Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28374
Title: Design Methodology and Modelling of a Fast Charging Battery Module and Thermal Management System for Electric Vehicles
Other Titles: Design Methodology of a Fast Charging Battery Module
Authors: Lempert, Jeremy Michael
Advisor: Emadi, Ali
Cotton, James
Department: Mechanical Engineering
Keywords: electric vehicles;fast charging;CFD;thermal management;neural networks;lithium-ion;thermal modelling
Publication Date: 11-Nov-2020
Abstract: With electric vehicles (EVs) emerging as a means to reduce transportation-related greenhouse gas emissions, battery charging times and range anxiety remain a key sticking point. While the electrochemical batteries that power EVs cannot compete with liquid fuels on the basis of energy density, higher efficiencies and large battery packs make it possible to achieve competitive driving range. Reduced charging times, however, remain a challenge spanning many disciplines, where cell selection and thermal management play a critical role. For the development of a fast charging, liquid-cooled battery module, the research outlined in this thesis presents a design methodology including the processes of selection and characterization of a suitable battery cell, modelling of heat generation inside the cells, and design and modelling of a thermal management system. Four different cells are compared. The cells are first characterized in a laboratory, and suitability for fast charging is evaluated based on the experimental results. Simplified thermal models are used for comparison of the cells. Factors such as charging efficiency and required cooling system size are considered. A three-cell, liquid-cooled test module is designed and constructed for a selected cell, and further characterization is conducted in order to develop a detailed loss model. Thermal modelling is accomplished using numerical models, developed using knowledge and assumptions of the underlying physics and material properties, and using a neural network-based approach—which can be developed without such knowledge or assumptions, but requires data from laboratory testing of the cell, module, or pack of specific interest. Results from the numerical model and neural network-based model are compared to experimental data at charge rates up to 5C and for a cycle of repeated driving with periodic fast charging. For a 5C charge, a peak temperature of 34.6 °C is measured in the laboratory, and modelled to within 0.6 °C.
URI: http://hdl.handle.net/11375/28374
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Lempert_Jeremy_M_2020August_MASc.pdf
Access is allowed from: 2021-11-11
19.31 MBAdobe PDFView/Open
Lempert - Final Thesis Submission Sheet1_JLsigned_AE signed.pdf
Open Access
448.56 kBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue