Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28478
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHarada, Megumi-
dc.contributor.advisorRajchgot, Jenna-
dc.contributor.authorAtar, Busra-
dc.date.accessioned2023-05-01T18:44:46Z-
dc.date.available2023-05-01T18:44:46Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/11375/28478-
dc.description.abstractA Hessenberg variety is a subvariety of the flag variety parametrized by two maps: a Hessenberg function on $[n]$ and a linear map on $\C^n$. We study regular nilpotent Hessenberg varieties in Lie type A by focusing on the Hessenberg function $h=(n-1,n,\ldots,n)$. We first state a formula for the $f^w_{n,1}$ which generates the local defining ideal $J_{w,h}$ for any $w\in\Ss_n$. Second, we prove that there exists a convenient monomial order so that $\lead(J_{w,h})$ is squarefree. As a consequence, we conclude that each codimension-1 regular nilpotent Hessenberg variety is locally Frobenius split (in positive characteristic).en_US
dc.language.isoenen_US
dc.subjectHessenberg varietyen_US
dc.subjectFrobenius splittingen_US
dc.subjectRegular nilpotenten_US
dc.subjectFlag varietyen_US
dc.titleHessenberg Patch Ideals of Codimension 1en_US
dc.typeThesisen_US
dc.contributor.departmentMathematicsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Atar_Busra_202304_MasterOfScienceThesis.pdf
Open Access
411.94 kBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue