Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28457
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCHEN, Jun-
dc.contributor.authorCHEN, KE-
dc.date.accessioned2023-04-27T13:35:30Z-
dc.date.available2023-04-27T13:35:30Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/11375/28457-
dc.description.abstractStereo Image Super-Resolution (stereoSR) has attracted significant attention in recent years due to the extensive deployment of dual cameras in mobile phones, autonomous vehicles and robots. In this work, we propose a new StereoSR method, named SwinFSR, based on an extension of SwinIR, originally designed for single image restoration, and the frequency domain knowledge obtained by the Fast Fourier Convolution (FFC). Specifically, to effectively gather global information, we modify the Residual Swin Transformer blocks (RSTBs) in SwinIR by explicitly incorporating the frequency domain knowledge using the FFC and employing the resulting residual Swin Fourier Transformer blocks (RSFTBlocks) for feature extraction. Besides, for the efficient and accurate fusion of stereo views, we propose a new cross-attention module referred to as RCAM, which achieves highly competitive performance while requiring less computational cost than the state-of-the-art cross-attention modules. Extensive experimental results and ablation studies demonstrate the effectiveness and efficiency of our proposed SwinFSR. iven_US
dc.language.isoenen_US
dc.subjectComputer Visionen_US
dc.subjectArtificial Intelligenceen_US
dc.titleSwinFSR: Stereo Image Super-Resolution using SwinIR and Frequency Domain Knowledgeen_US
dc.typeThesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Chen_Ke_202304_MASc.pdf
Open Access
11.97 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue