Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28456
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBauman, Jennifer-
dc.contributor.authorSchulz, Gunnar-
dc.date.accessioned2023-04-27T13:28:11Z-
dc.date.available2023-04-27T13:28:11Z-
dc.date.issued2023-06-
dc.identifier.urihttp://hdl.handle.net/11375/28456-
dc.description.abstractThe duty cycle control (DCC) modulation scheme for the three-phase dual-active-bridge (3p-DAB) DC-DC converter is a promising three degree-of-freedom modulation scheme which can extend the converter’s soft-switching range and reduce conduction losses under partial loading and wide voltage variations. However, the prior suggested methods to implement DCC in 3p-DABs have drawbacks such as requiring a multi-frequency approximation and offline optimization process or achieving less than optimal efficiency. To overcome these challenges, this research first proposes an optimal DCC modulation strategy (OMS) for the 3p-DAB based on a novel piece-wise time-domain analysis (TDA) and optimization process that obtains the optimal control parameters for minimum RMS phase current. Secondly, this research proposes a novel closed-form minimum current stress optimization (MCSO) DCC scheme based on the theoretical findings of the TDA optimization. The MCSO reduces the transformer phase currents and extends soft-switching operation under partial loading and wide voltage variations. Experimental results via open-loop testing show that the proposed closed-form MCSO DCC scheme has virtually identical efficiency as the OMS, making this the first research to provide a closed-form DCC modulation scheme for a 3p-DAB that achieves efficiency results equivalent to a fully-optimized offline scheme, but without the drawbacks of the offline optimization process.en_US
dc.language.isoen_USen_US
dc.subjectDC-DC converteren_US
dc.subjectmodulationen_US
dc.subjectoptimal controlen_US
dc.titleTime-Domain Analysis and Optimization of a Three-Phase Dual-Active-Bridge Converter With Variable Duty-Cycle Modulationen_US
dc.typeThesisen_US
dc.contributor.departmentElectrical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Time-Domain Analysis and Optimization of a Three-Phase Dual-Active-Bridge Converter With Variable Duty-Cycle Modulation.pdf
Access is allowed from: 2024-04-26
3.45 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue