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Lay Abstract

As electric vehicles gain traction in the market, long charging times remain a key
sticking point. Significantly reduced charging times are possible, but require a thor-
ough understanding of the battery cells and pack, as well as thoughtful selection
of components and system design. Effective temperature control is required to re-
move heat generated within cells and ensure safe operation and proper lifespan of
the battery pack.

This thesis presents a methodology for the development of a battery module for
fast charging, including selection of a suitable battery cell and design of a thermal
management system. Four different cells are compared based on experimental testing
and a cell is selected for use in a prototype module. Models of the module are devel-
oped using physics- and machine learning-based approaches. The prototype module
is tested in a laboratory for a series of fast charges, and temperature measurements

are compared to model predictions.
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Abstract

With electric vehicles (EVs) emerging as a means to reduce transportation-related
greenhouse gas emissions, battery charging times and range anxiety remain a key
sticking point. While the electrochemical batteries that power EVs cannot compete
with liquid fuels on the basis of energy density, higher efficiencies and large battery
packs make it possible to achieve competitive driving range. Reduced charging times,
however, remain a challenge spanning many disciplines, where cell selection and
thermal management play a critical role

For the development of a fast charging, liquid-cooled battery module, the research
outlined in this thesis presents a design methodology including the processes of se-
lection and characterization of a suitable battery cell, modelling of heat generation
inside the cells, and design and modelling of a thermal management system.

Four different cells are compared.The cells are first characterized in a laboratory,
and suitability for fast charging is evaluated based on the experimental results. Sim-
plified thermal models are used for comparison of the cells. Factors such as charging

efficiency and required cooling system size are considered. A three-cell, liquid-cooled



test module is designed and constructed for a selected cell, and further characteriza-
tion is conducted in order to develop a detailed loss model.

Thermal modelling is accomplished using numerical models, developed using
knowledge and assumptions of the underlying physics and material properties, and
using a neural network-based approach—which can be developed without such knowl-
edge or assumptions, but requires data from laboratory testing of the cell, module, or
pack of specific interest. Results from the numerical model and neural network-based
model are compared to experimental data at charge rates up to 5C and for a cycle of
repeated driving with periodic fast charging. For a 5C charge, a peak temperature

of 34.6°C is measured in the laboratory, and modelled to within 0.6 °C.
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Chapter 1

Introduction

Amid growing concerns over climate change and environmental degradation, electric
vehicles (EVs) have emerged as an alternative to conventional, internal combustion
engine (ICE) vehicles. Electric vehicles utilize energy stored in electrochemical bat-
tery cells —typically lithium-ion (Li-ion)—which form a battery pack, while ICE
vehicles source energy from on-board fossil fuels [1]. To date, Li-ion cells are pre-
ferred for these battery packs due to their combination of energy density, power
density, and cycle life [2, 3].

Battery cells are arranged to form a battery pack, which may have an energy
density two orders of magnitude less than that of gasoline [4,5]. Despite this much
lower energy density, EVs are able to achieve a driving range competitive with ICE
vehicles due in part to their far higher conversion efficiencies; the tank-to-wheel effi-
ciency of an EV is around 90% [5], approximately three times higher than that of an

ICE-driven vehicle [6]. One of the main remaining shortfalls of EVs, however, is the
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comparatively long time required to “fill the tank”—i.e. recharge the battery—which
is often cited as a significant factor hindering their wider adoption [7]. Charging the
battery of an EV may take more than eight hours using a Level 2 charger, which
draws power from a single-phase outlet, typically at around 6 kW—while the full
driving range of an ICE vehicle can be restored in just a few minutes by filling the
tank at a roadside fuel station. Fast charging aims to address this gap, with charging
rates of 350 kW [8] and beyond. Since fast charging functionality is correlated with
reduced range anxiety amongst consumers, it is expected to expedite the adoption
of EVs.

For a fast-charging-capable Li-ion battery module, this thesis explores cell charac-
terization, cell selection, thermal management system design, and modelling of heat
generation and thermal response during fast charging and over the course of a drive
cycle. Test cells are first characterized in a laboratory in order to determine their
open-circuit voltage (OCV), internal resistance, and pulse power capabilities, each
as a function of state of charge (SOC). The cells are then charged at increasing rates
up to 5C and 10C. Using cell loss data recorded in the laboratory, simplified thermal
models are constructed to compare each cell’s performance for different cooling plate
configurations. An effective module energy density for each cell is determined by
considering the mass of cooling system components—adding consideration for cool-
ing requirements of each cell and facilitating a more effective comparison of cells.
For a selected battery cell and cooling system configuration, a liquid-cooled, experi-

mental test module is constructed. Models are developed for estimation of internal
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heat generation and thermal response of the module, conducted using two differ-
ent approaches: computational fluid dynamics (CFD) and recurrent neural networks
(RNNs). For a series of fast charges and a combined drive cycle and fast charge pro-
file, temperatures obtained from the thermal models are compared to those obtained

from laboratory measurements of the module.

1.1 Motivation

There is a significant amount of interest in decreased charging times for the next
generation of EVs. With higher charge rates, however, it becomes essential to care-
fully monitor and control the temperature of the battery pack to avoid accelerated
ageing and thermal runaway of the cells, which may lead to catastrophic failure of
the battery pack.

Fast charging presents many new challenges. As it leads to very high rates of heat
generation in battery cells, care must be taken to maintain the cell temperature to
within an acceptable range, and the temperature uniformity to within an acceptable
limit. Failure to effectively manage temperatures may lead to accelerated degradation
of the cells and thermal runaway [2,9,10].

Cell selection plays a central role. Characteristics such as energy density, cycle
life, and over-potential resistance are important factors in determining the suitability
of a specific cell for fast charging EV applications [11,12]. Cell selection also deter-
mines the design of the battery pack, which then affects its effective energy density.

A cell with high energy density and low power density will require a more intensive
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cooling strategy, which then reduces the effective energy density of the battery pack.

Thermal models are used throughout the design phase for the development of
charging protocols and thermal management systems. In production vehicles, sim-
plified reduced-order models may be deployed online to augment temperature mea-
surements and increase resolution of the measured temperature distribution while

reducing the number of embedded sensors [13], thus reducing costs.

1.2 Contributions

This thesis presents a battery module design and modelling methodology, with a
focus on thermal management to enable high-powered charging in electric vehicles.
Novel contributions include cell characterization for, and deployment of, a battery
cell heat generation model—a critical input for thermal modelling which has not
yet seen much discussion and involves quantification and isolation of minute changes
in open-circuit voltage with temperature. This heat generation model is then used
in thermal modelling of a liquid-cooled battery module for charge rates up to 5C,
and the results are validated against experimental data obtained for the module.
Thermal modelling of battery cells and experimental validation at such high charge

rates are not common in existing literature, and present unique challenges.

1.3 Thesis Outline

This thesis comprises eight chapters, this section presents an outline of the content.

In Chapter 1 (the present chapter), the research problem is defined and motivation
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presented. Contributions to the state-of-the-art are discussed, and the structure of
the thesis is outlined.

Chapter 2 explores the various challenges in implementing fast charging in elec-
tric vehicles, including safety and ageing considerations. This chapter also explores
the prior art relevant to fast charging, with a focus on thermal modelling and man-
agement.

Chapter 3 explores the process of cell selection for fast charging applications.
Cells are first characterized in a laboratory, then fast charging performance and
thermal management system requirements are compared using simplified thermal
models. From this, a cell is selected for use in the remaining chapters.

The experimental battery module is introduced in Chapter 4. Module geometry
and cell configuration are discussed. The experimental data from this module are
used in the remainder of the thesis in the cell and module characterization and for
validation of the different models developed.

In Chapter 5, a model of battery cell loss is developed from an energy balance.
The loss model requires characterization of the battery cells, including very delicate
voltage measurements in response to cell temperature changes.

Chapter 6 details the modelling of the battery module during fast charging and
over a drive cycle. Models are developed using commercial CFD software to predict
temperatures throughout the module and flow characteristics of the cooling fluid.
The CFD model utilizes the cell loss model developed in Chapter 5. A model is
also developed utilizing neural networks for prediction of maximum temperature and

maximum temperature difference across the surface of the cell in the module.
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In Chapter 7, the results of the numerical thermal model and the neural network-
based thermal model are compared to experimental temperature measurements. For
the numerical model, temperatures are compared at steady state, during a series of
fast charges, and during a combined, repeated drive cycle and fast charge profile.
For the neural network-based model, results are compared to a series of fast charges,
and the impact of training data selection is demonstrated.

Finally, Chapter 8 concludes the thesis, recalling the work performed and sum-
marizing the findings. Recommendations for future work are also discussed in this

chapter.



Chapter 2

The Road to Fast Charging in

Electric Vehicles

While many technical challenges exist in the implementation of electric vehicle fast
charging, many of these challenges continue to see extensive research interest. This
chapter is not intended to be a comprehensive review across all research areas, but
rather, aims to provide sufficient background and context for the content of this

thesis.

2.1 Background and Challenges

Fast charging of EVs remains a challenge spanning many disciplines, including bat-
tery cell material selection and design, power delivery and conversion, controls, and

thermal management.
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2.1.1 Energy and Power Density

The energy density of the battery pack determines the driving range of the vehicle
for a given mass (gravimetric) or volume (volumetric). The greater the amount of
electrical energy that can be stored, the greater the driving range of the vehicle. The
power density of the battery pack, on the other hand, determines the performance
of the vehicle: acceleration, regenerative breaking, and charging rates are all im-
proved with increasing power density. Ideally, it would be feasible to independently
maximize both the energy density and power density of a cell simultaneously. Unfor-
tunately, however, these cell properties exist in mutual competition: energy density
increases are often at the detriment of power density, and vice versa [7]. For example,
cell electrode thickness may be increased in order increase energy density, however,
this typically results in impeded mass transport within the cell, reducing the charge
rate that can be achieved without sacrificing the life of the cell [14].

The Ragone plot is useful for visualizing energy and power densities of different
energy storage options, and illustrates the trade-off between the two. A Ragone plot

for EV applications is shown in Figure 2.1.
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Figure 2.1: Ragone plot for EV applications, showing the performance of different
energy storage solutions [15].

Figure 2.1 shows the typical range of performance possible from a Li-ion cell.
The shortfall, as compared to the goal values for EVs, is indicated on this plot.
For comparison, an automotive ICE is quoted at approximately 600 Whkg=! and
500 W kg~! [16,17], though it should be noted that the “charging” power density
of an ICE would be far higher than this figure suggests, as this involves simply
replenishing the fuel tank. The right-hand axis indicates the C-rate, which is defined
as the instantaneous current applied divided by the total battery capacity. Thus, a
rate of 1C represents the current required to discharge or charge a battery in one

hour, while a rate of 2C represents the current required to do so in a half-hour.



M.A.Sc. Thesis - Jeremy M. LEMPERT

2.1.2 Safety

Safe and sustainable operation of Li-ion cells is predicated on maintaining cell voltage
and temperature within operational limits—this is especially challenging at high rates
of charge and discharge. Exact limits depend on the active materials used, they are

specific to each cell and are provided by the manufacturer. The typical operating

window is shown in Figure 2.2.

300 |—

Temperature (° C)

100 |—
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Figure 2.2: Li-ion cell temperature and voltage operating window [2, 18].

Figure 2.2 also shows the consequences of deviating from the operating window.

10

McMaster - Mechanical Engineering



M.A.Sc. Thesis - Jeremy M. LEMPERT McMaster - Mechanical Engineering

The greatest threat to safety is thermal runaway, which occurs when the cell temper-
ature increases beyond a critical value and begins a series of chain reactions, ending
in catastrophic failure. In the context of fast charging, thermal runaway often begins
with a reaction between plated lithium and electrolyte. Thermal runaway process in
fast charged cells is shown in Figure 2.3.

1000
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0.01

Temperature rate (°C/s)

1 1 ! I ) |
1E-4 + ! "l . | |
50 100 200 400 800

Temperature (°C) %

Stage Il Stage I

Figure 2.3: Thermal runaway chain reaction in fast charged cells [7,19].

2.1.3 Cell Ageing

Even while operating Li-ion cells at safe temperatures, cell temperatures have severe
implications on their lifespan. In a study of Li-ion cell ageing during cycling at a
1C-rate, at temperatures ranging from —20°C to 70°C, it is found that cycle life is

maximized at a temperature of 25 °C [20]. At temperatures below 25 °C, cell ageing is
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found to be predominantly driven by lithium plating, which is increasingly prominent
as temperature decreases. At temperatures above 25°C, cell ageing is found to be
predominantly driven by the growth of solid electrolyte interface (SEI) layers, which
is increasingly prominent as temperature increases. This relationship is shown in the

Arrhenius plot in Figure 2.4.

70°C 50°C 25°C 0°C  -20°C
2
Eq,,=-0.57£0.02 eV
£ 04 g Eg,,=038+0.02eV
2

34 36 38 40 42 44 46
17k, T [eV]

Figure 2.4: Arrhenius plot showing Li-ion cell ageing caused by cycling at 1C [20].
The natural logarithm of the ageing rate (r) is plotted against decreasing temperature
(upper x-axis).

Furthermore, as C-rate and energy density increase (either independently or si-
multaneously), the cycle life-maximizing cell temperature is found to increase, since
the risk of lithium plating becomes more pronounced at higher C-rates and for greater
electrode thickness [12,14]. Figure 2.5 shows the impact of charging rate on cell
capacity loss for two modelled cells of different energy density. For fast charging

applications, this shows that target cell temperature should be a function of desired
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charging rate and the energy density of the cell, among other factors. This also il-
lustrates the importance of considering characteristics of the specific cell model when

determining target cell temperatures for the thermal management system.
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Figure 2.5: Modelled impact of cell temperature on cycle life at various charge rates
and for cells of different energy density [12].

Maximizing cycle life of the electric vehicle battery is of utmost importance,
as the battery pack is a significant contributor to the total cost of the vehicle [3].
While the study of physical mechanisms of cell ageing remain outside the scope of
this thesis, the temperature and temperature gradients that contribute to ageing are

central topics.
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2.1.4 Thermal Management

From the Sections 2.1.2 and 2.1.3, it is clear that effective thermal management is
critical in the battery packs of EVs. In addition to the safety and ageing considera-
tions, cell temperature is known to have a significant impact on a charging efficiency,
with internal resistance increasing significantly for decreasing temperature [21]. With
charge rates reaching 350 kW and above, effective thermal management may lead to
higher efficiency and tens of kilowatts of energy savings during charging [22]. En-
ergy savings associated with increased charging efficiency are then compounded by
reduced cooling loads. In implementing a thermal management system, care must
be taken to avoid over-cooling the cells, as this would only lead to increased cooling
loads and increased risk of lithium plating during fast charging, shortening the cycle
life of the cells.

Pack layout and thermal management approach are dependent on the cell form
factor, and selection of an appropriate cell form factor is a key step in the design of
a battery pack. Li-ion cells are typically available in cylindrical, prismatic, or pouch
form factors, as shown in Figure 2.6.

Smaller cells may offer greater flexibility in packaging and greater heat rejection
capabilities, in addition to increased economies of scale and more mature technology.
Cylindrical and prismatic cells with metallic casings also provide protection to the
active materials against puncture and mechanical vibration [16]. A battery pack
composed of large-format pouch cells, however, requires fewer cells, interconnectors,
and control circuits, and may offer greater energy density. As the surface-to-volume

ratio decreases, careful thermal management system design becomes increasingly
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Figure 2.6: Li-ion cell form factors [23,24].

important, and is thus a necessary step in increasing pack-level energy density [25].
Due to the layered nature of the cell construction, thermal conductivity is greatly
reduced along the radial direction in cylindrical cells and cross-plane (through the

thickness) in prismatic and pouch cells.

2.2 Fast Charging Infrastructure

As manufacturers continue to develop higher-capacity battery packs with support for
further-reduced charging times, additional charging infrastructure must be developed
with increased power delivery capabilities. Tesla has recently introduced a new
charging architecture, bringing power levels up to 250 kW [26] and Porsche has also
unveiled charging stations aimed at fast charging, offering power levels up to 350 kW
[27]. Open networks are also being deployed with broad support for fast charging.
One such network is Electrify America, which has deployed a vast network of 350 kW

chargers across the United States [28].
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2.3 Prior Art

With the increasing commercial viability of EVs and the potential for fast charging
to alleviate common concerns among consumers, there has been significant research
interest in increasing charge rates. This section is intended to provide a brief overview

of the prior art in this area.

2.3.1 Battery Cell Loss Modelling

An estimate of energy loss (i.e. internal heat generation) of the cells is a critical input
to any physics-based thermal modelling. Energy loss in Li-ion cells may be divided
into reversible (entropic) and irreversible (Joule) components [10,29-33]. Simplified
models may be developed by considering only Joule heating, at the expense of model
fidelity. Both reversible and irreversible heating effects are considered in this thesis.

The reversible heat generation is a result of entropy change in the cells and can be
estimated using either the potentiometric method or the calorimetric method [29,30].
Under the potentiometric method, the reversible heat generation is modelled using
the cell’s entropic heating coefficient, which is the rate of change of the cell open-
circuit voltage with respect to temperature. The entropic heating coefficient is a
function of state-of-charge and temperature and is an electrochemical characteristic
of the cell. The reversible losses are modelled as the product of the entropic heating
coefficient the current, and the temperature expressed in absolute terms [10, 30—
32,34]. It must be determined for each different model of cell [29,35]. Under the

calorimetric method, the reversible heat generation is estimated by measuring the
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total heat generation for a charge and discharge cycle. Assuming that the irreversible
losses are identical for both cases, the difference in heat generation can be attributed
to the reversible losses [30].

The irreversible heat generation is caused by deviation of the cell’s terminal volt-
age from its open-circuit voltage due to electrochemical polarization, resistive loss
in the electrode and other factors. There are several methods for estimating the
irreversible losses, including by known voltage-current characteristics, by comparing
cell voltage to OCV, by intermittent charging and discharging, and by measuring
resistance with an alternating current (AC) impedance meter [11].

Whereas the reversible heat generation can be either positive (exothermic) or
negative (endothermic), the irreversible heat generation is always positive. While
a model of internal heat generation considering reversible and irreversible contribu-
tions is fairly straightforward to implement, characterization of the entropic heating
coefficient requires quantifying extremely minor changes in OCV. Existing litera-
ture on the topic of entropic heating coefficient characterization is limited. Authors
in [29] developed an entropic heating coefficient map for a lithium iron phosphate
(LFP) cell using a test grid consisting of 21 SOC points and 15 temperature points
from 55°C to —20°C. Nine cells are tested in parallel to accelerate the test, cells
are discharged to test points at a rate of C/10 and a four-hour soak time is allowed
following each discharge. The need to account for self-discharge of the cell is noted

but not discussed in any detail.
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2.3.2 Battery Thermal Modelling

Detailed and accurate knowledge of the temperature distribution inside a battery
pack allows the manufacturer to extract maximum performance, reliability, and
longevity from their components. Design of the battery pack and cooling strat-
egy to maintain temperature uniformity is a crucial step toward support for higher
charge rates [10]. Sophisticated, three-dimensional thermal models can be used dur-
ing design to refine the cooling and charging processes. Simplified reduced-order
models can be deployed online, increasing the resolution of estimated temperature
distribution while reducing the number of embedded sensors [13]. This may be very
beneficial, as there are few temperature measurement requirements mandated in the
battery packs of production EVs [36] and each additional sensor represents a large
incremental cost. Furthermore, while a temperature sensor may be placed on the
surface of a cell, it is not feasible to measure the internal temperature, though it may
be obtained from a thermal model.

Thermal modelling of battery cells is typically conducted using numerical mod-
elling (i.e. CFD), though neural networks (NNs) are increasingly being applied to
this task. CFD-based approaches rely on a detailed understanding of the underlying
physics, component composition, material properties, and electrochemical character-
istics to develop a set of governing equations, which is then solved numerically [37].
Though costly to develop and execute, these models can be used to evaluate various
designs in the absence of a physical prototype or test fixture. Neural networks bypass

the need for such an understanding of the physics and components by observing the

18



M.A.Sc. Thesis - Jeremy M. LEMPERT McMaster - Mechanical Engineering

interaction between model inputs and output based on previously collected experi-
mental data. Neural networks may be employed to predict cell and pack temperatures
without the need for explicit loss modelling, as this may be built-into the NN model
through the input variables. These models require careful selection of inputs and
a large database of training data; they are costly to develop but subsequent simu-
lations are computationally inexpensive. Due to their dependence on experimental

data, NN-based models are not appropriate for evaluation of preliminary designs.

CFD-Based

The topic of battery cell and module thermal modelling using CFD has seen much
discussion, though only a small fraction with a focus on fast charging.

In [38], a thermal model is developed using CFD for a Li-ion pouch cell and
employed for discharge rates up to 5C. Importantly, this work also considers lo-
cal variations in heat generation caused by non-homogeneous current density. This
typically results in increased temperatures near the cell tabs, and more significant
temperature gradients. Thermal modelling results in this work are validated using
experimental data, and modelled temperatures appear to show good agreement with
test data.

Thorough CFD analysis is critical in the design of a battery pack. Design pa-
rameters of a mini-channel cold plate are investigated using CFD in [39], comparing
battery cooling performance during discharges up to 5C. Simulations are used to
quantify decreasing battery temperatures with increasing flow rate and number of

channels, however, this work does not consider non-isotropic thermal conductivity
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in the battery cells and no experimental validation is presented. Non-linear op-
timization techniques are employed in [40] to determine cold plate designs which
independently minimize the average temperature of the cold plate surface, the tem-
perature deviation of the cold plate surface, and the coolant pressure drop within
the cold plate. The cold plate designs minimizing the average temperature and the
pressure drop were found to be similar, both of which were characterized by cooling
channels occupying the greatest-possible area inside the cold plate. Authors in [41]
employ a CFD model in the design exploration of a cold plate. The thermal model is
used to evaluate the effectiveness or different channel designs and the impact on tem-
perature distribution and pressure drop. For the proposed designs, it is found that
there is little benefit of increasing the number of cooling channels in the plate beyond
five, and that inlet coolant temperature has little impact on standard deviation of

temperature on the cell face.

Neural Network-Based

In [42], a neural network is used to predict temperatures of a prismatic LEP cell
during charging at 1C and discharging at 2C and 4C rates in a laboratory setting.
The Levenberg—Marquardt training algorithm is used and inputs to the model are
limited to ambient temperature, cell current, remaining battery capacity. The sole
output from the model is a single temperature value to represent the face of the cell.
Notably, this model does not consider cell temperature at past time steps, nor does
it consider any temperature variability on the cell face. Despite this, the model is

able to show good agreement with the measured data.

20



M.A.Sc. Thesis - Jeremy M. LEMPERT McMaster - Mechanical Engineering

Fang et al. [43] employ a back-propagation neural network to predict the sur-
face temperature of a nickel-metal hydride battery under different charge rates and
ambient temperature conditions. The authors reported a good level of agreement

between the model and experimental results.

2.3.3 Battery Thermal Management Solutions

Thermal management solutions for EV batteries may utilize air or liquid cooling, or
in extreme cases, two-phase cooling solutions. It is important to size the thermal
management system carefully, as excessive cooling capacity only adds to the mass of
the vehicle. Liquid cooling solutions are well-suited to fast charging EV applications
due to their balance of cooling ability and complexity. Two-phase cooling solutions,
such as [44], add a great deal of design complexity and risk thermal runaway in the
event of dryout of the liquid phase. In the event of dryout, the ability of the system
to remove heat from the cells drops dramatically, resulting in rapid temperature rise
of the cells.

Liquid cooling of pouch cells typically employs cold plates, either placed between
the cells themselves or at the sides of the cells, with additional plates between the
cells to draw heat from the cell face toward the cold plate. An example of a cold

plate placed directly between cells shown in Figure 2.7.
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Figure 2.7: Pouch cell cold plate design [45], showing plate temperatures (top) and
coolant temperatures (bottom).

An example of a cooling strategy for cylindrical Li-ion cells is the battery pack of
a Tesla Model S, which uses a “wavy profile” cooling tube to increase contact with

the cylindrical cells, as shown in Figure 2.8.
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Figure 2.8: “Wavy profile” cooling tube used in Tesla battery packs [46].

This figure shows a small cross-section of a battery module. Elements labeled
“203” represent the cylindrical cells and the cooling tube is labeled “201”. Thermal
modelling in [47] found this type of cooling configuration to be effective even at
charge rates up to 5C; it should be noted, however, that this study treated the cells
using lumped system analysis, thereby neglecting temperature gradients inside the

cells.

2.3.4 Fast Charging Implementation

Authors in [48] achieved higher charge rates while mitigating cell ageing caused by
lithium plating by instrumenting a test cell with a third, or “reference”, electrode,
and monitoring the voltage between the negative terminal and the reference termi-
nal. Though the authors point out that this method cannot be directly applied to
commercial cells due to the lack of reference electrode, a charging current map is
proposed and transferred to the pack level. Implications of high-rate charging on cell
ageing are also explored in [49], and it is found that fast charging can be achieved
without significant sacrifice in cell health or charging efficiency by considering the

charging protocol.
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In [50], a thermal management system design is proposed and constructed for a
test module housing Li-ion pouch cells. Cold plates are used to remove heat via the
sides of the pouch cells. The process of cell selection and pack geometry exploration
are not discussed, and only charge rates up to 3C are considered.

Fast charging is also beginning to see commercialization in EVs. The Porsche
Taycan, first available in 2019, offers charging at up to 270kW. The Taycan uses
65 A h pouch cells which form an 800V pack. This high voltage pack reduces Joule
losses, which increase with the squared current and are therefore a significant con-
sideration at higher power levels. With a peak charging current of 334 A and a pack
consisting of two parallel arrangements of 198 series-connected cells [51], the peak
charge rate of the Taycan equates to approximately 2.6 C. Peak charging power of

the Taycan has been promised to increase to 350 kW in the year 2021 [52].

24



Chapter 3

Cell Testing and Selection for Fast

Charging

This section examines four different battery cells, with the intention of capturing a
range of cell chemistry and characteristics. The battery cells and the equipment used
in testing are first outlined, and the candidate cells are characterized and tested for
a series of fast charges at rates up to 5C and 10C. From the experimental data and
using simplified thermal models, an inter-cell cooling plate is sized for each cell to
enable comparison of energy density in a pack. Different cooling configurations are
compared and a cell is selected for implementation in a fast charging module. All
tests are performed inside an environmental chamber, which is used to maintain a

consistent temperature throughout testing.
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3.1 Specifications of Cells Tested

Specifications for the four cells tested are listed in Table 3.1, where the nominal
resistance and power density are calculated at 50% SOC from hybrid pulsed power

characterization test data [53].

Table 3.1: Battery cell specifications.

Manufacturer, A123, Turnigy, Kokam, A123,
Model || AMP20M1HD-A Graphene 65C SLPB78216216H AMP26 NMC
Chemistry || LiFePO4 (LFP)  NMC/NCA! NMC NMC
Size [mm] H 160 x 227 x 7.25 49x135x9 226x227x7.8 161 x227x7.5
Rated Capacity [Ah] || 20 5.0 31 26
Nominal Resistance [m)] | 2.6 2.9 24 2.7
Mass [g] || 496 140 720 550
Power Density kW kg™!] | 1.6 8.0 1.7 2.0
Energy Density 131, 136, 158, 180,
[Whkg™!, Wh1™! 247 317 284 361

! Not specified on data sheet. The chemistry of the Turnigy cell is assumed to be lithium
nickel manganese cobalt oxide (NMC) or lithium nickel cobalt aluminum oxide (NCA) based
on the voltage range of the cell and its nominal voltage.

Though high charge rates have been achieved with NMC cells in lab testing [54],
the rate capability of this chemistry has not been fully investigated in commercial
cells. It should also be noted that the Turnigy cell is much smaller than the other
cells studied here, which may allow for greater flexibility in packaging compared to
larger cells. The increased thickness of the Turnigy cell, however, is expected to
reduce its ability to dissipate heat through its surface. From Table 3.1, it can also be
seen that the Turnigy cell has the highest power capability of all four cells, indicating

suitability for fast charging.
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(a) A123 LFP (b) Turnigy (¢) Kokam NMC (d) A123 NMC

Figure 3.1: Battery cells tested.

3.2 Equipment and Experimental Setup

Laboratory tests are conducted with the cells inside a Thermotron Industries SE-
3000-6-6 environmental chamber, which is used to maintain an ambient temperature
of 20°C throughout testing. Cell cycling and data logging are accomplished using
a Digatron Power Electronics MCT 75-0/5-8ME cell cycler, with voltage sensing
accuracy of 5mV for the 0-5V voltage range. Specifications of the cell cycler and

environmental chamber are presented in Table 3.2 and Table 3.3, respectively.

Table 3.2: Battery cell cycler specifications.

Manufacturer Digatron Power Electronics
Model Number MCT 75-0/5-8ME
Voltage Range 0tobV

Number of Channels 8 at 75 A each
Voltage Accuracy +0.1% of full scale
Current Accuracy +0.1% of full scale
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Table 3.3: Environmental chamber specifications.

Manufacturer Thermotron Industries
Model Number SE-3000-6-6
Internal Dimensions 1.2Im x 1.82m x 1.32m

Temperature Accuracy — £0.3°C
Temperature Uniformity =+0.7°C

When required, currents exceeding the 75A rating of the individual channels are
achieved by connecting multiple channels in parallel. Using all channels simultane-

ously, currents up to 600 A can be achieved.

3.3 Cell Characterization

The cells are charged at a series of increasing rates, up to the selected limit for each
cell. The testing is performed with parallel-connected, 75 A, 0 to 5V, 0.1% accuracy
channels of the Digatron Power Electronics Universal Battery Tester system. Prior
to each charge, cells are slowly discharged at a rate of C/2 until the selected voltage
cut-off, which correlates to about 10% SOC: 3.2V for the A123 LFP cell and 3.5V
for the Turnigy, Kokam, and A123 NMC cells. After a 30-minute rest period, each
cell is charged using a constant-current, constant-voltage (CC-CV) protocol. Under
this protocol, the specified C-rate is maintained for the constant current portion of
the charge until the upper voltage limit is reached: 3.6 V for the A123 LFP cell,
4.2 'V for the Turnigy, Kokam, and A123 NMC cells. Once this limit is reached,
the current begins to decrease in order to maintain a constant voltage; the charge

is considered to be complete when the current falls below 0.1 A. Following another
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30-minute rest period, the discharge and charge steps are repeated for a second time
at the same C-rate so that a charge efficiency can be accurately calculated. The

entire process is then repeated for the remaining C-rates prescribed in the test plan.

Table 3.4: Charge protocol for cells over charge-rate range.

Step Action Step End

I Pause After 30 minutes
II C/2 Discharge 1 V < Veur—off

111 Pause After 30 minutes
1AY CC-CV Charge 1 I <Iyu—off

\% Pause After 30 minutes
VI C/2 Discharge 2 V < Vewr—off

VII  Pause After 30 minutes

VIIT CC-CV Charge 2 I <Iw—off
A123 and Kokam: 1C, 2C, 3C, 4C, 5C
X Repeat steps VI o 10, 20, 4C, 6C, 8C, 100

3.3.1 Measured Cell Data for a Range of Fast Charge Rates

For each battery cell, measured terminal voltage and current for all charge rates
tested are presented in Figure 3.2, where the calculated OCV is shown to illustrate
the over-potential for each charge rate. Because of its higher rate capability, the
Turnigy cell is tested at charge rates up to 10C, while the other cells are tested at
charge rates up to 5C. As is characteristic of the CC-CV charge profile, cell voltage
limits are reached at lower SOC values as the charge rates are increased, triggering

earlier transition to constant voltage charging.
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Figure 3.2: Measured fast charge data for each cell type.

3.3.2 Cell Performance as a Function of Charge Rate

Using the fast charge data, the performance of each cell can be evaluated and com-
pared. Three metrics are used to compare the fast charging performance and the
response to increasing charge rates across the different cells: the charging efficiency,
the SOC at transition from constant-current to constant-voltage charging, and the
cell resistance normalized to its 1C value (or 2C value, in the case of the Turnigy
cell). These metrics are evaluated for the four cells and presented in Figure 3.3.
The charging efficiency is shown in Figure 3.3a, it represents the portion of energy
that is added to the cell, and not lost as heat to the environment. Higher charging
efficiencies indicate lower losses for a given charge rate, and therefore less waste heat
to be removed from the battery pack, which reduces the requirements of the thermal

management system. It can be seen that the Turnigy cell has a much higher charging
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Figure 3.3: Fast charge performance as a function of charge rate.

efficiency than the other cells tested, and its efficiency decreases very little as the
charge rate increases. The A123 NMC cell has the lowest charging efficiency, and
the most dramatic decrease with increasing charge rate.

The SOC at transition from constant-current to constant-voltage charging is
shown in Figure 3.3b. The higher the value of this metric, the longer the prescribed
charge rate is sustained. This ultimately results in a faster CC-CV charge, since the
higher current is sustained for longer. For the charge rates tested, the Turnigy cell
is consistently able to reach a high SOC (above 80%) before this transition—while
the A123 cell drops from transitioning at over 80% SOC for a 1C charge to approx-
imately 20% SOC for a 5C charge. This suggests that the A123 does not respond
well to CC-CV charging at higher charge rates.

Figure 3.3c shows the normalized equivalent electrical resistance as a function
of charge rate, which is determined by calculating the fixed resistance value which

creates the loss observed for a given charge rate. For each cell, the normalized

31



M.A.Sc. Thesis - Jeremy M. LEMPERT McMaster - Mechanical Engineering

equivalent resistance is obtained by dividing by its 1C charging resistance. The
normalized equivalent resistance shows that resistance is non-linear at high charge
rates—similar to the non-linear Butler-Volmer equation resistance, which is often
observed for batteries at low temperatures [55].

From the plots presented in Figure 3.3, the Turnigy cell appears particularly
well-suited for ultrafast charging, while the A123 NMC cell appears to be the least
suitable of the cells tested. The A123 LFP and Kokam NMC cells fall in the middle,
though they do not perform as well as the Turnigy cell, they are much more suitable

for fast charging than the A123 NMC cell.

3.3.3 Pack Performance as a Function of Charge Rate

In Figure 3.4a, the measured time to add 80% SOC is plotted for each cell and charge
rate, showing time required to fast charge an EV battery pack for each case. The
peak cell loss is also calculated by assuming the measured, cumulative charging loss
is distributed over the charge as a function of the squared current. The peak cell loss
is then scaled for a 60 kW h pack and plotted in Figure 3.4b.

Figure 3.4a shows that, for the A123 NMC cell, increasing the constant-current
charge rate from 3C to 4C only reduces the time to add 80% SOC by one minute.
Furthermore, increasing from 4C to 5C yields no significant time savings for the A123
cell, which is also associated with a 60% increase in peak loss, as shown in Figure
3.4b. In these plots (and consistent with Figure 3.3), the Turnigy cell is a clear
outlier: as the charge rate is increased, the time to add 80% SOC decreases steadily

and the peak losses remain low for the charge rates tested. Figure 3.4b also shows
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Figure 3.4: Comparison of fast charging time and pack loss.

that peak battery pack loss can be very high, in the range of 20-60 kW for charge
rates of 4C or 5C. Removing this amount of heat from a vehicle’s battery pack and

transferring it to the surroundings is one of the key challenges of ultrafast charging.

3.4 Required Cooling System Size Comparison

Simplified, three-dimensional thermal models are used to compare the size of the

cooling system required for each of the four cells, allowing for a more equitable
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comparison. For each of the four cells studied, the thickness of an aluminum inter-
cell cooling plate is varied to adjust the cooling capability as needed. Increasing
the plate thickness increases the cooling capability of the module, but decreases the
gravitational and volumetric energy and power densities of the pack. Cooling is
provided by cold plates (at this stage, represented as a fixed-temperature wall) at
both sides of the cell, in contact with the inter-cell cooling plates. This model is

shown in Figure 3.5.

Inter-cell Plates
(Inner)

Cell 1

Cell 2

Cell 3

Cold Plates Inter-cell Plates

(Outer)

Figure 3.5: Simplified, three-dimensional thermal model, before applying symmetry
planes.

These models are built in ANSYS Mechanical using the Transient Thermal func-
tionality. For each cell, the required inter-cell cooling plate thickness is determined.
Despite the idealized cooling system, this thermal model provides a means of com-
parison for the heat generated in each of the cells and their ability to reject heat

through their surface.
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3.4.1 Thermal Model Properties and Boundary Conditions

Thermal properties are obtained directly from literature, or by scaling literature
values by density ratio where necessary. Properties for all materials used in the
thermal modelling are presented in Table 3.5.

Table 3.5: Simplified thermal model properties.

Domain Density [kgm™] Heat Capacity [Jkg™' K~!] Thermal Conductivity [Wm~' K™

In-plane (z,y) Through-plane (z)

A123 LFP! 1884 610 16.4 0.51
Turnigy? 2333 1054 28.8 1.33
Kokam? 1799 813 22.2 1.03
A123 NMC? 2007 907 24.8 1.15
Aluminum 2689 951 237.5

! Published thermal property values [56,57].
% Scaled by density ratio from published values for similar cells [50].

The method of heat removal (cold plates at the ends of the module) in the model is
approximated as a constant-temperature wall, uniform and fixed to 20 °C, adjacent
to the aluminum inter-cell cooling plates, and connected using aluminum bars to
increase contact. The single heat source in the model is the internal heat generation
of the battery cell. During each fast charge and for each cell, the instantaneous
heat generation is determined by scaling the total energy lost after a charge and
discharge of equal capacity (net-zero charge cycle); the total energy loss measurement
is distributed throughout the charge according to the square of the instantaneous
current. This yields the heat generation rate as a function of charging time. In
essence, this method of modelling the heat generation throughout the charge relies

on the approximation that the cell resistance is constant for the net-zero charge cycle.
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3.4.2 Thermal Modelling Results

Figure 3.6 shows the predicted temperature rise with varying inter-cell plate thickness
for each of the four cells. This study is used to identify the required cooling system
size for each cell. The parameter p is introduced to denote the inter-cell cooling plate
thickness normalized to the cell thickness, therefore if p = 0.1, the inter-cell cooling
plate thickness is 10% of the cell thickness. This parameter allows for the cooling

requirements to be effectively compared across the different cells.

A123 LFP Turnigy Kokam A123 NMC
p=0.11 | DR i209°C ]| 35°C
p=025 e
p=03
23°C

Figure 3.6: Predicted temperature rise versus cooling method and inter-cell cooling
plate thickness p for a 4C charge rate case.

As shown in Figure 3.6, the Turnigy cell can be cooled effectively using much
less material than the other cells, leading to higher effective energy density. Even
for p = 0.1, the peak temperature of the Turnigy cell is maintained at a safe level,
while the Kokam and A123 NMC cells will likely require p > 0.1. For the A123
cells the additional cooling capability of the p = 0.5 inter-cell plate is deemed to be
minimal compared to the increased module weight. For the A123 LFP cell, during a
4C charge, there was only a 2 °C difference in peak temperature between the p = 0.25
and p = 0.5 inter-cell plates. Further, for the A123 NMC cell, which produces nearly

double the loss of the LFP cell, this difference was only 6 °C.
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3.4.3 Double-sided versus Single-sided Cooling

Placement of the cold plates is also investigated in order to determine the con-
figuration which provides more effective and more uniform cooling. Three different
configurations are modelled: (1) cold plates placed on either side of the cells (double-
sided), (2) a single cold plate placed on one side of the cells (single-sided), and (3)
a single cold plate placed at the bottom of the cells (bottom-only). These configu-
rations are shown in Figure 3.7 for the A123 NMC cell with p = 0.5. In the first
configuration, the tops of the cells should see the largest temperature rise as they
have the longest path to the cold plate. In the second configuration, the cells see a
large temperature rise on the side opposite cold plate. Like the first configuration,
heat must be transferred across a greater length in order to be removed, making
these configurations less effective and less conducive to uniform cooling. With two
cooling plates, heat can be removed much more effectively and uniformly, though
this is at the expense of increased size and weight of the battery pack. For the A123
NMC cell, Figure 3.8 shows the modelled temperature rise as a function of cold plate
placement and inter-cell plate thickness, p.

For the A123 NMC cell shown in Figure 3.7, the bottom placement yields the
worst performance, with a maximum temperature rise of 35 °C compared to just 6 °C
for the two-sided configuration. For the Turnigy cell, the bottom placement yields
a temperature rise similar to the two-sided configuration. This can be attributed
to the difference in size and thermal conductivity between the Turnigy cell and the
A123 cells; importantly, the A123 cells are twice the length of the Turnigy cell. Since

the thermal resistance increases as the thermal path becomes longer, placement of
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Figure 3.7: Temperature rise for 4C charge versus cooling plate
placement for A123 NMC cell with p = 0.5 plate thickness.
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Figure 3.8: Temperature rise for 4C charge versus cooling plate
thickness and placement for A123 NMC cell.

the cold plate is more important for cell with a higher aspect ratio. According to the
properties listed in Table 3.5, the thermal conductivity, both in-plane and through-
plane, of the Turnigy cell is significantly higher than that of the A123 cells and the
Kokam cell. For the Turnigy cell, this high thermal conductivity means that one
plate at the bottom of the module is able to provide sufficient cooling and maintain

the peak temperature to within an acceptable range.

3.4.4 Comparison of Cell and Cooling System Options

The components of the thermal management system greatly impact the energy and
power densities attainable at a pack level, with significant implications to the driving
range and charging power levels of the EV. For this reason and many others, it is

important to select an appropriate cell and to not oversize thermal management
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system. A cell which generates less heat or dissipates heat more easily can be paired
with a less invasive thermal management system. The effective energy density is
introduced to take into account the increased mass and volume of a battery pack
from the inter-cell plates. It is calculated by dividing the total energy in a cell by the
sum of the inter-cell plate and cell mass (for gravimetric energy density) or volume
(for volumetric energy density). The effective energy density, therefore, enables a
direct comparison of the different cells and their thermal management requirements
in a pack. Taking the A132 NMC cell as an example, increasing the inter-cell plate
thickness from p = 0.1 to p = 0.25 yields a decreases in effective energy density
of 16%. The effective energy density corresponding to the selected inter-cell plate

thickness for each cell is presented in Table 3.6.

Table 3.6: Selected plate thickness, p, and comparison of selected cell and cooling
system options.

A123 LFP Turnigy Kokam NMC A123 NMC
p=01 IR
p=025 | W S
p=0.5
p=1
Plate thickness p .
selected for < 15°C rise 0.1 0-1 0.25 0-25
Energy Density, 131 Whkg! 136 Whkg! 158 Whkg™! 180 Whkg™!
Cell Only 247Wh1™! 317Whl! 284 Wh1™! 361 Whl!
Effective Energy Density, 113Whkg™! 120W hkg™! 112Whkg™! 131 Whkg™!
Cell and Inter-cell Cooling Plate 222Whl! 285 Whl! 223Whl! 283 Whl!

Despite having a lower effective energy density than the Turnigy and A123 NMC
cells, the Kokam cell is selected for implementation in a fast charging test module

due to its packaging, which is more favourable for implementation in the battery
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pack of an EV. The far lower capacity of the Turnigy cell (5 A h versus 31 Ah for the
Kokam cell) means that many cells would be required to build a battery pack of a
given capacity, which would result in a more complex design. The capacity and form
factor of the Kokam cell make it the most suitable for implementation in the battery
pack of an EV. Chapter 4 is concerned with the development of a fast charging test
module; since temperature uniformity within the cell is of utmost importance during

fast charging [58,59], two cold plates are used for the module.
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Chapter 4

Experimental Inter-cell Cooling

Module

To facilitate fast charging tests, an experimental test module is built to house three
Kokam NMC cells connected in parallel, each separated by a solid aluminum plate
(inter-cell cooling plate). The module is designed based on the analysis in Chapter
3, with an inter-cell cooling plate thickness of p = 0.25. Active cooling is provided
by two aluminum cold plates, one at either side, through which a cooling fluid is
circulated. The cell cycler and environmental chamber detailed in Section 3.2 are

used to facilitate tests of the module.

4.1 Geometry and Design

The module is intended to replicate the model used in the previous analysis. Inch-

thick plastic is used at the outside faces of the test module to render the heat loss
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through these surfaces negligible and emulate an infinitely long stack of cells. Ther-
mal pads are used at the interface of the cells and the inter-cell aluminum plates to
enhance heat transfer from the cells to the plates. The outermost inter-cell aluminum
plates are half of the thickness of the interior plates—as is the case in the model—to
ensure uniform cooling, as these plates only contact the face of one cell, instead of
two. At either side of the module, the inter-cell aluminum plates are fixed to the
cold plates using aluminum bars. These aluminum bars enhance contact between the
inter-cell plates and the cold plates. In order to reduce contact resistance in the mod-
ule, all metallic mating surfaces are milled to improve flatness and thermal paste is
applied at all metal-on-metal connections. Thermal properties of the materials used

in the module are presented in Table 4.1.

Table 4.1: Thermal properties of the materials used in the test module.

Component Material Density Heat Capacity Thermal Conductivity

kegm™] [Jkg'K™] (Wm™ K]
Inter-cell Plate Aluminum 3003-H14 2800 900 180
Bar Aluminum 6061-T6511 2700 900 170
Thermal Pad Tflex HR440 - - 1.8
Plastic UHMW Polyethylene 940 1750 0.41

Once assembled, the cells are compressed using studs fed through the plastic and
the inter-cell aluminum plates. Based on the analysis in Chapter 3, the plate with
25% of cell thickness (p = 0.25) is chosen for the aluminum inter-cell plates in the
test module, since it provides a reasonable compromise between temperature rise and
effective energy density. In application, 12-gauge aluminum is used for the inter-cell

plates, which equates to p = 0.26 for the Kokam cell. Dimensions of test module
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components are provided in Table 4.2.

Table 4.2: Dimensions of test module components.

Component Dimensions [mm)]

Inter-cell plate, inner 279 x 254 % 2
Inter-cell plate, outer 279 x 254x 1
Bar 279 x 19%x 9.5
Plastic 279 x 254 25

With the efforts taken to reduce contact resistance in the module, the numerical
analysis assumes a negligible contact resistance between the bars, inter-cell plates,
and cold plates. The cooling fluid used is an ethylene glycol-water solution with the

properties presented in Table 4.3.

Table 4.3: Properties of ethylene glycol-water solution [60].

Density 1082kgm™3

Specific Heat Capacity 3260 J kg ' K~!
Thermal Conductivity 0.402Wm™! K~!
Dynamic Viscosity 487 x 103 kgm st

4.2 Component Specifications

Liquid-cooled, aluminum cold plates from Wakefield-Vette (model 180-11-12C) are
used in the module. The plates use a rolled-tube design in which 3/8-inch outer
diameter copper pipe is attached to the aluminum base. The overall thermal resis-

tance of the cold plates, from the surface of the plate to the inlet water, is specified

as 0.041°CW~! for a flow rate of 1.5 GPM (=~ 5.7Lmin"') [61]. These plates are
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used to approximate the constant temperature boundary condition assumed in the
thermal analysis.

A 6L, 200W, 1160S circulating bath chiller from VWR International, Inc. is
used to provide the cold plates with a constant supply of 20 °C coolant. The chiller
is capable of providing coolant from —20°C to 150°C 4+ 0.05°C, and employs a
two-speed pump with corresponding flow rates of 9 Lmin~! and 15Lmin~!. The
higher flow rate is used to better approximate the constant temperature boundary
condition.

The test module is shown in Figure 4.1a, and its placement in the environmental

chamber is shown in Figure 4.1b.
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(a) Prototype 3pls battery module.
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(b) Test setup inside environmental chamber.

Figure 4.1: Prototype 3pls battery module with p = 0.26 cooling plates, and place-
ment in environmental chamber
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4.3 Instrumentation

A total of fifteen type T thermocouples are placed throughout the test module.
Existing literature has shown that the majority of heat is initially generated near the
tabs [62,63]. To capture the temperature distribution of the cells, five of the fifteen
thermocouples are placed on the face of the middle cell—in the positions shown in
Figure 4.2a. Of the remaining ten thermocouples, one is placed at the center of the
top cell, one at the center of the bottom cell, one on the top inter-cell cooling plate,
one at each of the two tabs, one at the coolant inlet and outlet, one on the surface
of each cold plate, and one in the surrounding air. The assembled module, with
embedded thermocouples, is shown in Figure 4.2b. Data from the thermocouples
are captured in LabVIEW using a National Instruments NI-9213 data acquisition

system, providing temperature measurements to within 0.7 °C.
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(a) Middle cell and thermal inter- (b) Assembled module, showing
face material, with thermocouple connectors of embedded thermo-
locations indicated. couples.

Figure 4.2: Prototype 3pls battery module with embedded thermocouples.
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Chapter 5

Loss Modelling with Entropic

Heating Coefficient

In this chapter, a procedure for experimentally determining the entropic heating
coefficient of a Li-ion battery cell is developed, and the result is used to model heat
generation within the battery cells.

The entropic heating coefficient is the rate of change of a cell’s open-circuit voltage
with respect to temperature; it is a function of state of charge and temperature,
often expressed in mV K~!. The reversible losses inside the cell are a function of
the current, the temperature, and the entropic heating coefficient, which itself is
dependent on the cell chemistry. The total cell losses are the sum of the reversible
and irreversible losses, where the irreversible losses consist of ohmic losses in the
electrodes, ion transport losses, and other irreversible chemical reactions.

The entropic heating coefficient is determined by exposing the cell to a range of
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temperatures at each SOC value of interest. The OCV is recorded at each combina-
tion of SOC and temperature, and 0OCV/OT is calculated from the measurements.
Since a AT of 20°C may result in a AOCYV of 1001V or less, it is critical to have
a high accuracy and high input impedance voltage sensor. Additionally, the mea-
surement is sensitive to self-discharge of the battery and the amount of time at
each test point. A test methodology is developed which achieves an accurate OCV
measurement, corrects for self-discharge, and utilizes the minimum necessary soak
time. Once determined experimentally, the entropic heating coefficient map is used
to model losses during several charges with rates from 1C to 5C, and the results are
compared with a constant current loss model derived from experimental data for an
NMC cell.

At the peak of total heat generation, the reversible heat generation is observed to
contribute up to 23% of the total for a 1C charge, and 9% of the total for a 5C charge.
In this work, the potentiometric method is used to estimate the reversible losses and
the entropic heating coefficient is determined experimentally. The reversible losses

are estimated by comparing the cell terminal voltage to the OCV.

5.1 Battery Cell Loss Model

The reversible and irreversible heat generation inside the cells are estimated using
the simplified Bernardi heat generation model [31]. Here, the irreversible heat is

estimated by comparing the terminal voltage to the OCV. Equations 5.1 and 5.2,

20



M.A.Sc. Thesis - Jeremy M. LEMPERT McMaster - Mechanical Engineering

below, define the reversible and irreversible loss estimates:

o0CcvV
or

Qrev =—IT (51)

Qirven = 1 (OCV = Vy) (5.2)

where [ is the current in amperes (defined as positive during discharge), T' is the
temperature in kelvin, 9OCV /9T is the entropic heating coefficient in VK=!, and
V7 is the terminal voltage. The resulting @ is the loss (internal heat generation) in
units of watts.

The total loss is then given by the sum of the reversible and irreversible contri-

butions:

Qtotal = QT@U + Qirrev (53)

In order to utilize this model, the entropic heating coefficient must first be de-
termined. The terminal voltage, Vp can either be measured or modelled, allowing
for the modelling of heat generation during any arbitrary cycle. The subsequent
sections are concerned with the measurement of the entropic heating coefficient and

utilization of the cell loss model.

5.2 Entropic Heating Coefficient Measurement

Since the entropic heating coefficient test is concerned with very small changes in
the battery OCV over very long periods of time, it is necessary to select a voltage

sensor with very high resolution. The NI-9239 voltage sensor utilized for the tests
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has 24-bit, 1.25pV resolution which is sufficient for the Kokam cells tested. The
cell cycler’s voltage sensor—with a resolution of 5mV-——is used only for the separate
hybrid pulse power characterization (HPPC) test which provides the OCV data re-
quired to calculate the irreversible losses. Another important concern is the input
impedance of the voltage sensor. The 1 MQ-impedance sensor of the data logger is
found to discharge the battery cells excessively, given the precision required from the
measurement. The cell cycler’s voltage sensor exhibits the same problem: with its
input impedance of 50 k{2, self-discharge would be 0.8 pV h~! for the module studied
here, and for a smaller cell with a 3 A h capacity, it would be 24pV h!.

In order to reduce unwanted cell discharge through sensor and cycler leads, three
LabVIEW-controlled relays are employed using a National Instruments NI-9403 dig-
ital input/output module: one for each set of cycler leads (cell cycling and voltage
sensing) and one for the data logger leads (voltage sensing). The cycler is connected
only when the module must be charged or discharged, and the voltage sensor of the
data logger is connected periodically for a predetermined length of time to allow for
a reliable measurement. The voltage and temperature data are processed in Lab-
VIEW, which outputs a one-minute moving average of the OCV and thermocouple

temperatures. A circuit diagram of the test setup is provided in Figure 5.1.
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Figure 5.1: Circuit diagram of test setup.

5.2.1 Development of a Test Program

Since the entropic heating coefficient is a function of both the cell temperature and
the SOC, the test points form a two-dimensional grid. Capacity discharged (Cy) is
used in place of SOC, as this eliminates ambiguity in defining and estimating the SOC
(cited by [64] as the greatest source of experimental error) and maintain consistency
across new and aged cells. Where SOC is given as a reference, it is derived from
the capacity discharged. Test points for capacity discharged are evenly spaced based

on the measured capacity of the module, with an extra point adjacent to the fully
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charged and fully discharged states. Test points for the temperature are chosen to
span typical operating temperatures. The test points for both variables are shown

in Table 5.1 and the test grid is formed by every combination of the two variables.

Table 5.1: Test points for capacity discharged and temperature used to form the test
grid.

Capacity Discharged, Cy [Ah] 0, 4.55, 9.1, 18.2, 27.3, 36.4, 45.5, 54.6,
63.7, 72.8, 77.35, 81.9, 86.45, 91

SOC [%] (reference only, derived 100, 95, 90, 80, 70, 60, 50, 40, 30, 20,
from capacity discharged) 15, 10, 5, 0

Temperature, T [°C] 40, 20, 0, -20

In order to reduce unnecessary cycling of the cells, the module is exposed to
each temperature point before proceeding to the next capacity discharged point.
This avoids further opportunity for error and further delays to accommodate voltage
relaxation. The test begins with a fully charged (i.e. Cy = 0) and fully relaxed

battery. For each capacity discharged point, the test procedure is as follows:
1. Discharge to required capacity discharged

1.1. Chamber set to 25°C

1.2. Close cell cycler relays

1.3. Close data logger voltage sense relay

1.4. Discharge at 10 A (~ C/10) until desired capacity discharged

1.5. Open all relays (data logger continues periodic voltage measurements)

2. Minimum 8-hour pause for voltage relaxation after discharge
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3. Cycle through temperature test points

3.1. 8&-hour soak time at 40°C
3.2. &hour soak time at 20°C
3.3. 8-hour soak time at 0°C

3.4. 8-hour soak time at —20°C
4. Repeat steps 1-3 for next capacity discharged point

The environmental chamber setpoint temperatures at each SOC test point are

also shown in Figure 5.2.
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o
T
I
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0 4 8 12 16 20 24 28 32 36 40
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Figure 5.2: Environmental chamber temperature program for each SOC point.

The 8-hour pause for voltage relaxation and the 8-hour soak time at each tem-
perature are determined from an initial test where the rate of change of cell voltage

and temperature (respectively) are monitored until they fall to an acceptable level.
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Following a charge or discharge, the voltage is considered to be relaxed when the
battery has reached a state of electrochemical equilibrium, as indicated by the rate
of change of OCV falling below what is significant for the test. Relaxation time is
high due to the sensitivity of the voltage measurements, and the soak time is high
due to the large thermal mass of the cell module. A relatively low discharge current
of 10 A (approximately C/10) is selected in order to reduce the time required for

voltage relaxation.

5.2.2 Compensation for Self-Discharge and Voltage Relax-

ation

Over the duration of the test, the self-discharge and voltage relaxation present a
problem similar to the unwanted discharge through sensor leads: they cause measur-
able decrease in OCV over the test. The self-discharge cannot be avoided and must
be corrected following the test, as noted in [29,64]. At each test point, the rate of
change of OCV at steady state is extracted. The steady state rate of change of OCV
then forms a lookup table (LUT) which is used to compensate the measurement

throughout the test. The OCV compensation is conducted as a cumulative sum:

OCVeory (k) = OCVipeas (k) = Y (a%fv>k (th — tr_1), (5.4)

N=0

where OC'V,,,., is the corrected OCV, OCV,,,.4s is the measured OCV, k is the current
time step, (00OCV/0t), is the steady state rate of change of OCV with time at time

step k (obtained from the LUT at temperature 7" and capacity discharged Cy), and
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t is the time elapsed. Though the intention is to start the test only once the voltage
relaxation rate has fallen below an acceptable threshold, any remaining relaxation
will also be corrected under this method. Figure 5.3 shows an example of corrected

and uncorrected OCV measurements for C; = 9.1 A h (= 90% SOC).

4.066 T T T T T

@ Corrected
4.0655 | == Uncorrected
—, 4.065
E 7.50 pv/h
Q 40645 -0.50 1v/h ]
4.064 i
-18.80 uv/h
4.0635 .
-6720 “‘V/h I 1 1 L I
0 5 10 15 20 25 30

Time Elapsed [hours]

Figure 5.3: OCV vs. Time at Cy = 9.1 Ah (= 90% SOC), before and after applying
the correction for self-discharge rate. By correcting for self-discharge, the OCV
measurement, becomes constant once thermal equilibrium is reached.

From Figure 5.3, it can be seen that the self-discharge is much more pronounced
at the higher temperature points. At lower temperatures, the self-discharge can no
longer be observed from this plot.

The self-discharge correction factors across the range of temperatures and SOC
tested are shown (as rate of change of open-circuit voltage with time) in Figure
5.4. Following the test procedure, the module is first discharged to the required
charge level, then exposed to the range of test temperatures. The data points in this

plot are obtained from the voltage measurements at thermal equilibrium, with the
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cell cycler leads disconnected from the module. From this figure, the temperature
dependence of self-discharge rate is further demonstrated, as it can be seen that
changes to OCV are more pronounced at higher temperatures and appear muted at
lower temperatures. It can also be seen that the rate of voltage decrease is much

higher at the fully charged state (i.e. Cq =0).
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Figure 5.4: Correction factors derived from rate of change of OCV with time
(00CV/0t) at thermal equilibrium.

Figure 5.4 also appears to show an increasing OCV at low SOC (i.e. high Cy),
this is likely caused by insufficient relaxation time, which is subsequently captured
by the correction factor at these points. This suggests a longer time constant for
voltage relaxation at low SOC, where this effect is most pronounced. Since the test
begins with the 40 °C point at each SOC, a higher rate of relaxation is observed at

these points.
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5.3 Behavior of the Entropic Heating Coefficient

Depending on the charge level of the cells, they may exhibit either a positive or
negative entropic heating coefficient. Examples of both cases are presented in Figures
5.5 and 5.6. In these plots, the ambient temperature is varied according to the test
plan and the effect on the OCV is observed. The module is not charged or discharged
until the end of the temperature sequence, when the test proceeds to the next test

point of capacity discharged.
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Figure 5.5: Corrected OCV response yielding positive entropic heating coefficient
shown at Cy = 36.4 A h (= 60% SOC).
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Figure 5.6: Corrected OCV response yielding negative entropic heating coefficient
shown at Cy = 72.8 Ah (=~ 20% SOC).
5.4 Entropic Heating Coefficient Map

The final results of the entropic heating coefficient test are shown in Figure 5.7.
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Figure 5.7: Entropic heating coefficient map obtained from testing. It can be seen
from this plot that there is no significant temperature dependence observed over the
range of temperatures tested.

The magnitudes and behavior of the entropic heating coefficient obtained here are
similar to published values for the LFP cell studied in [29]. Existing literature has
found the entropy change of NMC cells to be comparable to that of LEP cells [33].
Nevertheless, it remains important to determine the entropic heating coefficient of
the specific cell chemistry in order to gain an accurate understanding of the reversible
heat generation in the cell.

According to Equation 5.1, charging will lead to an exothermic reaction from
the reversible losses in a region of positive entropic heating coefficient, and an en-
dothermic reaction from the reversible losses in a region of negative entropic heating
coefficient. Discharging will lead to an endothermic reaction from the reversible
losses in a region of positive entropic heating coefficient, and an exothermic reaction

from the reversible losses in a region of negative entropic heating coefficient.
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It can be seen that the entropic heating coefficient does not show any significant
variation with temperature across the test points. The relatively large, negative
coefficient at low charge (i.e. high Cy) indicates a strong endothermic reaction from
the cells when charging from a depleted state, or a large exothermic reaction when
discharging at low SOC.

Without compensation for self-discharge and voltage relaxation, the entropic
heating coefficient map shows more scatter across temperatures at low charge, as

shown in Figure 5.8, this is very similar to the map presented in [29].
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Figure 5.8: Entropic heating coefficient map obtained without compensation for self-
discharge and voltage relaxation, showing more scatter at low charge.
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5.5 Loss Modelling with Entropic Heating Coeffi-
cient

Once the entropic heating coefficient is determined, the cell losses are modelled using
Equations 5.1 through 5.3. Other inputs to the model (i.e. current, temperature,
open-circuit voltage, and terminal voltage) are obtained either by measurement or
through the use of other modelling techniques, such as an equivalent circuit model
(ECM) [65]. For previously characterized cells, an ECM enables the modelling of
any arbitrary cycle without the need for further laboratory testing. Here, for the
purpose of comparison, the inputs for the cell loss model are obtained from measured
data. Open-circuit voltage is obtained as a function of capacity discharged using
measurements from an HPPC test, as outlined in [53], and accessed using a LUT for
the purposes of the cell loss model. The entropic heating coefficient is obtained from
the map using a LUT for temperature and capacity discharged. Linear interpolation
is used in conjunction with the LUTs.

Unless another temperature is indicated, measured data is obtained using the
active cooling module with a constant supply of 20 °C coolant and the environmental
chamber maintaining a 20 °C ambient temperature. For reference, a constant resis-
tance approximation to the cell loss is calculated using the round-trip (charge-neutral
charge and discharge) energy loss obtained from cell cycler measurements. This is
obtained by distributing the energy loss measurement proportionally according to
the measured current squared. Using Equations 5.1 through 5.3, cell losses are pre-

dicted for 1C, 3C, and 5C charges and presented in Figures 5.9 through 5.11. Note
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the different limits of both azxes across the three plots.
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Figure 5.9: Modelled cell losses for a 1C charge.
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Figure 5.10: Modelled cell losses for a 3C charge.
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Figure 5.11: Modelled cell losses for a 5C charge.

Figures 5.9 through 5.11 illustrate the importance of considering the reversible
heating contributions, especially at low charge rates. As the charge rate increases,
the contribution of the reversible losses to the total losses decreases. This can be
explained by comparing Equation 5.1, which shows the reversible losses growing
with the current, with Equation 5.2, which shows the irreversible losses growing with
the squared current. Nevertheless, it is evident that the reversible losses play an

important role and should not be overlooked, even at higher charge rates.

5.5.1 Reversible Heating Contribution

Figure 5.12 further illustrates the significance of the reversible heat at low charge

rates, and the diminishing contribution as charge rate increases.
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Figure 5.12: Maximum and minimum reversible heat generation rate as a percentage
of maximum irreversible heat generation rate.

The strong endothermic response when charging at low SOC is also apparent in
this figure, as the maximum endothermic response of the reversible heat reaches over
60% of the maximum irreversible heat for the 1C charge. This is due to the large,
negative values of entropic heating coefficient observable in Figure 5.7. As shown in
Figures 5.9 through 5.11, the endothermic response quickly disappears as the battery

is charged, due to the steep slope of the entropic heating coefficient at low SOC.

5.5.2 Temperature Contribution

Peak cell loss for a series of 4C charges at different temperatures are presented in
Figure 5.13. For these tests, the temperatures of the liquid coolant and environmental

chamber are fixed to the indicated values.
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Figure 5.13: Peak cell loss for a series of 4C charges at different temperatures.

As shown in Figure 5.13, these loss estimates lead to charging efficiencies of
91.1% for the 15°C charge, 92.1% for the 20°C charge, and 93.2% for the 25°C
charge. At the pack level, this leads to savings of more than 7kW under extreme
fast charge rates, which leads to further savings in the form of reduced thermal
management loads. Since the entropic heating coefficient does not vary significantly
with temperature and the temperature change between the three cases is small on
an absolute scale, it can be seen from Equations 5.1 and 5.2 that the driving force
behind the reduction in peak cell loss is the irreversible losses. This irreversible
loss characteristic is due to the cell resistance being significantly higher at lower

temperatures, which is common for Li-ion cells.

5.5.3 Peak Loss Comparison
Figure 5.14 shows peak cell loss for all tested charge rates at 20 °C.
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Figure 5.14: Peak cell loss shown for a series of 20 °C charges from 1C to 5C.

As the nature of Joule heating is to vary with the square of the current, the
sharp increase in peak cell loss with charge current is consistent with expectations.
Since the reversible heat generation represents a greater proportion of the total heat
generation at lower charge rates, increases in heat generation cannot be predicted
by considering the squared current alone. Alongside the model prediction, Figure
5.14 shows the peak cell loss from an aC? + bC best fit line (where C' is the charging
C-rate and a and b are constants with values of 1.8 W C~2 and 4.7W C™!), showing

good agreement with the cell loss model prediction.
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Chapter 6

Module Thermal Modelling

Thermal models are developed for the module presented in Chapter 4. These mod-
els are developed using two different methods: computational fluid dynamics and
recurrent neural networks.

Under the first approach, knowledge and assumptions of the underlying physics
are used to determine a set of governing equations to be solved numerically. This
CFD-based method requires an understanding of the governing equations, dominant
physical reactions, and material properties of the cells and module components, as
well as an estimate of the internal heat generation of the cells. Under the second
approach, cell temperatures are predicted using recurrent neural networks. Instead
of a physics-based approach, temperatures are predicted using previously obtained
testing data by selecting relevant input parameters.

These models are used to predict cell temperatures for a series of charge rates up

to 5C. The CFD model is also used to predict temperatures over a combined cycle
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of driving and periodic fast charging.

6.1 CFD-based

ANSYS Fluent is first used to model the coolant flow thermal behaviour in the mod-
ule at steady state. From the steady state model, the heat transfer coefficient from
the pipe wall to the coolant, and the temperature rise of the coolant are determined.
Transient, thermal-only modelling is conducted in ANSYS Mechanical using knowl-
edge of these parameters obtained from the thermal-fluid model—eliminating the
need for fluid flow modelling within the transient simulations. This greatly reduces
the computational cost of the transient simulations since much of this cost comes
from the more fine mesh and the extra governing equations required to resolve the
fluid flow. Both CFD models employ the heat generation model developed in Chap-
ter 5 to determine the internal heat generation of the cells. Rounded edges of the
cold plate are represented as right angles in order to improve meshing.

Existing literature has shown the impact of current density on temperature distri-
bution [7,9]. Though it is possible to apply the loss model presented in Chapter 5 to
a spatially-varying current density, for simplicity, both the thermal-fluid model and
the thermal-only model approximate the internal heat generation as being uniform
throughout the volume of the cells. This approximation which neglects the variation

in current density within the cells.
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6.1.1 Detailed Steady State Thermal-Fluid Model

ANSYS Fluent is used to model the flow of coolant and the thermal behaviour of the
battery module at steady state. This model is employed to solve the energy equa-
tion with a constant source term, the conservation equation, the three momentum
equations for a three-dimensional viscous flow, and the two equations of the selected
turbulence model. This more detailed model allows for the convection coefficient and
temperature rise of the cooling fluid to be determined. Due to the additional equa-
tions and meshing requirements needed to simulate the fluid flow inside the copper
pipe of the cold plate, this model is computationally costly and therefore not well
suited for transient simulations. A symmetry boundary condition is used to reduce
the model to only half the width of the module; symmetry cannot be applied to
reduce the height of the module due to the flow of coolant through the u-shaped
bend of the copper pipe. This model is shown in Figure 6.1.

From the results of the steady state analysis, the convection coefficient of the

coolant inside the copper pipe is calculated as:

1/

h _ q
coolant — 3
Tsur f— Tbulk

(6.1)
where ¢” is the heat flux through the interface of the coolant and the copper pipe,
Tsurp is the area-weighted average surface temperature of the copper pipe at this
interface, and Ty, is the mass-weighted average temperature of the coolant. These

variables are obtained as parameters directly from ANSYS Fluent.

The only energy source in the model is the internal heat generation of the battery
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Figure 6.1: Geometry of thermal-fluid model, with a symmetry plane used to reduce
the width of the model (z-direction).

cells and the only energy sink is the flowing coolant. The Reynolds number—based
on the inner diameter of the copper pipe in the cold plates, a volumetric flow rate
of 15Lmin~!, and the fluid properties listed in Table 4.3—is 4570. The governing
equations are solved iteratively until the absolute residuals of all governing equations

fall below 1076,

Choice of Turbulence Model

The Reynolds number of the coolant flow suggests a transitional or turbulent flow in
the free-stream, and the u-shaped bend in the copper pipe may lead to separation
or dean vortices. The SST k-w turbulence model [66] is used to capture these effects

in the bend, and to model the coolant flow in the sections of straight pipe.
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Mesh Independence Study

A conformal, Cartesian mesh is used at the interfaces, including a Cartesian mesh
at the interface between the cold plate and the bars, plastic, and inter-cell plates.
Here, the calculated convection coefficient from Equation 6.1 is used to monitor
mesh sensitivity. This captures any changes in the heat flux through the pipe, in the
pipe surface temperature, or in the mean coolant temperature. Results of the mesh

independence study are presented in Table 6.1.

Table 6.1: Calculated convection coefficient for different meshes, and percentage
difference compared to mesh A3.

Mesh Al A2 A3

Number of elements 1115314 2749 864 6505167
Convection coefficient [Wm ™K™' 4518 (+10%) 4179 (+1.7%) 4108 (baseline)

Since the steady state model must only be solved once to determine the heat
transfer coefficient, the most fine mesh (A3) can be used without increasing the

computational cost of subsequent calculations. Mesh Al is shown in Figure 6.2.

Calculated Convection Coefficient

From the numerical results, and according to Equation 6.1, the convection coefficient
of the coolant flow inside the copper pipe is calculated as 4108 Wm ™2 K~! for the
most fine mesh, as shown in Table 6.1. For the straight-pipe section, the Gnielinski
correlation [67] predicts a convection coefficient of 3476 Wm~2K~!; the u-shaped
bend is expected to enhance the straight-pipe convection, which is consistent with

the numerical model results.
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Figure 6.2: Mesh of detailed, steady state thermal-fluid model, used to determine

convection coeflicient of coolant.

6.1.2 Thermal-Only Transient Model

Transient, thermal-only modelling is accomplished using the Transient Thermal fea-

ture within ANSYS Mechanical. The thermal-only model is used to solve the energy

equation with a time-varying source term in order to simulate the series of fast

The results of these simulations are then compared to the experimental

charges.

measurements. The coolant is fixed at its bulk mean temperature determined in the

and the convection coefficient is configured the be consistent

)

coolant flow simulation

with Equation 6.1. All exterior surfaces are configured as convection boundaries to

represent convection to the surrounding air in the environmental chamber. Since the

coolant flow is no longer included in the model, an additional symmetry plane may

be used, and the model must only represent half of the module thickness and half of
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the height, as shown in Figure 6.3.
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Figure 6.3: Geometry of thermal-only model, with symmetry planes used to reduce
the width (z-direction) and height (z-direction) of the model.

Mesh Sensitivity Study

A mesh independence study is conducted for the thermal-only model. Three different
meshes are generated, with 11910, 18030, and 23 907 elements. The modelled peak
temperature during the 5C charge is used to compare the solution across the different
meshes.

Table 6.2: Peak temperature during 5C charge for different meshes, and percentage
difference in temperature rise compared to mesh B3.

Mesh B1 B2 B3

Number of elements 11910 18030 23907
5C Charge Peak Temperature [°C] 34.053 (—1.1%) 34.212 (0%) 34.212 (baseline)
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Mesh B1, the most coarse mesh, shows a temperature rise deviation of only 1.1%
from the most fine mesh. In order to minimize computational cost, mesh B1 is used

for the remainder of this work. This mesh is shown in Figure 6.4.

0.000 0.100 0.200 (m)
]

I
0.050 0.150
Figure 6.4: Mesh of thermal-only model, used to determine module temperatures

during transient simulations.

As with the more detailed, thermal-fluid model, conformal mesh is used at the
interfaces, including a Cartesian mesh at the interface between the cold plate and

the bars, plastic, and inter-cell plates.

6.2 Neural Network-Based

The numerical, physics-based modelling techniques presented in Section 6.1 rely on
a thorough understanding of the governing equations, dominant physical reactions,

and material properties—not only of the battery cells and module components, but
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also of the thermal management system and coolant flow. These thermal models are
also costly to develop and costly to execute, both initially and on subsequent calcu-
lations. Here, recurrent neural networks are investigated as an alternative to these
numerical solutions. It must be stressed that the use of RNNs for predicting module
temperatures is only possible in the presence of existing, module-specific, labora-
tory testing data. Once a neural network has been trained, subsequent calculations
are very computationally inexpensive. This means that NNs may be deployed for
online temperature estimation, on-board an EV, without requiring significant com-
putational resources.

This section is not intended to be an exhaustive study on the use of neural
networks for battery thermal modelling, but rather as an initial investigation and a

means for comparison with the numerical modelling techniques presented.

6.2.1 Architecture and Training

A long short-term memory (LSTM), recurrent neural network is selected for this
application. LSTM networks include outputs of past time steps as a parameter to
aid in the prediction of future time steps [68]. This is useful in the estimation of
temperature during fast charging, as the transient nature of the problem means that
the temperature at future time steps is a function of the temperature at past time
steps. This better represents the effect of the thermal mass.

For this application, the input parameters are the instantaneous current (I), ter-
minal voltage (V7), and remaining battery capacity (C'). The RNNs uses these inputs

to predict the maximum temperature (7,,,) and maximum temperature difference
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(AT, .0:) at each time step, based on measurements recorded at the five locations
on the surface of the middle cell shown in Figure 4.2a. Data recorded from the test
module are used to train the networks; charging data are available at rates from 1C
to 5C, in 1C increments. The RNNs are composed of an input layer, an LSTM layer,
two fully connected layers, and an output layer. They are constructed in MATLAB
R2018b using the Deep Learning Toolbox [69]. The network architecture is shown

in Figure 6.5, where the subscript k£ denotes the time step.

Input Layer LSTM Fully Connected  Fully Connected Output Layer
——— N ——m, “ S——— - e - i, -
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Figure 6.5: Architecture of the recurrent neural networks .

Three separate LSTM RNNs are created—all based on this architecture—to in-
vestigate the ability of the RNN to predict module temperatures. The first network
is trained using 1C, 3C, and 5C charging data and validated using the 2C and 4C
charging data. The purpose of this network is to test the interpolative capabilities
of LSTM neural networks (i.e. ability to predict when operating inside training data
power limits). The remaining networks are intended to test the extrapolative capa-
bility of the RNN (i.e. ability to predict when operating outside training data power
limits). One is trained using 2C, 3C, and 4C charging data and validated using the

1C and 5C charging data (bilateral extrapolation); the other is trained using 1C, 2C,
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and 3C charging data and validated using the 4C and 5C charging data (unilateral
extrapolation). The purpose of the third network is to further test the extrapolative
capabilities of LSTM neural networks beyond the training data and to investigate
the ability to predict the thermal response characteristics observed at higher C-rates.

Each network is trained for up to 5000 epochs using a decreasing learning rate.
After a reasonable root-mean-square-error (RMSE) is obtained, each network is re-
set to a higher learning rate and training is continued. The purpose of resetting
the learning rate is to reduce the likelihood of convergence on local minima. The
MATLAB Training Progress window for the interpolative network training is pre-

sented in Figure 6.6.

4 Training Progress (03-Apr-2018 15:32:52) - o x

Training Progress (09-Apr-2019 15:32:58)

Results
Validation RMSE 0038146
Training finished Stopped manually

Training Time
Starttime 09-Apr-2019 15:32:58
Elapsed time 49 min 51 sec

Training Cycle

Epoch: 1221 of 5000
Iteration: 1221 of 5000
terations per epoch: 1

Maximum iterations: 5000

Validation
Frequency 10 iterations
Patience Inf

‘Other Information
Hardware resource: Single CPU

Learning rate schedule:  Piecewise
| aarninn rate nnna1RTA
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Iteration
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Training (smoothed)
Training

— = @ — = Valdation

Loss

Training (smoothed)

1000 Training
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Figure 6.6: MATLAB Training Progress window, showing training of interpolative
network.

The results of each network are compared to measurements obtained from the test
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module described above, and the error between the prediction and measurement is
calculated. This provides insight into the capabilities and limitations of temperature

prediction using LSTM neural networks.
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Chapter 7

Module Experimental

Measurements and Validation of

Thermal Modelling

Experimental measurements for the inter-cell cooling module are obtained using the
test setup described in Section 3.2. Charging is conducted using the CC-CV protocol.
Where a C-rate is provided, it defines the current magnitude during the constant
current portion of the charge, after which the current drops sharply to maintain a
constant terminal voltage. Figure 7.1a shows the peak temperature measurements
of the cell and module during the 5C charge; measured temperatures on the cell face

throughout the charge are shown in Figure 7.1b.
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(a) Peak temperature measurements for a 5C charge.
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(b) Cell face temperature measurements for 5C charge.

Figure 7.1: Cell and module temperature measurements for a 5C charge.

Figure 7.1 also shows the impact of the non-homogeneous current density inside
the battery cell, with the temperature increasing toward the positive tab. This is

not captured in the numerical model, which assumes a uniform heat generation and
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a uniform current density.

For the CC-CV charges conducted, the measured peak temperatures occur at
the transition from constant-current to constant-voltage. Figures 7.2 and 7.3 show
measured temperature and current magnitude (shown as C-rate), over a 5C charge
and a 3C charge, respectively. These plots show the relationship between temperature

rate and current magnitude.
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Figure 7.2: Measured tab-adjacent cell face temperature and current magnitude
(shown in C-rate) for a 5C charge. Measurement corresponds to location TC3 as
indicated in Figure 7.1a.
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Figure 7.3: Measured tab-adjacent cell face temperature and current magnitude
(shown in C-rate) for a 3C charge. Measurement corresponds to location TC3 as
indicated in Figure 7.1a.

7.1 Steady State

7.1.1 Measured and CFD-Modelled Temperature for Con-

stant Loss

A current signal following a zero-offset square wave is used to generate a constant
loss in the battery module without a net charge or discharge to the cells. Module
currents are selected to correspond C-rates ranging from 1.5C to 3.5C, in increments
of 0.5C. Steady state temperatures corresponding to the constant loss values are

presented in Table 7.1.
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Table 7.1: Temperature prediction error at steady state. Percentage error is calcu-
lated using respective cell value as baseline. Modelled temperature corresponds to
locations TC2 and TC3, measured cell corresponds to TC3, as indicated in Figure
7.1a.

C-Rate Module Modelled Cell Measured Cell Measured Pos. Tab
Loss [W] Temperature Rise [°C] Temperature Rise [°C] Temperature Rise [°C]
1.5 30.5 3.2 2.1 (52% error) 2.8 (14% error)
2.0 47.4 5.0 3.2 (56% error) 4.5 (11% error)
2.5 74.6 7.8 4.9 (59% error) 6.9 (13% error)
3.0 105.8 11.1 6.8 (63% error) 9.7 (14% error)
3.5 140 14.6 9.0 (62% error) 13.1 (11% error)

Modelled maximum temperatures at steady state are significantly higher than
measured values. It is expected that this is due to discrepancy in the thermal con-
ductivity values of the cells used by the model (which are obtained by scaling from
known values for a similar cell). If the thermal conductivity values presented in
Section 3.4.1 are below their actual values, the ability of the cells to reject heat is
impeded in the model, and the steady state temperature would be over-estimated.

This discrepancy may also be due to the fact that heat rejection through the cell
tabs is neglected in this model. With all cell cycler channels connected in parallel to
the terminals of the module, the power leads may act as extended surfaces through
which heat transfer to the environmental chamber may be greatly enhanced. This is

not represented in the numerical model.
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7.2 Transient

7.2.1 CFD-Based
Measured and Modelled Temperatures for 1C to 5C Charge Rates

For a series of 1C to 5C charges, the measured temperatures are compared to those
obtained from the numerical model, and serve as validation for the model. For
the 1C, 3C, and 5C charges, measured and modelled temperatures are presented in

Figure 7.4.
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Figure 7.4: Measured peak cell surface temperature for a series of charge rates. Tab-
adjacent temperature represents location TC3 for measured data and both TC2 and
TC3 for modelled data, as indicated in Figure 7.1a.

For the 5C charge and the 1C charge, the numerical model predicts a peak tem-
perature 0.55°C lower than the measurement. For the 3C charge, the numerical

model under-predicts the peak temperature by 1.15°C. It should be noted here that
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the temperature measurement is accurate only to £0.7°C. The pattern of oscillat-
ing measured temperature visible in the 1C charge is caused by throttling of the
chiller, since the lower thermal load does not require the compressor to be operated
continuously.

Even for the 3C charge, which produces the greatest modelling error, the peak
temperature is estimated to within 1.15°C. Recalling that the initial temperature
of the fast charge is 20°C and that the measured peak temperature is 28.6 °C, this
means that the model is able to predict the peak temperature rise of the 3C charge

to within 14%. For the 5C charge, the peak temperature rise is modelled to within
4%.

Impact of Model Specific Heat Capacity over 5C Charge

To investigate the impact of the cell’s specific heat capacity on the modelled cell
face temperature, two additional scenarios are presented: a 25% increase in specific
heat and a 100% increase in specific heat. For a 5C charge, the impact of these

modifications on the modelled temperature is shown in Figure 7.5.
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Figure 7.5: Measured and modelled cell face temperature for varying cell specific
heat (Cpcenr). Tab-adjacent temperature represents location TC3 for measured data
and both TC2 and TC3 for modelled data, as indicated in Figure 7.1a.

Following the constant current portion of the charge, there is no significant change
in temperature for the 25% increase case. A more substantial increase to the cell
specific heat is required to see an impact at this stage; a significant difference can be
seen when increasing the specific heat by 100%, as shown in the plot. The impact on
peak temperature, however, appears to be more sensitive to the specific heat capacity;
a significant reduction in peak temperature, 0.8 °C, is obtained with an increase of
only 25% to the cell specific heat. This shows that an accurate understanding of

thermal properties is an important prerequisite to a numerical model.
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Measured and Modelled Temperatures for a Series of Repeated Drive

Cycles and Fast Charges

A series of repeated drive cycles and fast charges is also studied. Using a vehicle
model representing a 2018 Nissan Leaf, battery current and power for a 40 kW h,
4p87s pack are scaled to the 3pls Kokam Module. Here, the heat generation in-
side the cells is modelled using an electrothermal model [22]; this approach requires
further characterization of the cells, however it removes the approximation of con-
stant internal resistance of the battery cells, adding consideration for current level,
terminal voltage, and SOC. For previously characterized cells, the heat generation
for an arbitrary drive cycle or charge may be modelled using an equivalent circuit
model [65]. Figure 7.6 shows several US06 drive cycles, repeated until depletion of
the battery pack, followed by a sustained 4C fast charge for 15 minutes, and then
repeated twice more. The driving portion occurring between charges gives sufficient
time to remove the excess heat accumulated in the cells during fast charging, as

shown in Figure 7.7.
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Figure 7.6: Battery module current and SOC for repeated US06 drive cycles and 4C
fast charges.
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Figure 7.7: Measured and modelled temperatures for repeated US06 drive cycles and
4C fast charges. Maximum temperature on cell face shown.
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Here, the peak temperature during the 4C charges is measured to be 32.3°C,
while the model predicts a value of 31.6 °C. This corresponds to an error of 0.7 °C,
or 2%. This type of modelling is useful for assessing the performance of a certain

battery pack design and studying the impact of design modifications.

7.2.2 Neural Network-Based

Interpolation

The interpolative network is used to predict 2C and 4C charging temperatures using
1C, 3C, and 5C charging training data. The network achieves an RMSE of 0.0381
following training over 1221 epochs. The temperature predictions show a strong level
of agreement with the laboratory measurements. Figure 7.8 shows the predicted
maximum temperature and the measured maximum temperature obtained from the

test module.
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Figure 7.8: Interpolative network predicted maximum cell temperature compared to
measured values for 2C and 4C charges (validation set).
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As shown in Figure 7.8, the prediction closely follows the measurement during the
2C charge, and accurately models the peak temperature. During the 4C charge, the
network is able to predict the temperature profile before and after the peak, though
it over-predicts the maximum temperature peak by 1.9°C, equivalent to an over-
prediction of temperature rise of 16%. Maximum temperature difference predictions

are presented in Figure 7.9.
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Figure 7.9: Interpolative network predicted maximum cell temperature difference
compared to measured values for 2C and 4C charges (validation set).

The predicted maximum temperature difference shows similar characteristics to
the maximum temperature predictions presented in Figure 7.8. The network is ac-
curate throughout the 2C charge, but over-predicts the peak temperature difference

across the cell during the 4C charge by 0.46 °C.
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Bilateral Extrapolation

The bilateral extrapolation network is used to predict 1C and 5C charging temper-
atures using 2C, 3C, and 4C training data. The network finishes training after 3328
epochs with an RMSE of 0.0542. Figures 7.10 and 7.11 show the predicted and

measured maximum temperature and maximum temperature difference.
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Figure 7.10: Bilateral extrapolation network predicted maximum cell temperature
compared to measured values for 1C and 5C charges (validation set).
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Figure 7.11: Bilateral extrapolation network predicted maximum cell temperature
difference compared to measured values for 1C and 5C charges (validation set).

Though the bilateral extrapolation network is able to perform fairly well just
outside the window of the training data, the results show that this network is not
as accurate as the interpolative network. The bilateral extrapolation network is able
to accurately predict both outputs during the 1C charge. During the 5C charge,
however, the maximum temperature is under-predicted by 2.9°C, equivalent to an

under-prediction of temperature rise of 20%.

Unilateral Extrapolation

The unilateral extrapolation network is used to predict 4C and 5C charging tem-
peratures using 1C, 2C, and 3C charging training data; the network is similar to
the unilateral extrapolation network, however it does not need to extrapolate as far
beyond the training data. The unilateral extrapolation network achieves an RMSE

of 0.161 after 5000 epochs. Figures 7.12 and 7.13 show the predicted and measured
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maximum temperature and maximum temperature difference.
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Figure 7.12: Unilateral extrapolation network predicted maximum cell temperature
compared to measured values for 4C and 5C charges (validation set).
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Figure 7.13: Unilateral extrapolation network predicted maximum cell temperature
difference compared to measured values for 4C and 5C charges (validation set).

From these figures, it is clear that the network is unable to extrapolate effectively

beyond the training set to higher C-rate charges. During the 4C and 5C charges, the
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network under-predicts the maximum temperature by 5.3 °C and 8.1 °C, respectively;
this is equivalent to over-predicting the temperature rise by 45% and 56%.

The maximum temperature profile predicted for the 4C and 5C charges by this
network are nearly identical, which indicates that the neural network is unable to
effectively learn the non-linear effect of charging current on cell temperatures. This
symptom may be indicative of the lack of sufficient training data, and may be ex-
acerbated by the extent to which the network must extrapolate beyond the training
data.

It should also be noted that there is a significant difference between the 5C
charge temperatures predicted by this network and by the bilateral extrapolation
network. This provides further evidence that extrapolating charging current beyond
the training data set yields a significant decrease in modelling accuracy and should

be avoided.

Comparison of Network Performance

Since the networks are predicting temperatures for different current magnitudes,
comparison must be drawn on a relative scale. Calculating the percentage error in
maximum temperature requires a datum. A datum of 0°C or absolute zero would
be arbitrary in this context; the logical datum would be 20°C (the datum used
to calculate temperature rise), since this is the initial temperature of the battery
module and the temperature of the cooling fluid and surrounding air. A datum of
20 °C, however, would cause very large, skewed values of relative error before and after

each charge, where the temperatures remain near 20 °C. To eliminate the dependence
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on a datum, the percentage error in maximum temperature difference across the cell
face is used to compare performance of the three networks. The drawback to this
approach is that error may appear larger following the cooling-off period, when the
maximum temperature difference has been alleviated and the denominator of the
relative error becomes very small.

The percentage error in maximum temperature difference is shown in Figure 7.14.
It should be noted that a large amount of error is observed upon initialization, due to
the fact that LSTM networks require feedback for initialization. Since this feedback is
unavailable in the first time step, the network must make an assumption resulting in
a relatively large initialization error. This error is quickly corrected in the proceeding

time steps. These initialization errors are disregarded in the interpretation.
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Figure 7.14: Percentage error of predicted maximum cell temperature difference as
compared to experimental data (for respective validation sets).
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Unsurprisingly, the neural network performs best when interpolating the outputs.
The farther the network must extrapolate beyond the training data, the greater
the error. This is immediately apparent in Figure 7.14. The relative error in the
prediction of maximum temperature by the interpolative network is largely within
20%, with the greater errors corresponding to the periods where there is a high
rate of change in the internal heat generation. The bilateral extrapolation network
yields noticeably decreased performance, with error reaching 50% and settling at
a higher level than the interpolative network. Prediction error from the unilateral
extrapolation network is significantly greater: over 60% during constant current
charging and settling far above the measured value. The RMSE for each network is

summarized in Table 7.2.

Table 7.2: Validation RMSE of the different networks.

Test Case H Interpolation Bilateral Extrapolation Unilateral Extrapolation

RMSE ||  3.8% 5.4% 16.1%

Despite the networks having no underlying physical knowledge of the cell or mod-
ule (or any part of the system) being modelled, an RMSE of 3.8% is achieved using
the interpolative network. By including a 4C charge in the training set, the bilateral
extrapolation network was able to reduce the RMSE from 16.1% to 5.4%, despite
being trained on the same amount of data. This demonstrates the importance of a
diverse training data set, spanning the full range of inputs that would be encountered
in application.

In application, a neural network to be deployed on-board an EV—to be used

for online temperature estimation or augmentation of measured pack temperature
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distribution—would be trained on a wide range of data, extending beyond the al-
lowable operating range, to avoid extrapolation. This is easily achieved since the
battery of an EV should not operate at electrical current levels beyond what has

been tested in a laboratory setting and deemed safe.

7.2.3 Comparison of Modelling Methods

The interpolative network is used for comparison as it demonstrates the greatest
accuracy and is no less feasible or costly to develop than any of the other networks.
Figure 7.15 shows the measured cell face temperature during the 2C and 4C charges,

along with the temperatures predicted by the RNN and the CFD model.
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Figure 7.15: Measured and modelled cell surface temperature for 2C and 4C charges.
Cell surface temperature corresponds to location TC3 for measured data and RNN
predictions, and TC2 and TC3 for the CFD model, as indicated in 7.1a.
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For the 4C charge shown in Figure 7.15, a peak temperature of 31.6 °C is mea-
sured; this is modelled as 30.8 °C using the CFD model, and predicted as 33.5°C by
the RNN. This figure also shows that the period following the constant-current por-
tion of the charge (where the temperature begins to fall) is predicted more accurately
using the RNN than the CFD model. This may be explained by the dependence of
the CFD model on thermal properties of the battery cells, which are estimated using
values for a similar cell, as discussed in Section 3.4.1. Since the CFD model employs
symmetry planes to reduce the width and thickness of the cell (see Figure 6.3), it
also does not entirely represent the spatial variations in temperature across the cell.
The RNN, however, shows a point of inflection following the temperature peak. This
point of inflection does not have a physical meaning and demonstrates the drawbacks

of a model lacking physical understanding of the underlying system.
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Chapter 8

Conclusion

This work explores many important considerations for designing fast-charging-capable
battery modules and packs. Novel contributions are presented relating to the devel-
opment and modelling of a fast-charging-capable battery module with consideration
for the unique challenges thereof. This thesis also presents the development of a
test procedure for characterization of the entropic heating coefficient, which involves
additional experimental challenges.

Beginning with cell characterization ensures that a suitable cell is selected for
implementation in a pack. Comparing cells based on effective energy density allows
consideration for cooling system size, which has a dramatic effect on the energy
density of a battery pack. For the four candidate cells, the characterization tests are
used to determine charging efficiency, SOC at transition from constant-current to
constant-voltage charging, equivalent resistance, time to add 80% SOC, and peak loss

for a series of increasing charge rates. For the A123 NMC cell, increasing the constant
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current charge rate from 4C to 5C yielded no decrease in time required to add 80%
SOC since the charging voltage limit is reached at a much lower SOC, prompting the
switch to constant voltage charging much earlier; furthermore the increased charge
rate caused the peak loss to increase by 60%, illustrating the importance of cell
selection for fast charging applications.

Once characterized, simplified thermal models are built for each of the four cells.
From these models, an inter-cell cooling plate is sized for each cell such that the
temperature rise during fast charging is maintained to within an acceptable level.
Once the inter-cell cooling plate is sized, an effective energy density is calculated for
each case, taking into account the cooling requirements of the cell and facilitating
more effective comparison between cells. For the A123 NMC cell, increasing the
inter-cell cooling plate thickness from 10% to 25% of cell thickness yields a 16%
decrease in effective energy density. From this study, it is also determined that two-
sided cooling, as opposed to one-sided cooling, is required to maintain reasonable
peak temperature and temperature gradient.

For a selected cell, an actively cooled, 3pls, test module is designed and con-
structed. The test module is intended to mimic the simplified model, utilizing two
cold plates, one at either side of the cells, through which coolant is circulated.

A test plan is then developed and carried out for the test module. An entropic
heating coefficient map is obtained through characterization and used in a cell loss
model to predict heat generation in the cells at charge rates from 1C to 5C. The

entropic heating coefficient shows no significant temperature dependence within the
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range of temperatures tested. Using the developed heat generation model, the re-
versible heat is found to contribute up to 26% as much heat as the irreversible losses
in the exothermic region, and up to 62% as much heat as the irreversible losses in
the endothermic region. The ratio of reversible heat to irreversible heat decreases
significantly as the charge rate is increased. Even for a 5C charge, however, the
maximum exothermic reversible heat generation reaches approximately 10% of the
maximum irreversible heat generation in the cell, showing that the reversible losses
should be considered even at higher charge rates. For a 4C charge, it is also found
that charging efficiency, based on modelled peak cell loss, increases from 91% to 93%
when the temperature of the coolant increases from 15 °C to 25 *C—corresponding to
a savings of more than 7kW at fast charge rates, which would then be compounded
by reduced thermal management loads.

For the battery module, detailed fluid flow and thermal models are developed
using CFD in ANSYS Fluent and ANSYS Mechanical. For a series of increasing-rate
charges up to 5C, and cycle composed of repeated driving and 4C charging, module
temperatures obtained through laboratory testing are compared to those obtained
using the numerical models. In addition to the physics-based modelling, three dif-
ferent recurrent neural networks are trained on the experimental data to predict the
maximum temperature and maximum temperature difference across the cell under
the 1C to 5C charge rates. The first network is trained to interpolate the temperature
outputs, the second is trained to extrapolate under higher charge rates, and third is
trained to extrapolate temperature outputs for both higher and lower charge rates.

The interpolative network shows superior performance, with a validation RMSE of
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3.8%, compared to 5.4% and 16.1% for the bilateral and unilateral extrapolations
networks, respectively. The predictions made by the recurrent neural networks are
compared with the CFD modelling and the experimental data obtained from test
module. For a 4C charge, a peak temperature of 31.6 °C is measured in the labora-
tory, modelled using CFD as 30.8°C, and predicted by the recurrent neural network
as 33.5°C.

8.1 Future Work

The study of temperature impact on ageing at varying charge rates presented in
Section 2.1.3 and the cell loss and efficiency trends presented in Section 5.5.2 show
potential for the development of improved charging procedures for higher charge
rates. These results show that it may be possible to reduce charging losses and ther-
mal management system requirements, while simultaneously increasing cycle life of
the cells. The greater charging efficiency which may be achieved by operating closer
to the upper temperature limit of the cells requires an effective thermal management
system which maintains a uniform temperature across the cell and pack. This gives
rise to a trade-off between thermal management system mass and charging efficiency
of the battery pack, which is reminiscent of the trade-off between energy density and
power density of the battery cell. Increased temperature uniformity also ensures that
the thermal capacitance of the battery pack can be leveraged as much as possible

to aid in fast charging. Future work should include a study of thermal management
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system mass versus charging efficiency. The work presented in this thesis, particu-
larly in Section 5.5.2, shows that effective thermal management of the battery pack
is not simply a problem of cooling the cells as much as is feasible, and that ther-
mal loads may be reduced by considering the temperature of the cells. A thermal
management system which is better able to maintain temperature uniformity in the
battery cells may achieve higher charging efficiency by taking advantage of lower
internal resistances at increased temperatures.

In order to improve the accuracy of the numerical temperature modelling, it is
recommended to expand the model to include the cell tabs, to model current density
and spatially-varying heat generation in the cells (preventing the use of symmetry
planes), and to further investigate the thermal properties of the battery cells. As
it is not represented in the model, or necessarily representative or desirable, it may
also be useful to isolate heat loss through cycler leads by bringing them to thermal
equilibrium with the cell tabs. The cooling capacity of the chiller is not expected to
contribute to the discrepancy between measured and modelled temperatures during
fast charging. This is evidenced by the lack of significant temperature rise of the
coolant at the inlet of the cold plate. It is recommended that any future work begin
by addressing the model refinements discussed here and re-assessing any discrepancies
that may remain.

The results of the thermal modelling using neural networks shows promise and
warrants further investigation. Different types of neural networks may be investi-
gated and the model may be scaled to pack-level. This could be used on-board an

EV for enhancing the resolution of the measured temperature distribution within the
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battery pack, while minimizing the number of physical sensors embedded. Future
work in this area should include acquisition of more training data—including charg-
ing and discharging at different rates and a variety of drive cycles—to improve the
diversity of the training data and the applicability of the model. Modelled cell tem-
perature resolution may also be enhanced in future work, depending on the training
data available.

Validation of the entropic heating coefficient and heat generation model requires
an isothermal calorimeter. For this reason, it may be more practical to characterize a
cylindrical battery cell, which is better suited for commercially available calorimeters.
This test would provide validation for the transient heat generation predicted by the

model.
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