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Lay Abstract 

Terrestrial and aquatic landscapes are tightly linked, and forest disturbances can influence stream 

ecosystems. Insect pests defoliate millions of hectares of forests each year, but the resulting 

impacts on stream ecosystems are poorly understood. This study investigated the effects of a 

spruce budworm outbreak on water quality and microbial communities in streams in Gaspésie, 

QC, Canada. Microbial communities are critical to the functioning of stream ecosystems as they 

convert energy (e.g., carbon) into useable forms for other organisms. Results indicate that 

defoliation altered stream flow rates, temperatures, and carbon composition, as well as the 

microbial communities involved in carbon cycling processes. Carbon is essential to aquatic food 

webs and this improved understanding of how carbon flow is altered by a widespread forest 

disturbance can inform pest management decisions for spruce budworm outbreaks. 
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Abstract  

Insect pests are the most widespread disturbance in Canadian forests, but resulting 

impacts of forest defoliation on stream ecosystem functions are poorly understood. This study 

investigated the effects of a spruce budworm outbreak on water quality and the structure and 

function of microbial communities in streams of 12 catchments across a gradient of cumulative 

defoliation severity in the Gaspésie Peninsula, Québec, Canada. Bi-weekly stream habitat 

sampling was conducted spring to fall 2019-2021, with stream flow rates measured and water 

samples collected and analyzed for water chemistry parameters, nutrients, and dissolved organic 

matter (DOM) structure and quality. Algal communities were assessed at the same time by 

measuring in-situ biomass. Bacteria and fungi communities on leaf packs were assessed by 

incubating six leaf packs for five weeks (mid-August- late September) in one stream reach per 

watershed. Microbial community composition of leaf packs was determined using 

metabarcoding of 16S and ITS rRNA genes, and functions were examined using extracellular 

enzyme assays, leaf litter decomposition rates, and taxonomic functional assignments. This study 

determined that cumulative defoliation increased stream temperatures, flow rates, and SUVA 

(DOM aromaticity), but not nutrients. It increased algal biomass and altered microbial 

community composition, with a stronger influence on bacteria than fungi. The observed 

increases in SUVA and algal biomass corresponded with changes to bacteria carbon cycling 

functions, which indicated that microbes were preferentially selecting carbohydrates produced by 

algae rather than the aromatic compounds from increased terrestrial inputs. There were no 

changes to other bacteria or fungi functions and no changes to taxonomic or functional diversity. 

Overall, results indicate that forest pest outbreaks alter carbon inputs to streams and the structure 

and function of stream microbial communities associated with carbon cycling.  
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1.0 Introduction  

Forests are impacted by many natural disturbances such as wildfires, drought, windthrow, 

parasites, disease, and insect pests and are managed to enhance resilience to these threats. Insect 

pests are the most widespread disturbance type in Canadian forests, impacting over 17 million 

hectares in 2020, with 40% of the damage caused by the eastern spruce budworm (Choristoneura 

fumiferana) (Natural Resources Canada, 2022). This native insect pest feeds upon and defoliates 

balsam fir (Abies balsamea) and white spruce (Picea glauca) trees and causes changes to forest 

ecosystems through frass production, tree needle loss, reduced tree growth, and eventually tree 

mortality (De Grandpré et al., 2022; D. R. Gray & MacKinnon, 2006). Outbreaks of spruce 

budworm occur cyclically every 30 – 40 years and are predicted to expand their range and 

increase in duration and severity as climate change progresses (Candau & Fleming, 2011; David 

R. Gray, 2008). On the terrestrial landscape, spruce budworm defoliation threatens many of the 

essential ecosystem services Canada’s boreal forests provide as it causes wildlife habitat loss, a 

reduction in forest carbon sequestration, and billions of dollars in economic losses for the 

commercial forestry industry (Johns et al., 2019; E. Y. Liu et al., 2019; Z. Liu et al., 2020; 

Schowalter, 2012).  However, the influence of spruce budworm defoliation on aquatic 

ecosystems within forested watersheds is poorly understood.  

Forest and aquatic ecosystems are tightly connected and forest disturbances can alter stream 

ecosystem conditions, but the nature of these responses depends on the specific changes 

occurring in the forests (Kreutzweiser et al., 2008; Paul et al., 2022; Warren et al., 2016). The 

loss of foliage and tree mortality associated with spruce budworm defoliation could lead to 

multiple physical changes in stream conditions. It can increase light levels, resulting in increased 

water temperatures, increased snow melt rates, and reduced evapotranspiration rates, leading to 
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increased runoff and stream flow rates (Jenicek et al., 2018; Sidhu et al., in prep.; Warren et al., 

2016). Furthermore, the litter and frass inputs from spruce budworm defoliation increase nutrient 

inputs to the forest floor, which could be transferred through runoff to stream ecosystems (De 

Grandpré et al., 2022). These increased terrestrial inputs can also have implications for the 

quantity and quality of the dissolved organic matter (DOM) pool in streams, with increased 

aromaticity and humic content of DOM increasing with more terrestrial runoff (Jaffe et al. 2008; 

LoRusso et al. 2021). Despite the potential for effects, to date no studies have specifically tested 

the impacts of spruce budworm defoliation on stream ecosystem responses.  

These altered stream conditions can also have implications for the aquatic food web, 

including the stream microbiome, which is essential to stream ecosystem functioning. Bacteria, 

fungi, and algae communities play particularly critical roles in the flow of energy and nutrients 

though stream food webs as they are important contributors to both primary and secondary 

productivity (Findlay, 2010). Primary productivity in these systems is largely driven by the 

photosynthetic production by algal communities, where inorganic carbon is converted into 

simple organic carbon that is easily accessible for consumers (Findlay, 2010).  Secondary 

productivity is typically driven by bacteria and fungi communities which decompose organic 

matter and mineralize inorganic nutrients, making these resources accessible to consumers in 

higher trophic positions (Allan et al., 2021; Emilson et al., 2016; Findlay, 2010). This is critical 

for stream ecosystem functioning as DOM is their largest source of organic carbon and without 

microbial decomposition, it would be inaccessible to the rest of the food web (Findlay, 2010). 

Stream microbiomes are comprised of a wide diversity of organisms which perform key 

biogeochemical functions for stream ecosystems, and their structure and function are influenced 

by both regional (e.g., dispersal and landscape characteristics) and local environmental 
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conditions (e.g., temperature, nutrient concentrations, DOM composition, flow rates, pH levels, 

and metal concentrations) (Besemer, 2016; Emilson et al., 2016; Zeglin, 2015). For example, 

microbiome composition and diversity are positively associated with gradients of landscape 

heterogeneity and stream flow due to increased dispersal of microbial taxa and associated 

increases in transfers of nutrients, carbon, and oxygen (Besemer, 2016; Besemer et al., 2009; 

Woodcock et al., 2013). Changes in the quality of DOM often results in shifts in bacteria 

functions as they preferentially select the most easily accessible carbon compounds (Cunha et al., 

2010; Gorke & Stulke, 2008). Furthermore, is important to consider the complex relationship 

between microbiome structure and function as this can provide a more complete understanding 

of stream ecosystem functioning (Findlay, 2010; Grossart et al., 2020). In some cases, structure 

and function are linked, whereas in others, differences in community structure have been 

observed along environmental gradients while functions remain stable (i.e., functional 

redundancy) (Grossart et al., 2020). Characterizing the structure and function of stream 

microbiomes along environmental gradients is critical as freshwater ecosystems are increasingly 

threatened by stressors such as climate change, urbanization, and forest change (Dudgeon et al., 

2006; Reid et al., 2019). 

Natural and anthropogenic disturbances often change stream habitat conditions which can 

alter the structure and function of stream microbiomes (Burdon et al., 2020; Emilson et al., 2016; 

Laperriere et al., 2020). Shifts in stream microbiome species composition are often observed 

after a disturbance, while species richness and species diversity are not typically altered (Emilson 

et al., 2016; Lau et al., 2015; Simonin et al., 2019). Disturbances that increase stream 

temperatures and nutrient concentrations can enhance microbial decomposition (Burdon et al., 

2020; Emilson et al., 2016; Fernandes et al., 2014), while alterations to carbon quality (e.g., 
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specific ultraviolet absorbance (SUVA)) can increase extracellular enzyme activities (Cunha et 

al., 2010) and bacteria functions associated with the processing of aromatic compounds 

(Fasching et al., 2020). The response of stream microbiomes to disturbance has been investigated 

for urban and agricultural land use (Laperriere et al., 2020; Simonin et al., 2019), wastewater 

treatment plant discharges (Burdon et al., 2020), and fire, logging, and mining (Emilson et al., 

2016), but the influence of forest pest defoliation on stream microbiome structure and function 

has not been previously investigated.   

A large-scale spruce budworm outbreak has been ongoing in the Gaspésie Peninsula of 

Québec, Canada, since 2016. A multidisciplinary project was initiated in 2018 to investigate the 

ecological risks and benefits of defoliation at the forested watershed scale to inform forest pest 

management decisions. Two forest pest management strategies are typically used in the Atlantic 

region to mitigate the impacts of spruce budworm outbreaks – the more traditional reactive 

strategy, and a recently introduced proactive strategy called the Early Intervention Strategy 

(EIS). The reactive approach focuses on foliage protection of only the most valuable resources 

using insecticides, whereas EIS aims to suppress spruce budworm populations prior to major 

defoliation through targeted applications of insecticides in hotspot areas (Johns et al., 2019). EIS 

generally results in less defoliation and has been found to reduce tree mortality and economic 

losses of forest resources; however, the risks and benefits of EIS to broader ecosystem processes 

through suppression of defoliation and mortality within forested watersheds have not been 

explored.  

The objective of the current study is to assess how spruce budworm defoliation in the 

Gaspésie impacts the structure and function of stream microbiomes in forested watersheds. We 

used leaf packs as the substrate for microbiome establishment to assess fungal and bacteria 
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communities in 12 forested watersheds across a gradient of defoliation severity. To assess 

microbiome structure, we used next generation sequencing and to assess microbiome function 

we used hydrolase enzyme activities, leaf litter decomposition rates, and taxonomic functional 

assignments. We predict that cumulative defoliation will have three main influences on the 

stream microbiome. First, we predict that it will alter the stream microbiome through changes to 

stream habitat, specifically by increasing nutrient levels, water temperature, and flow rates, and 

by altering dissolved organic matter quality. Second, we predict that stream microbiome 

composition will be altered by cumulative defoliation (through changes to stream habitat), but 

species richness (16S and ITS) and diversity (16S) will not change. Finally, we predict that 

cumulative defoliation (through changes to stream habitat) will alter stream microbiome 

functions (hydrolase enzyme activity, decomposition, and taxonomic functional assignments). 

The insights gained from this project will provide a more comprehensive understanding of the 

ecological risks and benefits of forest pest management.  

2.0 Methods  

2.1 Study Design  

This study was done in the Gaspésie Peninsula of eastern Québec, Canada (Figure 1). It is 

a rugged and mountainous area that forms part of the Appalachian Mountain range. Land cover 

in the area is primarily forested with an abundance of streams and rivers and few lakes (Berger & 

Blouin, 2004). The most important industries are forestry and recreational tourism, particularly 

Atlantic salmon fishing.  The Gaspésie Peninsula has a history of forest disturbances, including 

fire, logging, and insect outbreaks (Berger & Blouin, 2004). It is currently experiencing a spruce 

budworm outbreak which began in 2016 and is impacting white spruce and balsam fir trees 

(Ministère des Ressources naturelles et des Forêts, 2022).  
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Twelve forested watersheds in the Gaspésie Peninsula were selected for this study 

(Figure 1). The selection process involved first delineating all watersheds between 6 – 10 km2 

using a digital elevation model (DEM) at 20 m resolution (acquired from the Canadian DEM 

open dataset). Candidate watersheds were further restricted to those with a minimum of 90% 

forested land cover, a minimum 65% spruce and fir cover, a maximum 15% watershed area 

harvested in the last 15 years, and an outflow within 300 m of a road. All candidate sites were 

visited and further restricted to 17 suitable watersheds that were easily accessible and had 

comparable stream substrates (pebble and rock). The final 12 watersheds were selected based on 

discussions with the Québec Ministère des Forêts, de la Faune et des Parcs (MFFP) about 

regional management plans and all harvesting activity in the watersheds was stopped during the 

study period. The study watersheds were divided into three regional groupings based on latitude, 

with upper (U01, U02, U03), central (C04, C05, C06, C07), and lower (L08, L09, L10, L11, 

L12) sites (Figure 1). Watershed size ranged from 6.33 to 9.85 km2, and mean elevation ranged 

from 281 to 775 m above sea level (Table 1). All GIS spatial layers used in the screening process 

(roads, forest resource inventory, and land cover) were provided by MFFP and all spatial 

analyses were conducted in R 3.5.1 (R Development Core Team, 2021) with RSAGA 1.2.0 

(Brenning et al., 2018).  

 Eight of the study watersheds (U01, U02, U03, C04, C05, C06, C07, and L08) are in the 

boreal forest ecozone, while the remaining 4 watersheds (L09, L10, L11, L12) are in the hemi 

boreal ecozone (Brandt, 2009). The watersheds in the boreal ecozone are characterized by 

medium to high elevations (200 – 900 m), average annual temperatures of 0 – 2.5°C, average 

annual precipitation of 1000 – 1300 mm, short to very short growing seasons, and conifer forest 

stands comprised of balsam fir, white spruce, black spruce, tamarack, and white cedar (Berger & 
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Blouin, 2006). The watersheds in the hemi boreal region are characterized by low to moderate 

elevations (0 – 400 m), average annual temperatures of 1.5 – 3.5°C, average annual precipitation 

of 900 – 1300 mm, and short to moderately long growing seasons (Berger & Blouin, 2004). 

Forest stands in this area tend to have a mixed composition, with balsam fir, white spruce, 

yellow birch, sugar maple, red maple, black ash, and white cedar. The study watersheds drain 

into 3 large rivers, the Cascapédia (U01, C04), Petite Cascapédia (U02, U03, C05, C06, C07, 

L09, L10), or Bonaventure (L08, L11, L12). A second- or third- order stream reach (25-60 m) 

was selected in each watershed for stream habitat and microbiome community sampling.  

Six watersheds (U02, U03, C06, L08, L10, L12) were treated with Btk (Bacillus 

thuringiensis kurstaki) insecticide in 2020 and 2021 through aerial applications coordinated by 

MFFP and La Société de Protection des Forêts contre les Insects et Malades (SOPFIM), to 

supress defoliation (Table 1). This was to ensure a gradient of defoliation severity across 

watersheds. The Btk spray was not intended to establish a control/treatment experiment, but 

rather to ensure a gradient of defoliation intensities across watersheds, from lightly to heavily 

defoliated. Furthermore, the influence of Btk on microbial communities was not evaluated, as 

previous research has indicated it has no influence on microbial community function 

(Kreutzweiser et al., 1996) 
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Table 1. Landscape characteristics of the 12 forested watersheds studied in Gaspésie, Québec, 

Canada. 

 

Watershed Latitude Longitude Mean 

Elevation 

(m) 

Catchment 

Area 

(km2) 

% 

Spruce-

Fir 

Slope 

(°) 

Aspect 

(°) 

% 

Wetland 

Area 

Cumulative 

Defoliation 

(2019) 

Cumulative 

Defoliation 

(2020) 

Cumulative 

Defoliation 

(2021) 

U01 48.77749 -66.1344 607 7.83 90 14.8 169 0.9 7.9 10.4 13.0 

U02 48.84763 -65.9559 775 8.11 95 11.4 142 0 7.6 10.3 11.0 

U03 48.87196 -65.8299 678 6.33 96 10.9 175 2.5 5.6 7.5 8.9 

C04 48.52692 -66.1021 462 9.85 80 17.4 192 0 6.4 8.6 10.9 

C05 48.53386 -65.8709 435 8.75 83 12.8 216 0 5.7 7.6 10.0 

C06 48.56082 -65.7826 489 8.06 94 8.1 174 1 4.8 6.2 7.8 

C07 48.58588 -65.7632 520 7.83 91 5.7 148 1.8 4.6 6.5 8.9 

L08 48.40672 -65.6125 333 7.71 69 10.6 198 1.2 2.1 2.9 4.1 

L09 48.30158 -65.7219 281 7.84 65 19.2 199 0 1.9 2.8 4.2 

L10 48.28294 -65.6737 281 7.98 62 17.2 174 0 1.8 2.5 3.2 

L11 48.30726 -65.5456 315 7.97 77 13.9 170 0.5 2.2 3.4 5.3 

L12 48.30666 -65.5431 274 8.46 82 11.2 195 0.9 1.6 2.6 3.8 
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Figure 1. Map of the study area in Gaspésie, Québec, Canada, with 12 forested watersheds 

coloured with the associated 2021 cumulative defoliation intensity gradient (light green = light 

defoliation, dark blue = heavy defoliation). Cumulative defoliation was calculated by taking the 

sum of the annual hydrologically active, inverse distance weighted (HAiFLO) defoliation metric 

from the start of the outbreak in 2016 to the current year (see Methods for more detail).  
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2.1.1 Defoliation Intensity Index 

The level of annual defoliation intensity in each watershed was determined through a 

combination of provincial surveys and targeted surveys. Beginning in 2016, the MFFP 

coordinated standardized aerial surveys (conducted by SOPFIM) using a fixed-wing aircraft and 

rated watershed defoliation on a scale of 0 – 3 (0 = no defoliation, 1 = low, 2 = moderate, and 3 = 

severe) (MacLean & MacKinnon, 1996). In 2020 and 2021, additional targeted aerial surveys 

were conducted using a helicopter to obtain defoliation intensity data with increased accuracy 

and resolution. These surveys obtained estimates on the same 0 – 3 scale as the provincial data, 

with 3 additional categories (0.5 = null-low, 1.5 = low-moderate, and 2.5 = moderate-severe). 

The provincial survey data were used for 2016 – 2019 and targeted survey data were used for 

2020 and 2021.  

We weighted the defoliation data in two ways. Both aerial survey methods quantify 

visible defoliation without consideration of the underlying vegetation type, so the defoliation 

index values were first weighted by the proportion of spruce and fir trees in each underlying 

forest stand. The spruce-fir content in each watershed was determined using Forest Resource 

Inventory stand data obtained from MFFP and binned by 10% content. We also expected that 

defoliation closer to water flow paths and streams would have a greater impact on stream habitat 

and microbiomes, so we weighted the spruce-fir adjusted defoliation data as in Sidhu et al (in 

prep) using the R package hydroweight (version 1.1.0) (Kielstra et al., 2021). Briefly, 

hydroweight spatially weights by the straight line or flow-path distances of landscape features to 

a given target (e.g., streams or sites along a stream network) based on concepts in Peterson et al. 

(2011). We used a hydrologically active weighting scheme, HAiFLO – where the influence of  

each point on the landscape is inversely proportional to the distance from the stream outlet (or 

stream survey site) and proportional to flow accumulation values (Peterson et al., 2011).  We 
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then used this weighted metric (on the same 0 – 3 defoliation intensity scale) to calculate annual 

averages for each watershed.  A cumulative defoliation intensity metric was then calculated for 

each year by taking the sum of the annual defoliation intensity metrics from the current year and 

all previous years since the start of the outbreak in 2016 (i.e., 2021 = sum of 2016 – 2021). This 

cumulative defoliation metric ranges from 0 (no defoliation) to 15 (very high defoliation) and 

was used for all subsequent data analyses (Figure 1). Cumulative defoliation was used instead of 

annual defoliation because a single year of defoliation does not have much influence on tree 

conditions, whereas several years of repeated defoliation results in large growth declines and 

mortality (Natural Resources Canada, 2018). The cumulative defoliation data were grouped into 

two groups for some categorical analyses (sites with 0 – 7.5 in low and 7.5 – 15 in high). 

The helicopter surveys also capture the amount of tree top mortality, which we used to 

calculate % mortality area for each watershed. The mortality data were weighted with the same 

tree composition and hydroweight methods as the defoliation data, to provide annual % mortality 

value for each watershed. Mortality was mainly used as a supporting metric to visually assess 

trends as it was only present in 1 watershed in 2020 (U02) and 3 watersheds in 2021 (U01, U02, 

and C05). 

2.1.2 Precipitation Data 

Precipitation data were used to explore potential causes of the interannual variability 

observed in some stream habitat conditions. Daily precipitation data were extracted from the 

Environment and Climate Change Canada (ECCC) Historical Climate Data web site for the New 

Richmond East weather station in Québec (latitude: 48.15640667, longitude: -65.84194500) 

(ECCC, 2022). Precipitation data were analyzed cumulatively for each year starting on Nov 1st of 

the previous year and ending on Oct 31st to account for winter snowpack amounts (i.e., 2019 = 
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Nov 1st, 2018, to Oct 31st, 2019). This weather station is the closest available data source to the 

watersheds and is about 20 km south of the lower watersheds, 50 km south of the central 

watersheds, and 80 km south of the upper watersheds. In addition to the increasing latitudinal 

gradient from the weather station to the upper sites, there is also an increasing elevation gradient 

from south to north. The distance from the weather station and increasing latitudinal and 

elevational gradients likely influences weather patterns. As such, precipitation data were only 

used to provide an approximation of broad differences in annual precipitation patterns in the 

overall study area.  

2.2 Stream Habitat Sampling 

To investigate the influence of cumulative defoliation on stream habitat, we collected 

water chemistry, flow, temperature, and sediment deposition measurements from one stream 

reach in each of the 12 watersheds. Water chemistry grab samples (500 mL) were collected every 

2 – 3 weeks from May to October in 2019 (n=8), 2020 (n=10), and 2021 (n=10) from all 12 

stream reaches. Stream flow was measured with an Ott MF Pro flow meter through a standard 

area/velocity cross-section method, at the same time as each grab sample collection. All water 

samples were kept refrigerated and in the dark until they were shipped to Natural Resources 

Canada, Great Lakes Forestry Centre (NRCan-GLFC) in Sault Ste Marie, ON, Canada, except 

those collected in 2021, which were frozen prior to shipment due to COVID-related laboratory 

backlogs at NRCan-GLFC. Water samples were analyzed for nutrients (TP, TN, SRP, NO2-NO3, 

NH4) and dissolved organic carbon (DOC), as well as a suite of other water chemistry variables 

(metals, dissolved inorganic matter, cations (Ca, K, Mg, Na) and anions (Cl, SO4, SiO2)) at the 

NRCan-GLFC Central Water Chemistry Lab using standard methods (Hazlett et al., 2008). 

Water chemistry variables, abbreviations, and detection limits are summarized in Table A1. Any 
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values below detection limits were replaced by a value of half the detection limit, and any 

variable with greater than 50% of the values below the detection limits were excluded from 

further analyses.  

Dissolved organic matter (DOM) metrics were generated from a split of the grab sample 

that was further filtered to 0.45 µm. Fluorescence excitation-emission matrices (EEMs) were 

generated from three-dimensional fluorescence scans at 5-nm excitation steps from 250 to 450 

nm and 2-nm emission steps from 300 to 600 nm using a Cary eclipse fluorescence 

spectrophotometer, and absorbance was measured with a Cary 60 ultraviolet visible absorbance 

spectrophotometer. To determine whether there was a change in the degree of DOM degradation 

and bioavailability in response to cumulative defoliation, we calculated the humification index 

(hix) and biological index (bix) from spectrally-corrected EEMs, and the specific ultraviolet 

absorbance at 254 nm (SUVA) from DOC-adjusted absorbance scans. These DOM metrics 

provide information about the quality of the DOM pool. Hix provides an indication of humic 

content of DOM, with humification typically associated with greater terrestrial DOM inputs 

(Huguet et al., 2009; Ohno, 2002). Bix provides an estimate of the amount of recent 

autochtonous (microbial derived) contributions to the DOM pool (Huguet et al., 2009). Finally, 

SUVA is an indicator of the aromaticity of the DOM pool, with higher aromatic content 

suggesting greater terrestrial contributions as terrestrial vegetation is high in aromatic 

compounds (Weishaar et al., 2003). 

We measured full season (May – October) water temperatures each year in all 12 stream 

reaches using Solinst Level Loggers (Model 3001) set to measure temperature every 15 minutes. 

We also measured late summer (mid-August – end September) stream temperatures associated 

with each leaf pack (used as the substrate to assess microbial communities, see Section 2.3.1 
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Microbiome Sample Collection). These temperatures were measured using HOBO Pendant MX 

Water Temperature Data Loggers (6 loggers per stream reach) which were attached to the brick 

used to hold leaf packs in place and set to record at 10-minute intervals. 

We also measured sedimentation rates in the stream reaches during the leaf pack 

incubation period (mid-August to end of September) of each year. Sediment was collected in 6 

tubes per stream, placed at approximately 10 cm from the stream bottom and held in place with 

the same brick used for leaf packs and temperature loggers. After incubation, tubes were 

removed from the stream and preserved with 5 mL of formaldehyde. In the lab, the accumulated 

sediment was poured through a 250-um sieve to obtain the coarse sediment material (Erdozain et 

al., 2018). The filtrate was retained and further filtered through pre-ashed 1.2 um filters to obtain 

the fine sediment material. To calculate ash-free dry mass, the coarse sediment and fine sediment 

filters were dried for 48 hours at 60 oC and ashed for 2 hours at 500 oC (Erdozain et al., 2018). 

The ash-free dry mass represents the amount of inorganic sediment accumulation, and the 

difference between the total mass and ash-free dry mass represents the amount of organic 

sediment accumulation. All sediment accumulation values were divided by the incubation time 

in days to obtain values in grams per day.  

2.3 Stream Microbiome Structure and Function 

2.3.1 Microbiome Sample Collection 

To explore the response of stream microbiome structure and function to cumulative 

defoliation and associated stream habitat changes, we incubated leaf packs as substrates for 

microbial colonization. Leaf packs provide a standardized substrate that allows for comparisons 

of microbial communities of the same age across all stream sites. The leaf packs were 

constructed and filled with alder leaves (Alnus incana ssp. rugosa) and enclosed in 500 µm 
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fibreglass mesh bags to exclude macroinvertebrates and focus on microbial decomposition. Alder 

is common in all boreal riparian forests and is a ubiquitous substrate for colonization by stream 

microbial communities. Each leaf pack contained two compartments; the first compartment with 

10-15 leaves to provide at least 3 g wet mass leaf material for DNA extractions and extracellular 

enzyme assays and the second compartment with a single pre-weighed leaf used to assess 

microbial decomposition (mass loss) rates. Leaves in the first compartment were rinsed prior to 

leaf pack creation and leaves in the second compartment were washed and dried for two days at 

30°C, and dry weights were recorded. Six replicate leaf packs were placed in the downstream-

most stream reach in each of the 12 watersheds, for a total of 72 leaf packs. Leaf packs were 

secured with zip ties to a brick placed among the natural stream substrates. They were deployed 

in August of each year (2019, 2020, and 2021), incubated for four to five weeks, and removed 

from streams in September, to align with peak in-stream productivity and the start of natural leaf 

litter inputs to streams. Upon removal from the streams, leaf packs were stored at -20°C until 

analysis.   

To obtain estimates of the algal community response to cumulative defoliation and 

accompanying changes in stream habitat, in-situ measurements of benthic algal production were 

taken at the same time as the stream habitat data. Benthic algal production was measured in 2019 

(n=8) and 2021 (n=10) using a bbe Moldaenke BenthoTorch, which measures the intensity of 

chlorophyll fluorescence to determine the benthic production of green algae, cyanobacteria, and 

diatoms. Algal measurements were not available in 2020 due to COVID-related delays in 

BenthoTorch repairs. 
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2.3.2 Microbiome Structure: Metabarcoding 

To obtain information about the fungi and bacteria community structure, DNA was 

extracted from leaves in the first compartment of all leaf packs (n = 72 in 2019,  n = 72 in 2020, 

and n = 71 in 2021) using the Qiagen DNeasy Powersoil Kit (Qiagen, 2017) and a Qiacube. The 

kit includes a procedure to remove PCR inhibitors from samples, including humic substances and 

brown colours. The extracted DNA was then amplified using the base primer targets outlined in 

Table 2. Paired-end sequencing for the 16S (targeting variable regions v4 and v5) and ITS 

(targeting ITS2) rRNA genes were completed on the Illumina MiSeq 300 platform at the at the 

National Research Council Canada in Saskatoon, Saskatchewan.  

Table 2. Base primers used for 16S and ITS sequence amplification from leaf packs incubated in 

streams in Gaspésie, QC, Canada.  

 Target Forward Reverse 

16S 16S v4-

v5 

 “515F”  

Sequence = 

GTGCCAGCMGCCGCGGTAA 

 “926R”   

Sequence = 

AAACTYAAAKRAATTGRCGG 

ITS ITS2 “fITS9”  

Sequence: 

=GAACGCAGCRAAIIGYGA 

“ITS4”   

Sequence = 

TCCTCCGCTTATTGATATGC 

 

The raw sequence data were processed into ESVs (Exact Sequence Variants) using the 

MetaWorks pipeline (v1.10.0) (Porter, 2020; Porter & Hajibabaei, 2022). Raw paired-end reads 

were combined using SEQPREP (v1.3.2) with a minimum Phred quality score of 13 in the 

overlap region and a minimum overlap of 25 base pairs (St. John, 2016). Primers were trimmed 

using CUTADAPT (v4.1) with a minimum Phred quality score of 20 at the ends and a minimum 

trimmed read length of 150 base pairs (Martin, 2011). VSEARCH (v2.21.1) was used for 

dereplication (Rognes et al., 2016), denoising (singleton and doubleton removal) (Edgar, 2016b), 

the removal of chimeric sequences (Edgar, 2016a), and ESV table creation (Rognes et al., 2016).  
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For ITS reads, the ITS2 variable spacer was extracted using ITSx (v1.1.3) (Bengtsson-Palme et 

al., 2013). Taxonomic assignments were performed using the native RDP Classifier database 

v2.13 for the 16S data (Wang et al., 2007) and the Fungal UNITE database v8.2 for the ITS data 

(Abarenkov et al., 2021; Porter, 2021). The resulting datasets contain the ESV taxonomy and the 

ESV levels were used for subsequent data analyses. Sequences that were not identified to the 

Bacteria or Archaea domains were removed from the 16S data and sequences that did not belong 

to the Fungi kingdom were removed from the ITS data. One sample (2020, site L08, rep 2) was 

removed from the ITS dataset due to a low read count (<1000 reads). Rarefaction curves showed 

that most unique ESV sequences were likely identified at the sequencing depths achieved, as 

simulated resampling showed minimal improvement in the number of unique ESV sequences 

detected by improved read depths.  As such, there was no need to subsample to achieve similar 

community coverages (i.e., rarefy) prior to analysis (Figure A1;Figure A2).  

2.3.3 Microbiome Function: Extracellular Enzyme Assays and Decomposition Rates  

Extracellular enzyme activities for three hydrolase enzymes (xylosidase (XY), N-acetyl-

β-D-glucosaminidase (NAG), and phosphatase (PHOS)) were measured to obtain estimates of 

microbial community functions. Enzyme activities were measured under controlled conditions 

following the protocol developed at NRCan-GLFC (Muto & Emilson, 2018). Leaves from the 

first compartment of each leaf pack (n = 72 in 2019, n = 72 in 2020, and n = 71 in 2021) were 

broken down and homogenized. One gram of leaf material from each leaf pack was mixed with 

100 mL of acetate buffer and used as the sample to assess activities. Microplates were set up 

with a negative control (acetate buffer and enzyme substrate), standard (acetate buffer and MUB 

standard), buffer (acetate buffer), quench (MUB standard and sample), and blank (sample and 

acetate buffer). Separate plates were used for each type of enzyme assay, with three samples run 

on each plate. After a 1-hour incubation period, 10 µL of 0.5 M NaOH was added to each well 
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and fluorescence readings were measured immediately after using a Biotek (Agilent) Gen5 H1 

Plate Reader. All enzyme activities were expressed as nmol per hour per gram of substrate.  

The single leaf in the second compartment of each leaf pack (n = 72 in 2019, n = 72 in 

2020, and n = 71 in 2021) was used to obtain estimates of microbial decomposition rates. After 

leaf pack incubation, leaves were washed, dried (two days at 30°C), and weighed. The weights 

before and after leaf pack incubation were used to calculate percent mass loss. To account for 

slight differences in incubation times, the percent mass loss was divided by the incubation time 

in days, with the percent mass loss per day used as an estimate of microbial decomposition.  

2.4 Statistical Analysis 

All data analysis was performed in R (version 4.2.2) with coding structure following the 

tidyverse (1.3.2) package. Each year of data was analyzed separately because of the expectation 

that there would be yearly differences in cumulative defoliation among watersheds due to natural 

annual fluctuations as well as the Btk spraying of the watersheds beginning in 2020.  

2.4.1. Stream Habitat Data Analysis 

 All stream habitat data were plotted over time to look for extreme outliers. One extreme 

outlier was detected for SUVA in 2019 which is likely due to sample contamination and was 

removed from the dataset. Three extreme outliers were detected in the stream flow data with 

flow rates 15 – 400 times greater than the mean values and were removed from the dataset. One 

extreme outlier was detected for the sediment deposition data, which was likely due to field 

contamination and was removed from the dataset.  All stream habitat data were then averaged 

per site and year for subsequent analysis (n=8 in 2019, n=10 in 2020, and n=10 in 2021 for water 

chemistry parameters, DOM metrics, and flow rates, and n=6 replicates per site per year for 

sediment deposition rates).  
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Stream habitat data analysis was focused on the response variables that we predicted to 

change with increased cumulative defoliation, including nutrients (TN, N02-NO3, TP), stream 

flow rates, stream temperature, and several DOM quality and quantity metrics (DOC, hix, bix, fi, 

and SUVA). These variables were assessed for relationships with cumulative defoliation using 

the average of the full season of stream habitat measurements (n=8 in 2019, n=10 in 2020, and 

n=10 in 2021) (Figure A3) and the average of late summer season measurements (n=3 per year) 

(Figure A4), and the period with the strongest relationship for each variable was used for 

subsequent analyses. The late summer period was during leaf pack incubation (4–5-week period 

from mid-August-end of September) which aligns with peak stream productivity. All response 

variables showed the same directionality regardless of time period, but the magnitude and 

significance of the response was stronger with the full season of data for SUVA and flow rates, 

and with the summer season of data for regional temperatures. As such, average values of the full 

season of data were used for subsequent analyses of all parameters except for temperature, where 

the average of the summer temperature data were used. To ensure that relationships between 

cumulative defoliation and the evaluated stream habitat parameters were not due to spurious 

correlations with other measured stream habitat variables, we conducted exploratory analysis of 

all measured variables using boxplots and Pearson correlation plots (Figure A5; A6; A7). 

We used hierarchical partitioning (HP) to compare the relative importance of cumulative 

defoliation to other potential landscape drivers on stream habitat variables and used Pearson 

correlations to visualize the resulting relationships. HP was used because it allows for the 

inclusion of colinear variables and many of the landscape characteristics were colinear. It uses all 

possible model combinations to determine both the shared and unique variance explained for 

each landscape variable and was completed using the rdacca.hp (1.0-8) package (Lai et al., 
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2022). We created hierarchical partitioning models for flow, temperature, and SUVA as these 

response variables had significant relationships with cumulative defoliation. The landscape 

variables used in the models were selected based on their potential to influence the response 

variable (Table 3). Cumulative defoliation, elevation, and spruce-fir composition were included 

in all 3 models and were all correlated to one another (Figure A8). Elevation was strongly 

correlated to latitude (r=0.98, p<0.0001) and was chosen as the explanatory variable to represent 

differences in climate, geology, and solar radiation among the study watersheds. The amount of 

spruce-fir composition in the watersheds was included as it can influence light availability, 

evapotranspiration rates, and litter deposition rates. Catchment area was used as a predictor for 

SUVA and flow as the length of flow paths can influence these variables. Aspect was used 

instead of catchment area for the stream temperature models as it can influence solar radiation. 

Wetland area was used as a predictor for SUVA and temperature as decomposition rates and 

water residence times within wetlands can influence these variables. Slope was used in place of 

wetland area for the flow models as it can have a strong influence on hydrology.  

Table 3. Response variables used for three hierarchical partitioning models created for SUVA, 

flow, and temperature in streams in the Gaspésie Peninsula, QC, Canada.  

Response Variable 

 SUVA Flow Temperature 

Explanatory 

Variables 

Cumulative defoliation 

Elevation 

Spruce-fir composition 

Wetland area 

Catchment area 

Cumulative defoliation 

Elevation 

Spruce-fir composition 

Slope 

Catchment area 

Cumulative defoliation 

Elevation 

Spruce-fir composition 

Wetland area 

Aspect 
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2.4.2 Microbiome Community Structure Data Analysis 

16S and ITS ESV sequence data were analyzed using the phyloseq (1.38.0) package in R 

and samples were grouped by site and year. Relative abundance plots were created for the 

phylum and class taxonomic levels using all replicates (n=6) per site and the average across 

replicates at each site. The relative abundance plots were visually examined for broad patterns 

along the cumulative defoliation intensity gradients.  

Alpha diversity metrics (richness, Shannon diversity, inverse Simpson, and evenness) 

were calculated at the ESV level using the vegan (2.6-2) package. Bacteria communities were 

assessed as relative abundance (Bray-Curtis distances), while fungi communities were assessed 

as presence-absence (Jaccard distances) because estimates of fungi abundance are less reliable 

than those for bacteria (Lofgren et al., 2019). This is due to a difference in gene copy numbers 

per organism, which are an order of magnitude higher for ITS than 16S (Lofgren et al., 2019). 

Pearson’s correlations were used to assess relationships between diversity metrics (n=6 replicates 

per site were averaged) and cumulative defoliation or stream habitat variables. HP models were 

created to assess the relative importance of each stream habitat variable to diversity metrics.  

To assess beta diversity along the cumulative defoliation gradient, a compositional data 

analysis (CoDA) approach was used at the ESV level. Data were transformed using a centered 

log ratio (clr) using the microbiome (1.20) package and principal component analyses (PCAs) 

were performed on all years combined as well as each year individually. Significant differences 

between sites and cumulative defoliation categories (low vs high cumulative defoliation) were 

evaluated using PERMANOVA performed with the vegan package. Additional beta diversity 

ordinations were created (Principal coordinate analysis (PCoA) and non-metric multidimensional 

scaling (NMDS)) on Bray-Curtis distances for bacteria and Jaccard distances for fungi (both at 
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ESV level) and outputs were similar to the CoDA PCA output. Beta diversity was also assessed 

at different taxonomic levels (from genus to phylum) using CoDA PCAs and diversity was 

similar across taxonomic levels. As such, only the CoDA PCAs at the ESV level are presented.   

Comparative RDA plots were used to assess if the changes in beta diversity were 

occurring along the cumulative defoliation gradient due to the influence of cumulative 

defoliation on stream habitat. RDAs were performed on the clr data, with one RDA constrained 

by cumulative defoliation, and the other constrained by stream habitat variables found to be 

influenced by defoliation (stream flow, stream temperature, and SUVA). 

Differential abundance analysis was conducted using the ALDEx2 (1.30.0) package to 

evaluate changes between low and high cumulative defoliation categories at the individual ESV 

level. The output was restricted to ESVs with a p-value of 0.05 or less and a minimum effect size 

of 1. Bacteria community outputs are displayed at the genus level because most ESVs had 

confident taxonomic identifications at this level (using accepted bootstrap support cut-off value 

of 0.5 to ensure 95% of EVS are correctly assigned) (Wang et al., 2007).  In contrast, fungi 

community outputs are displayed at the family level because many ESVs were not confidently 

identified at the genus level (using the accepted bootstrap support cut-off value of 0.7 to ensure 

80% correct taxonomic assignments) (Abarenkov et al., 2021; Porter, 2021). 

To assess relationships between algal biomass parameters (green, cyanobacteria, diatoms, 

and total biomass) and cumulative defoliation, the three algal measurements taken throughout the 

leaf pack incubation period were averaged. For any algal parameter related to cumulative 

defoliation in both years, HP models were used to determine if this relationship was mediated 

through changes to stream habitat (full season stream flow and SUVA and late summer stream 

temperatures). 
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2.4.3 Microbiome Community Function Data Analysis  

Extracellular enzyme assay and decomposition replicates (n=6) were averaged per site 

per year and Pearson’s correlations were used to assess their relationships with cumulative 

defoliation or stream habitat variables. Hierarchical partitioning models were not created for 

these parameters as there were no significant relationships with cumulative defoliation.  

Taxonomic functional assignments were predicted for the bacteria (16S) gene sequences 

using the PICRUSt2 software (Douglas et al., 2020). The input for the software is the ESV 

sequence matrix with abundance data, and it uses a reference database and phylogenetic 

placements to predict the metabolic pathways for all sequences. The MetaCyc metabolic 

pathway abundance output was used to explore potential functional changes (Caspi et al., 2018). 

The pathways were first sorted into functional groups using the MetaCyc pathway type ontology 

by summing the pathway relative abundance (Karp et al., 2004). Any pathways identified as 

potentially belonging to multiple groups were sorted into all possible groups, and as such, total 

relative abundance of all functional groups in the dataset is greater than 100%. To assess which 

functional groups were changing with cumulative defoliation, they were filtered down to those 

with a minimum of 2 pathways per functional group that had a significant linear relationship 

with cumulative defoliation. Given the large number of groups tested (35 groups), significance 

was limited to p-values < 0.01 and any functional groups with significant relationships in all 

three years were explored further. The same filtering process was used on all pathways within 

each of the significant functional groups and pathways with a significant (p<0.01) linear 

relationship with defoliation are shown.  

Taxonomic functional assignments were predicted for the fungi (ITS) gene sequences 

using the FUNGuild (1.1) software (Nguyen et al., 2016). This software groups fungi ESVs into 
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ecological guilds (or functional groups) by matching them to a reference database and provides 

three confidence rankings with each assignment (highly probable, probable, and possible). The 

FUNGuild software assigned 60% of the dataset to a functional guild, with 40% unassigned. The 

data were further restricted to confidence rankings of only highly probable and probable, with 

any possible rankings removed (16% of the dataset). The resulting dataset used for subsequent 

analyses contained 52% of the initial fungi ESVs.  Any ESVs identified as potentially belonging 

to multiple guilds were sorted into all possible guilds, and as such, total relative abundance of the 

dataset is greater than 100%. The same filtering process used with the bacteria taxonomic 

assignments was applied here (groups with significant (p<0.01) relationships with cumulative 

defoliation were explored further).  

Bacteria and fungi functional diversity metrics (richness, Shannon diversity, evenness, 

and inverse Simpson’s) were calculated in the vegan package using the taxonomic functional 

assignment outputs (pathways for bacteria and guilds for fungi). Pearson’s correlations were 

used to assess relationships between functional diversity metrics (replicates (n=6) averaged per 

site) and cumulative defoliation or stream habitat variables.  

3.0 Results 

3.1 Stream Habitat  

Of the stream habitat variables that were predicted to change with increasing cumulative 

defoliation, significant positive relationships were found for SUVA, stream flow rates, and 

stream temperature, for some or all years (see below for more details). No significant 

relationships were found between cumulative defoliation and nutrients (TP, TN, and NO2-NO3) 

or the other DOM metrics (hix, bix, fi, and DOC) (Figure A3). 
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3.1.1 Nutrients  

TP concentrations were generally low in these streams, with means ranging from 0.0005 

– 0.0050 mg/L in 2019 and 2021, and 0.0005 – 0.0200 in 2020 (Table A2). Mean NO2-NO3 

levels ranged from 0.02 – 0.43 mg/L and were similar across years in each site, except for site 

U02 which increased in 2020 and 2021 (Figure 2). Mean TN ranged from 0.07 – 0.49 mg/L and 

showed the same patterns as NO2-NO3, and changes in TN were due to NO2-NO3, not NH3. Site 

U02 was the only watershed with substantial tree top mortality, covering 25% of the watershed 

in 2020 and 32% in 2021. All other watersheds had no recorded top mortality in 2020 and 2021, 

except 3 watersheds that had less than 5% area with mortality in 2021.  

 

Figure 2. NO2-NO3 concentrations (mg/L) in stream water samples taken from streams in the 

Gaspésie Peninsula, QC, Canada during the open water season (May – October) of 2019 (n=8), 

2020 (n=10), and 2021 (n=10).  
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3.1.2 Dissolved Organic Matter 

Mean SUVA values were similar in 2019 (2.5 – 4.4 mg-L-1m-1) and 2021 (3.2 – 6.3 mg-

L-1m-1), with similar positive relationships to cumulative defoliation (Figure 3A). In contrast, 

2020 had lower SUVA values (1.7 – 3.7 mg-L-1m-1) and a nonsignificant relationship (p=0.062) 

with cumulative defoliation. Cumulative defoliation was the strongest contributing landscape 

variable to SUVA in 2019 and 2021, while in 2020, the strongest predictor of SUVA was 

elevation (Figure 3B). Further, in 2019 most of the explained variation was shared between 

elevation and cumulative defoliation, whereas in 2021, most of the explained variation was 

unique to cumulative defoliation (Table 4).  These among-year differences could be attributed to 

differences in cumulative precipitation (measured from Nov 1st in the previous year to Oct 31st 

to account for snow accumulation), as 2020 had lower values than 2019 and 2021 (Figure A9). 
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Figure 3. Mean SUVA concentrations (mg-L-1m-1) from streams in the Gaspésie Peninsula, QC, 

Canada in 2019 (n=8), 2020 (n=10), and 2021 (n=10) with A) Pearson correlations between 

SUVA and cumulative defoliation, and B) percentage of individual contributions of landscape 

metrics to the total R2 from the hierarchical partitioning model for SUVA concentrations.  



MSc. Thesis – M. L. McCaig; McMaster University – Department of Biology  

 

28 

 

Table 4. Hierarchical partitioning model results for mean SUVA concentrations (mg-L-1m-1) 

from streams in the Gaspésie Peninsula, QC, Canada in 2019 (n=8), 2020 (n=10), and 2021 

(n=10). Values represent the amount of variation explained by each landscape metric, with 

individual contributions representing the sum of the unique and shared contributions.  

 Hierarchical partitioning contributions 

Variable Unique 
Average 

shared 
Individual 

2019  

Cumulative defoliation  -0.01 0.28 0.27 

Elevation -0.05 0.23 0.18 

% spruce-fir -0.05 0.16 0.11 

Catchment area -0.01 -0.01 -0.02 

Wetland area 0.05 -0.04 0.01 

Total variance explained (model R2) = 0.55  

2020    

Cumulative defoliation  0.11 0.01 0.12 

Elevation 0.41 -0.03 0.38 

% spruce-fir -0.02 0.07 0.05 

Catchment area  0.06 -0.08 -0.02 

Wetland area -0.04 -0.01 -0.05 

Total variance explained (model R2) = 0.48  

2021    

Cumulative defoliation  0.37 0.08 0.45 

Elevation 0.01 0.12 0.13 

% spruce-fir -0.04 0.10 0.06 

Catchment area 0.07 -0.09 -0.02 

Wetland area  0.05 -0.06 -0.01 

Total variance explained (model R2) = 0.60  

 

3.1.3 Stream Flow 

Stream flow rates were similar across all years (0.04 – 0.3 m3/s) and were positively 

related to cumulative defoliation in all years (Figure 4A). Hierarchical partitioning results 

suggest that elevation was the strongest individual driver of flow rates, followed by cumulative 

defoliation (Figure 4B). In 2019 and 2020, there was a large pool of shared variance between 

elevation and cumulative defoliation, while in 2021, most of the variance was unique to elevation 

(Table 5). Further, the total explained variation in the HP model in 2020 was lower (R2= 0.41) 

relative to 2019 and 2020 (R2 = 0.77 and 0.73 respectively).  
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Figure 4. Mean flow rates (m3/s) from streams in the Gaspésie Peninsula, QC, Canada in 2019 

(n=8), 2020 (n=10), and 2021 (n=10) with A) Pearson correlations between flow rates and 

cumulative defoliation, and B) percentage of individual contributions of landscape metrics to the 

total R2 from the hierarchical partitioning model for flow rates.  
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Table 5. Hierarchical partitioning model results for mean stream flow rates (m3/s) from streams 

in the Gaspésie Peninsula, QC, Canada in 2019 (n=8), 2020 (n=10), and 2021 (n=10). Values 

represent the amount of variation explained by each landscape metric, with individual 

contributions representing the sum of the unique and shared contributions. 

 Hierarchical partitioning contributions 

Variable Unique 
Average 

shared 
Individual 

2019  

Cumulative defoliation  -0.03 0.31 0.28 

Elevation 0.13 0.27 0.40 

% spruce-fir -0.03 0.16 0.13 

Catchment area -0.02 -0.02 -0.04 

Slope  0.01 -0.01 0 

Total variance explained (model R2) = 0.77  

2020    

Cumulative defoliation  -0.08 0.27 0.19 

Elevation 0.02 0.24 0.26 

% spruce-fir -0.08 0.14 0.06 

Catchment area  -0.06 0.00 -0.06 

Slope  -0.06 0.02 -0.04 

Total variance explained (model R2) = 0.41  

2021    

Cumulative defoliation  -0.01 0.18 0.17 

Elevation 0.32 0.17 0.49 

% spruce-fir -0.04 0.18 0.14 

Catchment area 0.00 -0.03 -0.03 

Slope  -0.03 0.00 -0.03 

Total variance explained (model R2) = 0.73  

 

3.1.4 Stream Temperature 

Average stream temperatures during the leaf pack incubation period were similar in 2019 

(6.1 – 9.3 °C) and 2020 (6.2 – 9.6 °C) and elevated by 1°C – 2°C in 2021 (7.1 – 10.6 °C). When 

analyzing all sites together, a strong negative correlation between cumulative defoliation and 

stream temperature was observed in all years (Figure 5A). However, this was masked by the 

among-site gradients in elevation/latitude and spruce-fir composition as the hierarchical 

partitioning models indicated that these were the strongest drivers of temperature in these sites 

(Figure 5B; Table 6). To account for these landscape gradients which are associated with 
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regions, data were also analyzed by region, with all years pooled (Figure 6). This indicated that 

there was a positive relationship between cumulative defoliation and temperature in the lower 

and central regions, but not in the upper region.  
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Figure 5. Mean summer stream temperatures (°C) from streams in the Gaspésie Peninsula, QC, 

Canada in 2019, 2020, and 2021 with A) Pearson correlations between stream temperatures and 

cumulative defoliation and B) percentage of individual contributions of landscape metrics to the 

total R2 from the hierarchical partitioning model for stream temperatures. Temperature values 

represent the site average of data recorded every 10-min from 6 replicates per site.  
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Table 6. Hierarchical partitioning model results for mean summer stream temperatures (°C) (site 

average of data recorded every 10-min from 6 replicates per site per year) from streams in the 

Gaspésie Peninsula, QC, Canada in 2019, 2020, and 2021. Values represent the amount of 

variation explained by each landscape metric, with individual contributions representing the sum 

of the unique and shared contributions. 

 

Hierarchical partitioning 

contributions 

Variable Unique 
Average 

shared 
Individual 

2019  

Cumulative defoliation  0.02 0.13 0.15 

Elevation -0.05 0.19 0.14 

% spruce-fir -0.04 0.22 0.18 

Aspect  -0.01 0.05 0.04 

% wetland area  0.01 0.03 0.04 

Total variance explained (model R2) = 0.54  

2020    

Cumulative defoliation  -0.06 0.19 0.13 

Elevation -0.05 0.25 0.20 

% spruce-fir -0.07 0.19 0.12 

Aspect  -0.07 0.09 0.02 

% wetland area  -0.04 0.05 0.01 

Total variance explained (model R2) = 0.47  

2021    

Cumulative defoliation  0.05 0.15 0.19 

Elevation -0.03 0.15 0.12 

% spruce-fir 0.06 0.24 0.30 

Aspect  -0.05 0.03 -0.02 

% wetland area  0.01 0.05 0.06 

Total variance explained (model R2) = 0.65  
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Figure 6. Pearson correlations between mean summer stream temperatures and cumulative 

defoliation in each study region (lower, central, and upper) in the Gaspésie Peninsula, QC, 

Canada with years (2019, 2020, and 2021) pooled together. Temperature values represent the site 

average of data recorded every 10-min from 6 replicates per site. 

3.2  Stream Microbiome Structure  

3.2.1 Microbiome Structure: Bacteria and Fungi Alpha Diversity 

Bacteria ESV richness across all sites was similar in 2019 and 2020, and considerably 

lower in 2021, while Shannon diversity and evenness metrics were more similar across years 

(Table 7). In contrast, fungi ESV richness increased in 2021 relative to 2019 and 2020 (Table 7). 

All metrics for both bacteria and fungi were variable across sites within each year, however no 

significant relationships were observed between any of the diversity metrics and cumulative 

defoliation in any year (Figure 7), nor with any of the stream habitat variables that changed with 

cumulative defoliation (SUVA, flow, and/or temperature) (Figure A10).  
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Table 7. Ranges of bacteria diversity metrics (ESV richness, Shannon diversity, and evenness) 

and fungi ESV richness from leaf packs incubated in streams in the Gaspésie Peninsula, QC, 

Canada from August – September of 2019, 2020, and 2021. Ranges are based on the average of 

the diversity metric (ESV level) across replicates (n=6/site/year). One outlier site in 2019 

removed from fungi ranges (site U03, mean richness = 463).  

 2019 2020 2021 

Bacteria   

ESV Richness  1336 – 2315 1620 – 2503 709 – 1534 

Shannon Diversity 6.0 – 6.9 5.8 – 6.7 5.4 – 6.6 

Evenness 0.06 – 0.16 0.05 – 0.11  0.05 – 0.20 

Fungi    

ESV Richness  176 – 249 194 – 290 214 – 461 
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Figure 7. Pearson correlations between cumulative defoliation and A) bacteria diversity metrics 

(ESV richness, Shannon diversity, and evenness) and B) fungi ESV richness from leaf packs 

incubated in streams in the Gaspésie Peninsula, QC, Canada from August – September of 2019, 

2020, and 2021. Each value represents the average diversity (ESV level) across replicates at each 

site (n=6/site/year) with the associated watershed cumulative defoliation intensity.  
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3.2.2 Microbiome Structure: Bacteria Community Composition  

Bacteria community composition at the phylum level was relatively constant across sites 

and years and was dominated by Proteobacteria and Bacteroidetes (Figure 8A). Community 

composition at the class level was also relatively constant across sites and years, with the two 

most abundant classes being Alphaproteobacteria and Betaproteobacteria (Figure 8B). There 

were no apparent trends with the cumulative defoliation gradient for community composition at 

the phylum or class level. CoDA PCA ordinations suggest that at a lower taxonomic level (ESV), 

there were differences in bacteria community composition across years (PERMANOVA, R2 = 

0.17, p < 0.001) (Figure 9A). Years 2019 and 2021 separate out from one another more on PC1 

(12% of variation), while 2020 separates out from the other years more on PC2 (9.2% of 

variation). Given this, subsequent ordinations were conducted for each year individually and we 

observed that the separation of communities at the ESV level became more distinct as 

cumulative defoliation progressed and intensified over time. In 2019, there was considerable 

overlap between low and high defoliated sites, with some separation between these groups on 

PC2 (9% of variation) (PERMANOVA, R2 = 0.05, p < 0.001) (Figure 9B). In 2020, there was 

still considerable overlap between the high and low defoliated sites, with some separation 

between the groups on both PC1 (13% variation) and PC2 (8% variation) (PERMANOVA, R2 = 

0.04, p < 0.001) (Figure 9C). By 2021, however, there was clear separation between the low and 

high defoliated sites, with 28% variation explained in the first two PC axes (PERMANOVA, R2 

= 0.12, p < 0.001) (Figure 9D). The sites with tree top mortality in 2020 (U02) and 2021 (U01, 

U02, and C05) did not visually separate out from the other sites, suggesting that these early 
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stages of spruce/fir mortality did not have additional effects on bacteria community composition. 

 

Figure 8. Relative abundance of the bacteria at the A) phyla and B) class levels from leaf packs 

incubated in streams in the Gaspésie Peninsula, QC, Canada from August – September of 2019, 

2020, and 2021 (n=6 replicates/site/year). The top 6 phyla are shown as separate categories, with 

the remaining phlya (< 5% relative abundance) shown in the ‘other’ category. The top 10 classes 

are shown as separate categories, with the remaining classes (< 6 % relative abundance) shown 

in the ‘other’ category. All values represent the average across replicates (n=6) per site. 
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Figure 9. Compositional data analysis (CoDA) PCA ordinations for bacteria communities at the 

ESV level in A) all three sample years, B) 2019, C) 2020, and D) 2021. Each point represents a 

bacteria community from a leaf pack sample (n=6 replicates/site/year) incubated in streams in 

the Gaspésie Peninsula, QC, Canada from August – September of each year. Panel A is coloured 

by year. Panels A, B, and C are coloured by the cumulative defoliation gradient (increasing from 

yellow to blue), with shapes representing the amount of tree top mortality, and ellipses 

representing low (0 – 7.5) and high (7.5 – 15) cumulative defoliation categories.  
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The comparative RDA plots explained similar amounts of variation, which suggests that 

cumulative defoliation was altering bacteria community composition through changes to these 

stream habitat variables (SUVA, temperature, and flow) (Figure 10).  Cumulative defoliation, 

temperature, and flow were positively associated with RDA2 (6% variation) and SUVA was 

positively associated with both RDA2 and RDA1 (23% variation).  When each year was 

examined in a separate set of comparative RDA plots (Figure A12), the stream habitat variables 

explained 6% more variation on the first two axes than cumulative defoliation in 2019, 11% 

more in 2020, and 18% more in 2021.  

 

Figure 10. Comparison of bacteria community RDA plots constrained by A) cumulative 

defoliation and year and B) stream habitat variables (SUVA, temperature, and flow) and year. 

Each point represents a bacteria community from a leaf pack sample (n=6 replicates/site/year) 

incubated in streams in the Gaspésie Peninsula, QC, Canada from August – September of 2019, 

2020, and 2021. Points are coloured by year with shapes representing geographic region. 
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Differential abundance analysis was conducted to assess if there were specific ESVs 

associated with the observed changes in overall community composition between low (0 – 7.5) 

and high (7.5 – 15) cumulative defoliation. These results indicated that a total of 65 unique ESVs 

were differentially abundant between the low and high cumulative defoliation categories 

(p<0.05, effect size >1), with 34 ESVs associated with the high group and 31 with the low group 

across all years. There were 25 ESVs in 2019, 3 in 2020, and 39 in 2021 with low overlap across 

years (there were 65 unique ESVs, with 2 overlapping between multiple years) (Figure 11). In 

each year, the Proteobacteria phylum had several different genera that were differentially 

abundant in high cumulative defoliation sites and many others that were abundant in the low 

defoliated sites. However, Novosphingobium is the only genus in the Proteobacteria phylum that 

was consistently differentially abundant in multiple years, as it was found in the low cumulative 

defoliation sites in both 2020 and 2021. The Fimbriiglobus genus of the Planctomycetes phylum 

had a mixed response across years, as it was more abundant in the high cumulative defoliation 

group in 2019 and more abundant in the low cumulative defoliation group in 2021. Overall, 

results indicate that while there are specific genera that were differentially abundant in the high 

and low cumulative defoliation categories, there were no consistent trends across years at the 

phylum level. 



MSc. Thesis – M. L. McCaig; McMaster University – Department of Biology  

 

42 

 

 

Figure 11. Differential abundance analysis (Aldex2) of bacteria ESVs from leaf pack samples 

(n=6 replicates/site/year) incubated in streams in the Gaspésie Peninsula, QC, Canada from 

August – September in 2019, 2020, and 2021. Bacteria ESVs that are associated with high 

(positive effect size) and low (negative effect size) cumulative defoliation sites are displayed 

with the genus shown on the x-axis and panels for each phylum. Values for all three years (2019, 

2020 and 2021) are shown with different shapes and colours.  
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3.2.3 Microbiome Structure: Fungi Community Composition  

CoDA PCA ordinations at the ESV level suggest that there were differences in fungi 

community composition across years (PERMANOVA, R2 = 0.25, p < 0.001) (Figure 12A). 

Years 2019 and 2021 separated from one another more on PC1 (16% variation), while 2020 

separated from the other years more on PC2 (12% variation). However, data dispersions between 

years were not homogenous, so results should be interpreted cautiously (permutation test, p 

<0.001). Nevertheless, the PERMANOVA and visual inspections indicate that there are distinct 

yearly communities, and as such ordinations were also conducted for each year individually.  In 

2019, the variation explained in the first 2 PCA axes was low (14%) and there was no visually 

apparent trend with cumulative defoliation (Figure 12B). More variation was explained in 2020 

(24%), but with limited separation along the cumulative defoliation gradient (Figure 12C). As 

was observed for the bacteria, although not as strongly, in the later year (2021) there was more 

separation between the high and low cumulative defoliation groups along PC1 (14 % variation) 

(Figure 12D). The low and high cumulative defoliation groups were significantly different in all 

3 years (PERMANOVA p < 0.001 for each year) and although the amount of variation increased 

through time, it was consistently small across years (R2 = 0.03 in 2019, R2 = 0.04 in 2020, and 

R2 = 0.08 in 2021). In addition, the assumption of equal dispersion between groups was violated 

in 2019 (permutation test, p < 0.01) indicating that PERMANOVA results in that year are not as 

reliable as in 2020 and 2021.  
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Figure 12. Compositional data analysis (CoDA) PCA ordinations for fungi communities at the 

ESV level in A) all three sample years, B) 2019, C) 2020, and D) 2021. Each point represents a 

fungi community from a leaf pack sample (n=6 replicates/site/year) incubated in streams in the 

Gaspésie Peninsula, QC, Canada from August – September of each year. Panel A is coloured by 

year. Panels A, B, and C are coloured by the cumulative defoliation gradient (increasing from 

yellow to blue), with shapes representing the amount of tree top mortality, and ellipses 

representing low (0 – 7.5) and high (7.5 – 15) cumulative defoliation categories. 
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As for bacteria, the comparative RDA plots indicate that the changes in fungi 

communities attributed to cumulative defoliation were likely mediated through its impacts on the 

three stream habitat variables of SUVA, flow, and temperature. The two RDAs explained similar 

amounts of variance in the first two RDA axes (~41%) (Figure 13). When data were analyzed 

with each year separately, the stream habitat variable RDAs explained more variation than the 

cumulative defoliation RDAs, with 2% more in 2019, 8% more in 2020, and 7% more in 2021 

(Figure A13).  

 

Figure 13. Comparison of fungi community RDA plots constrained by A) cumulative defoliation 

and year, and B) stream habitat variables (SUVA, temperature, and flow) and year. Each point 

represents a fungi community from a leaf pack sample (n=6 replicates/site/year) incubated in 

streams in the Gaspésie Peninsula, QC, Canada from August – September of 2019, 2020, and 

2021. Points are coloured by year with shapes representing geographic region. 

Differential abundance analysis was conducted to assess if there were specific ESVs 

associated with the observed changes in overall fungi community composition between low and 

high cumulative defoliation. There were no differentially abundant ESVs in 2019 or 2020, which 
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corresponds well with the limited community composition differences between low and high 

cumulative defoliation in those years.  In 2021, there were 8 differentially abundant ESVs, all of 

which were associated with the low cumulative defoliation category. Of these ESVs, 7 belong to 

the Ascomycota phylum and 1 to the Basidiomycota phylum, with each in a different taxonomic 

order and family. 

 

Figure 14. Differential abundance analysis (Aldex2) of the fungi ESVs from leaf pack samples 

incubated in streams in the Gaspésie Peninsula, QC, Canada from August – September in 2019, 

2020, and 2021. Fungi ESVs that are associated with high (positive effect size) and low 

(negative effect size) cumulative defoliation sites in 2021 are displayed with the family shown on 

the x-axis and panels for each phylum. There were no differentially abundant fungi ESVs in 

2019 or 2020.  
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3.2.4 Microbiome Structure: Algal Biomass 

Total algal biomass was similar in both 2019 and 2021 (not measured in 2020) and was 

dominated by diatoms, followed by green algae and cyanobacteria. Total algae, green algae, and 

cyanobacteria biomass were all positively related to cumulative defoliation in both years, while 

diatom biomass was only positively related in 2019 (Figure 15). The HP models indicate that 

total algal biomass was well explained by SUVA, temperature, and flow in 2019 (R2= 0.6) and 

was strongly driven by flow, but the stream habitat variables did not explain any variation in 

2021 (R2= -0.06) (Table 8). This could be due to the lack of relationship between diatoms and 

cumulative defoliation in 2021, as total algal biomass is a sum of the three other algal 

parameters. The green algae HP models explained large amounts of variance in both 2019 (R2 = 

0.63) and 2021 (R2=0.51) but the most important variable differed between years, with flow in 

2019 and SUVA in 2021. The cyanobacteria HP models were not as well explained by the 

stream habitat variables (R2=0.29 in 2019 and R2=0.16 in 2020), indicating that there are 

additional factors driving cyanobacteria that we did not account for in our model. 
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Figure 15. Pearson correlations between average algal biomass (cyanobacteria, diatoms, green 

algae, and total algae) in streams in the Gaspésie Peninsula, QC, Canada from August – 

September in 2019 (n=3) and 2021 (n=3) and watershed cumulative defoliation. Only 2019 and 

2021 shown as algal biomass was not measured in 2020. 
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 Table 8. Hierarchical partitioning model results for mean algal biomass (cyanobacteria, green 

algae, and total algae) from streams in the Gaspésie Peninsula, QC, Canada from August – 

September in 2019 (n=3) and 2021 (n=3). Values represent the amount of variation explained by 

each stream habitat metric (SUVA, temperature, and flow), with individual contributions 

representing the sum of the unique and shared contributions. 

 

Hierarchical partitioning 

contributions 

   

 2019 2021 

Variable Unique 
Average 

shared 
Individual 

Unique Average 

shared 
Individual 

 

Green Algae Model R2 = 0.63 Model R2 = 0.51 

SUVA  0.06 0.01 0.07 0.40 0.07 0.47 

Flow 0.53 0 0.53 -0.02 0.02 0 

Temperature -0.02 0.05 0.03 -0.05 0.09 0.04 

Cyanobacteria Model R2 = 0.29 Model R2 = 0.16 

SUVA -0.04 0.17 0.13 -0.02 0.12 0.10 

Flow -0.03 0.16 0.13 -0.03 0.10 0.07 

Temperature -0.08 0.11 0.03 -0.09 0.08 -0.01 

Total Algae Model R2 = 0.60 Model R2 = -0.06 

SUVA -0.02 0.19 0.17 0.03 0.05 0.08 

Flow 0.20 0.19 0.39 -0.11 0.03 -0.08 

Temperature -0.01 0.05 0.04 -0.12 0.06 -0.06 

 

3.3 Stream Microbiome Functions 

3.3.1 Microbiome Functions: Extracellular Enzyme Assays and Decomposition Rates 

Extracellular enzyme activity (across all sites and years) was highest for phosphatase 

(463 – 4874 nmol h-1 g), followed by N-acetyl-β-D-glucosaminidase (113 – 1748 nmol h-1 g), and 

xylosidase (35 – 752 nmol h-1 g). Activities for all three enzymes were variable across years, 

with the highest activity in 2020, and the lowest activity in 2021. There was variation across sites 

in 2019 and 2020, but limited variation in 2021, and no relationship with cumulative defoliation 

in any year (Figure 16). There was a significant relationship between phosphatase activity and 

SUVA in 2020 (r=0.62, p =0.032), however it was not a consistent relationship in other years 

(Figure 17). There were no significant trends between any of the extracellular enzyme activities 

and other stream habitat variables (temperature, flow, temperature, or nutrients) (Figure A14). 
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Leaf pack decomposition rates were generally low (0 – 1.3 % mass loss/day), with 

limited variability across sites and years. There were no relationships between decomposition 

rates and cumulative defoliation (Figure 18) or stream habitat variables (SUVA, flow, 

temperature, or nutrients) (Figure A14).  

 

Figure 16. Pearson correlations between three extracellular enzyme (XY, NAG, and PHOS) 

activities (nmol h-1 g) and cumulative defoliation. Each point represents the average enzyme 

activity from leaf pack samples incubated in streams in the Gaspésie Peninsula, QC, Canada 

from August – September in 2019, 2020, and 2021 (n=6 replicates/site/year) and the associated 

cumulative defoliation intensity value in each watershed, with points coloured by year.  
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Figure 17. Pearson correlations between three extracellular enzyme (XY, NAG, and PHOS) 

activities (nmol h-1 g) and SUVA concentrations (mg-L-1m-1).  Each point represents the average 

enzyme activity from leaf pack samples incubated in streams in the Gaspésie Peninsula, QC, 

Canada from August – September in 2019, 2020, and 2021 (n=6 replicates/site/year) and the 

average full season SUVA values in each stream (n=8 in 2019, n=10 in 2020, and n = 10 in 

2021). 



MSc. Thesis – M. L. McCaig; McMaster University – Department of Biology  

 

52 

 

 

Figure 18. Pearson correlations between leaf pack decomposition rates (measured as % mass 

loss per day) and the associated cumulative defoliation intensity value in each watershed in 2019, 

2020, and 2021. Each point represents the average % leaf mass loss per day from leaf pack 

samples incubated in streams in the Gaspésie Peninsula, QC, Canada from August – September 

in each year (n=6 replicates/site/year), with points coloured by year.  

 

3.3.2 Microbiome Functions: Taxonomic Functional Assignments  

Bacteria Community  

Taxonomic functional assignments of the bacteria dataset identified 35 broad functional 

groups, with 12 involved in degradation and biosynthesis (Figure 19). Any functional groups 

with significant relationships to cumulative defoliation in all three years were investigated 

further. Two functional groups fit this criterion: the functional group for aromatic compound 

degradation had negative relationships and the carbohydrate biosynthesis group had positive 

relationships with cumulative defoliation in all three years (Figure 20). 
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Within these two functional groups, there were 66 pathways identified, with 42 in the 

aromatic compound degradation group and 24 in the carbohydrate biosynthesis group. Three of 

the aromatic compound degradation pathways belong to the sub-group vanillin degradation and 

each one was negatively related to cumulative defoliation in all three years (Figure 21). The 

vanillin degradation group only contains these three pathways, which are all variants of one 

another, meaning they perform the same biological function from the same starting material but 

do so with slightly different chemical reactions (BioCyc, 2023). Vanillin is an intermediate 

compound formed from the breakdown of lignin (an aromatic compound abundant in terrestrial 

vegetation) (Caspi et al., 2018; MetaCyc, 2023). There were an additional four aromatic 

compound degradation pathways negatively related to cumulative defoliation in two of the three 

years (2020 and 2021), and five with a negative relationship in 2020 and positive in 2021. There 

were 25 pathways that were only related to cumulative defoliation in one year, and they included 

21 aromatic degradation pathways and 4 carbohydrate biosynthesis pathways.  
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Figure 19. Boxplot of bacteria degradation and biosynthesis functional groups in each leaf pack 

sample (n=6/site/year) incubated in streams in the Gaspésie Peninsula, QC, Canada from August 

– September in 2019, 2020, and 2021. All functional pathways were identified with PiCRUT2 

and sorted into functional groups based on the MetaCyc pathway type ontology. The relative 

abundances of all pathways within a functional group were summed and groups with a relative 

abundance of 2% or more are presented and coloured by year.  
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Figure 20. Linear models between bacteria functional groups (aromatic compound degradation 

and carbohydrate biosynthesis) significantly related to cumulative defoliation. Each point 

represents a leaf pack sample (n=6/site/year) incubated in streams in the Gaspésie Peninsula, QC, 

Canada from August – September in 2019, 2020, and 2021 and is coloured by sample year. The 

summed relative abundance of all functional pathways within the aromatic compound 

degradation (n=42 pathways) and carbohydrate biosynthesis (n= 24 pathways) functional groups 

are presented. Functional pathways were identified with PiCRUST2 and sorted into functional 

groups based on the MetaCyc pathway type ontology.  
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Figure 21. Linear models between the vanillin degradation functional group (sub-group of 

aromatic compound degradation) and cumulative defoliation. Each point represents a leaf pack 

sample (n=6/site/year) incubated in streams in the Gaspésie Peninsula, QC, Canada from August 

– September in 2019, 2020, and 2021 and is coloured by sample year. The number of reads 

represents the sum of reads from the three functional pathways that form the vanillin degradation 

subgroup. Functional pathways were identified with PiCRUSt2 and sorted into functional groups 

based on the MetaCyc pathway type ontology. 

Fungi Community  

Taxonomic functional assignments of the fungi dataset using FUNGuild identified 33 

broad functional groups, with the plant pathogen, endophyte, and undefined saprotrophs as the 

most abundant groups (Figure 22). There was some variation in their relative abundances across 

sites and considerable interannual variability. There was 1 functional group related to cumulative 

defoliation in 2019 (algal parasite) and 1 in 2021 (epiphyte) (Figure 23). There were no 

consistent relationships between any functional groups and cumulative defoliation across 

multiple years.    
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Figure 22. Boxplot of the fungi functional groups (guilds) in each leaf pack sample 

(n=6/site/year) incubated in streams in the Gaspésie Peninsula, QC, Canada from August – 

September in 2019, 2020, and 2021. Fungi ESVs in each sample were assigned functional groups 

with FUNGuild and assignments with a confidence level of highly probable and probable were 

retained (52% of all fungi ESVs in the dataset). Groups with a relative abundance of 7% or more 

are presented here and are coloured by year.  
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Figure 23. Linear models between fungi functional groups (algal parasite and epiphyte) 

significantly (p-values shown in red) related to cumulative defoliation. Each point represents a 

leaf pack sample (n=6/site/year) incubated in streams in the Gaspésie Peninsula, QC, Canada 

from August – September in 2019, 2020, and 2021 and is coloured by sample year. Fungi ESVs 

in leaf pack samples were assigned functional groups with FUNGuild and assignments with a 

confidence level of highly probable and probable (52% of all fungi ESVs in the dataset) were 

assessed for relationships with cumulative defoliation. 

Functional Diversity 

Bacteria and fungi functional diversity metrics (richness and Shannon diversity) were 

calculated based on the taxonomic functional assignment outputs (pathways for bacteria and 

guilds for fungi) and both metrics produced similar patterns within the two types of 

microorganisms. Bacteria functional diversity had limited variability across sites, but 

considerable interannual variability, with a decline in functional diversity across all sites in 2021 

(Figure 24). In contrast, fungi functional diversity increased over time from 2019 to 2020 to 

2021. There was no evidence of any trends between bacteria or fungi functional diversity and 
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cumulative defoliation (Figure 24) or with stream habitat variables (SUVA, flow, and 

temperature) (Figure A14). 

 

Figure 24. Pearson correlations between functional diversity (richness) of A) bacteria and B) 

fungi communities and cumulative defoliation. Average functional diversity from leaf pack 

samples (n=6/site/year) incubated in streams in the Gaspésie Peninsula, QC, Canada from 

August – September in 2019, 2020, and 2021, with points coloured by sample year. Bacteria 

functional richness represents the number of pathways identified using PICRUSt2, while fungi 

functional richness represents the number of guilds identified using FUNGuild.  
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4.0 Discussion  

Spruce budworm defoliates spruce and fir trees and while the associated litter and frass 

inputs to forests alter terrestrial ecological processes (De Grandpré et al., 2022), less is known 

about their impact on aquatic ecosystems. We examined the influence of cumulative spruce 

budworm defoliation on stream ecosystems within 12 forested watersheds along a gradient of 

defoliation severity and there were three key outcomes. First, we found that cumulative 

defoliation altered stream habitat through changes to carbon quality (SUVA), temperature, and 

flow rates, but not nutrient concentrations or any other DOM quantity or quality metrics. Second, 

we observed changes to the structure of the microbiome, specifically increased algal biomass and 

changes to microbiome composition, but no change to overall microbial diversity. Finally, we 

found changes to bacterial functions associated with carbon cycling assessed through taxonomic 

assignments, but no changes to fungi taxonomic assignments or microbial functions measured 

through extracellular enzyme activities and leaf litter decomposition rates.  

4.1 Microbiome Structure  

Bacteria community composition in the Gaspésie streams varied among years and along the 

cumulative defoliation gradient within years. We found distinct yearly bacteria communities, 

which is consistent with the high temporal variability in stream bacteria community composition 

found in other studies (Portillo et al., 2012; Shade, Peter, et al., 2012; Zeglin, 2015). In the 

current study, a shift in bacteria community composition was observed between streams 

experiencing low and high cumulative defoliation, with the trend beginning in 2019 and 

strengthening each subsequent year. The strongest separation along the cumulative defoliation 

gradient occurred in 2021, suggesting that there is a cumulative defoliation intensity threshold of 

7.5 or greater (on a scale of 0 – 15) along with a time threshold of 5 – 6 consecutive years of 
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defoliation. This suggests that cumulative defoliation has limited influence on stream bacterial 

community composition in the initial stages of a spruce budworm outbreak, but as the severity of 

the outbreak progresses and the effects of defoliation accumulate over time, it can influence 

community composition. Time lags in the response of microbiomes to disturbance are common, 

and with press disturbances (continuous disturbance over the long term) such as defoliation, it is 

difficult to determine when the threshold of maximum community change has been reached 

(Shade, Peter, et al., 2012). The observed lag effect in this study could also be due to the 

chronology of the outbreak across the study area. For example, defoliation was first observed in 

the upper watersheds in 2016, whereas it did not reach the central watersheds until 2017, and the 

lower watersheds until 2018. By 2021, all watersheds had 4 to 6 consecutive years of defoliation, 

with varying levels of severity. Additional years of field data in these watersheds would be 

beneficial to confirm the effects of the duration and severity of defoliation on stream microbiome 

composition.  

Fungi community composition showed similar trends across years, but the shifts were not as 

strong as those observed in the bacteria community. This suggests that the fungi communities are 

more resistant to cumulative defoliation than the bacteria communities and that the initial stages 

of spruce budworm outbreaks will have less of an influence on fungi community composition. 

This is consistent with the response of soil microbial communities to environmental changes 

(e.g., mining, forest restoration, and drought) as fungi communities have been reported to be 

more resistant to environmental change than bacteria communities (Chen et al., 2020; De Vries 

et al., 2012; Sun et al., 2017). This is likely due to competitive differences in growth rates and 

resource use (De Vries et al., 2012; Shade, Peter, et al., 2012).  Fungi have relatively slow 

growth rates, while bacteria have faster growth rates and can respond more quickly to 
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environmental changes (De Vries et al., 2012; Shade, Peter, et al., 2012; Sun et al., 2017). 

Further, fungi and bacteria often use different carbon substrates, for example, the breakdown of 

leaves is typically dominated by fungi, while sediments and fine particles are dominated by 

bacteria (Findlay, 2010; Sun et al., 2017). As such, fungi communities in this study are likely 

less responsive to the observed changes in DOM inputs to streams than bacteria communities. 

These differences in substrate use also provide a plausible explanation for the observed 

interannual differences in microbial diversity, with a decline in bacteria species richness 

alongside an increase in fungi species richness in 2021. This year had higher sedimentation rates 

relative to the previous two years (Figure A11), which may have a stronger negative influence on 

the bacteria communities that dominate the decomposition of fine particles, while the reduced 

competitive pressures with bacteria may subsequently allow fungi richness to increase.  

As predicted, these changes in community composition along the cumulative defoliation 

gradient appear to be driven by alterations to stream habitat conditions related to defoliation 

(SUVA, temperature, and flow). This is in agreement with the literature as these three parameters 

are commonly reported to influence microbial community structure (Besemer, 2016; Zeglin, 

2015). Elevated stream flow rates can increase the dispersal of microbial taxa from upstream, as 

well as increase the transfer of nutrients and carbon, which can shift microbial composition for 

resources (Besemer, 2016; Besemer et al., 2009; Woodcock et al., 2013). Similarly, increased 

SUVA levels can result in an increase in specialized microbial taxa that are able to process 

aromatic compounds (Fasching et al., 2020). Microbial taxa also have different optimal 

temperatures for growth which allows different groups to dominate at different temperatures and 

results in shifts in microbiome community composition (Adams et al., 2010). Additionally, the 

yearly comparative RDA plots in the current study show that considerably more variance is 
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explained by the stream habitat variables than the cumulative defoliation gradient. This is likely 

because the stream habitat variables represent the fine scale conditions that the bacteria and fungi 

communities are experiencing, whereas cumulative defoliation is a coarse measure of broad 

watershed condition.  

While we observed shifts in bacteria and fungi community composition with increased 

cumulative defoliation and changes to stream habitat, there were no changes to alpha diversity. 

This suggests that there is species turnover occurring, but there is no associated decline in 

diversity. This pattern is consistent with other studies of land use gradients (e.g., urbanization, 

logging, industry, and forest fires) and stream microbial communities (Emilson et al., 2016; 

Hosen et al., 2017; Roberto et al., 2018; Simonin et al., 2019). In urban systems, this pattern has 

been attributed to the introduction of novel taxa from sewage and storm water inputs which 

offset the loss of sensitive taxa (Hosen et al., 2017; Simonin et al., 2019). In the current study, 

the increased inputs of litter and frass associated with defoliation could be introducing new 

microbial taxa, while taxa sensitive to the changing stream conditions are lost. Alternatively, this 

pattern could be because the small shifts we observed in the community composition (that were 

specific to changes in the organic matter source) were not large enough to cause shifts in overall 

microbial diversity. To improve the understanding of the underlying mechanism in this study, 

frass and litter samples could have been collected and microbiomes sequenced to compare the 

microbiome composition of frass, litter, and streams.  

4.2 Shifts in Stream Carbon Quality and Bacteria Carbon Cycling Functions 

With increased cumulative defoliation, we observed changes in the microbiome communities 

that were related to changes in carbon inputs and processing. We observed an increase in both 

SUVA and algal biomass, which would change carbon availability to microorganisms in two 
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ways. Higher SUVA indicates an increase in aromatic carbon compounds dissolved in the stream 

water (Weishaar et al., 2003), while higher algal biomass provides an increase in the availability 

of carbohydrates to microbial decomposers (glucose as a product of photosynthesis) in the 

streams (Wetzel, 2001). The changes in bacterial functional groups – to those with less aromatic 

degradation pathways and more carbohydrate biosynthesis pathways – suggests that the bacteria 

community responded to these changes in carbon quality by preferentially selecting 

carbohydrates as an energy source rather than the more complex, aromatic carbon source 

(SUVA), despite an increased availability of both sources. Bacteria commonly select carbon 

compounds that are the easiest to use as they allow for faster growth rates and thus a competitive 

advantage over other bacteria (Gorke & Stulke, 2008). The preference specifically for glucose 

has been observed in many bacteria species and it is known as a regulatory process called carbon 

catabolite regression (CCR) (Magasanik, 1961). When there is an abundance of a preferred 

carbon source the functions related to the use of other carbon sources decline, and their 

associated genes are not expressed (Gorke & Stulke, 2008). As such, the changes in SUVA co-

occurring alongside likely changes in carbohydrates and the preferential selection by bacteria 

provide a likely explanation as to why the increased SUVA was not associated with an increase 

in functions associated with the processing of aromatic compounds as previously reported (e.g., 

Fasching et al., 2020).  

The observed increase in SUVA associated with cumulative defoliation is likely mediated 

through two main pathways. Firstly, increased litter deposition to the forest floor from spruce 

budworm consuming and destroying foliage likely led to increased leaching of aromatic DOM in 

runoff as terrestrial vegetation is abundant in aromatic compounds (e.g., lignin and tannins) 

(Allan et al., 2021; Preston & Trofymow, 2000). Secondly, spruce budworm outbreaks have been 
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associated with increased soil temperature (De Grandpré et al., 2022) and water content 

(Balducci et al., 2020), which increases organic matter decomposition rates and would further 

increase the humic content and aromaticity of DOM runoff (Bertolet et al., 2018; Conant et al., 

2011). This may be more a result of changes to soil moisture, as SUVA in soil leachate has been 

shown to be more sensitive to soil moisture levels than temperature, with SUVA lower in lakes 

during drought conditions (Bertolet et al., 2018). Measures of terrestrial processes such as leaf 

litter deposition rates and soil moisture levels in future studies would help delineate the factors 

that led to increased SUVA in streams in the current study.  

Most of the variability in SUVA was driven by cumulative defoliation and elevation/latitude, 

but this differed among years, with defoliation explaining the most variability in 2019 and 2021 

and elevation the most in 2020. This is likely due to differences in annual precipitation patterns, 

which can increase the hydrologic connectivity of organic soils and downstream waters under 

wet conditions, resulting in higher SUVA in streams and lakes with increased precipitation and 

soil moisture (Bertolet et al., 2018; Hood et al., 2006; Jane et al., 2017). This aligns with the 

lower SUVA observed in 2020 in this study, as there was lower cumulative precipitation in that 

year (Figure A9). A small amount of variance was also explained by forest composition, which 

can be attributed to the differences in the organic composition of leaf litter across tree species 

(Preston & Trofymow, 2000). This is consistent with other studies that found small differences in 

SUVA in throughfall, litter leachate, and soil between coniferous and deciduous forests 

(Cepáková et al., 2016; Thieme et al., 2019). Wetland area is typically a strong driver of SUVA 

in streams and rivers (Burns et al., 2013; Hanley et al., 2013) but was not an important predictor 

in our study. This could be attributed to the overall low wetland cover in the study area and 

limited range of variation across watersheds (0 – 2.5 % wetland cover).  
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Algal production is typically driven by light availability, temperature, and nutrients (Wetzel, 

2001), however we did not see a strong influence of temperature or nutrients on algal biomass in 

these streams. As such, increased light availability is the most likely mechanism for the increased 

algal biomass, although we did not measure light availability directly in this study. Increased 

stream light availability due to loss of foliage has been observed in other pest outbreaks, for 

example, spongy moth (Lymantria dispar dispar) (Addy et al., 2018) and hemlock woody 

adelgid (Adelges tsugae Annand) (Siderhurst et al., 2010). Future work should investigate this 

mechanism directly for spruce budworm outbreaks by measuring both light availability and algal 

biomass across a gradient of defoliation intensity.   

We also observed interannual variability in the relationships between algal biomass 

parameters and cumulative defoliation. In 2019, all parameters (cyanobacteria, diatoms, green 

algae, and total algae) displayed strong positive relationships with cumulative defoliation, while 

in 2021, the relationships weakened for diatoms, green algae, and total algae. Cyanobacteria was 

the exception and displayed strong relationships in both years. These yearly differences could be 

due to elevated sediment deposition rates in several stream sites in 2021 (Figure A11), as 

increased suspended sediment loads are known to reduce algal growth (Izagirre et al., 2009; 

Jones et al., 2012). Green algae have been found to be more sensitive to increased sedimentation 

than cyanobacteria and diatoms (Izagirre et al., 2009), however in the current study, both green 

algae and diatoms appeared to be sensitive to sedimentation.   

4.3 Microbiome Functions and Stream Nutrients 

Despite the changes in bacteria carbon cycling observed with the taxonomic functional 

assignments, leaf litter decomposition rates by microorganisms and their extracellular enzyme 

activities did not show any changes with cumulative defoliation. The lack of change in leaf litter 
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decomposition rates aligns with the limited changes to fungi community structure, as 

decomposition is typically dominated by fungi communities rather than bacteria (Findlay, 2010). 

Enzymes are produced by microbes to obtain nutrients from organic matter and are typically 

closely tied to stream nutrient levels, with the enzymes assessed in this study corresponding to 

phosphorus (PHOS), nitrogen (NAG), and carbon (XY) availability (Cunha et al., 2010; Luo et 

al., 2017). As such, the lack of relationship between enzyme activities and cumulative defoliation 

aligns well with the lack of response of nutrient levels (DOC, N, and P) to cumulative defoliation 

observed across sites. While we found no changes in the NAG enzyme or stream nitrogen levels 

associated with cumulative defoliation, we observed significantly higher concentrations of 

inorganic nitrogen (NO2-NO3) and total nitrogen (TN) in the watershed with substantial tree top 

mortality, though we did not observe any corresponding changes to enzyme activities. Spruce 

budworm defoliation has been found to result in a four-to-five-fold increase in nitrogen and 

phosphorus inputs to the boreal forest floor, though most of these nutrients are quickly taken up 

by surviving trees (De Grandpré et al., 2022). After five years of heavy defoliation tree mortality 

can occur (MacLean, 1984), which reduces nitrogen capture by trees and increases inorganic 

nitrogen pools in the soil (De Grandpré et al., 2022). This increased soil nitrogen associated with 

tree mortality likely resulted in excess nitrogen reaching the streams through runoff. Increased 

inorganic nitrogen in soils has been observed in response to tree mortality caused by bark 

beetles, but the response did not always translate to elevated nitrogen concentrations in streams, 

which may be attributed to differences in hydrological flow paths (Bearup et al., 2014; Clow et 

al., 2011; Mikkelson, Bearup, et al., 2013; Zimmermann et al., 2000). In contrast, there were no 

relationships between stream phosphorus concentrations or the PHOS enzyme and cumulative 

defoliation or tree mortality which could be attributed to relatively low levels of phosphorus in 
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litter and frass inputs from spruce budworm (De Grandpré et al., 2022).  Spruce and fir foliage is 

nitrogen rich and nitrogen inputs from spruce budworm are 10 times higher than phosphorus (De 

Grandpré et al., 2022). 

The lack of relationships between enzyme activities and cumulative defoliation aligns well 

with the observed increase in algal biomass and increase in bacteria carbohydrate biosynthesis 

functions which suggest an abundance of easily accessible carbon in the streams. Microbes only 

produce enzymes to obtain nutrients from organic matter when they do not have an adequate 

simple source of organic carbon (Cunha et al., 2010). Furthermore, we observed interannual 

variability in enzyme activities, with the lowest activity rates observed in 2021. This could be 

attributable to higher stream flow and sedimentation rates in this year (Table A2; Figure A11), as 

they can impede biofilm establishment and lead to reduced microbial functioning (Besemer, 

2016). 

4.4 Physical Stream Habitat Changes  

We also observed changes in physical stream habitat characteristics (stream flow and 

temperature) associated with higher cumulative defoliation. Higher stream flow rates associated 

with increased cumulative defoliation intensity are likely due to the reduced evapotranspiration 

rates from foliage loss causing a decline in water storage potential in the catchment (Bearup et 

al., 2014; Sidhu et al., in prep; Sørensen et al., 2009). Hierarchical partitioning models indicate 

that elevation was a more important driver of stream flow than cumulative defoliation, however 

there is substantial shared variation between cumulative defoliation and elevation in 2019 and 

2020. The large contribution of elevation to the models is likely driven by the considerable 

variability in snowpack levels associated with the elevation gradient across the study area (M. 

Stastny, personal communication, February 13, 2023). The lower importance of cumulative 
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defoliation in 2021 could be attributed to interannual climatic variability (Schäfer et al., 2014), 

spatiotemporal distribution of defoliation across the study area (Robert et al., 2012), and the 

influence of spray treatments on some watersheds (Sidhu et al., in prep). By 2021, half of the 

watersheds had received two years of spray treatments, which has the potential to reduce the 

impacts of previous years of defoliation and alter the relationship between flow and cumulative 

defoliation (Sidhu et al., in prep).  

The positive association between stream temperatures and cumulative defoliation observed in 

this study is likely due to increased soil temperatures from a reduction in foliage (De Grandpré et 

al., 2022). Increased light levels in the streams could also have an effect on stream temperatures 

(Addy et al., 2018), however this can only be speculated as light levels were not measured in this 

study. Further, previous studies assessing the influence of increased light levels from defoliation 

on stream temperatures have found mixed responses. For example, spongy moth defoliation 

corresponded to increased light levels and stream temperatures (Addy et al., 2018), while 

hemlock woody adelgid defoliation led to increased light levels but no accompanying increase in 

stream temperatures (Siderhurst et al., 2010). This is possibly due to varying proportions of 

groundwater inputs to streams, as streams with greater groundwater inputs (and less hydrologic 

flow through warming surface soils) likely do not result in increased stream temperatures 

(Siderhurst et al., 2010). In this study, the observed increase in stream temperatures cannot be 

attributed to cumulative defoliation alone, as hierarchical partitioning models suggest that the 

variance explained by defoliation is shared with other landscape parameters (elevation, latitude, 

and spruce-fir composition). These parameters are interconnected on the landscape and the 

increased temperatures we observed were likely driven by the combined influence of all metrics 

rather than one individual metric. The observed changes in physical stream characteristics 
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(temperature and flow), combined with the changes in carbon quality, appear to have contributed 

to the alterations of bacteria and fungi community composition that were observed along the 

cumulative defoliation gradient.  

4.5 Limitations  

While functional inference and trait assignment tools provide valuable insights about 

potential microbial functions, they also come with several limitations that are important to 

consider. Functional inference tools (i.e., PICRUSt2 used in this study) have three main 

limitations. First, they assume that phylogenetic traits are conserved and don’t account for gene 

gain or loss associated with horizontal gene transfer (Djemiel et al., 2022; Taberlet et al., 2018). 

Second, they only provide insight on functional potential, as a gene present in a sample may not 

be expressed under all environmental conditions. Finally, the accuracy of PICRUSt2 functional 

predictions depends on the quality of the reference genome database (Djemiel et al., 2022; 

Taberlet et al., 2018). We used PICRUSt2 for 16S data as the number of sequenced genomes 

present in the 16S reference database is sufficient to make predictions (Douglas et al., 2020). In 

contrast, we did not use PICRUSt2 for the ITS data as the number of sequenced genomes present 

in the ITS reference database is much lower, making the predictions only slightly better than 

random and much less accurate than 16S (Djemiel et al., 2022; Douglas et al., 2020).   

The functional trait assignment tool (FUNGuild) used to predict ITS functions provides 

more general assignments and is a more accurate approach for predicting fungi functions 

(Djemiel et al., 2022). There are two main limitations with this tool. First, it only assigns traits to 

organisms found in the reference database rather than relying on the assumption of phylogenetic 

relatedness like PiCRUSt2 (Djemiel et al., 2022). While this has the benefit of improved 

accuracy of assignments, it also has the drawback of many sequences in the dataset without any 
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functional assignment (i.e., in our study, 40% of the ITS sequences were unassigned). Second, 

this method is limited by the taxonomic resolution of the sequences. Many of the functional traits 

are assigned at the genus level rather than species level, and one genus can be assigned multiple 

functional traits, which limits the precision of the prediction (Djemiel et al., 2022). 

4.6 Broader Implications and Future Directions  

The shifts in carbon cycling functions observed in this study require further investigation, 

particularly with the potential implications related to climate change. There are currently global 

efforts to accurately quantify carbon sinks and sources across different ecosystem types (e.g., 

wetlands, forests, and streams) to inform management strategies that enhance carbon capture or 

reduce carbon emissions under forest change and disturbance scenarios (Casas-Ruiz et al., 2023).  

It is well recognized that carbon is transferred from terrestrial ecosystems to aquatic ecosystems, 

however it is still highly uncertain how much of this transferred carbon is stored in aquatic 

sediments or released back to the atmosphere, challenging the ability to assess impacts of forest 

change (Casas-Ruiz et al., 2023). Furthermore, spruce budworm management interventions (e.g., 

aerial spray with Btk) have been found to reduce carbon losses and maintain carbon storage in 

boreal forests (Z. Liu et al., 2020). Given that forest pest defoliation is the most widespread 

disturbance type in Canadian forests, understanding the fate of the associated carbon transfer 

from defoliated forests to freshwater ecosystems and to the atmosphere is critical for accurate 

carbon budget assessments. Future work should implement the framework proposed by (Casas-

Ruiz et al., 2023) and link terrestrial and aquatic carbon transfer to obtain accurate estimates of 

carbon transfer within defoliated watersheds.   

The influence of spruce budworm outbreaks on stream microbiomes should be explored 

further in future years as defoliation in the study area separates from natural gradients on the 
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landscape and tree mortality increases. As defoliation continues to intensify in the lower and 

central watersheds, collinearity between cumulative defoliation, elevation, and forest 

composition will be reduced. Further, while we found no evidence of an influence of tree 

mortality on microbial community structure or function, we did find increased NO2-NO3 and TN 

concentrations in streams associated with tree mortality. Elevated nutrient levels can influence 

stream microbial community composition, diversity, and function (Besemer, 2016; Fernandes et 

al., 2014). Tree mortality is expected to increase in the study area as the spruce budworm 

outbreak continues, and future work should investigate the potential implications for stream 

microbiomes.   

Finally, as forests in the study area recover from the spruce budworm outbreak, the 

resilience of the stream microbial communities should be examined. Several short-term studies 

(< 1 year) of microbial communities in freshwater ecosystems have reported that communities 

are resilient to pulse disturbances and return to the pre-disturbance state (Eckert et al., 2019; 

Shade et al., 2011; Shade, Read, et al., 2012; Walker et al., 2022). In contrast, press disturbances 

(like spruce budworm defoliation) are not well studied in freshwater ecosystems and are more 

likely to cause microbial communities to shift to an alternative stable state post-disturbance 

(Beattie et al., 2020; Shade, Peter, et al., 2012).  

 

 

 

 

 



MSc. Thesis – M. L. McCaig; McMaster University – Department of Biology  

 

73 

 

5.0 Conclusion  

Canada’s boreal forests are increasingly threatened by natural disturbances including 

forest pest outbreaks (Natural Resources Canada, 2022). This study evaluated the influence of 

cumulative spruce budworm defoliation on stream ecosystems within forested watersheds and 

there were three key outcomes. First, we demonstrated that cumulative defoliation altered stream 

habitat through increases in SUVA (DOM aromaticity), temperature, and flow rates, but not 

nutrient concentrations or any other DOM quantity or quality metrics. We also observed early 

indications of defoliation induced tree mortality increasing stream nitrogen levels. Second, we 

observed changes to stream microbiome structure, with increased algal biomass and changes to 

microbial community composition, but we did not observe any changes to overall microbial 

diversity. Finally, cumulative defoliation was associated with changes to bacterial functions 

involved in carbon cycling, but no changes were observed to fungi functions or overall microbial 

functions measured through extracellular enzyme activities and leaf litter decomposition rates. 

Overall, the observed alterations to dissolved organic matter quality and the bacteria 

communities associated with carbon cycling provide key insights into how forest disturbances 

can influence stream carbon processing.   

Proactive forest management interventions like the Early Intervention Strategy (EIS) 

drastically reduce economic costs, forest carbon emissions, and impacts to forest resources 

(Johns et al., 2019) and the findings of this study suggest that the benefits could also extend to 

carbon processing in stream ecosystems. However, more research is needed to explore if these 

changes in within stream carbon cycling are altering the rates of carbon transfer from the streams 

to the atmosphere. This is particularly important given the current climate crisis, as there are 
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global efforts to manage ecosystems in ways that can enhance carbon capture or reduce carbon 

emissions to mitigate climate change (Casas-Ruiz et al., 2023).  

This study evaluated the influence of cumulative defoliation during the first six years of a 

spruce budworm outbreak and found alterations to stream habitat and microbial community 

structure and function, but the influence of defoliation should continue to be explored as the 

outbreak progresses over time. Tree mortality typically begins after the fifth year of intense 

defoliation (MacLean, 1984), and many of the watersheds in this region have not yet reached this 

level of defoliation. It will be important to evaluate the influence of tree mortality on stream 

ecosystems as it is likely to affect stream hydrology and biogeochemical cycling (Mikkelson, 

Bearup, et al., 2013; Mikkelson, Dickenson, et al., 2013; Reed et al., 2018; Sidhu et al., in prep; 

Zimmermann et al., 2000) which could have further implications for stream microbial 

community structure and function.  
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Appendix A: Supplemental Stream Habitat Tables and Figures 

Table A1. Abbreviations and detection limits for stream water chemistry parameters measured in 

streams in the Gaspésie Peninsula, QC, Canada from May – October in 2019, 2020, and 2021. 

Parameters with less than 60% of measurements above detection limits were removed from 

analyses and are displayed in bold. A total of 336 measurements were taken across all 12 sites 

(96 in 2019, 120 in 2020, and 120 in 2021).  

Parameter Abbreviation Detection limit 

(mg/L) 

% of values above 

detection limit 

Calcium Ca 0.01 100  

Potassium K 0.01 100 

Sodium Na 0.01 100 

Magnesium Mg 0.005 100 

Sulfate SO4 0.2 100 

Chloride Cl 0.2 100 

Silica dioxide SiO2 .25 100 

Total nitrogen TN 0.05 98 

Nitrite/Nitrate NO2 -NO3 0.04 85  

Ammonia NH4 0.01 19 

Dissolved organic carbon DOC 0.4 100 

Dissolved inorganic carbon DIC 0.5 100 

Soluble reactive phosphorus SRP 0.001 32 

Total phosphorus TP 0.001 92 

Zinc Zn 0.001 91 

Aluminum Al 0.005 43 

Iron Fe 0.005 59 

Manganese Mn 0.0005 26 

Cadmium Cd 0.0005 0 

Copper Cu 0.0005 96 

Nickel Ni 0.0005 19 

Lead Pb 0.0005 0 
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Figure A1. Rarefaction curves for 16S sequencing data from leaf packs in 12 streams in the 

Gaspésie Peninsula, QC, Canada in A) 2019, B) 2020, and C) 2021. Each line represents a leaf 

pack replicate (n=6/site).  
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Figure A2. Rarefaction curves for ITS sequencing data from leaf packs in 12 streams in the 

Gaspésie Peninsula, QC, Canada in A) 2019, B) 2020, and C) 2021. Each line represents a leaf 

pack replicate (n=6/site).  
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Figure A3. Pearson correlations between full season (May – October) stream habitat parameters 

and cumulative defoliation across all 12 sites in the Gaspésie Peninsula, QC, Canada. Average 

stream habitat values were used in analysis (n=8/site in 2019, n= 10/ site in 2020, and n=10/site 

in 2021).  
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Figure A4. Pearson correlations between stream habitat parameters during leaf pack incubation 

(August- September) and cumulative defoliation across all 12 sites in the Gaspésie Peninsula, 

QC, Canada in 2019, 2020, and 2021. Average stream habitat values were used in analysis 

(n=3/site in each year).  
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Figure A5. Pearson correlations between average full season (May – October) stream habitat 

metrics across all 12 stream sites the Gaspésie Peninsula, QC, Canada in 2019 (n=8 bi-weekly 

measurements/site). Blue circles represent a positive correlation and red circles represent a 

negative correlation, with darker shades and larger circles representing stronger correlations. P-

values are displayed in the circle for all non-significant relationships and are not shown for 

significant relationships. 
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Figure A6. Pearson correlations between average full season (May – October) stream habitat 

metrics across all 12 stream sites in the Gaspésie Peninsula, QC, Canada in 2020 (n=10 bi-

weekly measurements/site). Blue circles represent a positive correlation and red circles represent 

a negative correlation, with darker shades and larger circles representing stronger correlations. P-

values are displayed in the circle for all non-significant relationships and are not shown for 

significant relationships. 
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Figure A7. Pearson correlations between average full season (May – October) stream habitat 

metrics across all 12 stream sites in the Gaspésie Peninsula, QC, Canada in 2021 (n=10 bi-

weekly measurements/site). Blue circles represent a positive correlation and red circles represent 

a negative correlation, with darker shades and larger circles representing stronger correlations. P-

values are displayed in the circle for all non-significant relationships and are not shown for 

significant relationships. 
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Figure A8. Pearson correlations between landscape parameters in watersheds in the Gaspésie 

Peninsula, QC, Canada in 2019, 2020, and 2021, with A) cumulative defoliation and mean 

elevation (m), B) cumulative defoliation and spruce-fir land cover (%), and C) mean elevation 

and spruce-fir land cover. Cumulative defoliation values for each year are used, while the same 

values for spruce-fir and elevation are used for all three years.  
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Table A2. Average stream habitat parameters per site per year from streams in the Gaspésie 

Peninsula, QC, Canada. SUVA, TN, NO2-NO3, TP, DOC, and flow are averages of biweekly 

measurements from May – October in 2019 (n=8/site), 2020 (n=10/site), and 2021 (n=10/site). 

Temperature averages (n=6 replicates/site, measured at 10-min intervals) are from data collected 

from mid-August-end of September each year.  

 

Site 

SUVA 

(L/mg-C m) 

 

mhix 

 

bix 

 

fi 

TN 

(mg/L) 

NO2-NO3 

(mg/L) 

TP 

(mg/L) 

DOC 

(mg/L) 

Flow 

(m3/s) 

Temp 

(°C) 

2019 

U01 4.87 0.60 0.77 1.21 0.14 0.13 0.0009 0.66 0.19 6.10 

U02 4.31 0.74 0.59 1.23 0.19 0.14 0.0017 1.57 0.24 6.46 

U03 3.96 0.78 0.56 1.26 0.11 0.05 0.0010 1.88 0.13 7.28 

C04 4.28 0.61 0.73 1.28 0.13 0.02 0.0050 1.07 0.11 7.86 

C05 3.22 0.61 0.75 1.23 0.10 0.07 0.0010 0.98 0.07 8.35 

C06 3.50 0.61 0.76 1.25 0.08 0.04 0.0011 0.92 0.07 6.67 

C07 4.03 0.73 0.65 1.25 0.14 0.10 0.0011 1.44 0.09 6.83 

L08 3.15 0.78 0.62 1.31 0.20 0.15 0.0012 1.83 0.04 7.56 

L09 2.90 0.69 0.71 1.22 0.13 0.07 0.0014 1.33 0.05 9.31 

L10 3.12 0.69 0.71 1.31 0.23 0.20 0.0011 1.16 0.06 8.84 

L11 2.99 0.62 0.77 1.35 0.16 0.12 0.0014 1.05 0.07 9.03 

L12 3.69 0.71 0.74 1.39 0.15 0.10 0.0009 1.34 0.05 7.76 

2020 

U01 2.88 0.69 0.61 1.44 0.27 0.14 0.0092 0.61 0.23 6.30 

U02 3.87 0.79 0.54 1.26 0.34 0.29 0.0074 1.37 0.29 6.22 

U03 3.21 0.82 0.52 1.24 0.15 0.06 0.0042 1.69 0.12 7.19 

C04 2.81 0.77 0.58 1.27 0.12 0.03 0.0150 0.86 0.12 7.92 

C05 2.23 0.69 0.69 1.41 0.17 0.10 0.0035 0.78 0.09 8.65 

C06 2.45 0.67 0.67 1.46 0.08 0.05 0.0032 0.74 0.09 7.01 

C07 2.92 0.75 0.55 1.30 0.25 0.12 0.0026 1.47 0.10 7.26 

L08 2.93 0.82 0.54 1.30 0.31 0.17 0.0020 1.53 0.07 7.58 

L09 2.67 0.78 0.58 1.30 0.14 0.05 0.0220 1.10 0.06 9.17 

L10 1.95 0.74 0.67 1.39 0.21 0.13 0.0090 1.05 0.08 8.93 

L11 2.34 0.68 0.68 1.47 0.19 0.11 0.0037 0.81 0.14 9.55 

L12 2.72 0.81 0.55 1.34 0.14 0.08 0.0183 1.51 0.08 8.07 

2021 

U01 5.24 0.65 0.73 1.53 0.19 0.16 0.0027 0.66 0.19 7.12 

U02 4.37 0.80 0.51 1.36 0.49 0.43 0.0031 1.33 0.30 8.36 

U03 3.47 0.87 0.52 1.26 0.12 0.05 0.0025 2.14 0.18 8.03 

C04 3.70 0.74 0.57 1.51 0.07 0.03 0.0047 1.00 0.14 8.51 

C05 4.19 0.72 0.66 1.48 0.10 0.06 0.0023 0.91 0.10 9.15 

C06 3.83 0.72 0.62 1.50 0.09 0.05 0.0031 0.86 0.10 7.34 

C07 3.95 0.82 0.55 1.25 0.17 0.11 0.0029 1.42 0.18 8.08 

L08 3.28 0.83 0.56 1.35 0.22 0.16 0.0026 1.66 0.07 9.44 

L09 3.43 0.80 0.66 1.51 0.10 0.05 0.0029 1.20 0.09 10.55 
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L10 3.39 0.76 0.68 1.47 0.18 0.13 0.0025 1.08 0.08 10.11 

L11 3.29 0.73 0.76 1.40 0.14 0.10 0.0025 0.97 0.11 10.13 

L12 3.41 0.84 0.57 1.34 0.14 0.07 0.0027 1.62 0.09 8.82 

 

 

Figure A9. Cumulative precipitation (mm) measured at the New Richmond, QC Environment 

Canada Weather Station in 2019, 2020, 2021. Measurements start on Nov 1st of the previous year 

and end on Oct 31st of that year (i.e., 2019 = Nov 1st, 2018, to Oct 31st, 2019) to incorporate 

winter snowpack amounts.   
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Figure A10. Pearson correlations between bacteria and fungi diversity metrics from leaf pack 

samples and stream habitat variables associated with increased cumulative defoliation in sites in 

the Gaspésie Peninsula, QC, Canada in A) 2019, B) 2020, and C) 2021. Blue circles represent a 

positive correlation and red circles represent a negative correlation, with darker shades and larger 

circles representing stronger correlations. P-values are displayed in the circle for all non-

significant relationships and are not shown for significant relationships. Calculated based on 

average diversity from leaf pack samples (n=6/site/year) and average stream habitat (n=8 in 

2019, n=10 in 2020, and n=2021).  
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Figure A11. Boxplot of total sediment deposition rates (g/day) at each stream site in the 

Gaspésie Peninsula, QC, Canada in 2019, 2020, and 2021. Data represents n=6 replicates/site 

collected from mid-August-end September of each year, except for site U01 in 2019 (n=5), L09 

in 2021 (n=4), and L11 in 2021 (n=5).  
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Figure A12. Comparison of bacteria community RDA plots constrained by A), C), and E) 

cumulative defoliation and B), D), and F) stream habitat variables associated with changes in 

cumulative defoliation (SUVA, flow, and temperature). Each row represents a different sample 

year, with panels A) and B) representing 2019, panels C) and D) 2020, and panels E and F) 2021. 

Each point displays a bacteria community from a leaf pack sample (n=6 replicates per site) and 

are coloured by geographic region in the Gaspésie Peninsula, QC, Canada. In panels constrained 

by cumulative defoliation (A, C, and E), the cumulative defoliation gradient is represented by 

RDA1 on the x-axis, while the y-axis shows other variability in the dataset (not explained by 

defoliation) represented by the strongest PCA axis (PC1).  
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Figure A13. Comparison of fungi community RDA plots constrained by A), C), and E) 

cumulative defoliation and B), D), and F) stream habitat variables associated with changes in 

cumulative defoliation (SUVA, flow, and temperature). Each row represents a different sample 

year, with panels A) and B) representing 2019, panels C) and D) 2020, and panels E and F) 2021. 

Each point displays a fungi community from a leaf pack sample (n=6 replicates per site) and are 

coloured by geographic region the Gaspésie Peninsula, QC, Canada. In panels constrained by 

cumulative defoliation (A, C, and E), the cumulative defoliation gradient is represented by 

RDA1 on the x-axis, while the y-axis shows other variability in the dataset (not explained by 

defoliation) represented by the strongest PCA axis (PC1).  
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Figure A14. Pearson correlations between microbial function metrics and stream habitat 

variables in Gaspésie Peninsula, QC, Canada in A) 2019, B) 2020, and C) 2021. Metrics 

presented include extracellular enzyme activities (XY, NAG, and PHOS), leaf litter 

decomposition rates (mass loss per day), functional richness (16S and ITS), nutrients (TP, TN, 

NO2-NO3, DOM (DOC and SUVA), stream temperature, and stream flow. Blue circles represent 

a positive correlation and red circles represent a negative correlation, with darker shades and 

larger circles representing stronger correlations. P-values are displayed in the circle for all non-

significant relationships and are not shown for significant relationships. Calculated based on 

averages of functional metrics from leaf pack samples (n=6/site/year) and averages of stream 

habitat data (n=8 in 2019, n=10 in 2020, and n=2021). 
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