Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28050
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFarmer, William. M.-
dc.contributor.authorRay, Lekhani-
dc.date.accessioned2022-10-27T01:29:50Z-
dc.date.available2022-10-27T01:29:50Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/11375/28050-
dc.description.abstractA biform theory is a combination of an axiomatic theory and an algorithmic theory. It is used to integrate reasoning and computation in a common theory and can include algorithms with precisely specified input-output relationships. Isabelle is one of the leading interactive theorem provers. Isabelle includes locales, a module system that uses theory morphisms to manage theory hierarchies, and that has a rich and extensive library with multiple useful proof and formalization techniques. A case study of eight biform theories of natural number arithmetic is described in the paper “Formalizing Mathematical Knowledge as a Biform Theory Graph” by J. Carette and W. M. Farmer. The biform theories form a graph linked by theory morphisms. Seven of the biform theories are in first-order logic and one is in simple type theory. The purpose of this thesis is to test how a theory graph of biform theories can be formalized in Isabelle by attempting to formalize this case study. We work with locales and sublocales in Isabelle to formalize the test case. The eight biform theories are defined as regular axiomatic theories, while the algorithms are functions defined on inductive types representing the syntax of the theories.en_US
dc.language.isoen_USen_US
dc.subjectIsabelle, Formal Methods, Biform theoryen_US
dc.titleFormalization of Biform Theories in Isabelleen_US
dc.typeThesisen_US
dc.contributor.departmentComputing and Softwareen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Ray_Lekhani_2022October_MSc.pdf
Open Access
724.44 kBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue