solved metabolites.[87] There 

were caveats to this approach including the inability to recognise enzymes that are 

dissimilar in sequence homology but identical in function. To mitigate false negatives, 

more advanced pipelines moved away from the amino acid sequence for comparison; they 

instead characterised a protein as a sequence of predicted biosynthetic domains. Internal 

tools such as GARLIC (Global Alignment for natuRaL-products chemInformatiCs) and 

MLST used the Needleman-Wunch global alignment and BLAST algorithms respectively 

to perform comparisons of gene clusters represented as sequences of functional domains.

[88] All three of these algorithms can score incoming gene clusters with a percentage of 

known identity. Unfortunately, as libraries of known BGCs continue to grow, alignment-

based methods are not scalable. 

 Other frameworks have emerged to programmatically deduce gene cluster families 

(GCFs). BiG-SCAPE annotates all open-reading frames within BGCs with Pfam domains 

and creates similarity networks using a combination of pairwise metrics including the 
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Jaccard Index and affinity propagation.[89] While the strategy works proficiently on 

small datasets, it has a quadratic runtime complexity that does not allow application 

beyond a few tens of thousands of BGCs; this is not feasible when querying against 

today’s wealth of BGCs (a combined total of over one million). To improve on this, BiG-

SLICE was released.[90] It uses a Pfam feature matrix to represent BGCs as vectors. The 

use of vectors allows for the use of near-linear clustering algorithms such as K-Means and 

BIRCH to build GCFs.[91, 92] There are limitations to relying on Pfam for featurisation; 

while polyketides and a minority of NRPs have many features, the majority of NRPs, 

terpene and RiPPs have very few. In addition, Pfam does not take into account the 

individual residue differences in RiPP propeptide sequences and adenylation domain 

sequences, both of which are important determinants of the final natural product’s 

chemical structure. 

1.3 Natural Language Processing 

 Many of the problems plaguing the field of genomic mining are also encountered 

in natural language processing (NLP). In proteins, conserved functional domains are 

determined in a continuous protein sequence using pHMMs. In language processing, a 

similar problem exists called part-of-speech tagging.  

 A part of speech (PoS) is a category of words which share similar grammatical 

properties; in the English language, examples of a PoS include noun, verb, adjective etc. 
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In the 1970s a massive dataset of documents called the Lancaster-Oslo-Bergen Corpus 

was prepared in a machine-readable format. The corpus was made of 500 two-thousand-

word texts written in British English. [93] One of the tasks required to process the 

massive dataset included PoS tagging. Just as SWISS-PROT was struggling to keep up 

with annotations of incoming peptide sequences, computational linguists were struggling 

to annotate a corpus of this size. To solve this, they modelled each PoS with HMMs, 

similarly to how Pfam modelled each protein family.[94] Since then, the field of NLP has 

continued to innovate and make massive strides. While Pfam still uses pHMMs to 

annotate proteins today, in NLP PoS tagging tasks are accomplished by a variety of other 

techniques highly scalable techniques. One of the most popular methods involves 

combining an artificial neural network (ANN) with a conditional random field (CRF). 

[95-98] 

 Artificial neural networks are mathematical models inspired by biological neural 

networks of animal brains.[99] Typically ANNs are structured with a minimum of three 

layers made up of individual artificial neurons: (1) An input layer which processes the 

raw input data such as tokenised words. (2) A hidden layer which can be made up of 

many layers in the case of Deep Neural Networks (DNNs); these layers are where the 

majority of input processing occurs. (3) An output layer, which will compute the final 

values such as vector representations of the input (embeddings). The output for an 

artificial neuron is typically calculated through a combination of weighted biases and 
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activation functions being applied to the neuron’s input. While the input data for a typical 

ANN is assumed to be independent of each other, a special type of ANN called a 

recurrent neural network (RNN) has neurons connected in cycles, allowing the input of 

sequence data.[100] A specialised RNN called the Long-Short Term Memory (LSTM-

RNN) has found much success in NLP.[101] Each unit is comprised of a cell, an input 

gate, an output gate and a forget gate. The cell acts as the unit’s memory while the model 

moves across long sequences. The forget gate is used to prune unneeded information from 

the model’s state.  It has been used in handwriting recognition, speech recognition and 

even playing video games.[102-104] 

 The weights within an ANN are tuned using a training task. Depending on the 

training task, different weights will be optimised. For example, if an ANN is trained on 

classifying sentences as negative sentiment versus positive sentiment, it will have a 

different set of weights than the same ANN except trained on classifying sentences as 

spam versus non-spam. While weights may differ between tasks, some residual 

understanding may be transferable. In 2018, FastAI released a training method called 

Universal Language Model Fine-tuning (ULMFit).[105] It involved first training a 

language model with a simple pertaining task and then fine-tuning the model with other 

initiatives later. The concept of pre-training with one task to help an ANN perform well at 

another is called transfer learning. In subsequent frameworks, large language models 

(LLMs) utilised transfer learning through a ULMFit-like training regimen. 
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 In 2017, Google released a language model framework called Embeddings from 

Language Models (ELMo). [106] It used an architecture comprised of a stacked layer of 

bidirectional Long Short-Term Memory Recurrent Neural Networks (LSTM-RNNs). It 

was first pre-trained on 10 epochs on the 1B Word Benchmark; afterwards, it was fine-

tuned for individual language modelling tasks including question answering, sentiment 

analysis and named entity recognition (NER). NER is a task very similar to PoS; instead 

of calling parts of speech within a sentence, entities are recognised and classified into 

categories. Categorisation of the words is highly dependent on context; for example, 

“apple” could be classified as a company or a fruit depending on the context). To perform 

NER with ELMo, embeddings from the LSTM-RNN were passed to a CRF layer. The 

architecture set a new state-of-the-art score of 92.22% accuracy. 

 Following the release of this paper, bioinformatic tools started to migrate to 

LSTM-RNNs. In 2019, SignalP released version 5.0, in which they moved to a 

combination of convolution neural networks (CNNs), LSTMs and conditional random 

fields (CRFs); their performance reached an all-time high.[107] Also in 2019, Merck 

published a BGC caller using the ELMo architecture with random forests (RFs) on 

genomes. [108]They represented BGCs as ordered sequences of Pfam annotations; the 

model achieved greater performance at phenotyping BGCs than AntiSMASH rule-based 

approach. In 2020, Magarvey Laboratories released DeepRiPP, an LSTM-RNN CRF 
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architecture, trained with ULMFiT to recognise RiPPs. DeepRiPP outperformed previous 

alignment-based approaches.[58] 

 In 2019, Google released a model called Bidirectional Encoder Representations 

from Transformers or BERT.[109] Just as ELMo had set new state-of-the-art records 

across NLP tasks, BERT had pushed performance even further. BERT was based on the 

transformer architecture released in 2017.[110] The transformer can be broken down into 

two separate components: an encoder and a decoder. The encoder is used for converting 

the input tokens into an embedded space. The decoder is used to convert the embeddings 

into the target language. The transformer can be used to translate a sentence from one 

language to another; it could also be used to complete text-to-text pretraining tasks such 

as predicting the masked parts of a sentence as demonstrated with Google’s T5 model.

[111] 

 The encoder module of a transformer can be broken down into a stack of encoder 

units. [110] The first unit is provided with a tokenised input of the text, while subsequent 

encoder units are fed the output of the preceding encoder unit. Upon entering a unit, the 

input vector is passed through a series of transformation layers. The first layer is a self-

attention layer - this layer is made up of multiple attention heads. Each attention head will 

calculate an embedded matrix for each input token. The matrix is calculated using all 

tokens found within the input; this imbues the embedding with context. For example, in 
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the sentence “The quick brown fox jumped over the lazy dog”, the embedding for “fox” 

would be calculated as a summed weighted vector using the words: the, quick, brown, 

fox, jumped, over, the, lazy, dog. It is through the self-attention heads, that the 

transformer can learn relationships between tokens. Because there are multiple self-

attention heads, each head can learn separate functions. Some attention heads have been 

shown to specialise in certain types of syntactic relations. Beyond the self-attention layer, 

there is a normalisation layer and a feed-forward layer, both of which also contain 

weights.  

 The decoder module is also made of stacked units, with each output being passed 

to the proceeding unit. For decoding to take place, the embedded output from the final 

encoder unit is split into a series of vectors and passed to each of the decoder units. The 

self-attention heads in decoder units function differently than encoders with each token 

vector being calculated from attention limited to only preceding tokens. There is also an 

additional “encoder-decoder attention” layer which functions essentially like the self-

attention heads from the encoder side with the exception of some minor changes in how 

the query, key and value matrices are derived. The final embedding from the decoder 

module is passed through a linear layer to calculate logits and then a softmax layer to 

calculate probabilities. Each probability is linked to a word in the transformer’s 

vocabulary. The highest scoring probability is what the token’s embedding will be 

translated to. 
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 The BERT language model used only the encoding side of the transformer 

architecture. It was trained similarly to ULMFit, with pre-training followed by fine-tuning 

tasks. The developers pre-trained with a combination of two tasks: (1) A masked language 

modelling task -  this involved masking tokens randomly and using the output 

embeddings’ probabilities to recover the token and (2) a next sentence prediction task -  

this involved embedding two sentences and using a classifier to determine whether or not 

the sentences belonged next to each other in the original document. Both tasks have 

training data where ground truth labels can be easily manufactured from a large corpus of 

documents; as such they are considered unsupervised learning tasks. The unsupervised 

training was used to tune the 345 million parameters in BERT. The fine-tuning tasks were 

supervised and had substantially smaller datasets. Fine-tuning tasks included sentence 

pair classification, single sentence classification, question answering, and NER. Across 

the board, BERT was able to demonstrate high performance.[109] 

 The high performance of BERT along with the ease of training using large corpora 

and self-supervised tasks made it a favourable model to train with biological data. In 

2020, ProtBert was released showing BERT could be trained on protein sequences and 

generate embeddings reflective of three-dimension structures.[112] In 2021, DNABert 

was released showing BERT could be trained on DNA sequences and could be used to 

find regulation domains in the human genome.[113] In 2022, SignalP migrated from the 
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LSTM architecture and moved to a BERT model, using a fine-tuned version of ProtBERT 

with a CRF for calling the boundaries of signal peptides within a propeptide.[114] As of 

yet, no genomic mining tools have adopted a transformer architecture into their pipeline. 

1.4. Scope and nature of this work 

Natural products research, and more broadly the field of genomic mining have entered 

unknown territory. Bacterial genomes are being sequenced cheaper and faster than ever 

before. Genomic mining tools have produced a wealth of information so large, we do not 

have tooling capable of making use of it. While other areas are adopting the technological 

innovations produced by tech giants like Google and Facebook to deal with the big data 

crisis, genomic mining suites continue to use outdated methods like HMMER and 

BLAST. The implementation of industry-standard techniques to solve big data problems 

will alleviate many of the computational burdens plaguing the field. NLP and 

transformers have moved deep learning from highly structured supervised learning to 

self-supervised and unsupervised learning. The copious amounts of publicly available 

genomic, peptide and molecular data, lend themselves to these tasks. 

In my thesis, I constructed a series of tools to blueprint how deep learning systems and 

statistics can be used to leverage big public datasets and translate them into new 

inferences. I hypothesised that the output of the natural product isolation pipeline can be 

19



Ph.D. Thesis - K. Dial

McMaster University - Biochemistry and Biomedical Sciences 

greatly enhanced through the integration of machine learning and statistics. I aimed on 

improving the natural product discovery pipeline in three ways. First, improving the 

resolution of molecular comparison with natural language processing techniques. Second, 

improving the scalability and quality of genomic mining by using deep learning models. 

Third, improving activity prediction of encoded metabolites through the integration of 

multi-omics data.  

1.4.1 Improving Molecular Comparison with Deep Learning 

 Conventional cheminformatics tooling compares molecules using substructure-

based fingerprints. While the field has proposed deep learning approaches to improve 

molecular comparison, they continue to build on this paradigm and focus learning efforts 

on fingerprint-based substructures. In Chapter 2, I demonstrate a natural language 

processing approach to molecule comparison. Instead of using substructures, I treat 

molecules as sentences comprised of atom words. I showcase the failures of conventional 

approaches and how a large language model’s resolution can mitigate them. 

1.4.2 Improving Genomic Mining with Deep Learning 

 Conventional genomic mining tools are bottlenecked by the speed of pHMMs and 

BLAST. In addition, the structure of pHMM-based pipelines requires a laborious and 

meticulous approach to modelling new enzymology. In Chapter 3, I describe a novel 
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approach to genomic mining. The strategy is rooted in state-of-the-art natural language 

processing technology and provides scalability in terms of computation as well as 

curation. Using a suite of large language models, I replace all pHMM and BLAST-based 

tasks, thereby greatly increasing the speed of genomic mining. To speed up curation, I 

introduce a simple, vector-based method for adding new enzymology to the pipeline. I 

also demonstrate how a vector-based approach facilitates the rapid discovery of gene 

cluster families and gene cluster comparison. 

 Genomic mining pipelines have limited efficacy on highly fragmented genomes. 

RefSeq is plagued by unfinished assemblies comprised of short-read Illumina data. In 

Chapter 4, I propose a new strategy for improving the contig size of poor-quality 

genomes. I integrate multi-omics inference and graph deep learning into conventional 

assembly workflows. Using a graph convolution network trained on biosynthetic gene 

clusters and a transformer trained on bacterial genomes, I create more complete contigs 

and recover fragmented gene clusters.  

1.4.3 Improving Activity Prediction with Integrated Data and Statistics 

 Encoded metabolite activity prediction has conventionally taken two approaches: 

(1) Focusing on the predicted molecular structure to utilise QSAR-based strategies or (2) 
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Focusing on conserved enzymology to project activity labels based on biosynthetic 

relatedness. In Chapter 5, I propose a third approach;  by treating the human microbiome 

as an in-situ system for understanding microbial metabolism and host effect, the activity 

of an encoded metabolite can be elucidated. Using a simple statistics pipeline, I 

demonstrate that heuristic measures for a microbial metabolite can be used to generate a 

gene signature of its effect on the host. I show how the approach can be performed using 

three separate strategies rooted in microbial transcriptomics, microbial metabolomics and 

microbial proteomics. 

1.4.4. Thesis Overview 

 With the wealth of publicly available data and the low barrier to entry for high-

performance deep learning systems, artificial intelligence systems can reinvigorate natural 

product research once more. Using my unique combination of skills, I created scalable 

platforms capable of improving many of the pertinent steps used in data-driven natural 

product drug discovery. 
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1.5 Figures and Tables 

Figure 1.1: The database of molecules from NPAtlas, binned by isolation publication 
year. The plot was created using Tableau Desktop. The amount of molecules isolated over 
the decades has continued to trend upward.  
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Chapter 2: NP-BERT - An NLP approach to natural product comparison 

2.1 Chapter Preface 

 My research was initially focused on the comparison of biosynthetic gene clusters. 

I validated the comparisons using molecular labels curated by experts. The dataset of 

labels was very small and was not up to date with the latest dataset of experimentally 

verified gene clusters. As a heuristic, I moved to chemical similarities with our in-house 

GRAPE/GARLIC software. Unfortunately, GRAPE/GARLIC does not scale with large 

amounts of molecules. It also was unable to break down many of the new experimentally 

verified gene clusters’ metabolites. Based on our tests with our LEMONS software, I 

moved to FCFP6 as an alternative. It too failed to capture many of the biosynthetic 

similarities that my gene cluster comparison software was picking up on. Recently, the 

NPClassifier dataset was released with a molecular classification tool. The NPClassifier 

tool was not intended to be used as a chemical similarity metric, but rather exclusively for 

label projection and classification. I developed NP-BERT to create a new metric for 

molecular comparison. It meets a need that every comparison tool in the field was unable 

to.  

 For this work, I developed all of the deep learning training frameworks for the 

customised linked-tasked learning regimen I propose. My framework utilises a variety of 

public tools in completely new ways. I also used public data to train the model. To 
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demonstrate biosynthetic conservation, I worked with Mathusan Gunabalasingam to map 

molecules to mass spectra using his in-house framework called MAPLE. 

2.2 Abstract 

 Natural products are a rich source of medically relevant molecules. Characterised 

by their large size and structural complexity, methods for comparing natural products are 

more nuanced than their synthetic chemical counterparts. A variety of different software 

has been developed for the classification and comparison of natural products, many of 

which are based on molecular substructures derived from the Extended Connectivity 

Fingerprint. With the release of self-referencing strings (SELFIES), a natural language 

processing approach can be taken. In this work, we present NP-BERT - a large language 

model capable of representing natural products as vector representations for large-scale 

comparison and classification. We evaluate different fingerprints in comparison with NP-

BERT embeddings using a natural product labelling recovery task. Using scalable 

clustering techniques we demonstrate the rapid discovery of biosynthetic analogues 

within the microbial metabolite space. 

2.3 Introduction 

 Historically, natural products (NPs) have been a rich source of medicinal 

molecules. NPs continue to play a large role in drug discovery with 64.9% of FDA-
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approved anti-cancer agents being NP derived since 1981.[1] Natural products are defined 

as molecules produced by living organisms. Because they are natural metabolites, NPs 

have been refined by the evolutionary process for biological processes.[2, 3] They display 

a wide variety of activities including antimicrobial properties and immunomodulation. [4, 

5] For many years, publicly available datasets were sparse, but recent curation efforts 

have resulted in the democratisation of NP research. The Dictionary of Natural Products 

was once considered the only comprehensive source of chemical data on natural products, 

but now databases such as COCONUT and NPAtlas are freely accessible. [6-8] Activity 

data has also become more readily available with curation efforts such as NPASS 

focusing on natural product activity screenings. [9] 

 While data has become more accessible, cheminformatics techniques effective in 

the NP space are still lagging behind. Much of the tooling has been developed with 

synthetic chemistry libraries in mind. MACCS fingerprints are limited to 166 predefined 

substructures optimised for molecular classification. [10] With our LEMONS framework, 

we demonstrated that these substructures are not useful in NP comparison.[11] High 

throughput screening libraries display limited chemistry, possibly attributed to their cost-

effective synthesis and attention paid to Lipinski's rule of 5; natural products deviate from 

this norm.[2, 3, 12] The large, 3D structures and complex chemistries of NPs cannot be 

captured by small predefined substructure-bound fingerprinting techniques. There have 

been efforts made to create fingerprints consisting of natural product substructures such 
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as the NC-MFP and GRAPE; as novel NPs are continually discovered, only time will tell 

how long hard-coded substructure-based techniques will remain effective. [11, 13] 

 To bypass the limitations of substructure-based fingerprinting techniques, hashed 

fingerprints dynamically generate chemical features.[14] The extended connectivity 

fingerprint, up to four bonds (ECFP4), has demonstrated the best performance in drug 

analogue recovery studies, while the Function Class Fingerprint, up to six bonds (FCFP6) 

has demonstrated the performance in NP derivative comparison. [11, 15] To perform fast 

comparisons using hashed fingerprints, substructures are combined through a folding 

process and the fingerprint is reduced to a typical 1024 bits. Using the Tanimoto Index to 

compare bit vectors, structural similarity can be measured.[16] Unfortunately, the 

effectiveness of bit vectors is lost as dimensionality is reduced. Using the data sketch 

MinHash, differences between highly sparse, high-dimensional vectors can be 

approximated. [17] This technique was demonstrated with the MinHash Fingerprint 

(MHFP) and LSHForests.[15, 18] 

 While ECFP featurization in combination with Tanimoto indexing has remained a 

staple in molecular classification and comparison, there are flaws. As demonstrated with 

our tool LEMONS, the biosynthetic changes commonly made by microbial organisms, 

are not relatively reflected by hashed fingerprinting techniques.[11] While our GRAPE/

GARLIC method was previously demonstrated as an effective method for NP 
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comparison, it is not scalable with larger datasets. More recently, scalable NP comparison 

has been demonstrated using deep learning technologies.[19] With the liberation of NP 

datasets, training large deep-learning models is more feasible. In 2021, a massive dataset 

of 73,607 NPs with expert knowledge-based labels was released. Molecules were 

annotated with Pathway (specialised metabolism), Superclass (chemotaxonomic 

information) and Class (structural) labels. In combination with the dataset, a deep 

learning-based classifier was released called NPClassifier.[20] It used counted ECFP4 

fingerprints as an input vector for a feed-forward neural network. While limited to the 

hashed substructures, the model successfully annotates the majority of incoming 

molecules with detailed NP information. As with all classification tasks, labelling fails 

when a class is too small for learning. 

 There have been efforts to move away from the hashed fingerprint featurization of 

molecules and instead focus directly on the graph string language SMILES. A regex-

based technique was developed to tokenise SMILES directly into words capable of being 

learned by an LSTM RNN.[21] Byte-pair encoding (BPE) has also been applied to 

making SMILES a learnable language for large language models.[22] Recently, a new 

dialect of the SMILES molecular language was released, called SELFIES. It allows for a 

simplification of the SMILES molecular graph string, into human-readable units 

reflective of the molecule’s structure. The authors also demonstrated a learned latent 

space using SELFIES over SMILES can contain more valid structures. [23] The SELFIES 
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dialect contains words less abstract than the hashed molecular radii of conventional 

fingerprints, but are still generalisable enough to facilitate the LLM’s propensity to learn a 

chemically relevant latent space. 

 In this work, we propose a new vector-based method for comparing natural 

products. We present NP-BERT - an LLM trained with the SELFIES dialect for 

representing natural products. We demonstrate its superior ability to perform natural 

product classification recovery over common fingerprinting techniques (i.e. ECFP6, 

FCFP6 and Kekota-Roth). We visualise the latent space of NPs encoded by NP-BERT. 

We also perform clustering of a large dataset of NPs and demonstrate an intra-cluster 

conserved biosynthesis using metabolomics. 

2.3 Methodology 

2.3.1 Model Architecture 

 The NP-BERT model was based on the standard RoBERTa architecture. Using the 

Hugging Face library, a RoBERTa model was instantiated with a hidden size of 768 and a 

maximum sequence length of 2048; the size limit was implemented due to memory 

constraints. [24, 25] To train the model to perform classification, a custom linked-task 

architecture was designed. (Supplementary Figure S2.1) The custom classification head 

differs from the standard sequence classification head by separating the pooling layer and 
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dense layers. Output from the pooling layer can be passed in a hierarchical manner onto 

proceeding finer-task classification heads. A separate classification head was created for 

each tier in the ontology of natural product classification ( pathway, superclass and class). 

The three custom classification heads were stacked so the pooling output of the pathway 

classification head would be directly passed to the pooling layer of the superclass 

classification head followed by the class classification head. 

2.3.2 Input/Outputs 

 To utilise an LLM, molecules must be represented as sentences. Molecules were 

first represented as SMILES strings and then converted to Self-Referencing Embedded 

Strings (SELFIES). SELFIES are easily tokenizable. The NP-BERT tokenizer was 

comprised of a combination of custom components. A custom SELFIES pretokenizer and 

decoder were designed using the “selfies” python package and the “tokenizers" package 

by Hugging Face (HF). A chirality normaliser was designed using RDKit for removing 

the chirality of a SMILES string before converting it to the SELFIES format. [26] Word-

level tokenisation was used to split the SELFIES string. A class token was appended to 

every molecule. The vocabulary was generated using the NP-Classifier curated dataset of 

73,607 annotated small molecules and Zinc15’s 308,035 biologics. [27] 

2.3.3 Pretraining 
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 A standard masked-language modelling (MLM) task was used to pre-train NP-

BERT. HF’s implementation of MLM within their “transformers” package was used for 

coordinating masked inputs and labelling during training (“RoBERTAForMaskedLM” in 

combination with “DataCollatorForLanguageModeling"). The model was trained on both 

datasets in succession. First NP-BERT was trained on the Zinc15 Biologics dataset, for 

38,639 global steps across 10 epochs with a batch size of 16. The model was then trained 

on the NPClassifier dataset for 7,719 global steps across 10 epochs with a batch size of 

16. Both datasets were broken into training, testing and validation datasets using a 

64-20-16 split. To minimise memory consumption and training time, the Stage 2 

Optimiser with Parameter offloading from Microsoft’s DeepSpeed package was used. 

[28] Precision was limited to 16-bit. Learning rates were automatically determined using 

PyTorch Lightning. [29] 

2.3.4 Linked Task Fine-tuning 

 NP-BERT was fine-tuned using the multi-labelled NPClassifier dataset. During 

collation, each molecule was passed with each of the three levels of classification labels: 

class, superclass and pathway. For the loss calculation, each custom classification head 

calculated a separate loss based on its corresponding label. Cross-entropy losses across 

the class, superclass and pathway classification heads were summed together and passed 

to the optimiser. PyTorch Lightning’s implementation of the Distributed Data-Parallel 
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(DDP) optimiser was used to distribute training across multiple GPUs. Learning rates 

were automatically determined using PyTorch Lightning. Using the “BAAL” python 

package, a custom active learning training procedure was used. [30] For the first epoch, 

the most informative 1000 samples were used for training. For every proceeding epoch, 

10,000 examples were sampled from the training data but only the most informative 2000 

were added to the rolling dataset. The active learning sampling continued until all 

sentences are integrated. The most informative samples were determined using the 

“Bayesian active learning by disagreement” or BALD heuristic. [31] The model was 

trained for a total of 60 epochs. Training results are reported in Section 2.4.1. 

2.3.6 Quantisation, Optimisation and Acceleration 

 To maximise performance during inference, NP-BERT was optimised with 

Microsoft’s ONNX package.[32] Models were quantised and exported with dynamic 

axes. The ONNXRuntime (ORT) framework was used for inference downstream. A 

custom transformers’ pipeline was made to allow for the hierarchical prediction of the 

custom classification heads. Modifications were also made to allow for the usage of ORT 

alongside PyTorch and TensorFlow. 

2.3.6 Experiments 
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2.3.6.1 Comparison to NPClassifier 

 To compare performance to NPClassifier, a dataset of failed classifications was 

created. Any molecule within the NPClassifier dataset that NPClassifier was unable to 

classify correctly was pooled. For pathway, superclass, and class a total of  338, 709 and 

1176 compounds were incorrectly classified respectively. Accuracy on this dataset was 

calculated. Results are reported in Section 2.4.2. 

2.3.6.2 Natural Product Label Recovery using Embedding Distances versus 
Fingerprint Dissimilarities 

 There are other popular methods for comparing molecules including the extended 

connectivity fingerprint (ECFP), functional class fingerprint (FCFP) and Klekota-Roth 

fingerprints.[14, 33] ECFP and FCFP fingerprint a molecule by sampling the 

surroundings of each atom and converting them into discrete features using a hashing 

function. The size of the surroundings to be sampled is quantified by an “atom diameter”. 

For example, ECFP6 uses an atom diameter of 6 and sampled substructures will have a 

maximum width of 6 bonds. ECFP differs from FCFP in the way that certain 

substructures are treated. FCFP abstract substructures into functional groups based on 

their roles as a pharmacophore. Klekota-Roth fingerprints are based on the presence or 

absence of certain substructures. Similar to the FCFP abstraction, the substructures in 

Klekota-Roth were selected based on their relevance to biological activity. To compare 
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the resolution of NP-BERT embeddings, these three fingerprinting techniques were used 

to find similar molecules. Molecules were then evaluated based on shared natural product 

classifications. 

 Non-folded FCFP6, ECFP6, and Klekota-Roth fingerprints for each molecule in 

the validation dataset were calculated. FCFP6 and ECFP6 used the implementations 

found in RDKit. Klekota-Roth was implemented using the SMARTS provided in the 

original paper. RDKit’s substructure search was used to determine whether or not a query 

Kloka-Roth substructure was found in the molecule. For each molecule, its fingerprints 

were converted to the data sketch MinHash. The MinHashes were used to create an 

LSHForest and the nearest neighbour for each molecule was determined per fingerprint. 

Points were awarded when the nearest neighbours shared mutual labels.  

 To evaluate NP-BERT in a similar context, every molecule in the validation 

dataset was tokenised and embedded by the base NP-BERT model. Each classification 

token embedding was passed in succession through the hierarchical classification heads. 

The embeddings at each tier of classification were stored in separate vector datasets. The 

framework “Faiss” was used to create a flat L2 Index across the vector datasets. [34] The 

flat L2 Index allows for a highly optimised nearest neighbour search. The nearest 

molecule at each classification level was found using the nearest neighbour technique 

optimised on Euclidean distances. Results are reported in Section 2.4.3. 
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2.3.6.3 Natural Product Latent Space 

 To showcase the LLM’s understanding of microbial natural products, the latent 

space of NPBERT was plotted using an internal dataset of 49,523 molecules. Each 

molecule was embedded, and the different levels of molecular classifications were 

predicted. The embeddings were projected to two dimensions using the RAPIDS ML 

GPU implementation of UMAP (Uniform Manifold Approximation and Projection).[35, 

36] Settings for UMAP were set to a minimum of two neighbours and a minimum 

euclidean distance of 0.1. The molecules were plotted using the official “umap" plotting 

library. To determine scaffold families within the plot, a second projection with 128 

dimensions was clustered using the RAPIDS ML GPU implementation of HDBSCAN.

[37]  Clustering was optimised using the RAPIDS ML implementation of the silhouette 

score.[38] Results are reported in Section 2.4.4. 

2.3.6.4 Conserved Biosynthesis within Clusters 

 The unsupervised clustering of the NP-BERT embeddings resulted in clusters of 

highly related molecules. Many highly related molecules can be synthesised by a single 

biosynthetic gene cluster. Incomplete biosynthesis and modifications can result in highly 

similar structures. [39] Typically in a crude microbial extract, a parent scaffold and its 

derivatives are found.  To investigate if the members of a single group (determined using 
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HDBSCAN) shared the biosynthetic pathway, the contents of crude extracts were 

analysed for the presence of intra-group derivatives. 

 We have an internal fermentation library of microbial crude extracts. Extracts are 

processed using tandem liquid chromatography-mass spectrometry (LC-MS). An in-house 

pipeline called MAPLE (MetAbolomics Peaks Logic Engine) is used to confidently mass-

match spectral peaks to known molecules using structural information. To assess if 

clustered NP-BERT molecules co-occur in metabolism, HDBSCAN clusters were cross-

referenced with the database of extracts. To visualise co-occurrence, network graphs were 

created for three HDBSCAN clusters. Each metabolite within the cluster was represented 

as a node. When two metabolites from a single cluster were detected in the same extract, 

an edge was drawn. For repeated instances of co-occurrence, the edge weight was 

increased. Network graphs were visualised using Gelphi.[40] Results are reported in 

Section 2.4.5. 

2.4 Results 

2.4.1 Linked Task Fine-tuning 

 After 60 epochs, the validation accuracy for the model in prediction pathways was 

99.08%, superclasses 98.03%, and classes 89.39%. The test accuracy of the model in 
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predicting pathways was 99.18%, superclasses 98.26% and classes 94.19%. Loss changes 

over across the 60 epochs can be found in Supplementary Figure S2.2. 

2.4.2 Comparison to NP Classifier 

 Across the entire dataset, NPClassifier is able to achieve pathway, superclass and 

class accuracies of 91.71%, 89.33%, and 86.36% respectively. NPClassifier incorrectly 

predicted the pathway, superclass, and class for 338, 709 and 1176 compounds 

respectively. Of the 338 failed pathway classifications, NP-BERT was able to correctly 

predict 238 (70.4%). Of the 709 failed superclass classifications, NP-BERT was able to 

correctly predict 522 (73.6%). Of the 1176 failed superclass classifications, NP-BERT 

was able to correctly predict 694 (59.0%). 

2.4.3 Natural Product Label Recovery using Embedding Distances and Fingerprint 
Dissimilarities 

 Natural product labels were recovered most comprehensively with NP-BERT’s 

nearest neighbours. Across all hierarchies, it outperformed ECFP6, FCFP6 and Klekota-

Roth. While Klekota-Roth was able to recover more pathway labels than ECFP6 and 

FCFP6, it performed the worst in terms of superclass and class recovery. FCFP6 slightly 

outperformed ECFP6 across all recovery tasks. All results are summarised in Table 2.1. 
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An example of an incorrect nearest neighbour calculated from ECFP6 dissimilarities 

versus NP-BERT embeddings is found in Figure 2.1. 

2.4.4 Natural Product Latent Space 

 The plotted natural product latent space of the 49,523 molecules can be seen in 

Figure 2.2. Using HDBSCAN 25,512 molecules were clustered into 1,066 scaffold groups 

(Silhouette score  = 0.635). Many of the molecules were not classified because a 

minimum size constraint of 10 was applied. 

2.4.5 Conserved Biosynthesis 

 Three of the groups discovered by HDBSCAN were chosen for further 

explanation: tetracyclines, thiazoles and statins. 

2.4.5.1. Tetracyclines 

 The group consisted exclusively of tetracyclines and tailored derivatives including 

Dehydrochlortetracycline, 7-Bromo-6-demethyltetracycline, Bromotetracycline, 

Anhydrotetracycline, and Amicycline. After cross-referencing with the dataset of 

processed fermentations, all detected molecules from this group were found to co-occur 

in microbial metabolism (Figure 2.3). 
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2.4.5.2 Thiazoles 

 The group consists mainly of thiazoles including 14-Hydroxycystothiazole, 14,15 

Dihydroxycystothiozole, Cystothiazole-A, Melithiazol-G, Melithiazol-I and Myxothiazol.  

After cross-referencing with the dataset of processed fermentations, all detected 

molecules from this group were found to co-occur in microbial metabolism (Figure 2.4). 

2.3.6.3 Statins 

 Members of this group were all polyketides derived, with many being natural 

statins including Monocolin, Mevastatin, 6β-Hydroxymethylsimvastatin, Eptastatin, and 

Lovastatin. After cross-referencing with the dataset of processed fermentations, all 

detected molecules from this group were found to co-occur in microbial metabolism 

(Figure 2.5). 

2.5 Discussion 

2.5.1 Finetuning LLM with Linked Task Training and Active Learning 

 As shown in Section 2.4.1 and Section 2.4.2, NP-BERT demonstrates a superior 

classification ability over NPClassifier. Its accuracy is higher overall across the dataset 

and it does not share the same weaknesses. It was explained that NPClassifier was unable 
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to learn some of the rarer labels because there was not a sufficient population for the 

class. With the transformers architecture, combined with the SELFIES tokenizer and 

using active learning strategies, we have demonstrated the rarer classes are indeed 

learnable.  

 There are many differences between the two approaches, any of which could be 

contributing factors to superior performance. In terms of input, SELFIES is a more 

verbose language than ECFP hashes; its lack of abstraction pairs well with the 

transformers’ architecture. With SELFIES, the transformer’s attention heads are given the 

freedom to find the most important atoms of the molecule when representing it in the 

latent space. In addition, the use of BALD to find the most useful training examples 

during fine-tuning would result less overfitting for overrepresented classes. 

 One of the techniques pioneered in this work is linked task learning. Hierarchical 

classification is understudied and only a few frameworks have been designed to solve this 

problem.[41] Hierarchical classification is a specialised case of multi-label, where an item 

is given multiple labels but the labels are organised in a hierarchical tree (e.g. Fruit ➡ 

Apple ➡ Granny Smith). The most common solutions ignore the hierarchy and instead 

treat the problem as a flat multi-label classification; this is the approach taken by 

NPClassifier.[20, 42] Other approaches typically involve traversing a tree of sub-

classifiers per parent class. This is extremely slow when the hierarchy is very wide.[43] 
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There are a few novel solutions such as the Deep Hierarchical Classification system 

developed by the Alibaba Group [42, 44] The Deep Hierarchical Classification system 

concatenates embeddings from each classification level in succession. This results in an 

extremely long representation for the final classification layer and does not scale with 

very deep hierarchies. The linked task learning methodology proposed in this work 

simplifies this approach by linking hidden layers of classifiers avoiding concatenation 

completely. NP-BERT's success demonstrates that the approach is viable and effective. It 

can be used in other areas of bioinformatics where hierarchies are common (ex. 

taxonomies, gene ontologies, Enzyme Commission (EC) Numbers, Medical Subject 

Heading (MeSH) headings). 

2.5.2 Effectiveness as a new molecular comparison metric 

 As demonstrated before with the LEMONS tool, traditional fingerprinting 

methods are not effective at comparing NPs. As shown in Figure 2.1, traditional 

fingerprinting techniques pay too much weight to small changes in the molecule to 

effectively score biosynthetic modifications. In this case, FCFP6 could not discern the 

similarity between a polyketide dimer and a related monomer; instead, it scored the 

similarity near identically to a terpenoid.  
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 The latent space of NPBERT is tuned more effectively for representing NPs in 

quadrants related to their biosynthesis. In Figure 2.2, there is a clear separation of 

molecules belonging to different biosynthetic pathways. In Section 2.4.5, it was 

demonstrated that the unsupervised clustering of molecules can create groups of 

molecules truly related on a biosynthetic level. We demonstrated three separate groups of 

highly related molecules were co-expressed in microbial fermentations. The resolving 

power of NPBERT’s embeddings can be used to effectively score the biosynthetic 

similarity of molecules. 

2.5.3 Future Work 

 We demonstrated LLMs can understand NPs with a high degree of resolution if 

presented with the data in the correct context. The effectiveness of the latent space in 

representing structures with high regard for their biosynthesis opens the potential for 

activity prediction. NPClassifier showed that much of the superclass and class level 

annotation can be used as a heuristic for finding favourable anti-malarial candidates. [20] 

In addition, ChemBERTA was used to perform activity prediction across a variety of 

different datasets. [22] NP-BERT’s embeddings can be repositioned and fine-tuned in a 

similar manner to find potential activities tied to NP scaffold families. Further exploration 

should be made in understanding what molecular features are attended to in high-

performing attention heads. Possible future work could explore which chemical moieties 
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are critical in predicting NP classes and if the information is capable of being extrapolated 

to activity for pharmacophore discovery. 
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2.6 Figures and Tables 

Table 2.1 Accuracy of different fingerprinting techniques, measured using conserved 
labels of nearest neighbours for each molecule in the validation dataset (n = 12,534). The 
Euclidean distance of NPBERT embeddings performed best at the label recovery task. 

Fingerprinting 
Technique

Pathway Super Class Class

Nearest Neighbour Accuracy

ECFP6 0.857 0.730 0.602

FCFP6 0.868 0.763 0.626

Klekota-Roth 0.880 0.690 0.554

NPBERT 0.947 0.880 0.742
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Figure 2.1 Example of Natural Product Classification Recovery with FCFP6 versus NP-
BERT. (A) Non-redundant FCFP6 with Jaccard dissimilarities found an incorrect nearest 
neighbour. All classifications were not recovered. (B) NP-BERT with Euclidean distances 
was able to successfully find a derivative of the query molecule with all classifications 
recovered.  
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Figure 2.2: The natural product latent space of NP-BERT demonstrated with a dataset of 
molecules (n=49,523) projected to two dimensions and plotted with UMAP and data 
shader. Molecules are colourised by the predicted pathway labels. The molecules are 
separated into clusters of distinct pathways with minimal overlap. 
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Figure 2.3: Upon inspection of one of the “polyketide” HDBSCAN clusters, it consisted 
only of tetracyclines. An internal dataset of crude extracts was used to visualise the co-
occurrence of the metabolites within fermentations. To create the network graph, each 
tetracycline was represented as a node and upon co-occurrence with another metabolite, 
an edge was drawn. Many of the tetracyclines within the HDBSCAN cluster are co-
expressed. 
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Figure 2.4 Upon inspection of one of the "amino acids and peptides” HDBSCAN 
clusters, it consisted only of thiazoles. An internal dataset of crude extracts was used to 
visualise the co-occurrence of the metabolites within fermentations. To create the network 
graph, each thiazole was represented as a node and upon co-occurrence with another 
metabolite, an edge was drawn. Many of the thiazoles within the HDBSCAN cluster are 
co-expressed. 
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Figure 2.5 Upon inspection of one of the “polyketide” HDBSCAN clusters, it consisted 
mainly of natural statins. An internal dataset of crude extracts was used to visualise the 
co-occurrence of the metabolites within fermentations. To create the network graph, each 
metabolite was represented as a node and upon co-occurrence with another metabolite, an 
edge was drawn. Many of the molecules within the HDBSCAN cluster are co-expressed. 
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Supplementary Figure S2.1(A) Huggingface’s implementation of the RoBERTa For 
Sequence Classification used the emissions from a base model (size = length of the input 
sequence x hidden size) and passes it through two linear transformation layers. Because 
RoBERTa and T5 lack a pooling layer, the first layer of the classification acts as such 
changing the matrix to a square using a linear transformation with an additive bias (size = 
hidden size x hidden size). After a Tan-H activation, the embedding is passed through the 
dense layer. This is another linear transformation layer but it reshapes the matrix to 
become a flat logit vector (size = the number of classes). A softmax function normalises 
the logits into probabilities. Any inconsistencies are measured typically with cross-
entropy loss and back-propagated through the network. (B) In multi-task learning, the 
three heads generate logits in parallel. Biases are only shared within the transformer. (C) 
In linked-task learning, the pooling layer’s square output is passed in succession, giving 
the proceeding classification heads more biases to utilise. 
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Supplementary Figure S2.2 A training loss curve across all training epochs for each of 
the labels. With Linked-Task Learning, the loss for pathway and superclass prediction 
reaches loss values below 1.0 within 200 steps. Class labelling takes much longer but 
does eventually reach a similar value. 
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Chapter 3: Mining the Biosynthetic Universe using Large Language Models. 

3.1 Chapter Preface 

 It was a collaborative effort to revamp the entire genomic mining pipeline. 

Norman Spencer and Mathusan Gunabalasingam curated datasets of biosynthetic 

sequences analogous to the models found in PRISM and antiSMASH. I developed a 

framework capable of training on multiple datasets for multiple tasks. Using their 

datasets, I created a ProtBERT model capable of annotating peptide sequences with 

biosynthetic domains and protein families. Mathusan Gunabalasingam replicated my 

work but also included an enzyme commission number dataset. Norman Spencer and 

Mathusan Gunabalasingam developed cut-offs for the annotation library to increase 

accuracy. 

 In the past, we have tried to use transformers for adenylation domain substrate 

prediction but with little success. I developed a new strategy rooted in multi-task learning. 

I worked with Victor Blaga, Norman Spencer and Mathusan Gunabalasingam to create 

datasets for adenylation and acyltransferase substrates with additional features to facilitate 

a multi-task approach. Mathusan Gunabalasingam also hand-curated the functional and 

non-functional polyketide domain datasets. Using my custom deep learning framework, I 

trained models capable of predicting the substrates and functionalities with high degrees 
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of success. Mathusan Gunabalasingam created the look-up approach with Milvus to 

minimise classification time and increase accuracy. 

 For gene cluster comparison, I developed a feature-based approach using the 

enumerated feature sets from InterPro and calculated distances using the MinHash. 

Norman Spencer built off this work, creating a more biosynthetic-centric approach to 

featurization using information from all of the models along with additional calculated 

features such as module numbers. I also developed the vector-based approach for 

representing BGCs. To validate the gene cluster families, Mathusan Gunabalasingam 

found the matching metabolites within the mass spectral data. While much of this 

platform is based on my technical innovations, its refinement and success would not have 

been possible without the joint efforts of Norman Spencer and Mathusan 

Gunabalasingam. 

3.2 Abstract 

 Genomic mining pipelines, such as AntiSMASH and PRISM, have been 

extremely successful at detecting encoded metabolites in microbial genomes. They have 

created an explosion of data with IMG-ABC now containing over 400,000 biosynthetic 

gene clusters (BGCs). BLAST and profile Hidden Markov Models are the core 

technologies of BGC mining and comparison. Unfortunately, the current paradigm for 

using these tools does not scale, with running times now ranging from hours to days. In 
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this work, we present an alternative deep learning-based pipeline to microbial genomic 

mining. An integrated biosynthetic informatics suite (IBIS) of large language models is 

used to predict encoded chemistry, discover gene cluster families, and map out the 

microbial biosynthetic space. Our pipeline is optimised for scalability and boasts a nearly 

8x speed gain over conventional methods. 

3.3 Introduction 

 Microbial metabolites are a rich source of medically relevant molecules. 

Microbial secondary metabolites are encoded in genomic islands called biosynthetic gene 

clusters (BGCs).  The genes found in the BGCs can be involved in the synthesis, 

regulation and resistance of the encoded molecule. [1, 2] The spatial proximity of the 

genes with shared functionality provides a unique case to facilitate the automated 

detection of BGCs. PRISM and AntiSMASH are two genomic mining pipelines 

developed for the rapid discovery of BGCs in a bacterial genome.[3, 4] Both software use 

profile Hidden Markov Models (pHMMs) for processing protein sequences. Each pHMM 

is created using a sequence alignment of a conserved protein family. By encoding 

sequence conservation as a Markov process and scoring amino acid transition using a 

sequence alignment, a single HMM can be used to find an enzymatic domain on a per 

residue level of resolution.[5] 
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With every newly discovered BGC, new pHMMs are needed to capture the novel 

enzymology. When new pHMMs are then added to the pipeline,  the running time of the 

genomic mining pipelines is further extended. While the first version of PRISM contained 

479 HMMs, PRISM 4 now boasts a library of 1772 pHMMs; antiSMASH 6.0 has 354 

pHMMs. In both pipelines, all pHMMs must be run against each peptide sequence 

individually. PRISM’s average running time is now 58.8min while a de-novo 

AntiSMASH run takes several hours.[6, 7] As the biosynthetic enzymatic space continues 

to grow, the HMM-based pipelines will become increasingly slower. The current 

paradigm is not scalable. 

 Genomic mining technology has enabled the rapid discovery of BGCs. Advances 

in high-throughput sequencing have procured a wealth of publicly available bacterial 

genomes. The Integrated Microbial Genomes’ Atlas of Biosynthetic Gene Clusters (IMG-

ABC) now reports 411,475. [8] Our internal database boasts 649,291 BGCs. Rapidly 

comparing and classifying the libraries of gene clusters has also become a scaling 

problem. BiG-SCAPE was developed to generate gene cluster families (GCFs) but it is 

only scalable to tens of thousands of BGCs. [9, 10] BiG-SLICE was developed to take a 

vector-based approach to represent BGCs, but it again relies on a library of pHMMs for 

featurization. Annotating the BGCs with the pHMMs makes up over 90% of the running 

time.[10] As BGC libraries continue to grow, more efficient methods for organising and 

traversing the biosynthetic space are needed. 
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 The advent of transformers facilitates a new approach to biosynthetic peptide 

annotation and GCF elucidation. Common natural language processing (NLP) tasks such 

as Named Entity Recognition and Sentence Classification based on sentiment are 

analogous to the residue-based domain annotation and whole protein classification tasks 

BGC mining tools perform.[11] With a single transformer trained to replace the library of 

HMMs, each peptide sequence would only need to be processed once. While transformer-

based pipelines were once slow in running time, frameworks such as ONNX have been 

designed to speed up inference through quantisation and approximation.[12] 

 Beyond pHMMs, transformers can be used as drop-in replacements for sequence 

database querying techniques such as BLAST.[13] BLAST is commonly used to find 

highly related peptide sequences in a database by looking for sequence conservation. 

Unfortunately, BLAST is often the most computationally intensive part of genomic 

mining pipelines. Slight amino acid changes, as are often the case with adenylation 

domains and polyketide domains, can drastically increase running times. [14] As an 

alternative to sequence alignment-based strategies such as BLAST, embeddings from 

transformers can be used. Transformers trained on protein sequences have demonstrated 

the ability to predict structural class, protein function and source domain of life using 

their latent space. [15] Vector databases, such as Milvus, have been created to enable 

vector searches on the scale of billions. Through the quantisation of the one-dimensional 
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vectors, embeddings can be indexed and readily queried for nearest neighbours. [16, 17] 

By utilising the vector embeddings of peptide sequence instead of the sequence 

alignment, rapid high-resolution querying can be achieved. 

 In this work, we present a scalable pipeline to genomic mining using IBIS - An 

Integrated Biosynthetic Informatics Suite of large language models (Figure 3.1). The IBIS 

of LLMs currently consists of three main components: (1) AdenylationT5 and 

AcyltransferaseT5 - two transformers trained for the substrate property prediction of 

binding pockets, (2) PK Domain T5 - five transformers trained to determine whether or 

not polyketide domains are functional and (3) EnzymeBERT - A high-speed transformer 

infused with biochemical knowledge and trained for the classification of protein families 

and domains. We demonstrate basic structure prediction using peptide annotations and 

unsupervised GCF calling using topic modelling techniques.[18] 

3.4 Methodology 

3.4.1 Adenylation and Acyltransferase T5 

 In current gene cluster mining tools, substrate prediction is performed using 

sequence alignment-based techniques. Small changes in the residues of adenylation and 

acyltransferase domains will result in different binding substrates.[19, 20] PRISM uses 

BLASTP and prediCAT uses MAFFT-generated trees to the nearest neighbour based on 
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the residues.[4, 21] While both methods are effective, alignment-based techniques are not 

scalable. To address these issues IBIS introduces a transformer-based approach to 

substrate prediction. Two separate LLMs were trained to predict the discrete substrate 

label as well as the potential chemical properties of predicted substrates. 

3.4.1.1 Model Architecture 

 The publicly available peptide-based transformer, ProtT5, was able to discrete 

separate amino acids by biophysical features, proteins by structural class and proteins by 

their native kingdom of life.[15] Because of the demonstrated high resolution, the encoder 

side of the ProtT5 model was selected as the base LLM for substrate prediction. In order 

to maximise inference and learning, a multi-task training regimen was designed. Both 

models were trained to predict the substrate as well as a series of biochemical features. 

Custom sequence classification heads were created to fine-tune each model across 

separate tasks. The Adenylation T5 model was trained to predict the substrate family, the 

aromaticity, the number of hydrogen bond acceptors, the number of hydrogen bond 

donors, the partition coefficient (LogP), and the topological polar surface area (TPSA). 

The Acyltransferase T5 model was trained to predict the substate family, the CH2 count, 

the CH3 count, the number of hydrogen bond acceptors, the number of hydrogen bond 

donors, LogP, and TPSA. 
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3.4.1.2 Input/Outputs 

 The ProtT5 tokenizer was used to treat each protein sequence as a sentence and 

every amino acid as a word. For each task, a separate class token was appended to the 

sequence (7 class tokens for the Acyltransferase T5 and 6 class tokens for the Adenylation 

T5). 

3.4.1.3 Multi-task Finetuning 

 A hand-curated dataset of adenylation and acyltransferase domains was prepared 

from Magarvey Laboratories’ internal library of biosynthetic gene clusters with 

experimentally verified metabolites. There was a total of 2,283 adenylation domains with 

83 different substrates, but only 34 of the substrates had classes with over 4 examples. 

The feature engineering process for the additional biochemical properties was performed 

using RDKit.[22] To convert the continuous features into discrete classes, the values were 

roughly grouped using the Jenks natural breaks optimisation and then manually tailored 

by expert chemists.[23] Using this process, every adenylation domain was given six 

separate class labels and the acyltransferase domains were given seven. The datasets were 

stratified by their substrate label and split into training, validation and testing using the 

ratio 64:16:20. 
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 To perform multi-task learning, separate sequence classification heads were used 

for each task. Labels were passed to their corresponding classification heads and the loss 

was calculated using cross-entropy. To combine the losses, a random loss weighting was 

used; this algorithm randomly weights the losses between the different tasks before 

summing them together. The final weighted loss was passed to the DeepSpeed Stage 3 

optimiser with parameter offloading.[24, 25] Due to memory constraints on the in-house 

GPUs, the model was trained for 30 epochs with batches of only a single sequence. The 

learning rate was automatically determined by PyTorch Lightning.[26] Both models were 

evaluated using the Sci-kit learn library against test and validation tests.[27] Performance 

in terms of accuracy, balanced accuracy, F1 score, Hamming Loss, Zero One Loss, Hinge 

Loss, Jaccard Score, and Mathew’s Correlation Coefficient are reported in Section 3.4.1. 

3.4.1.4 Optimisation and Accelerated Inference 

 Both models were optimised and exported for accelerated inference using ONNX.

[12] The dense layers of the individual classification heads were exported separately to 

allow for full embedding output before being converted into individual label logits. 

Custom pipelines were built for inference with the ORT framework and Hugging Face’s 

transformers package.[28, 29] 

3.4.1.5 Post-Processing 
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 Success on sequence classification tasks is limited to the number of representative 

samples available for a given class. 49 of the 83 substrates for the adenylation domain 

dataset were quite rare (< 4 sequences available). The rare substrates do not have a 

sufficient number of peptide sequences for classification training. In addition, when a new 

substrate is discovered, adding it to the already trained classification head would require 

retraining the model. To bypass these limitations, two alternative strategies for sequence 

classification were devised.  Results from the standard classification head and two 

alternative strategies are reported in Section 3.4.2. 

3.4.1.5.1 Vector Databases 

Using the software Milvus, two vector databases were created; one for solved adenylation 

domains and another for solved acyltransferase domains.[17] Each database was 

comprised of the embedding class token for the substrate label; this is exported by the 

dense layer of the custom classification head. Both databases used a flat inverted file 

index, optimised for euclidean distance searches. Using the two vector databases, 

substrate labels were predicted through k-nearest neighbour (kNN) look-ups.[16] 

3.4.1.5.2 Explainable Boosted Machine 
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The Explainable Boosted Machine (EBM) is a statistical model used for classification and 

interpretability at Microsoft Research.[30] It has shown similar performance to XGBoost 

across a variety of tasks. It also reveals the decision-making process when a prediction is 

made. An EBM model was trained as an ensemble model; it used the discrete features 

predicted using the six Adenylation T5 classification heads to predict the adenylation 

domain substrate. 

3.4.2 PK Domain T5 Models 

Polyketide domains are readily detected using pHMMs. Some of the enzymatic domains 

are non-functional due to minor residue changes in their sequence. The non-functional 

domains are a source of error when predicting the potential structure of a biosynthetic 

gene cluster. To address this issue, multiple ProtT5 models were fine-tuned to define 

whether or not polyketide domains were functional. 

3.4.2.1 Model Architecture 

There are 5 models for the Polyketide Domain T5 group:  Dehydrotase (DH), 

EnoylReductase (ER), Ketosynthase (KS), Ketoreductase (KR), and Thiolation (T). Each 

model uses the ProtT5 encoder as its base with two sequence classification heads for two 

separate tasks: (1) Classifying whether or not the domain is functional, and (2) The 

evolutionary clade of the source microbe. 
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3.4.2.2 Input/Outputs 

The ProtT5 tokenizer was used to treat each protein sequence as a sentence and every 

amino acid as a word. As before for each task, a separate class token was appended to the 

sequence (two class tokens). 

3.4.2.3 Fine-Tuning 

To train the 5 different PK Domain T5 models, separate datasets were hand-curated. For 

each PK domain model, peptide sequences were collected from literature sources and 

split into functional versus non-functional classes. Peptide sequences were also aligned 

and split into evolutionary clades as a secondary classification. Similar to the Adenylation 

and Acyltransferase T5 models, each of the PK Domain T5 models was trained using 

multi-task learning. The only exception was the thiolation domain model; it was not 

trained on clade classification. All losses were pooled using random loss weighting. Each 

model was trained across multiple GPUs using DeepSpeed’s Stage 3 Optimiser with 

parameter offloading for a total of 15 epochs. [24, 31] Training results can be found in 

Section 3.5.2.1. 

3.4.2.4 Accelerated Inference 
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The highest-performing models according to substrate prediction accuracy were exported 

for accelerated inference using ONNX. Only the substrate classification head was 

exported, as the evolutionary clade task was provided solely to assist in the learning 

process. Custom pipelines were built for inference with the ORT framework and Hugging 

Face’s transformers package. [28, 29] 

3.4.2.5 Post-Processing 

 Separate vector databases were developed for each PK Domain model. Each 

database is made of the embedded appended class token used for the functional 

classification task. Each database used a flat inverted file index, optimised for euclidean 

distance searches. Functional classification labels were assigned using the nearest 

neighbours. Results can be found in Section 3.5.2.2 

3.4.3 Enzyme-BERT 

EnzymeBERT is an LLM trained to comprehensively annotate a peptide sequence in a 

single pass. AntiSMASH and PRISM use pHMMs to annotate peptide sequences with 

biosynthetic enzyme families, biosynthetic domains and general genes of interest. 

Annotations include polyketide domains, NRPS domains, terpene synthases, regulators, 

resistance genes etc.[3, 4] The annotations can be separated into two groups: (1) peptide 

region annotations (domains) and (2) whole peptide sequence annotations (enzyme 
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families and genes of interest). EnzymeBERT is trained to perform both tasks using two 

separate strategies. The strategy for whole peptide sequence annotation was conceived as 

a vector database lookup of annotated peptide sequence embeddings. For peptide region 

annotations, a token classification strategy was developed. 

3.4.3.1 Model Architecture 

The base architecture selected was the pre-trained ProtBERT model released in 2020. It 

was pre-trained on UniRef100 and demonstrated high performance on fine-tuned protein 

classification tasks. [15] ProtBERT is also very fast to run upon quantisation and 

optimisation in comparison to ProtT5. A total of six classification heads were created to 

fine-tune the model’s latent space using different annotation tasks. Four sequence 

classification heads were created for the prediction of different levels of Enzyme 

Commission (EC) numbers.[32] A separate sequence classification head was created for 

the prediction of protein families relevant to biosynthesis but not covered by an EC 

number (will be referred to as protein families). A single token classification head was 

created to predict the boundaries of different functional domains within a protein 

sequence such as dehydratase domains, adenylation domains etc. (will be referred to as 

biosynthetic domains). 

3.4.3.2 Input/Outputs 
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The ProtBERT tokenizer was used to treat each protein sequence as a sentence and every 

amino acid as a word. 

3.4.3.3 Fine-Tuning 

Enzyme BERT was fine-tuned in two separate stages. The first stage imbued the base 

model with a fundamental understanding of enzymology using EC numbers. The second 

stage continued the training but introduced more nuanced tasks such as the identification 

of additional biosynthetic relevant protein families and the boundaries of biosynthetic 

domains. Results from the fine-tuning tasks are found in Section 3.5.3.1. 

3.4.3.4.1 Task 1: Multi-Task Fine-tuning for EC# Classification (Four Tasks) 

To infuse the ProtBERT model with biochemical knowledge, it was first trained on the 

prediction of EC numbers. A dataset of 316,601 protein sequences with EC numbers to 

the fourth level was curated. To balance the distribution of classes the dataset was split: 

213,849 for training, 31,192 for validation, and 14,852 for testing. Using the scikit-learn 

package, individual class weights were calculated and used in the cross-entropy loss 

calculation.[27] Losses from each EC level’s classification head were summed together 

and passed to a DeepSpeed Stage 3 Optimiser with parameter offloading. Precision was 

limited to 16 bits.[24] Gradients were accumulated after every 8 batches. Optimal 
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learning rates were automatically calculated using PyTorch Lightning.[26] The model was 

trained for a total of 100 epochs. 

3.4.3.4.2 Task 2: Multi-Task Fine-tuning for Domain, Protein Family and EC# 

Classification (Six Tasks) 

Two additional datasets were curated for the biosynthetic domain classification and 

protein family classification tasks. Profile Hidden Markov Models (pHMMs) were 

selected from the libraries of antiSMASH, PRISM, Pfam and InterPro on the basis of 

biosynthetic relevance.[3, 7, 33, 34] UniProt was mined using the pHMMs to create a 

dataset of annotated peptide sequences.[35] The annotations were condensed into non-

redundant families based on overlapping peptide sequence matches. After merging and 

quality filtering, a total of 1,101 protein families and 123 biosynthetic domains were 

selected. Peptide sequences with biosynthetic domain annotations were converted into a 

dataset with a list of token-level labels (e.g. every amino acid was labelled with a 

corresponding domain). Peptide sequences with protein family annotations were 

converted into a dataset with a single sequence-level label (e.g. the entire peptide 

sequence was labelled with its corresponding family). 

EnzymeBERT was fine-tuned using multi-task learning across six tasks: (1-4) a sequence 

classification task to predict the EC number classification at each level, (5) a sequence 
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classification task to predict the protein family and (6) a token classification task to 

predict the regions of a functional domain. The three datasets (EC number, protein family 

and function domain) were pooled together and each peptide sequence was assigned six 

labels for each of the tasks. When a sequence was missing its curated label for a given 

task, an “UNKNOWN” label was imputed. The total dataset was comprised of 603,538 

protein sequences: 492,337 for training, 65,555 for testing, and 45,646 for validation. 

During the multi-task training, each label was passed to its designated classification head. 

Using the scikit-learn package, individual class weights were calculated and used in the 

cross-entropy loss calculation.[27] Cross entropy losses were summed across the heads 

and passed to a DeepSpeed Stage 3 optimiser with parameter offloading.[24, 25] 

3.4.3.4 Quantisation, Optimisation and Acceleration 

EnzymeBERT and the token classification head were quantised and optimised using 

ONNX.[12] Custom pipelines were built for inference with the ORT framework and HF’s 

transformers package. [28, 29] The running time was calculated on 100 random batches 

of 32 ORFs.  

3.4.3.6 Post-Processing 

3.4.3.6.1 Vector Databases 
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Using the software Milvus, two vector databases were created (1) EC numbers and (2) 

Protein families.[17] Each database was comprised of the “[CLS]” token’s embedding for 

every reference peptide sequence within the two datasets. Both databases used a flat 

inverted file index, optimised for euclidean distance searches. The corresponding EC 

numbers and protein family classifications were assigned using k-nearest neighbour 

(kNN) look-ups with the two vector databases. [16] 

3.4.3.6.2 Token Classification Grouping 

The token classification head annotates every amino acid with a separate label and 

probability. To merge token labels into discrete regions across the peptide sequence, a 

separate polishing algorithm was written. We represent every peptide sequence as a linear 

connected graph of amino acids. Every amino acid is represented as a node and is initially 

connected to neighbouring amino acids via a weighted edge of 1.0. Additional edges are 

drawn for surrounding residues within a 10-residue radius if they share the same token 

label; these edges are weighted with the common label’s probability. The peptide 

sequence network graph is then subdivided into communities using the Louvain method.

[36] A majority vote is taken to label the community of residues with a single label.  

3.4.3.6.3 Gene Cluster Calling 
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The protein family and functional domain annotations provided by the EnzymeBERT 

model can be used to predict the boundaries of a BGC. For each BGC chemotype, a list of 

relevant annotations was curated. Using a greedy grouping algorithm, peptides were 

grouped together based on two conditions: (1) if they were within 10,000 base pairs 

upstream or downstream of one another and (2) shared peptide annotations within the 

same curated chemotype list. The 10,000 base pair cut-off was based on literature.[37] 

The start and stop locations for the final groups of peptide sequences were referred to as 

putative gene clusters. 

3.2.3.6.4 Molecular Unit Prediction 

Enzyme commission numbers can be directly connected to chemical reactions through a 

variety of different public databases. Leveraging genomic annotations to deduce the 

reaction space, molecular units of a biosynthetic gene cluster can be predicted. To develop 

a framework capable of this, all primary and secondary metabolism reactions from Kyoto 

Encyclopaedia of Genes and Genomes (KEGG), BRENDA, and MetaCyc were scraped.

[38-40] In addition to publicly available reactions, hundreds of rare biosynthetic pathways 

were hand-curated. All reactions were converted to a Reaction SMILES format.[41] The 

annotations predicted by EnzymeBERT were linked to the reaction library.  

 Using EnzymeBERT, a biosynthetic gene cluster can be annotated with its entire 

reaction space. A separate framework called BEAR (manuscript in progress) can use the 
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reactions to perform in-silico biosynthesis. For some reactions, the substrates used were 

customised based on the results from the Adenylation and Acyltransferase T5 models. 

Results from the PK Domain T5 models were also used to indicate whether or to include 

the reaction space of a putative functional polyketide domain. Using the combination of 

BEAR and IBIS, the molecular unit space of an annotated BGC can be predicted. An 

example of erythromycin’s predicted linear polyketide chain can be seen in Figure 3.2. 

3.4.3.6 Experiments 

3.4.3.6.1 Attention Map of Maltose Acetyltransferase Domain Sequences 

 The dataset for the domain-level annotations contained highly similar sequences. 

There was a concern the transformer may determine token classifications by globally 

attending to the entire sequence rather than locally attending to individual residues of 

interest; the former being a characteristic of whole sequence memorisation rather than 

learning the discrete patterns in enzymology. To address this concern, an attention map 

was generated of EnzymeBERT processing a dataset of acyltransferase domains. 

 To compute an attention map, attention weight distributions must be output from 

the transformer while it embeds a peptide sequence. The weight distribution is a multi-

dimensional tensor. Weights are generated for every layer in the model (16 layers). Within 

each layer, every attention head will generate a separate weight distribution (12 heads per 
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layer). Each attention head will output a separate weight distribution for the individual 

amino acids in the input sequence (n represents the number of amino acids in the 

sequence). Each weight distribution corresponds to the contribution surrounding residues 

had to the final amino acid’s embedding. The attention weight tensor is therefore a shape 

of (16, 12, n, n). 

 As a case study, a dataset of maltose acetyltransferase sequences was extracted 

from the InterPro repository for the HMM PF12464.[33] A total of 535 sequences were 

processed by the EnzymeBERT model. The attention head weight distribution was saved 

for each sequence. To represent the average attention across all sequences, attention 

tensors were averaged together using the InterPro global alignment as a guide. The 

combined EnzymeBERT attention maps (one per global alignment index) were plotted as 

heat maps. Each individual heat map showed the attention distribution across surrounding 

residues for a given global alignment position. The global alignment was plotted as a 

sequence logo using the python package “logomaker”.[42] Results are shown in Section 

3.5.3.2. 

3.4.3.6.2 Running Time of EnzymeBERT with ONNX 

To calculate the average running time of EnzymeBERT on an input peptide sequence, 100 

batches of 32 peptide sequences randomly sampled from microbial genomes were run 
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using the ONNXRuntime framework on an NVIDIA Quadro RTX 5000. Results are 

reported in Section 3.5.3.3. 

3.4.3.6.3 Preservation of chemical relationships within BGC comparisons 

Two separate strategies were developed for comparing BGCs: (1) MinHash Indexing 

using hand-curated features derived from the different LLMs and (2) Vector Indexing 

using combined open reading frame embeddings. Using a dataset of BGCs with 

experimentally verified metabolites, gene cluster distances/dissimilarities were validated 

using a triplet relationship strategy. Triplets consist of an anchor (query BGC), a positive 

example (BGC with a highly related metabolite) and a negative example (BGC with a 

highly unrelated metabolite).  The two chemical metrics used to deduce positive and 

negative BGCs were: (1) non-folded, enumerated FCFP6 with the Jaccard Index and (2) 

the Euclidean distance of NP-BERT embeddings. For the FCFP6 metric, negatives were 

calculated with a dissimilarity greater than 0.7 and positives with a dissimilarity less than 

0.2; this generated a total of 1,504,290 triplets for a total of 441 unique anchors. For the 

NP-BERT metric, negatives were calculated with a distance greater than 50 and positives 

were calculated with a distance less than 10; this generated a total of 475,851 triplets for a 

total of 441 unique anchors. Each triplet was categorised by the NP-BERT predicted 

super class of the anchor’s linked metabolite. In addition, Spearman correlations were 
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performed between both BGC approaches against both chemical comparison approaches. 

The performance of both strategies with both metrics is reported in Section 3.5.3.4. 

3.4.3.6.3.1 MinHash Indexing of Biosynthetic Annotation Sets 

MinHashes are data sketches of sets. To represent a biosynthetic gene cluster as an 

unordered set, features were engineered using the annotations from the IBIS of LLMs. 

Information regarding individual domains, enzymes, EC numbers, predicted substrates, 

and modules were all integrated into the sets. Duplicated information was captured using 

enumeration.  To calculate metrics, the dissimilarities between the unordered sets were 

calculated using the Jaccard Index. In production, the unordered sets were converted to 

MinHash data sketches with 128 permutations and the xxhash hashing algorithm.[43] 

Nearest neighbours are found using the MinHashLSH implementation in the python 

library “datasketch".[44] 

3.4.3.6.3.2 FAISS Indexing of Pooled Biosynthetic Embeddings 

 To represent a biosynthetic gene cluster as a single vector only EnzymeBERT was 

used. All peptide sequences within the BGC were embedded by EnzymeBERT and the 

embeddings were then averaged together to a single vector. Metrics were calculated using 

true Euclidean distances between averaged embeddings. In production, approximated 
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Euclidean distances are calculated using a flat L2 index created with FAISS. Nearest 

neighbours are calculated using the FAISS built-in index searching.[16] 

3.4.3.6.4 BGC Universe 

 An internal dataset of over 649,291 BGCs was pruned for redundancy using 100% 

ORF identity. A total of 296,216 unique BGCs remained for visualisation. To represent 

BGCs as vectors for visualisation, the pooled biosynthetic embedding strategy was used. 

First, every ORF was embedded using EnzymeBERT. The embedded class tokens of 

every ORF within a BGC were averaged together to create a single embedding 

representative of the BGC. The BGC embeddings were projected to two dimensions using 

the RAPIDS GPU implementation of UMAP.[45] The projected embedding was validated 

using the trustworthiness metric proposed by Venna and Kasuki. [46] Gene clusters were 

plotted using UMAP’s plotter tool and data shader.[47, 48] The IBIS-predicted 

chemotypes were used for colour selection.  The BGC Universe visualisation can be 

found in Section 3.5.3.6. 

3.4.3.6.5 Programmatic Deduction of Gene Cluster Families 

 Using topic modelling techniques similar to BERT-Topic, GCFs can be 

programmatically deduced.[18] To perform this analysis, the BGC embeddings were 

projected from 768 dimensions to 128 dimensions using RAPIDS UMAP.[45, 47] The 
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projected embedding was validated using the trustworthiness metric proposed by Venna 

and Kasuki. [46] Using RAPIDS GPU implementation of HDBSCAN, the dataset of 

296,216 BGCs was clustered into putative GCFs.[49] Clustering was optimised using the 

silhouette score.[50] 

 GCFs related to experimentally verified metabolites were selected for further 

exploration. BGCs within the same GCF were plotted as network graphs using Gephi.[51] 

Each node represented a BGC; edges in the graph were drawn between all nodes with 

edge weights varying based on shared taxonomy (i.e. a BGC belonging to Streptomyces 

had heavier edges drawn between other Streptomyces BGCs versus BGCs from other 

genera). Molecules were confidently mass matched to microbial fermentation extracts 

using the in-house tool MAPLE (MetAbolomics Peaks Logic Engine). 

3.5 Results 

3.5.1 Adenylation and Acyltransferase T5 

3.5.1.1 Adenylation T5 and Acyltransferase T5 Fine Tuning 

 For the acyltransferase T5 model, all properties were predicted with over 90% 

accuracy. For the Adenylation T5 model, all properties were predicted with over 80% 

accuracy, with the exceptions of LogP and the substrate. For both models performance 
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between validation and test datasets was similar. All metrics are reported in Table 3.1 and 

Table 3.2. 

3.5.1.2 Adenylation T5 Substrate Prediction 

 The substrate classification head performed the worst of all three methods. The 

EBM method performed slightly better than the classification head. The FAISS nearest 

neighbour technique was the most accurate overall. The EBM technique achieved greater 

accuracy than the nearest neighbour lookup for a select few substrates (Pip, Piz, Hpg, 

Glu, Dbut, Dab, Arg and Sal). The accuracy of the different techniques for substrate 

prediction is summarised in Figure 3.3. 

3.5.2 Polyketide Domain T5 Models 

3.5.2.1 Polyketide Domain T5 Fine-tuning  

 Validation accuracies and losses across the different Polyketide Domain Models 

are shown in Figure 3.4. With the exception of the ketosynthase model, the T5 models 

were able to correctly predict whether or not a domain was functional or non-functional 

with over 90% accuracy. Clade prediction accuracy reached over 80% for enoylreductase 

and dehydratase domains. Models began to overfit quite quickly (at approximately 10 

epochs). 
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3.5.2.2 Polyketide Domain Nearest Neighbour Lookup Performance 

 When each model’s functional prediction was swapped to the nearest neighbour 

lookup protocol, ketosynthase functional prediction performance increased with an F1 

Score reaching 0.71. All results are summarised in Table 3.3. 

3.5.3 Enzyme BERT 

3.5.3.1 EC# Prediction, Protein Family, and Enzymatic Domain Classification 
Metrics 

 Across all classification tasks (the four levels of EC numbers, protein family, and 

protein domain), EnzymeBERT was able to achieve F1 scores above 0.9.  All 

classification metrics can be found in Table 3.4. 

3.5.3.2 Attention Map of Token Classification Head 

 As EnzymeBERT embeds individual tokens of an input peptide sequence, its 

attention heads display local attention for each individual residue. The residues most 

attended to are those immediately surrounding the token of interest. Figure 3.5 displays 

the moving local attention window. The gapped global alignment of the motif’s sequences 

resulted in local attention windows with an exaggerated width. 
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3.5.3.3 Running Time of EnzymeBERT with ONNX 

 Without any polishing steps, the average processing time of EnzymeBERT per 

ORF on the NVIDIA Quadro RTX 5000 was 0.099s. The average genome contains 

approximately 5000 proteins; extrapolating from this number the average running time 

should only take 8.25 minutes. Using the largest (Sorangium cellulosum strain So0157-2: 

14,782,125 bp with 11,599 genes) and smallest genomes (Candidatus Nasuia 

deltocephalinicola strain NAS-ALF: 112,091 bp with 137 proteins) available on the 

NCBI as a reference, the estimated running time for processing a genome is between 20 

minutes and 13.6 seconds 

3.5.3.4 Gene Cluster Comparison with Vector Embeddings versus Biosynthetic 
Features 

 Triplet accuracies for both the vector-based approach and the feature-engineered 

sets approach to BGC comparison are shown in Figure 3.6. For the FCFP6 dissimilarity 

triplets, the feature-engineered sets approach outperformed the vector embeddings 

approach across every category with the exception of fatty acyls. The vector embeddings 

approach while not superior still performed well with the majority of categories averaging 

over 90% accuracy. For the NP-BERT distance triplets, the feature engineering approach 

outperformed the vector embeddings approach across every category with the exception 
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of fatty acyl and naphthalenes. The vector approach also performed well with the majority 

of categories still achieving an accuracy of over 90%, but there were more categories with 

poor performance (~40-55%) including phenolic acids, Beta lactams, fatty acids and 

conjugates.  The feature-engineered approach’s dissimilarities had Spearman correlation 

scores of 0.203 and 0.253 with the FCFP6 dissimilarity and NP-BERT distance 

respectively (p-values were equal to 0). The vector-based approach’s distances had 

Spearman correlation scores of 0.065 and 0.202 with the FCFP6 dissimilarity and NP-

BERT distance respectively (p-values were equal to 0). Joint histogram plots for all four 

comparisons can be found in Supplementary Figure S3.1. 

3.5.3.6 BGC Universe Visualisation 

 The plotted UMAP projected biosynthetic gene clusters are shown in Figure 3.7. 

While there was no segmentation of chemotypes on a macro level, individual clusters of 

chemotype conservation were observed throughout the embedded space. A large overlap 

between Non-Ribosomal Peptides and Polyketides, as well as their hybrids, was observed. 

The trustworthiness of the 2D UMAP embedding was calculated as 0.999. 

3.5.3.6 BGC Derivative Families 

 Of the dataset of 296,216 BGCs,  only 213,007 were assigned to 12,495 GCFs 

using HDBSCAN; the remainder were unlabelled due to the strict clustering cut-off of 10 
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members. Three of the GCFs were selected for further exploration. In Figure 3.8, the 

group of Type II polyketide gene clusters resembling Curamycin A is shown. All BGCs 

were located in Streptomyces genomes, similar to the original producer of Curamycin A, 

Streptomyces cyaneus. Mass matching of metabolites within the crude extract from 

Streptomyces viridosporus DSM 40243 confirmed Curamycin A was produced. In Figure 

3.9, the group of Type I polyketide gene clusters resembling Erythromycin is shown. 

Many of the gene clusters were mined from genomes of the Streptomyces and the original 

producer Saccharopolyspora. The exceptions were Aeromicrobium erythreum, 

Micromonospora rosaria and Saccharomonospora paurometabolica.  Aeromicrobium 

erythreum historically produces erythromycin. Micromospora rosaria historically 

produces rosaramicin, a similar molecule to erythromycin. In Figure 3.10, a group of 

Non-Ribosomal Peptide gene clusters resembling Polymyxin B is shown. Gene clusters of 

this group were mined exclusively from Paenibacillus and Brevibacillus. Mass matching 

of metabolites within the crude extract from Paenibacillus alvei DSM 29 confirmed 

Polymyxin B was produced. 

3.6 Discussion 

3.6.1 Improving Scalability of Genomic Mining Using Transformers 

 We have demonstrated a single fine-tuned transformer can effectively replace the 

thousands of pHMMs used in genomic mining. With EnzymeBERT we achieved an F1-
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score over 0.9 across enzyme commission number prediction, protein family prediction 

and protein domain prediction tasks. The running time of EnzymeBERT on the average 

genome is estimated at 7.5 minutes; in comparison to PRISM’s 58.8 minutes and 

antiSMASH’s multiple hours, the use of EnzymeBERT will result in an approximately 

eightfold speed gain over conventional pipelines.[6, 7] 

 When a BGC’s newly discovered enzymology is to be modelled as a pHMM it is a 

very time-consuming and nuanced process.[52] First, a sufficient amount of sequences 

must be gathered to create a sequence alignment capable of capturing the protein family’s 

profile. After the pHMM is created, the cut-off score must be optimised as to not interfere 

with other related pHMM annotations in the library. This process has been simplified in 

the IBIS pipeline in two ways: (1) taking advantage of the transformer’s high-resolution 

latent space and (2) moving classification from discrete classifiers to a semantic search. 

 By leveraging EnzymeBERT’s latent space, the total number of representative 

sequences is more relaxed. When a peptide sequence is embedded by EnzymeBERT, its 

vector is imbued meaningfully with all of the biases trained into the transformer through 

the different fine-tuning tasks. The bias acquired through the fine-tuning process is 

retained in the transformer’s memory; this effectively replaces the bias calculated through 

sequence alignment for a pHMM. The latent space of EnzymeBERT contains enough 

information that underpopulated classes of peptides are still meaningfully represented 
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together; this was demonstrated with the precision and recall of the Enzyme Commission 

number’s predictions at the third and fourth levels. While the representatives at these 

levels are sparse, the F1 scores at the third and fourth levels are still above 0.98 and 0.96 

respectively. The performance here is something of note as the state-of-art tool, DeepEC, 

demonstrates an overall F1 Score of 0.609. [53] 

 We uncoupled the classification label assignment from the classification heads; 

instead, classification is rooted in semantic search.[54, 55] Classification heads contain a 

finite number of labels limited to those in the training data; when using a vector database 

search, the labels are only limited to the vector database’s reference sequences. We cannot 

easily add more classes to a classification head without retraining, but we can easily add 

more references to the vector database as new enzymology is discovered. The semantic 

search-like process is only possible because of the transformer’s high-resolution latent 

space. Genomic mining can become more scalable with the use of transformers, not only 

through the reduced running time but also with simplicity in modelling biosynthetic 

enzymology into the system. 

3.6.2 Adenylation Domain Substrate Prediction with Transformers 

 We also demonstrated that alignment-based strategies are not needed to achieve 

accurate adenylation domain predictions (Figure 3.3). While the classification head alone 
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had poor performance, the nearest neighbour strategy had over 80% accuracy for the 

majority of substrates. Semantic search bypasses the typical bottlenecks met when 

training conventional classifiers. Developing a comprehensive dataset with the minimum 

number of sequences to train a classification head is a difficult task. This issue was 

especially evident with rarer substrates such as piperazic acid.[56] Our classification head 

failed completely for piperazic acid adenylation domains (0% accuracy), but the semantic 

search was able to achieve an accuracy of 70%. 

 While there are over 500 known substrates for non-ribosomal peptide synthases, 

only 83 had adenylation domain sequences available.[21, 57] Semantic search is only 

applicable in substrate prediction while there are sequences available for the substrate of 

interest. To help identify matches for the remainder of substrates, the Adenylation T5 

model also predicts substrate properties in addition to the substrate. The majority of 

properties are predicted with over 85% accuracy (Table 3.1). The predicted properties can 

be used as a signature for identifying putative NRPS substrates without reference 

sequences.  

 We attempted to blend predicted properties with classification head substrate 

predictions using an EBM model. The EBM model predicted Piperazic acid substrates 

with 100% accuracy. The model also achieved 100% accuracy across an additional 7 

substrates. Unfortunately, the EBM classifier failed on a substantial number of other 
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substrates. While the EBM model did not achieve the same level of performance as the 

semantic search, it showcased the additional inference predicted properties can bring. 

Ideally, an ensemble approach will be taken in the future, where the substrates are first 

determined through semantic search and non-confident matches are corrected with the 

predicted properties using the EBM. 

3.6.3 Transformer Attention in Enzymology 

 Profile HMMs are clearly defined by a Markov process scored with a multi-

sequence alignment but transformers are currently not completely understood.[58] Most 

insight into the decision-making of a transformer is derived through attention-head weight 

outputs and attention-head masking. Profile HMMs are effective at recognising conserved 

motifs within protein sequences because of the sequential nature of a Markov process. [5] 

Transformers are not limited to neighbouring residues when learning from a sequence; 

through the use of global self-attention, transformers can weigh the influence of any token 

within the input sequence.[11]  

 When modelling an entire sequence, the ability to look at the entire input is very 

useful. The long-term memory of LSTMs facilitates similar performance gains.[59] 

Unfortunately, large deep learning models tend to overfit; there was a concern that the 

BERT model may memorise entire sequence patterns when predicting the domain labels 
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of individual tokens (e.g. predicting a thiolation domain because a condensation domain 

was seen). Ideally, during token classification, the transformer’s attention heads would 

locally focus on adjacent residues similar to an HMM. 

 All concerns of memorisation were mitigated after plotting the averaged attention 

map of the Acetyltransferase domain (PF12464) in Figure 3.6. The figure showed 

attention weights shifting depending on the residue of interest being classified. The small 

attention windows demonstrated local attention rather than global. The pattern also 

suggests the architecture of the underlying transformer (BERT) can be swapped to a more 

memory-efficient model with minimal impact on performance; these include models 

using local windowed attention or sparse attention such as the Longformer or BigBird. 

[60-62] Currently our pipeline has to split megasynthases into windows before processing 

with EnzymeBERT due to memory constraints; the usage of optimised attention models 

would allow for larger enzymes to be processed at once, further decreasing our overall 

runtime.  

3.6.3 Gene Cluster Comparison with IBIS 

 Rapidly comparing massive libraries of biosynthetic gene clusters is an active area 

of research. MultiGeneBLAST uses BLAST to map incoming peptides to those in known 

biosynthetic enzymes. [63] ClusterScout, BiG-SCAPE, BiG-SLICE use HMM libraries to 
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featurize biosynthetic gene clusters before applying various distance/dissimilarity metrics 

for comparison.  [9, 64, 65] With transformers, a feature-based comparison is no longer 

required. In natural language processing, it is typical to average word embeddings 

together to generate a sentence embedding in an unsupervised manner.[66-69] In the same 

way, we can use peptide embeddings averaged together to generate a BGC embedding. 

 To compare the effectiveness of the unsupervised approach with a feature-based 

approach, we developed an in-house featurization algorithm based on the annotations 

predicted from the IBIS models. Features included predicted enzyme identities, 

substrates, and polyketide domain functionality. In addition, the protein domain 

annotations of thiotemplated gene clusters were further featurized to include explicit 

module information. With all of this information, the featurized comparison of BGCs was 

able to capture chemical relationships almost perfectly across all gene clusters with 

experimentally verified metabolites (Figure 3.6). We saw dips in performance for certain 

families including napthelenes and fatty acyls. Upon further investigation, gene clusters 

with irregular scores contained many hypothetic peptides with unannotated functionalities 

such as cercosporin, or contained exclusively general features found in many gene 

clusters such as 1-heptadecene; this exemplifies the inherent weakness of feature-based 

comparisons of BGCs. If no distinguishing features are modelled into the dataset, the 

comparison will fail. Even with extensive curation work, the comprehensiveness of the 

feature set will be biased toward gene clusters with experimentally verified metabolites.  
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The unsupervised method of gene cluster comparison achieves a similar level of success 

in capturing FCFP6-based relationships. It also manages to outperform the feature-based 

approach on the fatty acyls superclass. The EnzymeBERT embeddings inherently have 

resolving power, even if not explicitly declared. When vector comparisons were measured 

against the more stringent NP-BERT relationships, the unsupervised approach 

demonstrated more weaknesses.  There were multiple potential sources of failure upon 

inspection. Some of the gene clusters were very large (>100,000 bp) and others spanned 

multiple contigs. The inclusion of peptides irrelevant to biosynthesis is more likely in 

BGCs of this nature. Another source failure was the lack of acyltransferase and 

adenylation domain resolution. As adenylation and acyltransferase domains with different 

substrates are not explicitly distinguished during fine-tuning, their embeddings will be 

generalised to their parent class; this can be corrected through an additional fine-tuning 

process. 

We used the averaged vector embeddings to plot out the entire biosynthetic latent space 

using an internal dataset of over 200,000 non-redundant BGCs. While on a macro level, 

there was no distinct separation of BGCs, the majority of the BGCs were separated into 

small homogenous clusters with a conserved chemotype. We demonstrated that three of 

the GCFs discovered through HDBSCAN shared enzymology and encoded chemical 

similarity (Figure 3.8, Figure 3.9, Figure 3.10). We also showed there is metabolomic data 
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to support the predicted relatedness of the encoded molecules. While the unsupervised 

approach to gene cluster prediction is not perfect, it is still able to capture the chemical 

similarity of encoded metabolites with a high degree of accuracy. 

3.6.4 Future Work 

The IBIS pipeline demonstrates the optimisations transformers can bring to the field of 

genomic mining. The high resolution of a transformer's latent space can be utilised to 

replace pHMMs and BLAST in protein sequence homology workflows. With model 

quantisation and GPU-based inference, running times can be drastically reduced in 

comparison to conventional pipelines. Beyond improving the computational scalability of 

genomic pipelines, we demonstrate a simple method for adding new enzymology to the 

pipeline using semantic search. The plasticity of the transformer’s latent space places a 

great deal of importance on the training curriculum. In future work, we hope to bring the 

latent spaces of NPBERT and EnzymeBERT closer together with multi-domain 

refinement. A CLIP-like training regimen would further refine encoded chemistry 

comparisons.[70] 
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3.7 Figures and Tables 

Figure 3.1: The entire IBIS pipeline is broken into 8 steps: (1) Open Reading Frame 
(ORF) Prediction - Pyrodigal is used to find all likely protein sequences per contig (2) 
Domain Annotation - Individual protein sequences are annotated with domain-level 
annotations through use of EnzymeBERT, a token classification head and two graph-
based algorithms: Community-Based Polishing and Greedy Grouping (3) Whole Protein 
Annotation - Each protein sequence is annotated with a known biosynthetic functionality 
in the form of EC# or specific gene class (e.g. vanA) (4) Proximity-based BGC Boundary 
Calling - Based on the biosynthetic families associated with the annotations, the proteins 
are merged into BGCs using greedy grouping and a rule set. (5) Domain Substrate and 
Functionality Prediction - Any adenylation, acyltransferase or polyketide domains are 
further processed by the other T5 models for substrate prediction and determining 
whether or not the domain is functional. (6) Molecule Unit Prediction - Using BEAR 
molecular units can be predicted from the peptide annotations within each putative BGC. 
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Figure 3.2 Example of Structure Prediction using BEAR and IBIS. The rich library of 
annotations provided by the IBIS pipeline facilitates the prediction of the molecular units 
produced by a biosynthetic gene cluster. The visualisation was created using the Natural 
Product Toolkit web application. 
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                                  Aromatic Hydrogen Bond 
Acceptors Hydrogen Bond Donors LogP TPSA Substrate

Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test

Accuracy 
Score                    0.955 0.918 0.912 0.916 0.887 0.887 0.785 0.744 0.850 0.850 0.773 0.719

Balanced 
Accuracy 
Score

0.777 0.656 0.832 0.876 0.758 0.634 0.759 0.725 0.780 0.739 0.653 0.561

F1 Score 0.955 0.918 0.912 0.916 0.887 0.887 0.785 0.744 0.850 0.850 0.773 0.719

Hamming 
Loss 0.045 0.082 0.088 0.084 0.113 0.113 0.215 0.256 0.150 0.150 0.773 0.719

Zero One 
Loss 0.045 0.082 0.088 0.084 0.113 0.113 0.215 0.256 0.150 0.150 0.227 0.281

Hinge Loss 1.170 1.129 2.476 2.474 2.558 2.535 8.773 8.669 3.263 3.227 59.671 60.993

Jaccard Score 0.913 0.849 0.839 0.845 0.796 0.796 0.646 0.592 0.739 0.740 0.630 0.561

Matthew’s 
Correlation 
Coefficient  

0.852 0.721 0.828 0.836 0.785 0.782 0.763 0.718 0.792 0.791 0.761 0.702
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Table 3.1 A table summarising the Adenylation T5 model’s performance across the 
different classification tasks as outputted from each individual classification head. With 
the exception of LogP and the substrate sequence classification heads, each task achieves 
over 85% accuracy in the validation set. 
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Substrate TPSA Hydrogen Bond 
Acceptors LogP CH2 CH3

Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test

Accuracy Score 0.954 0.991 0.983 1.000 0.983 1.000 0.960 0.991 0.989 0.986 0.931 0.927

Balanced 
Accuracy Score 0.980 0.995 0.991 1.000 0.991 1.000 0.978 0.994 0.994 0.993 0.627 0.625

F1 Score 0.954 0.991 0.983 1.000 0.983 1.000 0.960 0.991 0.989 0.986 0.931 0.927

Hamming Loss 0.046 0.009 0.017 0.000 0.017 0.000 0.040 0.009 0.011 0.014 0.069 0.073

Hinge Loss 3.632 3.647 0.977 0.959 0.977 0.959 2.477 2.491 0.954 0.959 1.437 1.431

Jaccard Score 0.912 0.982 0.966 1.000 0.966 1.000 0.923 0.982 0.977 0.973 0.871 0.863

Matthew’s 
Correlation 
Coefficient  

0.924 0.985 0.829 1.000 0.829 1.000 0.934 0.985 0.907 0.888 0.868 0.863

Zero One Loss 0.046 0.009 0.017 0.000 0.017 0.000 0.040 0.009 0.011 0.014 0.069 0.073
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Table 3.2 A table summarising the Acyltransferase T5 model’s performance across the 
different classification tasks as outputted from each individual classification head. The 
Acyltransferase T5 model performed well across all tasks and both datasets, with the 
exception of the CH3 prediction. 
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Figure 3.3: Radar plots of validation accuracy of the different substrate prediction 
strategies using embeddings from the model. (A) The standard sequence classification 
predicted labels. This uses a linear feed-forward layer to fit the embeddings to logits of 
the classes trained on. (B) An ensemble model trained using Microsoft's Explainable 
Boosted Machine (EBM) implementation. It used the predicted properties as input. (C) 
The FAISS nearest neighbours strategy. Across substrates, the nearest neighbours strategy 
outperformed or shared similar performance as the other two strategies. 
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Figure 3.4 Charts showing the changing pooled loss, functional accuracy and clade 
accuracy for the different Polyketide T5 Models. Some models were stopped early due to 
increased validation loss. Thiolation domains were not trained on clade accuracy. 
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Table 3.3 Performance of the Nearest Neighbour lookup strategy with the polyketide 
domain models. F1 Scores were above 0.7 for all models in determining whether or not a 
polyketide domain was functional. 

Polyketide Domain T5 LLMs F1 Precision Recall

Ketosynthase (KS) 0.71 0.743 0.685

Dehydrotase (DH) 0.88 0.877 0.894

Enoylreductase (ER) 0.911 0.911 0.911

Ketoreductase (KR) 0.976 0.980 0.979

Thiolation (T) 0.987 0.987 0.988
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Table 3.4 The performance of EnzymeBERT in predicting enzyme commission numbers, 
protein families and protein domains. Protein families and enzyme commission number 
labels were assigned using the nearest neighbour semantic search strategy. Protein 
domains were assigned using the token classification head. 

Annotation Family F1 Precision Recall

EC Number: Level 1 0.989 0.989 0.989

EC Number: Level 2 0.984 0.984 0.984

EC Number: Level 3 0.98 0.98 0.98

EC Number: Level 4 0.963 0.968 0.964

Protein Family 0.906 0.909 0.907

Protein Domains 0.92 0.97 0.89
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Figure 3.5: The combined attention map for different positions along the 
Acetyltransferase conserved domain (length of 48 amino acids). The global alignment of 
the 535 sequences, spans 131 indices. (A) When embedding the first residue in each 
sequence (i=1), residues within the first seven global positions are mainly attended to. (B) 
When embedding the 15th residue (i=15), attention is more widespread, with attention 
mainly spanning from the 10th position to the 40th position. (C) Attention heads for the 
30th residue (i=30) and (D) at the 48th residue (i=48), displayed local attention. The 
attention of residues at a global index position smaller than 52 was negligible. (E) The 
sequence logo of the acetyltransferase HMM’s alignment showed a few gaps. The gaps in 
the global alignment resulted in exaggerated local attention windows. 
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Figure 3.6  Radar plots summarising the chemical validity of BGC comparison methods 
using a dataset of BGCs with experimentally validated metabolites (n=441). (A) Triplets 
were derived from the FCFP6 featurization of molecules and dissimilarity was calculated 
using the Jaccard Index. (B) Triplets were derived using the NP-BERT embeddings of the 
molecules and the Euclidean distance was calculated. In blue, BGCs are treated as sets 
using features derived from IBIS; dissimilarity is calculated using the Jaccard Index.  In 
orange, BGCs are treated as the averaged vector of EnzymeBERT embeddings. When a 
triplet relationship is maintained (the distance of a positive example to the anchor is less 
than the distance of a negative example to the anchor), a point is awarded. The accuracy 
is categorised by the superclass of the encoded metabolites. 
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Figure 3.7 The internal dataset of biosynthetic gene clusters was embedded using 
EnzymeBERT, (n = 296,216) projected to two dimensions (trustworthiness = 0.999), and 
plotted using UMAP and datashader. Gene clusters were also projected to 128 dimensions 
(trustworthiness = 0.999) and clustered using HDBSCAN (silhouette score = 0.402). A 
total of 231,772 BGCs were clustered into 12,495 gene cluster families (GCFs). 
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Figure 3.8 Example GCF matching the Curamycin A gene cluster. The original producer 
of Curamycin A is Streptomyces cyaneus. The GCF spans: Streptomyces katrae s3, 
Streptomyces lavendulae NRRL B-2774, Streptomyces viridosporus DSM 40243,  
Streptomyces sp. NRRL S-87, Streptomyces sp. AG109 G2-1, Streptomyces sp. RU-71, 
Streptomyces sp. NWU-339,  Streptomyces sp. TRM-SA0054. (A) The taxonomic 
network graph showed no conservation on a species level, with the only matches being 
Streptomyces strains without a designated species. (B) The reference Curamycin A gene 
cluster was nearly identical to the reference BGC with the exception of a different EC 
number. (C) The Curamycin A metabolite was detected in the metabolomics analysis. 
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Figure 3.9 Example GCF matching the erythromycin gene cluster. The original producer 
of Erythromycin is Saccharopolyspora erythraea NRRL 2338. The GCF spans multiple 
genera including: Saccharopolyspora erythraea NRRL 2338, Saccharopolyspora 
erythraea DSM 41009, Saccharopolyspora erythraea DSM 40517, Saccharomonospora 
paurometabolica YIM 90007, Aeromicrobium erythreum AR18, Micromonospora rosaria 
DSM 803, Streptomyces noursei ATCC 11455, Streptomyces yunnanensis CGMCC 
43555, Streptomyces sp. MG1, Streptomyces sp. NRRL F5193, Streptomyces sp. NWU49, 
and Streptomyces sp. CB02120-2. (A) The taxonomic network graph showed the GCF is 
conserved mainly between two genera Streptomyces and Saccharopolyspora. (B) There 
are minor changes between the Streptomyces representative versus the Saccharopolyspora 
reference BGC in the first polyketide synthase. (C) Erythromycin G was detected in the 
alternative Saccharopolyspora erythraea strain in the metabolomics analysis. 
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Figure 3.10 Example GCF matching the Polymyxin gene cluster. The original producer 
of Polymyxin is Paenibacillus polymyxa. The GCF spans: Paenibacillus forsythiae T98, 
Paenibacillus aquistagni Strain 11, Paenibacillus alvei A6-6I-X, Paenibacillus sp. IHBB 
10380, Paenibacillus sp. UNC217MF, Paenibacillus sp. ST-S, Paenibacillus sp. 
C16COL, Paenibacillus alvei DSM 29, Paenibacillus pinihumi DSM 23905, 
Brevibacillus brevis X23, Brevibacillus sp. BC25,  Brevibacillus brevis DZQ7, 
Brevibacillus brevis ATCC 35690, Brevibacillus brevis GZDF31, Brevibacillus sp. NRRL 
B-41110 and Brevibacillus brevis NBRC 100599-47. (A) All members of this GCF were 
mined from the family Paenibacillaceae, so all edges have some weight. There is only a 
light separation between Paenibacillus and Brevibacillus mined BGCs. (B) The 
differences between the reference BGC versus the representative from Paenibacillus alvei 
are minor; two adenylation domains have different substrates predicted in the first two 
NRPSs, possibly due to error. (C) Polymyxin B was confirmed to be produced by 
Paenibacillus alvei in the metabolomics analysis. 
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Supplementary Figure S3.1: Joint histogram and density plots for different 
combinations of BGC and molecular metrics. Histograms are on the outside of the upper 
and right axis. Density plots are plotted within. 
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Chapter 4: Deep Learning Guided De Novo Assembly of Bacterial Genomes 

4.1 Chapter Preface 

 To develop a deep learning approach to bacterial genome assembly, I initially 

worked with two co-op students, Cameron Default and Daniel Di Cesare on pivoting 

DNABERT. While the framework worked with PacBio reads, it did not work with 

Illumina datasets. Unfortunately, Illumina datasets made up the majority of the unfinished 

bacterial genomes in RefSeq. After much testing, it was concluded that calculating 

semantic meaning from short reads was not a feasible task.  

 I developed a new workflow dedicated to joining partial scaffolds in a similar 

manner to hybrid sequencing. As a trained bioinformatician, I was able to deconstruct the 

Unicycler pipeline and deduce where would be most suitable to add additional inference. 

I created two models dedicated to de Bruijn graph bridging: (1) a Bacterial T5 model and 

(2) a graph deep learning model. I created a custom framework to train a T5 model from 

scratch using PyTorch. Norman Spencer curated a dataset of representative bacterial 

genomes selected from the tree of life using genomic distances. Using the dataset, I 

trained a Bacterial genomic model. I created a new method for performing sentence pair 

classification that minimised the memory impact of conventional next-sentence 

prediction. After analysing the GCFs calculated by IBIS, it was observed that many of the 

family members were fragmented ORFs that otherwise appeared related to the complete 
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BGCs. EnzymeBERT embedded fragmented and whole peptides in the same manner. To 

build off of this behaviour, I developed a custom graph deep learning framework to teach 

the model spatial relations between ORFs. I trained the model using public datasets. I 

developed the FuzzyAlign algorithm along with the procedures to perform Sweep 

optimisation using the server cluster. 

 Irina Sementchoukova and Tonya Malcom developed a strategy for using public 

datasets to direct sequencing efforts. Irina and Tonya performed the DNA preparation for 

hybrid sequencing. Using my pipeline and the protocol from the Surette lab, I was able to 

reconstruct hybrid genomes, with one being fully finished. Dr Xiaxia Di performed all 

analytic chemistry experiments to isolate and identify chymostatin A from Streptomyces 

orinoci DSM 40571. Through a literature search and reassembly, I was able to find the 

BGC responsible for chymostatin. 

4.2 Abstract 

 While genomic mining technologies continue to improve in the mapping of the 

natural product space, fragmented genomes remain a bottleneck for progress. Previous 

tools have successfully utilised biosynthetic domains as a bridge for recovering whole 

microbial contigs. We present NALA (Neural-network-guided Arrangement and Linkage 

Assembly),  a new pipeline utilising a graph deep learning strategy in combination with 
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biosynthetic large language models to assist in de novo assembly. We utilise NALA to 

improve four publicly available assemblies from Cohnella, Streptomyces, Chitinophaga 

and Pseudozobellia. We demonstrate increased contig sizes and improved genomic 

mining using our pipeline. 

4.3 Introduction 

 The creation of Next-generation sequencing (NGS) has provided a wealth of 

bacterial genomes for the public. The Reference Sequence (RefSeq) project at National 

Center for Biotechnology Information (NCBI) contains genomes from over 74,000 

bacterial and archaeal taxa.[1] The majority of bacterial genomes in RefSeq have been 

assembled using short-reads from Illumina sequencing efforts (Figure 4.1). The 

popularity of the Illumina platform can be attributed to its high accuracy and low cost per 

base. Unfortunately, the short fragments of Illumina sequencing (500 bp or less) are 

smaller than many of the repetitive elements in bacterial genomes. In bacterial genomes, 

it is common for secondary metabolism to be encoded by repeating biosynthetic modules 

(e.g. non-ribosomal synthases, polyketide synthases). The repetitive nature of the 

bacterial genomes leads to highly fragmented de novo assemblies when sourced from 

short-read libraries alone. Many of the RefSeq genomes assembled from Illumina short 

reads display a low N50 (Figure 4.2). 
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 Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) are 

alternative sequencing platforms with longer reads (10+ kbp) but at a higher cost than 

Illumina.[2, 3] Many long-read de-novo assemblers have been made such as Canu, Flye, 

Raven, Miniasm, and wtdbg2.[4-8] The long-read platforms are not without their faults; 

they have a lower base call accuracy (87%) and chimeric reads are probable.[9, 10]. To 

create the most accurate genomes with the least amount of fragmentation, hybrid 

approaches to assembly have become popular. One approach involves using the highly 

accurate Illumina reads to correct the long reads, before using a long-read assembler; the 

high sequencing depth required for assembly makes this an expensive approach. A 

cheaper approach is to use low-coverage PacBio or Nanopore long-reads to fill gaps in a 

short-read assembly as is performed in Unicycler.[11, 12]  

 Unicycler first uses SPADES to develop the initial de Bruijn graph with short-read 

sequencing data.[13, 14] Long-reads are then semi-globally aligned with the short-read 

assembled contigs to resolve repeats in the graph structure. Based on the alignment, 

Unicycler creates bridges between the contigs and scores them according to a series of 

metrics (alignment quality, read agreement, graph path etc). It also creates bridges based 

on a series of other strategies including repair information and the Miniasm assembly.[4]  

All of the bridges are sorted by quality and applied in reverse order so the highest quality 

bridges are applied last. Assemblies can then be optionally polished using Pilon.[15] The 
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strategy is very effective, with Unicycler outperforming other hybrid assembly pipelines. 

[12, 16] 

 Pipelines have also been developed for reference-guided de novo assembly. In the 

same manner that hybrid pipelines use long-reads to bridge incomplete short-read graphs, 

reference-guided de novo assembly utilises the completed genomes of related species to 

construct a genome.[17-23] There are some disadvantages, including introducing biases 

into the assembly towards the reference genome, diverging regions failing to be 

assembled, and genomic rearrangements differing between species leading to 

misassemblies.[20, 24-27] One solution proposed for these problems is to introduce 

multiple reference genomes for increased flexibility.[28, 29]  

 The short-read RefSeq genomes do not have a corresponding long-read dataset to 

perform a hybrid assembly. As an alternative, reference datasets can be of use to create 

more robust genomes. The bias introduced by selecting a poor reference genome can 

negatively impact the downstream analyses.[30-32] Instead, we propose teaching a deep 

learning model of the spatial relationships in bacteria genomics and allowing it to predict 

bridges. In 2021, a deep learning model trained on human genomics called DNABERT 

was released. It demonstrated a transformer could understand DNA sequences based on 

up and downstream nucleotide contexts. It was able to predict promoters, splice sites and 

transcription factor binding sites. Using DNABERT’s attention, conserved sequence 

126



Ph.D. Thesis - K. Dial

McMaster University - Biochemistry and Biomedical Sciences 

motifs and functional genetic variant candidates could be identified.[33] The latent space 

of a transformer trained on nucleotide information can be useful for detecting features 

relevant to bacterial genome assembly. 

 Beyond utilising reference genomes to build bridges, we also propose using 

encoded peptide information. Taboada, Verde and Merino created an operon-calling 

pipeline using deep learning.[34] They trained a multilayer perceptron using functional 

relationships defined by STRING and intergenic distances as features.[35] The pipeline 

was able to predict operons within bacterial genomes with over 90% accuracy. They 

demonstrated protein function can be informative in deducing genomic spatial 

relationships. 

 In this work, we present our Neural-network-guided Arrangement and Linkage 

Assembly (NALA) pipeline. We use a transformer trained on bacterial genomes to predict 

spatial relationships between short-read contigs. We also use a graph neural network to 

predict spatial relationships between peptide sequences encoded on the periphery of 

short-read contigs. Inference from both models is integrated into Unicycler for robust 

assembly. Metrics for both bridging techniques are calculated on an in silico sequenced 

dataset of biosynthetic gene clusters. In addition, we prepare new assemblies of four 

publicly available genomes with our pipeline. 
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4.3 Methods 

 The deep learning-based Unicycler bridges are based on two models: (1) Bacterial 

T5 - a T5 generative model trained to predict whether or not two contigs are spatially 

lateral to one another. (2) Enzyme-GNN - A graph neural network trained to predict 

which peptide sequences are spatially connected based on EnzymeBERT embeddings. 

Hyperparameter optimisation was used to integrate both custom bridges into the 

Unicycler pipeline. 

4.3.1 Bacterial T5 

4.3.1.1 Architecture 

 There are no publicly available transformers trained on bacterial genomes. 

DNABERT was trained on the human genome. Based on the performance of ProtT5 

versus ProtBERT, we decided on a T5Encoder instead of BERT as the base architecture 

for bridging.[33, 36] The T5ForConditionalGeneration model from Hugging Face’s 

Transformers package was used to pre-train the initial BacterialT5 text-to-text model.[37] 

4.3.1.2 Input/Output 

 As an input for the model, we split genomic sequences into 6-mers as described 

by DNABERT.[33] For tokenisation, we use the DNABERT tokenizer with a modified 
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vocabulary; we added 100 sentinel tokens to allow for span-masked language modelling. 

In addition, a class token was appended to every tokenised sentence as is customary with 

BERT tokenisation.[38] 

4.3.1.2 Pre-training 

 We pretrained BacterialT5 with the span-masked language modelling training 

protocol as described in the original T5 paper. [39] The base transformer used was the 

T5ForConditionalGeneration interface implemented in HuggingFace’s transformers 

package.[37] The Pytorch implementation was used to take advantage of optimisations 

made for training in PyTorch Lightning and DeepSpeed.[40-42] There only T5 span-

masked language modelling collator is programmed using JAX. We reimplemented the 

collator reimplemented using PyTorch. 

 Span-masked language modelling is a combination of question and answering 

with masked language modelling. The collator randomly masks spans of an input 

sequence, where each masked span is enumerated. The model will encode the masked 

sequence to an embedding, and then decode the embedding back into an output sequence. 

The output returns the masked spans with the enumeration intact.[39] We set a maximum 

of 30% of the sequence to be masked. The model was trained on batches of 16, with the 

maximum length of an input sequence constrained to 1024 tokens. 
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 To create a training dataset all of the bacterial genomes from RefSeq were 

downloaded. To avoid training on all of RefSeq, 1000 genomes were sampled based on 

genomic distances. Distances between genomes were calculated using the tool Dashing.

[43] All genomes were annotated with open-reading frames (ORFs) using Pyrodigal.[44] 

The ORFs were used as sentence input for the span-masked language modelling task. The 

model was trained for a total of 40 epochs across 5 GPUs. The results of the pretraining 

can be found in Section 4.4.1. 

4.3.1.3 Finetuning Tasks 

 To predict spatial relationships between genomic regions, a next-sentence 

prediction (NSP) task was prepared. A custom collator was designed to create the dataset 

for sentence pair classification. The collator would randomly sample a group of 

nucleotide sequences, split the sequences into halves, and then randomly pair the halves 

together. Halves belonging to the same sequence were considered a match while those 

belonging to separate sequences were not. Each nucleotide sequence pair was separately 

embedded. The embeddings for the pair’s class tokens were concatenated together to be 

classified as a joint embedding. To fine-tune BacterialT5 for the NSP task, the T5Encoder 

from the T5ForConditionalGeneration model was extracted. A custom sentence pair 

classification head was developed.  
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 Two separate datasets were created for curriculum learning. The first NSP fine-

tuning task was performed with ORFs detected from another sample of 1000 RefSeq 

genomes. ORFs were split into chunks of 1024 tokens. Based on the literature, there is 

also some conservation in intergenic regions, possibly due to evolutionary degradation. 

To learn these relationships, a second NSP fine-tuning task was performed with intergenic 

regions. The intergenic regions were extracted from the first sample of 1000 RefSeq 

genomes. Intergenic regions were split into chunks of 256 tokens. The results of both 

fine-tuning tasks can be found in Section 4.4.1. 

4.3.2 Network Graph Link Prediction with EnzymeBERT and RevGNN 

4.3.2.1 Architecture 

 The deepest graph neural network architecture with a low memory footprint 

currently in production is the Reversible GNN (RevGNN) developed by Li et al. [45] A 

link-prediction framework built around the RevGNN was set up using PyTorch 

Geometric, PyTorch Lightning and a custom in-house framework.[40, 46] After 

preliminary tests, a total number of 20 RevGNN layers were chosen for the final model. 

4.3.2.2 Input/Output 
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 To train the RevGNN, we represented contigs as weighted network graphs in 

PyTorch Geometric.[46] Each node was an open reading frame and weighted edges were 

drawn between ORFs within 10 kbp. Edge weights were calculated as the absolute 

distance between predicted peptide sequences within the contig. Node embeddings were 

initialised using the EnzymeBERT transformer. 

4.3.2.3 Training Tasks 

 Using a link prediction task, the RevGNN was trained to predict which peptides 

were spatially collocated. MiBiG 2.0 was used as the training dataset; the dataset contains 

trimmed nucleotide sequences corresponding to different biosynthetic gene clusters 

(BGC). [47] Genes found within a BGC have inherently related functionalities that are 

captured by EnzymeBERT. 

 For the link prediction task, a custom collator was used to randomly select a batch 

of 10 contigs and created a weighted network graph; collocated genes within the BGCs 

were represented as connected components. In addition, false edges were created using 

PyTorch Geometric’s negative sampling method. The dot-product of nodes embedded by 

the RevGNN was used to calculate the probability of an edge being real.[48] This task 

was trained for 400 epochs. To speed up training, Facebook’s 8-bit AdamW optimiser was 

used.[49] The results of the link prediction task training can be found in Section 4.4.2. 
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4.3.2.4 Post-Processing 

 While the EnzymeGNN model predicts spatial relationships between open reading 

frames, it does not provide direct inference between contigs. To create weighted edges 

between contigs in the same manner as BacterialT5, contigs are represented as nodes and 

weighted edges are drawn using pooled predictions of peripheral ORFs (encoded within 

10 kbp of the end of a contig). Weighted edges are calculated where the weight is equal to 

the total number of positive linkages divided by the total number of potential linkages. 

4.3.3 Integration of Neural Network Inference into the Unicycler Framework 

 Unicycler avoids reinventing the wheel and only optimises assembly where it can 

integrate new information.[12] The different strategies used for bridging are all assigned 

separate ranks and qualities depending on their source. Bridges are ranked by two factors, 

the strategy rank and the bridge quality score. Bridges are then applied in reverse order, 

where the least reliable bridges are applied first. To add the neural network inference to 

Unicycler, additional bridges were created reflective of the two strategies with their ranks 

and quality scores determined using hyperparameters optimisation. 

4.3.3.1 Adding Bacterial T5 and EnzymeGNN Inference to Unicycler 
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 In the modified Unicycler pipeline, after the initial assembly with SPADES, 

contigs were processed by BacterialT5.[14] The NSP classification head was used to 

predict which contigs should be spatially paired together. A bridge was created for every 

pair the BacterialT5 model classified as True. The probability of the pair being True was 

multiplied by a weight and assigned as the quality of the bridge. The bridge weight, the 

bridge weight cut-offs, the bridging strategy rank and other bridge-related variables were 

all assigned as dynamic hyperparameters for optimisation. 

 To add EnzymeBERT-GNN bridges, each contig was first mined for ORFs using 

Pyrodigal.[44] Each ORF was then embedded by EnzymeBERT and used to create a 

network graph where all peripheral ORFs were connected. The RevGNN model was then 

passed all of the edges and using the link prediction fine-tuning head, it determined which 

of the edges were correctly assigned. The dot-product probabilities were multiplied by a 

separate weight. As with the BacterialT5 bridges, all variables were assigned as dynamic 

hyperparameters for optimisation. 

4.3.3.2 Bridge Hyperparameter Optimisation with Weights and Biases Sweeps 

 To create the dataset for optimisation, a small ground truth dataset was created 

using in-silco sequencing data generated with InSilcoSeq.[50] Source contigs were 
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selected from an internal dataset of 1,061 BGCs. A total of 200,000 reads were generated 

for each BGC using the short-read error model “miseq”.  

 Alignment-based scoring metrics were too slow to optimise for robust assemblies 

quickly. As a heuristic, a novel metric was created called FuzzyAlign. To score the 

similarity of the two assembled contigs (ground truth versus Unicycler assembly), both 

sequences were first split into chunks of 500 base pairs. Each sequence was compared 

using the Levenshtein distance to create a distance matrix between the chunks.[51] Using 

the Hungarian method, a linear sum assignment was solved to determine which chunks 

were the most similar between the two sequences. [52] The indices were then compared 

with the Spearman correlation to score how similar the assigned indices are to one 

another. The package “FuzzyWuzzy” was used to score Levenshtein distances. The 

package SciPy was used for linear sum assignment and correlations.[53] 

 The sweeps tool designed by Weights and Biases was used to perform a bayesian 

hyperparameter optimisation.[54]  Every hyperparameter was optimised to maximise the 

FuzzAlgin score; there were a total of 783 iterations. After determining the optimal 

parameters, the pipeline was assigned static values. Results for the hyperparameter 

optimisation can be found in Section 4.4.3. 
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4.3.4 Experiments 

4.3.4.1 Comparison of different assembly strategies. 

 To identify the impact of the deep learning-based bridges on the assembly, 

QUAST was used to score different combinations of assembly tools on the BGC dataset. 

Assemblies were generated using BiosyntheticSPADES, Unicycler, Unicycler + Bacterial 

T5, Unicycler + EnzymeGNN, and Unicycler + EnzymeGNN with Bacterial T5.[55] 

Unicycler-modified pipelines used the base SPADES de Bruijn graph. Only incomplete 

assemblies from SPADES (i.e. more than one contig) were selected for QUAST scoring 

(n=521). Results can be found in Section 4.4.4. 

4.3.4.2 Publicly Available Datasets Reassembled with Multiplexed Non-Barcoded 
PacBio Long-Reads 

 While PacBio sequencing is more expensive per kilo base pair than Illumina 

short-read sequencing, there are multiplexing strategies that can greatly bring down the 

price. A protocol for non-barcoded multiplexed PacBio sequencing was recently released. 

First a putative genome is assembled using short-reads from Illumina sequencing of an 

isolate; this is done using Unicycler. Similar to strategy used in reference guided de novo 

assembly, the putative genome is used as a reference to align the multiplexed PacBio and 

create isolate pools; this is performed using minimap2. The Illumina reads and aligned 

PacBio reads are then used for hybrid assembly in Unicycer.[4, 56]  

136



Ph.D. Thesis - K. Dial

McMaster University - Biochemistry and Biomedical Sciences 

 We implemented this protocol in-house, by first performing a pooled, non-

barcoded PacBio sequencing run of multiple microbes of interest. Microbes were selected 

on the basis of publicly available genome availability. Short-read datasets were sourced 

from NCBI’s SRA database. The samples were prepped with the SMRTbell® Express 

Template Prep Kit 2.0. The PacBio read pools and publicly available Illumina reads were 

assembled using Unicycler and the NALA pipeline. Assembly metrics were generated 

using QUAST.[57] In addition, assembled were mined by PRISM 3 for BGCs and 

additional metrics were calculated.[58] Results from the assembly can be found in 

Section 4.4.5. 

4.3.4.3 Reassembly of Streptomyces orinoci DSM 40571 

 Streptomyces orinoci DSM 40571 was fermented in-house and a number of 

metabolites were isolated including Chymostatin A. The only publicly available genome 

Streptomyces orinoci DSM 40571 is “GCA_003121295.1”. The genome is highly 

fragmented with 44 contigs with an N50 of 434,919 bp and a sequence length of 

7,502,208 bp. There are multiple SRA projects available for Streptomyces orinoci DSM 

40571. An Illumina MiSeq project is available at SRX3418672 and a PacBio RS II 

project is available at SRX3418671. Using these two projects, we were able to perform a 

hybrid assembly using the NALA pipeline. The completed genome was mined by PRISM 
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3, annotated by IBIS and putative gene clusters was investigated. Results for the assembly 

can be found in Section 4.4.5. 

 A putative gene cluster for Chymostatin A was recently reported from 

Streptomyces mobaraensis.[59] While the gene cluster has not been added to MiBiG as 

yet, the UniProt IDs were published. To determine if the peptides were located in the 

reassembled genome, cstA-G were embedded by EnzymeBERT and the nearest neighbour 

from the reassembled Streptomyces orinoci DSM 40571 genome was located. Results 

from the IBIS analysis of the putative chymostatin gene cluster can be found in Section 

4.4.6. 

4.4 Results 

4.4.1 Bacterial T5 Training 

 During the pretraining of the BacterialT5 model, the loss plateaued after 7 epochs. 

A training session was started with a new dataset of genomes but was stopped early after 

no change loss was observed. The training and validation loss curves for span-masked 

language modelling of the BacterialT5 model can be found in Figure 4.3. During the next-

sentence prediction fine-tuning task on ORFs, the performance plateaued within 3 epochs 

at 96.129% accuracy. The next sentence prediction fine-tuning task on intergenic regions 

began to gain loss at the 14th epoch and was stopped early. The maximum accuracy 
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observed was 91.429%. Both loss and accuracy curves for NSP fine-tuning can be found 

in Figure 4.4. 

4.4.2 EnzymeGNN Training 

 The RevGNN with 20 layers performed better than the RevGNN with 40 layers. 

Performance plateaued around the 300th epoch. The maximum validation accuracy for 

the link prediction task observed was 85.236%. Validation loss and accuracy for the link 

prediction task across both architectures can be found in Figure 4.5 

4.4.3 Unicycler Hyperparameter Optimisation 

 Hyperparameter optimisation with the Sweeps framework calculated the most 

important features in the performance of the FuzzyAlign score. The feature with the most 

impact was the probability cut-off used to determine if an EnzymeGNN link should be 

reported as positive. Other trends observed were lowering the EnzymeGNN-based 

bridging cut-offs and increasing the quality weight of EnzymeGNN bridges. The opposite 

trends were observed for the BacterialT5 bridges. Results are summarised in Table 4.1. 

 The relationship of the maximum FuzzyAlign metric with N50, ORF count and 

segment count can be found in Figure 4.6. Optimising for other metrics would result in 
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lower alignment accuracies. The maximum observed FuzzyAlign score after 783 

iterations was 0.424 (Figure 4.7). 

4.4.4 Comparison of different assembly strategies 

 Across the different strategies, the modified Unicycler pipeline with Bacterial T5 

bridging resulted in the largest NA50, the smallest number of contigs, and the largest 

alignment. Biosynthetic spades capture the largest fraction of the genome but also had the 

most contigs with the lowest NA50. The plain Unicycler made the smallest number of 

misassembles while the modified Unicycler pipeline with Bacterial T5 bridging made the 

most.  

 To determine if the modified Unicycler pipeline was only making larger contigs 

because of misassemblies the metrics were recalculated using only assemblies containing 

no mistakes. In assemblies with no mistakes, Unicycler with BacterialT5 still outperforms 

the plain unicycler pipeline and BiosyntheticSPADES. With exclusively perfect 

assemblies, the combination of Unicycler with EnzymeGNN and Bacterial T5 bridging 

(NALA) resulted in the largest NA50. All metrics are summarised in Table 4.2. 

4.4.5 Hybrid Assembly of Publicly Available Genomes 
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 The NALA assemblies of the different bacterial strains result in larger contigs. An 

example of the bandage plots for DSM 22224 using the different strategies can be found 

in Figure 4.8. While Unicycler and SPADES maintain the circularisation of the de Bruijn 

graph, when the contigs are exported, they are shorter than those created by NALA. 

Unicycler and SPADES conserve more of the bacterial genome but result in more 

fragmented contigs. QUAST summary statistics of the NALA hybrid assemblies versus 

the original publicly available genomes are found in Table 4.3. In general larger N50s, 

larger contigs, fewer contigs and smaller genomes were observed for assemblies prepared 

by the NALA pipeline. 

 The effect the larger contigs had on genomic mining with PRISM 3 was 

summarised in Table 4.4. In general, we observed larger BGCs in the NALA assemblies. 

In the case of DSM 25239 and DSM 22224, we observed reduced fragmentation in the 

BGCs. An example of a highly fragmented NRPS/PK hybrid from DSM 22224 can be 

found in Figure 4.9. We also observed a recovery of PRISM 3 chemotyping for the highly 

fragmented DSM 40571 genome; an unknown thiotemplated BGC was reclassified as 

Type I Polyketide after NALA assembly. 

4.4.6 Chymostatin Biosynthetic Gene Cluster Discovery 
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 After mining the reassembled Streptomyces orinoci DSM 40571, the putative 

chymostatin gene cluster was annotated with adenylation domain substrates using IBIS 

(Figure 4.10). In comparison to the paper, 2 of the 3 predicted substrates were correct 

(phenylalanine and valine) [59]. Using the EnzymeBERT embeddings of the Steptomyces 

mobaraensis chymostatin gene cluster, euclidean distance nearest neighbour ORFs were 

found and summarised in Table 4.5. Besides the transcriptional regulator cstA, the 

remainder of the genes were found with a conserved gene order. 

4.5 Discussion 

4.5.1 Deep Learning Enhanced Assembly 

 We have demonstrated that deep learning models can be used to enhance bacterial 

genome assembly. Utilising information encoded on the genomic level and peptide level, 

we are able to create larger contigs and recover fragmented biosynthetic gene clusters. 

Our pipeline was able to outperform biosynthetic spades and unicycler in generating 

larger NA50s for our internal dataset of BGCs. The ability to robustly reassemble contigs 

with repetitive sequences was exemplified when our pipeline was able to rescue multiple 

thiotemplated BGCs across multiple genomes. In DSM 22224, NALA was able to pool 

the highly fragmented non-ribosomal BGCs into a single BGC resulting in the recovery 

of an additional condensation domain (Figure 4.10). In DSM 25239, the recovery of the 

contig provided enough information to enable PRISM to chemotype the Type I polyketide 
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that was previously annotated as an unknown thiotemplated BGC. NALA assemblies 

enable more robust genomic mining. In addition, we were able to locate the chymostatin 

BGC within our reassembled genome for Streptomyces orinoci DSM 40571. Within the 

Streptomyces mobaraensis genome, cstB-G span 13,820bp and within DSM 40571 they 

span 13,668 bp. Despite the misassemblies being made by the NALA pipeline, the spatial 

relationships for BGCs discovered within our reassemblies remain conserved.  

 While the NALA pipeline demonstrates remarkable recovery of information with 

short-read libraries alone, the mistakes introduced limit its propensity for superior 

performance. NA50s and average contig counts were optimally scored when no 

misassemblies were made. The major source of error in the NALA pipeline is 

BacterialT5. To maximise the size of contigs recovered, the Bacterial T5 model needs 

improvement. Upon closer inspection of misassemblies, relocation and inversion were the 

most common. Inversion is caused by BacterialT5 interpreting relationships observed on 

both strands. To compensate for this peculiarity, a gene direction-based correction step 

can be introduced. Relocations are rooted in a fundamental misunderstanding of inter-

gene spatial relationships. While EnzymeGNN was trained using network graphs of ORFs 

to understand spatial arrangements, BacterialT5 was not; this was done purposefully as 

teaching a transformer to interpret multiple contigs at once would be difficult. To mitigate 

BacterialT5’s naivety of intergenic relationships, a graph-based approach can be used 

similar to EnzymeGNN. Through the representation of contigs as nodes in a network 
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graph, a graph convolution network could be used to learn the conserved gene order 

relationships on a genomic level while still leveraging the resolution provided by 

BacterialT5. 

4.5.2 Rescue of Illumina Short-Read Assemblies with Targeted Sequencing 

 In this work, we also demonstrated an approach for rescuing the RefSeq 

assemblies comprised of only Illumina short-reads. NALA is able to flesh out larger 

contigs without PacBio information as demonstrated in Figure 4.8. The usage of deep 

learning-based inference can enhance Illumina short-read assemblies. If longer contigs 

are still needed, we demonstrated that publicly available PacBio datasets can be 

assembled with publicly available Illumina datasets. Our hybrid assembly of DSM 40571 

with exclusively publicly available datasets demonstrated there is a wealth of 

underutilised sequencing data. Microbes with multiple publicly available sequencing 

datasets should be subjected to reassembly to ensure the public has robust genomes 

available. Integration of our NALA pipeline can streamline this process. In addition, if no 

additional long-read data is publicly available, cheap PacBio sequencing can be 

performed strategically. The NALA pipeline was able to greatly enhance the quality of 

publicly available genomes using non-barcoded, multiplexed PacBio pools. In the case of 

DSM 19858, the genome went from 36 contigs to a perfect assembly. 
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4.5.3 Future work 

 We introduce completely novel deep-learning models in this work. BacterialT5 

can be used as a base for a variety of bacterial genomic-based problems. EnzymeGNN is 

the first model we have seen that uses a transformer-based embedding to instantiate the 

node embeddings. This approach can be used to leverage the latent space of a transformer 

while utilising the network relationships captured by a graph convolutional network. The 

architecture of the EnzymeGNN framework can be used in areas where relationships 

between peptide sequences need to be modelled (e.g. protein-protein interaction learning 

and enhanced biosynthetic gene cluster calling). Through the deconstruction of the 

Unicycler pipeline and the new FuzzyAlign metric developed, hyperparameter 

optimisation of genomic assembly is readily accessible. We demonstrated a highly 

scalable method for adding new inference-based brides to Unicycler. By following the 

protocols proposed in this paper, more tooling can be added to the Unicycler pipeline 

enabling a holistic approach to bacterial genome assembly. 
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4.5 Figures and Tables 

Figure 4.1 A stacked barplot showing the distribution of bacterial RefSeq genomes 
sequenced with a single platform, categorised by the submission year. There are 
thousands of legacy RefSeq genomes assembled with exclusively short-read Illumina 
sequencing technology. To compile the figure, RefSeq metadata was downloaded from 
the NCBI and manually cleaned using Tableau’s Prep Builder. The cleaned dataset was 
plotted using Tableau Desktop. 
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Figure 4.2 A stacked barplot showing the distribution of contig N50s for bacterial RefSeq 
genomes sequenced with a single platform. The majority of low N50 bacterial RefSeq 
genomes are those sequenced with exclusively Illumina short-read technology. To 
compile the figure, RefSeq metadata was downloaded from the NCBI and manually 
cleaned using Tableau’s Prep Builder. The cleaned dataset was plotted using Tableau 
Desktop. 
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Figure 4.3 Training and validation loss curves for span masked language modelling of the 
BacterialT5 model. After 7 epochs, the loss had plateaued. A training session was started 
with a new dataset of genomes but was stopped early after no change loss was observed. 
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Figure 4.4 Validation accuracy and validation loss curves for the next sentence prediction 
tasks. The NSP on open reading frame data plateaued within 3 epochs. The NSP on 
intergenic regions began to gain loss at the 14th epoch and was stopped early. 
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Figure 4.5 Validation Accuracy and Loss of the RevGNN model with 40 and 20 Layers. 
The maximum distance between NSP ORFs is 10,000 BP. 
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Table 4.1 Bayesian Hyperparameter Optimization result from sweeps. The most 
important factor for the FuzzyAlign scores was the minimum edge probability to declare 
whether or not a RevGNN predicted link was true. The higher the minimum link 
probability increased the accuracy of the bridge qualities and thereby increased the 
overall score.  RevGNN bridges introduce the least amount of misassemblies; increasing 
the weight of the bridges and decreasing the cut-off would allow for more RevGNN 
bridging. As BacterialT5 bridging introduced the most misassemblies, it would be 
beneficial to decrease the weights and increase the cutoffs, as quantified by the 
correlation scores. 

Importance Correlation

EnzymeBERT-GNN: Minimum Link Probability 0.844 0.474

EnzymeBERT-GNN: Bridge Quality Weight 0.052 0.168

BacterialT5: Bridge Quality Cut-Off 0.045 0.187

BacterialT5: Bridge Quality Weight 0.032 -0.162

EnzymeBERT-GNN: Bridge Quality Cut-Off 0.027 -0.023
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Figure 4.6 A sankey graph showing the relationship between maximising for Mean 
Segment Count, N50, Open Reading Frame Count and FuzzyAlign. Maximising for 
metrics other than FuzzyAlign resulted in more misalignments. 
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Figure 4.7 Bayesian optimisation of the bridge parameters to maximise the FuzzyAlign 
score. The maximum FuzzyAlign score observed was 0.424. The optimisation was 
stopped after 783 iterations. 
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Table 4.2 Averaged assembly statistics of an in-silico Illumina MiSeq sequenced dataset 
of (n=521) Biosynthetic Gene Clusters with at least 10x coverage calculated using 
QUAST. 

BiosyntheticSPAD
ES Unicycler Unicycler + GNN Unicycler + 

Bacterial T5
Unicycler + GNN 

+ Bacterial T5

Average NA50 47449 57087 56748 57601 57371

Average Number 
of Misassemblies 0.0475 0.0089 0.1840 0.5757 0.5163

Average Number 
of Contigs 2.944 2.388 1.807 1.395 1.525

Average Largest 
Alignment 49464 58074 57580 58345 58169

Average Genome 
Fraction (%) 98.279 93.476 92.741 92.549 92.677

Metrics Calculated with No Misassemblies Dataset

Average NA50 47469 57148 60716 64345 65720

Average Number 
of Contigs 2.833 2.334 1.528 1.180 1.204
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Figure 4.8 Bandage Plots for various assembly methods on DSM 2224. (A) The optimal 
SPADES assembly was created using a k-mer of 127 (B) The unicycler hybrid assembly 
used PacBio reads and Illumina short-reads alone. (C) NALA pipeline with only Illumina 
short-reads (D) NALA pipeline with PacBio long reads and Illumina short-reads. 
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Table 4.3 QUAST assembly statistics of the hybrid reassemblies using the deep-learning 
guided assembly pipeline versus the original publicly available genome. 

DSM 19858 DSM 22224 DSM 25239 DSM 40571

NALA Original NALA Original NALA Original NALA Original

# of contigs 1 36 8 30 47 180 13 44

Largest contig 5066218 1274834 4113956 2381325 881154 200475 3155585 1759048

Total length 5066218 5036817 8544136 8552642 7339869 7356379 7359118 7502208

GC (%) 47.11 47.08 50.44 50.44 60.84 60.75 70.89 70.79

N50 5066218 475669 2378568 2168259 276498 78320 1040784 434919
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Table 4.4 Gene Cluster Assembly Statistics Generated Using PRISM for Publicly 
Available Genomes versus New Genome. 
 

DSM 19858 DSM 22224 DSM 25239 DSM 40571

NALA Original NALA Original NALA Original NALA Original

Number of BGCs 2 2 21 27 1 2 23 23

Average BGC 
Length 20969.00 20969.00 24298.19 18516.93 40073.00 23750.50 26110.13 25936.13

Butyrolactone - - - - - - 1 1

Non-Ribosomal 
Peptides 1 1 12 18 - - 5 5

NRP-Type I PK 
Hybrid - - 4 4 1 1 3 3

NIS-Synthase - - 1 1 - - 1 1

Resorcinol 1 1 - - - - - -

Ribosomal - - 3 3 - - 3 3

Terpene - - 1 1 - - - -

Type I Polyketide - - - - - 1 8 7

Type II Polyketide - - - - - - 1 1

Unknown - - - - - - 1 2
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Figure 4.9 The recovered NRP-PK Hybrid biosynthetic cluster from DSM 2224 using the 
deep learning guided assembly. The fragmented gene clusters from the hybrid assembly 
alone are highlighted by their corresponding colours. 
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Figure 4.10 The Chymostatin BGC discovered within Streptomyces orinoci DSM 40571 
(contig 3 at 180,440 to 306,289). Using IBIS-LLMs, the adenylation domain substrates 
were predicted. Phenylalanine and Valine were both correctly predicted by the 
Adenylation T5 model. 
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Table 4.5 Chymostatin biosynthetic gene cluster found in Streptomyces mobaraensis and 
related peptide sequences discovered in Streptomyces orinoci DSM 40571 using 
EnzymeBERT euclidean distances. The only gene not found was the transcriptional 
regulator cstA. The relative sizes of the gene clusters were conserved with cstB-G 
spanning 13,820bp in the source genome versus 13,667 in DSM 40571. 

Steptomyces mobaraensis Streptomyces orinoci DSM 40571

Gene UniProt 
code

Protein 
Length (aa)

Start End Protein 
Length (aa)

Start End

cstA M3BF97 169 18103 18612 - - - -

cstB M3C2P0 416 18942 20192 421 292622 293888 5.73

cstC M3C2S2 422 20262 21530 427 293960 295244 37.23

cstD M3AXD2 1035 21674 24781 1045 295323 298461 5.50

cstE M2ZZP2 385 24778 25935 385 298457 299615 2.11

cstF M3BFA2 1387 25990 30153 1326 299669 303650 22.01

cstG M3C2P6 870 30150 32762 880 303646 306289 22.66

dEnzymeBERT
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Chapter 5: Prediction of Metabolite Activity 

5.1 Chapter Preface 

 Our lab was engaged in a joint collaboration to find new human microbiome 

metabolites. We worked with Dr Michael Surette’s lab to mine out human microbiome 

BGCs using culture-enriched metagenomes to guide isolation efforts. Nishanth Merwin 

performed all genomic mining of the metagenomes using PRISM 3. There were 

thousands of novel BGCs but no criteria on which BGCs to select for. During the time of 

the collaboration, a similar initiative was taking place with the NIH’s integrated Human 

Microbiome Project (iHMP). I developed a pipeline to leverage the iHMP data to deduce 

which of the BGCs would be active. 

 I developed the metatranscriptomic pipeline based on advice I had received from 

colleagues at an NCBI-sponsored hackathon. I developed the method for mass-matching 

microbial metabolites based on advice from Dr Haoxin Li. I developed the proteomics 

matching pipeline based on standard protocols for peptide identification. I developed the 

statistical protocols for data fusion, linear regression modelling and gene ontology 

enrichment from advice provided by Dr Benjamin Haibe-Kains. 

 Developing the deep learning model for the discovery of the bacteriocins was a 

collaborative effort. I designed the deep learning framework for multi-task training of the 

ProtT5 transformer and all custom fine-tuning heads. The NLPPrecursor dataset was 
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curated by Nishanth Merwin. The bacteriocin dataset was a joint curation effort between 

myself, Nishanth Merwin, Bilal Athar, Dr Walaa Mousa, and Mathusan Gunabalasingam. 

The putative bacteriocin from Scardovia was initially mined out using an HMM-based 

protocol. HMMs were built using a workflow I created in collaboration with Nishanth 

Merwin. Upon the development of my LLM-based approach to peptide comparison, I 

replaced the HMM workflow with the vector database approach described. 

5.2 Abstract 

 Human microbiota have demonstrated profound effects on the health of their 

hosts. To study the host-microbial relationship, a variety of integrated multi-omic datasets 

have been released publicly. We present a pipeline to disentangle the complex 

relationships between different -omics data using statistics. Our pipeline, MANGO 

(Microbiome Associated Natural-product Gene Ontology) can be used to predict the gene 

signature of a microbial metabolite using the host-transcriptomic data and heuristic 

measures for the molecule of interest. Using metabolomics, proteomics and 

metatranscriptomics we demonstrate three separate approaches for modelling the host-

metabolite relationship. 

5.3. Introduction 

 Encoded microbial metabolites can be readily discovered using genomic mining 

platforms such as PRISM and AntiSMASH. [1, 2] Microbial metabolites have a wide 

variety of therapeutically relevant properties such as antimalarial, anticancer, and 
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antiviral.[3] It is of great interest to screen encoded metabolites for activity before 

isolating the compound. Typically, the prediction of a molecule’s activity would be 

performed using Quantitative Structure-Activity Relationship (QSAR) approaches. QSAR 

frameworks are heavily dependent on the molecular structures’ accuracy.[4-6] While both 

genomic mining platforms can produce probable scaffolds, a large combinatoric space is 

required due to the limited predictability of tailoring enzymes.[1, 7] It is not feasible to 

run every permuted structure through a QSAR framework. 

 PRISM 4 instead approaches activity prediction by using molecular fingerprinting 

techniques to find related active compounds.[8] The approach is limited to structures 

PRISM has been developed to characterise and is highly dependent on the accuracy of the 

predicted structure. [7] Moving away from chemical structures, Walker and Clardy 

propose an approach using a machine learning classifier trained on PFAM annotations of 

BGCs.[9] In the same vein, DeepBGC used a deep learning model to embed BGC 

enzymes and train a classifier to predict antibiotic activity.[10] While both strategies are 

promising, the lack of BGCs with annotated activities limits the practicality and 

scalability of both approaches. 

 The human microbiome is a unique environment where the synthesis of microbial 

metabolites inherently affects the host’s phenotype. The origins of some human diseases 

are attributed to dysbiosis of the gut.[11] One of the known mechanisms by which these 
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bugs are affecting our health is via secondary metabolites such as butyrate.[12] Recently a 

multi-omics dataset was released for the human microbiome.[13] The Integrative Human 

Microbiome Project (iHMP) is a longitudinal study carried out over ten years with 

comprehensive data catalogued for the human microbiome. There are various sources of 

data that were catalogued including disease state, inflammation measures, host 

transcriptomics, gut metatranscriptomes, gut metagenomes and more. The dataset allows 

for a comprehensive approach to studying the interaction of human microbiota with the 

host. 

 In this work, we introduce a statistical pipeline for detangling and integrating the 

multi-omics datasets from iHMP to perform in-situ activity prediction of microbial 

metabolites. Our pipeline named MANGO (Microbiome Associated Natural-product 

Gene Ontology) uses heuristic measures of encoded metabolites and host transcriptomic 

modulations to decode potential microbial metabolite activities (Figure 5.1). We 

demonstrate three techniques for integrating multi-omics data with host transcriptomics: 

(1) Quantifying biosynthetic expression using gut metatranscriptomic data, (2) 

quantifying metabolites using mass matching in gut metabolomic data, and (3) 

quantifying bacteriocins using gut proteomics data. Our approach focuses on the dynamic 

relationship of microbial metabolism and its influence on the host’s transcriptome. 
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5.4 Methodology 

5.4.1 Mining the Human Gut Metatranscriptome for Biosynthetic Gene Clusters 

 Typically human microbiome metagenomes are not useful for genomic mining. 

Previously metagenomes from the Human Microbiome Project were mined but only eight 

thiopeptide clusters were found.[14] Instead, we used four metagenomes generated from 

human faecal samples using culture enrichment. [15] Three of the samples were carried in 

mice before sequencing; the change in host resulted in less microbiota diversity. The four 

metagenomes were then run through PRISM 3 to find all biosynthetic gene clusters 

(BGCs). [1] Mined gene clusters were then quantified in terms of expression using 

metatranscriptomic datasets. To use the BGC expression as a heuristic approximation of 

metabolite production, we made the assumption only ORFs within a gene cluster 

containing biosynthetic domains would be necessary (i.e. immunity and regulator gene 

expression may not be representative of the amount of metabolite produced). With this in 

mind, only biosynthetic transcripts were quantified. 

 All non-redundant biosynthetic open reading frames (ORFs) were compiled into a 

template file for transcript quantification (n=1,188). Microbial transcript quantification 

was calculated using the quasi-mapping software SALMON.[16] Quasi-mapping is much 

faster and sometimes more accurate than traditional alignment. For the multi-omics 

analysis, the metatranscriptomic samples (sequenced from human faecal matter) with 
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corresponding human transcriptomic samples (sequenced from bowel biopsy) were 

downloaded from IBDMDB (n=737).[17]  Quantification was reported in Transcripts Per 

Million (TPM). An algorithm for cross-sample normalization was found in the R package 

SLEUTH.[18] It was reimplemented in Python and was used to normalise the results from 

SALMON. BGCs expressed in the IBDMDB dataset were selected for downstream 

analysis with MANGO. Results are found in Section 5.5.1. 

5.4.2 Mining the Human Gut Metabolome for Microbial Metabolites 

 Faecalibacterium prausnitzii is the most abundant bacterium in the human 

intestinal microbiota of healthy adults. It represents more than 5% of the total bacterial 

population. It is associated with improving gut health through its anti-inflammatory 

properties.[19, 20] We isolated a novel compound from Faecalibacterium prausnitzii 

(Figure 5.2). Its structure is related to butyrate and from our in-house testing, 

demonstrated anti-inflammatory activity.[21] To see if the Faecalibacterium prausnitzii 

metabolite is implicated in gut health, we mined out the abundance of the metabolite 

across publicly available data downloaded from IBDMDB.[17] Only gut metabolomics 

data (extracted from human faecal matter) with corresponding overlapping human 

transcriptomic samples (sequenced from a bowel biopsy) were used. The mass 

spectrometry results were downloaded in RAW format. Using Proteowizard, the spectra 

were processed and converted to mzML format.[22] All mzML files were parsed using 
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the XML package in Python. The perform mass matching, the monoisotopic mass for the 

Faecalibacterium prausnitzii compound, and the masses for additional adducts were 

calculated. The samples were run on an Orbitrap mass spectrometer; the mass 

measurement accuracy (MMA) according to the manufacturer's specification is 1-5 ppm.

[23] With regard to this threshold, we mass-matched the compound and adducts with an 

error threshold of 5ppm across the metabolomic datasets. The relative abundance values 

of matching peaks were selected for downstream analysis with MANGO. Results are 

found in Section 5.5.2. 

5.4.3 Linear Regression of Faecalibacterium prausnitzii compound and SSCAI 

 Upon metabolite matching, it was observed that the Faecalibacterium 

prausnitzii compound was in higher numbers within healthy patients versus ulcerative 

colitis patients (Figure 5.3). A linear model was fit to determine if there was a linear 

relationship between the Faecalibacterium prausnitzii compound and a decrease in the 

symptomology of UC.  The Simple Clinical Colitis Activity Index (SSCAI) is a measure 

of the severity of symptoms in patients with Ulcerative Colitis (UC).[24] For the linear 

regression model, the independent variable was the relative abundance of peaks matching 

the Faecalibacterium prausnitzii compound and the dependent variable was the SSCAI. 

Results are found in Section 5.5.3. 
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5.4.4 Mining the Human Gut Proteome for Bacteriocins 

 To find the abundance of bacteriocins within the human gut proteome, we first 

needed to create a dataset of human microbiome bacteriocin peptide sequences. We 

compiled a dataset of microbes isolated from the human microbiome and mined out 

putative bacteriocin peptides. After the sequences were mined out, a proteomics analysis 

pipeline was used for quantification within the IBDMDB dataset. 

5.4.4.1 Mining bacteriocin sequences from human microbiome associated genomes 

 We designed a pipeline for mining bioactive peptide compounds from microbial 

genomes using a transformer trained on our NLP-Precursor dataset. NLP-Precursor was a 

software designed to classify input peptide sequences as a class of Ribosomally encoded 

Post-translationally modified Peptide (RiPP) and predict the locations that will be 

trimmed within the propeptide.[25] As a base transformer, we selected the encoder from 

the ProtT5 model.[26] Two custom fine-tuning heads were made to train the ProtT5 

model on RiPP classification. For token classification, a custom fine-tuning head was 

made with an integrated conditional random field layer (CRF). To fine-tune sequence 

classification, a modified RoBERTa head was used. The sequence classification head was 

used for whole peptide sequence RiPP classification. The token classification head was 

used to classify individual residues for trimming. Tokenisation used the stock ProtT5 

tokenizer. Multiple training strategies were implemented to maximise performance: (1) 
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Both tasks were trained separately, (2) Both tasks were trained together and (3) The 

model was first fine-tuned for the RiPP classification task, and then multi-task fine-tuned 

for RiPP and residue classification. Results for training can be found in Section 5.5.4. 

 To find putative bacteriocin sequences, a vector database of reference bacteriocin 

embeddings was created. To create this, we first hand-curated a dataset of bacteriocins 

from the literature. Each bacteriocin peptide sequence was then embedded using the fine-

tuned transformer. The embeddings were stored in a vector database and indexed with a 

flat inverted file index, optimised for Euclidean distance searches. Using Pyrodigal, 

peptide sequences were predicted from the human microbiome strain Scardovia wiggsiae 

F0424.[27] Using the vector database of bacteriocins, we found a peptide sequence highly 

related to the bacteriocin class II aureocin-like peptides (Section 5.5.5). [28, 29] The 

putative bacteriocin peptide sequence was synthesised and screened for activity. It 

demonstrated anti-inflammatory and anti-microbial activity (Section 5.5.6). We chose this 

peptide to explore proteomics abundance. 

5.4.4.2 Mining Scardovia Bacteriocin Abundencies from Human Microbiome 

 Proteomics samples (extracted from human faecal matter) with corresponding 

human transcriptomic data (extracted from human bowel biopsies) were downloaded 

from IBDMDB.[17] The mass spectrometry results were downloaded in RAW format. 
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Using Proteowizard, the spectra were centroided and converted to mzML format.[22]  

MS-GF+ was used with a decoy library to detect peptide matches.[30] The calculated 

relative abundances of matched peaks were selected for downstream analysis with 

MANGO. Results can be found in Section 5.5.6. 

5.4.5 Mango Processing of Samples 

 The MANGO statistical pipeline starts with fitting a series of linear regression 

models. Input abundances (measured through mass matching, proteomics, or 

metatranscriptomics) are treated as the independent variable. The abundance of each 

human gene’s expression (found in the host-transcriptomic data) is treated as the 

dependent variable. The relationship tested is whether or not the measures of microbial 

metabolite are linearly related to the host system’s modulation. In cases where there are 

multiple quantities of the metabolite to be tested (e.g. multiple metabolomic peaks, 

multiple ORFs used in biosynthesis etc.), the independent linear regression tests for each 

of the different quantities can be combined using the data fusion technique called Fisher's 

combined probability test.[31]  

 There are hundreds of thousands of linear regression tests occurring in the 

pipeline. When too many inferences are made at the same time, there is a higher chance 

of erroneous inferences occurring; this is a case of the “multiple testing problem”. 
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Multiple methods have been developed to correct this. We chose to use the Holm-Sidak 

post-hoc test to adjust p-values because it has more power than Bonferroni and Tukey 

methods.[32] Human genes significantly associated with the metabolite abundances after 

correction were considered a part of the gene signature. The PANTHER Enrichment web 

API is then used to perform a gene ontology enrichment analysis.[33] It will report the 

most enriched GO terms and a level of significance for a provided list of genes. 

5.5.6 Supplementary Methods - Antimicrobial activity and determination of the 
minimum inhibitory concentration of Scardovia wiggsiae bacteriocin 

The Scardovia wiggsiae bacteriocin was synthesized by GenScript (Piscataway, NJ, USA) 

and the primary structure was validated by LC/MS/MS. We conducted the antimicrobial 

screen using Clostridium difficile DSM 27147 [Ribotype 027, producer of toxins A and B 

(tcdA and tcdB) the binary toxin (ctdA and ctdB)] maintained on carbohydrate chopped 

meat (CCM) agar medium supplemented with 5% defibrinated horse blood (SR0050, 

ThermoScientific). The medium composition is 30 g/L peptone, 5 g/L yeast extract, 5 g/L 

K2HPO4, 4 g/L glucose, 1 g/L cellobiose, 1 g/L maltose, 1 g/L starch, 4 ml/L resazurin 

solution (0.025%), 15 g/L agar. The volume is made up of 1 litre of chopped meat broth 

composed of 500 g/L fat-free ground beef boiled with 25 ml/L NaOH (1N) and deionized 

water of up to 1 litre. As a preliminary screening to assess if the bacteriocin possesses 

anti-C. difficile activity, we conducted an agar well diffusion assay. Briefly, 10 µl of the 

overnight actively grown culture of C. difficile DSM 27147 were plated on the top of 
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CCMA plates then holes were punctured in the agar using a sterile glass pipette and 20 µl 

of 1-5 µM Scardovia peptide was applied into the holes. The plates were incubated 

anaerobically at 37 °C for 24 h. Thereafter, plates were screened for any developed zone 

of inhibition. To determine the minimum inhibitory concentration (MIC) of Scardovia 

peptide, we conducted a broth microdilution antimicrobial assay in 96-well microlitre 

plate. Briefly, a single colony of C. difficile DSM 27147 grown for 48 h in CCM agar 

supplemented with 5% defibrinated horse blood was inoculated into CCM broth for 24 h 

and then diluted with the same medium to 1: 10,000. Thereafter, 196 µl of this inoculated 

medium were added to each well, and 4 µl different serial dilutions of Scardovia peptide 

were added to the well resulting in the final concentration range starting from 100 µM to 

100 nM. Blank control wells contain 196 µl non-inoculated CCM broth and 4 µl DMSO 

(solvent used to solubilize Scardovia peptide). Positive control was the wells containing 

196 µl inoculated CCM broth and 4 µl DMSO. The FDA-approved antibiotic, 

fidaxomicin (1µM) was used as a positive control. The plates were incubated 

anaerobically at 37 °C. After 24 h, the OD600 of each well was measured with a 

microplate reader. Thereafter, MIC100 and MIC 50, defined as the lowest concentration 

of the peptide that results in 100% and 50% growth inhibition, respectively, were 

measured. Each concentration was tested in triplicates and the entire assay was repeated 

independently in duplicates. The percentage of growth inhibition was determined 

according to the following equation: 
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 %inhibition = 1 −
OD600test − OD600blank medium

OD600pathogen only − OD600blank medium
× 100
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5.5 Results 

5.5.1 BGC Gene Signatures 

 A total of 339 BGCs were mined from the culture-enriched metagenomes. Only 

31 of 737 samples had demonstrated some for the mined BGCs. A total of 62,345,270 p-

values were calculated using the linear regression between human transcripts and 

microbial ORF expression. After data fusion into the 339 BGCs, a total of 18,904,335 

linear regression p-values remained. After p-value correction, 166 BGCs had statistically 

significant gene signatures. Three of the BGCs with bioactivities similar to those 

catalogued in human microbiota literature are explored. 

5.5.1.1 Vasodilation/Vasoconstriction  

For one of the BGCs, the GO Terms most enriched were:  

• “detection of stimulus involved in sensory perception”  

• “detection of chemical stimulus involved in sensory perception of smell’  

• “detection of chemical stimulus involved in sensory perception”  

 These terms were tied to the olfactory receptor and taste receptor genes: OR51A4, 

OR14A2, OR13C3, TAS2R13, OR11H1 and OR5H15. Olfactory receptors act as 
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chemoreceptors throughout the body. In mice, SCFAs produced by the gut microbiota, act 

as olfactory receptor agonists to modulate blood pressure via renin secretion.[34] SCFAs 

will cause vasodilation in the human colon (in vitro). [35] Studies have shown direct 

correlations between microbiota-derived metabolites and blood pressure but have not 

discovered the pathway. [36] It is possible this encoded metabolite is modulating blood 

pressure in human hosts through an olfactory receptor-related pathway.  

 Enriched terms for another BGC were also associated with vasodilation albeit in a 

more straightforward manner:  

• regulation of blood vessel diameter  

• regulation of tube diameter  

• regulation of blood vessel size  

• regulation of tube size  

• vascular process in the circulatory system  

• regulation of blood pressure  

 MANGO has found secondary metabolites produced by microbes to modulate 

blood pressure.  
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5.5.1.2 Inflammation and Fatty Acid Oxidation  

The top enriched terms for a potentially multi-functional BGC metabolite were:  

• regulation of interleukin-1 alpha production  

• inflammatory response  

• negative regulation of fatty acid oxidation  

• regulation of chemokine secretion  

 Immunomodulation is a well-documented activity associated with human 

microbiome-derived metabolites, especially using short-chain fatty acids (SCFAs). 

[37-39] Another study suggested microbes may regulate fatty acid oxidation to increase 

the fatty acids’ bioavailability. [40] The metabolite encoded is influencing inflammation, 

possibly by preventing the breakdown of the SCFAs.  

5.5.1.3 Cancer  

One BGC appears to act on known chemotherapeutic pathways:  

• ERBB2-ERBB3 signalling pathway  

• ERBB3 signalling pathway  

• G protein-coupled receptor signalling pathway  
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• non-canonical Wnt signalling pathway via JNK cascade non-canonical Wnt 

signalling pathway via MAPK cascade  

 HER2 (ERBB2) and HER3 (ERBB3) are prominent targets in breast cancer.[41]  

Bacillus polyfermenticus was shown to stop tumour cell growth by acting on HER2 and 

HER3.[42] The metabolite encoded in this BGC may be similar to that of B. 

polyfermenticus. GPCR signalling is known to interact with MAPK/JNK (MAPK8). [43] 

HER2 also interacts with Wnt signalling. The Wnt signalling pathway is tightly 

associated with the carcinogenesis of colorectal cancer.[44] Inhibition of Wnt signalling 

killed HER2 breast cancer stem cells in vivo.[45] If this metabolite is able to knock down 

Wnt signalling it would be a viable breast cancer and colon cancer therapeutic.  

5.5.2 Metabolite Enriched Terms 

 The compound was found in 80.4% of samples. A total of 10 separate 

monoisotopic masses within the error threshold were matched to the Faecalibacterium 

prausnitzii compound. One of the masses was associated with the modulation of a large 

number of genes (n=294). The mass matched the M+H adduct. The gene ontology 

enriched terms were: 

• negative regulation of activation of Janus kinase activity   
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• negative regulation of cytolysis by symbiont of host cells 

 The JAK/STAT pathway is a common target for inflammation.[46-48] 

Therapeutics developed to knock down Janus kinase have demonstrated effectiveness in 

ulcerative colitis.[48] The GO terms are reflective of anti-inflammatory activity and 

regulation of the human cells by the microbe. 

5.5.3 Metabolite Relationship with Ulcerative Colitis 

 The relative abundance of the Faecalibacterium prausnitzii metabolite was shown 

to have a negative linear relationship with symptomology in Ulcerative Colitis ( -0.231, p 

< 0.005 ). When the compound is present, inflammation is reduced. 

5.5.4. RiPP Transformer 

5.5.4.1 RiPP Classification Task 

 When trained alone RiPP Classification was able to hit 98% accuracy within 500 

training steps. Its maximum performance was 99.09% accuracy on the test set. When 

trained in combination with the trimming head, performance is only able to hit a 

maximum accuracy of 82.06%. When the trained RiPP classification head was retrained 

with multi-task fine-tuning, it resulted in a maximum accuracy of 91.87%. (Figure 5.4) 
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5.5.4.2 Propeptide Trimming Task 

 When trained alone, the propeptide trimming head was only able to hit a 

maximum accuracy of 66.13%. When trained in combination with the RiPP Classification 

task, it was able to hit a maximum accuracy of 98.87%. The multi-task fine-tuning with a 

pre-trained RiPP classification head was able to reach 99.0% accuracy. (Figure 5.5) 

5.5.5 Scardovia wiggsiae peptide relatedness 

 The ProtT5 model fine-tuned on RiPP classification determined the most related 

neighbour for the peptide as Epidermicin NI01 with a Euclidean distance of 3.926. After 

alignment with PRANK, its shared percentage identity was most conserved with Lactocin 

Z (58%). Both bacteriocins are a part of the Class II family. Other relatives and their 

alignments visualised with MView are found in Table 5.1.[49] 

5.5.6. Peptide Enriched terms 

 The putative bacteriocin was found in 55% of human proteomic samples. The 

peptide was statistically significantly associated with 72 genes. The GO terms enriched 

were: 
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• negative regulation of toll-like receptor 7 signalling pathway 

• negative regulation of interferon-alpha production 

 Both the toll-like receptor 7 pathway (TLR-7) and interferon-alpha (IFN-α) 

production are tied to inflammatory responses.[50, 51] IFN-α regulates the inflammation 

response and is typically associated with inducing viral clearance.[51-53] While some 

bacteriocins are capable of stimulating IFN-α production, none have shown the ability to 

knock it down.[54] Overstimulation of the TLR7 pathway and IFN-α are associated with 

autoimmune disorders including lupus.[55, 56] Peptide compounds, such as Thiostrepton, 

inhibit inflammation by modulating the TLR7 pathway.[54] Knockdown of these 

pathways would result in an anti-inflammatory response. 

5.6 Discussion 

 In this work, we demonstrated a novel use of the iHMP data. While the IBDMDB 

metagenomes are insufficient for genomic mining, using biosynthetic gene clusters 

extracted from similar niches, we can still leverage the multi-omics data. The BGCs we 

mined from the culture-enriched metagenomes, we expressed in the publicly available 

data. MANGO was able to predict gene signatures for many of the BGCs. With the 

popularisation of metagenome-assembled genomes (MAGs), larger contigs are now 
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available for genomic mining of human microbiota.[57] MANGO can be used to guide 

microbe isolation efforts based on predicted activities encoded in the MAGs. 

 While the processed metabolomics data of IBDMDB had very few metabolite 

matches, the raw data had untapped potential. By profiling the mass spectra with a 

molecule we knew was produced by human microbiota, we were able to derive a gene 

signature reflective of its activity. As genomic mining tools get better at structure 

prediction, this approach can be used to deduce if the encoded metabolite is produced in 

situ and what potential host effects it can induce. We can also use this approach to directly 

investigate which metabolite is the active agent of a living medicine. Faecalibacterium 

prausnitzii is known as a staple for a healthy gut and various molecules have been 

proposed as mechanisms of action. Our approach allowed for the direct quantification of 

our active metabolite and its effect on the host's system in situ. In addition, the use of 

patient metadata facilitated the discovery of the metabolite as a potential mechanism for 

reduced symptomology in UC patients when Faecalibacterium prausnitzii is present. 

Beyond using mass-matching in MS1 data, utilisation of cosine distances in tandem mass 

spectrometry data would give this approach more resolution.[58] The data fusion of MS2-

related peaks will increase the robustness of host modulation testing. 

 Beyond mass matching, we demonstrated a proteomics-directed pipeline for the 

deduction of active peptide compounds. Using the fine-tuned ProtT5 transformer, active 
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peptide products (RiPPs and bacteriocins) can be mined from microbial genomes. When 

mined from microbes found within the human microbiome, IBDMDB proteomics 

datasets can be used to determine whether or not the peptide exists in situ. MS-GF+ 

quantified peptides can be used in conjunction with MANGO to create gene signatures 

capable of accurately predicting peptide activity. The small size and cheap cost of peptide 

synthesis make this a lucrative approach for finding new bioactive compounds. Other 

metabolites require accurate structure prediction and potentially expensive synthetic 

reactions to produce the encoded metabolite. Our pipeline facilitates a straightforward 

approach for scalable bioactive peptide production. 

 While this dataset was dedicated to the understanding of the human microbiome, 

it can also be used to answer more nuanced questions about secondary metabolism in 

microbes. As more metabolites are isolated from the human microbiome, exploration of 

the relationships between gene cluster transcription, translation and biosynthesis of the 

metabolite can be explored. The regulation and silencing of expressed gene clusters are 

still poorly understood; integrated datasets such as this can facilitate their investigation.

[59, 60] 

 The iHMP datasets are a rich and valuable resource for understanding microbial 

metabolism and host interactions. The MANGO pipeline demonstrates complex 

relationships can be fleshed out using simple statistics. While the human microbiome was 
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the use case for these three applications, the MANGO pipeline can be applied to other 

integrated datasets. Environmental datasets with metatranscriptomic data and plant 

phenotypes would be useful in detangling the complex interplay between crops and their 

microbial symbionts.[61-63] We hope the success of the IBDMDB datasets inspires the 

public release of more integrated datasets. 
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5.7 Figures and Tables  

Figure 5.1 Visualization of the MANGO statistical pipeline for a single biosynthetic gene 
cluster. (A) Using the least squares approach, individual biosynthetic ORFs are fit to a 
linear regression model, where each human gene is the dependent variable and the 
normalized quantity of ORF transcript is the independent variable. (B) The significance of 
each model is combined using Fisher's combined probability test creating p-values 
representative of the relationship between the whole BGC to the human genes. (C) Due to 
the high number of comparisons being made, these values are corrected using the Holm-
Sidak Post-hoc test. (D) A level of significance is chosen and the corrected p-values are 
assessed. Genes that pass are considered a part of the gene signature. (E) The PANTHER 
Enrichment web API is used to perform a gene ontology enrichment analysis. It will 
report the most enriched GO terms and a level of significance for a provided list of genes. 
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Figure 5.2: Structure of (A) F. Prau compound and (B) Butyrate.  
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Figure 5.3 The Faecalibacterium prausnitzii compound’s abundance across different 
patient subgroups. While it is mostly found in healthy patients, there are cases when the 
metabolite is also found in large amounts in ulcerative colitis patients. 
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Figure 5.4 The RiPP Classification head was able to hit near-perfect performance within 
the first 100 training steps when trained alone. When trained with the Propeptide 
trimming head, the performance of this task was degraded. This degradation was evident 
even when pretrained to near-perfect performance before being returned with the 
trimming head.  
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Figure 5.5 The Propeptide trimming head struggled to reach past 65% accuracy when 
trained alone. When combined with the RiPP classification head, the shared information 
brought near-perfect performance within 100 steps. 
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Table 5.1 The Scardovia peptide aligned with PRANK against its nearest neighbours 
according to the ProtT5 model fine-tuned for RiPP compounds. Percentage identities and 
alignments were visualised with the EBI’s MView web tool. 
  

Bacteriocin Sequence dRiPP
% 

Identity

Scardovia Peptide MGAFFRLLSILARYGARAVQWAWAHRGTVLRWIGAGQAIDWVIKQIKRLLGIR - -

Epidermicin NI01 MAAFMKLIQFLATKGQKYVSLAWKHKGTILKWINAGQSFEWIYKQIKKLWA-- 3.926 49.0%

Aureocin A54 MS-WLNFLKYIAKYGKKAVSAAWKYKGKVLEWLNVGPTLEWVWQKLKKIAGL- 3.957 34.6%

Bacterocin 31 MGAIAKLV---AKFGWPIVKKYYKQ---IMQFIGEGWAINKIIDWIKKHI--- 4.974 30.0%

Lacticin Q MAGFLKVVQLLAKYGSKAVQWAWANKGKILDWLNAGQAIDWVVSKIKQILGIK 6.306 54.7%

Enterocin 7B MGAIAKLV---AKFGWPFIKKFYKQ---IMQFIGQGWTIDQIEKWLKRH---- 8.336 28.6%

Lacticin Z MAGFLKVVQILAKYGSKAVQWAWANKGKILDWINAGQAIDWVVEKIKQILGIK 8.590 58.5%
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Chapter 6: Significance and future prospective  

Throughout this body of work, I demonstrated how the field of natural products research 

can borrow techniques used in natural language processing, and more broadly deep 

learning, to improve and accelerate common workflows. While the use of tried and true 

technology like BLAST and profile Hidden Markov Models is not harmful to the 

inferences made, it does bottleneck progress. As we move into an era of artificial 

intelligence and big data, pioneering new methods to integrate these technologies is 

pertinent to keep up with the rate at which data is being generated. 

I developed a series of pipelines and workflows capable of finding novel microbial 

metabolites. Using NALA, a robust bacterial genome can be assembled. Using IBIS, the 

bacterial genome can be mined for molecules encoded in BGCs. Combining this software 

with our in-house software BEAR, a putative structure can be predicted. Using NP-BERT 

similar scaffolds can be found. Using my RiPP transformer encoded bioactive peptides 

can be found and compared. If the putative molecule or the gene cluster is found in the 

human microbiome, MANGO can be used to predict the metabolite’s gene-drug 

signature. Using my tooling, a completely data-driven approach to microbial metabolite 

discovery can be taken. 
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In this work, I provided solutions for genomic mining that are scalable and easily 

extensible. I purposefully followed strict software engineering principles and industry 

standard documentation practices, to ensure the software’s longevity and sustainability. 

The ability to add enzymes, bacteriocins and additional substrates with ease to IBIS and 

RiPP T5 ensures predictions will never be out of date. The high-level frameworks I 

designed for the retraining of BacterialT5 and EnzymeGNN, ensure robust assemblies as 

more diverse genomes are discovered. The attention-based approach I designed for 

natural product comparison, ensures substructure curation for molecular fingerprinting 

will never be an issue. With my sustainable solutions, resources can be allocated to other 

problems in the field of natural product research.  

Natural Products research currently exists in multiple data domains. The fermentation of 

microbes is rooted in microbiology. The mining of gene clusters is rooted in genomics. 

The isolation of molecular scaffolds is rooted in analytical chemistry. The prediction of 

molecular activity is rooted in cheminformatics. Much of the tooling and data is siloed 

within their individual domains. My deep learning solutions facilitate cross-domain 

learning. I used the transformers architecture across a variety of different data domains 

(e.g. peptides, DNA, molecules) all with profound performance. The transformer 

architecture is extremely generalisable. In addition to sequence data, the Vision and 

Graph transformers now exist, with the ability to learn off of photos and network graphs 

respectively. The application of the transformer to other data domains is key to making 
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new inferences. Combining the VisionTransformer and Text transformer was instrumental 

in creating frameworks such as CLiP; cross-domain learning allowed CLiP to generate 

visuals when provided with a text prompt. Future efforts could be directed at creating true 

metabologenomic frameworks, where metabolomic-trained transformers and genomic-

trained transformers could be used in conjunction. Integrated multi-omics datasets are 

becoming more common and will facilitate joint training operations such as this. 

In my final chapter, I demonstrated the power of a simple integrated analysis. By 

understanding what information can be pulled out of a dataset, complex relationships can 

become easily disentangled. I was able to quantify gene cluster expression because I 

knew what BGCs would be in the transcriptomics datasets because of the culture-enriched 

metagenomes.  The analysis does not work with MiBiG, because the human microbiome 

does not overlap with these gene clusters. I was able to quantify the Faecalibacterium 

prausnitzii metabolite in the metabolomics data because we had previously isolated it and 

Faecalibacterium prausnitzii is one of the most popular human microbiota. I knew the 

Scardovia peptide would be in the proteomics data because Scardovia wiggsiae is isolated 

from the oral cavity. The integration of multi-omics data requires a great appreciation for 

context.  

To facilitate the fleshing out of contextual relationships across data domains, I started a 

lab initiative to build a graph database containing metadata from all domains. We have 

200



Ph.D. Thesis - K. Dial

McMaster University - Biochemistry and Biomedical Sciences 

scraped isolation information, taxonomic data, 16S sequences, molecular activities, 

producer data and more. Using this information, we can facilitate the cross-domain 

learning of new relationships. I developed a graph deep learning framework for the deep 

learning guided genomic assembly project. The framework will be instrumental in 

predicting linkages across data domains. 

With my tools, and more importantly, the frameworks I created to develop my tools, I 

leave my lab and the field of natural products research with the potential to perform 

analytics on a level on par with the companies in Silicon Valley. I democratised the 

tooling and demonstrated proof of concepts. It is up to the next generation of graduate 

students to take up the torch and continue to push natural product research into another 

renaissance.
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