Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28459
Title: THE INFLUENCE OF SPRUCE BUDWORM DEFOLIATION ON STREAM MICROBIOME STRUCTURE AND FUNCTION
Other Titles: INFLUENCE OF SPRUCE BUDWORM DEFOLIATION ON STREAM MICROBIOMES
Authors: McCaig, Madison L
Advisor: Kidd, Karen
Emilson, Erik
Department: Biology
Keywords: Aquatic Ecology;Stream Microbiome;Dissolved Organic Matter
Publication Date: 15-Jun-2023
Abstract: Insect pests are the most widespread disturbance in Canadian forests, but resulting impacts of forest defoliation on stream ecosystem functions are poorly understood. This study investigated the effects of a spruce budworm outbreak on water quality and the structure and function of microbial communities in streams of 12 catchments across a gradient of cumulative defoliation severity in the Gaspésie Peninsula, Québec, Canada. Bi-weekly stream habitat sampling was conducted spring to fall 2019-2021, with stream flow rates measured and water samples collected and analyzed for water chemistry parameters, nutrients, and dissolved organic matter (DOM) structure and quality. Algal communities were assessed at the same time by measuring in-situ biomass. Bacteria and fungi communities on leaf packs were assessed by incubating six leaf packs for five weeks (mid-August- late September) in one stream reach per watershed. Microbial community composition of leaf packs was determined using metabarcoding of 16S and ITS rRNA genes, and functions were examined using extracellular enzyme assays, leaf litter decomposition rates, and taxonomic functional assignments. This study determined that cumulative defoliation increased stream temperatures, flow rates, and SUVA (DOM aromaticity), but not nutrients. It increased algal biomass and altered microbial community composition, with a stronger influence on bacteria than fungi. The observed increases in SUVA and algal biomass corresponded with changes to bacteria carbon cycling functions, which indicated that microbes were preferentially selecting carbohydrates produced by algae rather than the aromatic compounds from increased terrestrial inputs. There were no changes to other bacteria or fungi functions and no changes to taxonomic or functional diversity. Overall, results indicate that forest pest outbreaks alter carbon inputs to streams and the structure and function of stream microbial communities associated with carbon cycling.
URI: http://hdl.handle.net/11375/28459
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
McCaig_Madison_L_2023April_MSc.pdf
Access is allowed from: 2024-04-25
5.2 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue