
Formalization of Biform Theories in Isabelle

FORMALIZATION OF BIFORM THEORIES IN ISABELLE

BY

LEKHANI RAY, B.Eng.

a thesis

submitted to the department of Computing and Software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Masters of Science

© Copyright by Lekhani Ray, October 2022

All Rights Reserved

Masters of Science (2022) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: Formalization of Biform Theories in Isabelle

AUTHOR: Lekhani Ray

B.Eng. (Computer Science and Engineering)

Vellore Institute of Technology, Vellore, India

SUPERVISOR: Dr. William M. Farmer

NUMBER OF PAGES: xi, 103

ii

To my parents and sister

Abstract

A biform theory is a combination of an axiomatic theory and an algorithmic

theory. It is used to integrate reasoning and computation in a common theory and

can include algorithms with precisely specified input-output relationships. Isabelle

is one of the leading interactive theorem provers. Isabelle includes locales, a module

system that uses theory morphisms to manage theory hierarchies, and that has a rich

and extensive library with multiple useful proof and formalization techniques. A case

study of eight biform theories of natural number arithmetic is described in the paper

“Formalizing Mathematical Knowledge as a Biform Theory Graph” by J. Carette

and W. M. Farmer. The biform theories form a graph linked by theory morphisms.

Seven of the biform theories are in first-order logic and one is in simple type theory.

The purpose of this thesis is to test how a theory graph of biform theories can be

formalized in Isabelle by attempting to formalize this case study. We work with

locales and sublocales in Isabelle to formalize the test case. The eight biform theories

are defined as regular axiomatic theories, while the algorithms are functions defined

on inductive types representing the syntax of the theories.

iv

Acknowledgements

I want to express my deepest gratitude to my supervisor and mentor, Dr. William

M. Farmer, who gave me the knowledge and motivation to pursue the research that

went behind the thesis. His expertise and past work have been a massive inspiration

in this journey.

Many thanks to members of my supervisory committee, Dr. Wolfram Kahl,

Dr. Christopher Anand, and Dr. Ridha Khedri. Dr. Kahl’s comments and constructive

feedback over the years on the research topic has been instrumental in shaping the

direction of the research topic.

I am grateful to the Department of Computing and Software for providing me

with an opportunity to pursue my research at McMaster University and my peers

who shaped my journey with their valuable input and experiences.

v

Notation and abbreviations

Abbreviation Full-form

ATP Automated theorem proving

BT Biform theory

CTTuqe Church’s type theory with undefinedness, quotation, and evaluation

FFMM Formal framework for managing mathematics

FOL First-order-logic

HOL Higher-order-logic

IMPS Interactive Mathematical Proof System

MMS Mechanised mathematical system

MMT Meta-meta-theory

PVS Prototype Verification System

RQ Research question

SBMA Syntax-based mathematical algorithms

SMT Satisfiability modulo theories

STT Simple type theory

IsaFol Isabelle Formalization of Logic

IsaFoR/CeTA Isabelle/HOL Formalization of Rewriting for Certified Tool Assertions

vi

Contents

Abstract iv

Acknowledgements v

Notation and abbreviations vi

1 Introduction and problem statement 1

1.1 Formal mathematics . 1

1.2 Research motivation . 2

1.3 Case study . 3

1.4 Challenge problem . 5

2 Background 7

2.1 Traditional predicate logic . 7

2.1.1 First-order-logic . 8

2.1.2 Simple type theory . 9

2.1.3 Transformers . 10

2.1.4 Syntax-based mathematical algorithms 10

2.1.5 Limitations of logic . 10

vii

2.2 Axiomatic theories . 11

2.3 Algorithmic theories . 11

2.4 Biform theories . 12

2.4.1 An example: BT2 . 13

2.5 Local vs. global reflection . 15

2.6 Theory morphisms . 16

2.7 Theory graphs . 17

2.8 Isabelle . 18

2.8.1 Isabelle theories . 18

2.8.2 Overview of Isar . 19

2.8.3 Isar commands . 20

2.9 Locales . 20

2.9.1 Sublocales . 21

2.9.2 Locale interpretations . 22

3 Objective 23

3.1 Case study . 23

3.2 Challenges of the case study . 27

3.3 Research questions . 28

3.4 Previous solutions . 29

3.4.1 CTTuqe . 30

3.4.2 Agda . 31

4 Approach 33

4.1 The different approaches . 33

viii

4.2 Our approach . 35

5 Axiomatic theory graph 37

5.1 The formalization of the biform theories 37

5.2 Interpretations . 41

5.3 Sublocales . 45

6 Biform theory graph 55

6.1 Transformers which manipulate numerals 55

6.1.1 Evaluation function for binary numerals 57

6.1.2 Addition of binary numerals 57

6.1.3 Multiplication of binary numerals 59

6.1.4 Meaning formulas for addition and multiplication 60

6.2 Transformers which manipulate expressions 63

6.2.1 Language of the theories . 63

6.2.2 Recognizers of the formulas of the theories 65

6.2.3 Induction schema generators 67

6.2.4 How do we connect the transformers to the locales? 70

6.3 Decision procedures . 70

7 Related work 72

7.1 Formalization in Isabelle . 73

7.2 Formalization of biform theories . 74

7.3 Review of available literature on locales 77

8 Conclusion and future work 80

ix

8.1 Conclusion of contribution . 81

8.2 Recommended work . 82

A Formalization in Isabelle 84

A.1 BinNum.thy . 84

A.2 Syntax operations . 86

A.3 Theory graph . 88

x

List of Figures

1.1 Biform theory graph test case . 4

2.1 Representation of biform theory . 12

2.2 Example of a locale . 21

5.1 Biform theory graph test case in Isabelle 54

xi

Chapter 1

Introduction and problem

statement

1.1 Formal mathematics

“The development of mathematics toward greater precision

has led, as is well known, to the formalization of large tracts

of it, so that one can prove any theorem using nothing but

a few mechanical rules.”

-QED manifesto Anonymous (1994)

Natural number arithmetic is likely to be a part of the core of any formal

mathematics library, and the formalization of mathematical knowledge has been a

long drawn effort. We define formalization as a means of expressing mathematics,

both statements and verifications, in a formal language with rigid rules of grammar

1

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

and precise semantics. Mathematical theorems and proofs, drawn up in a formal

manner, constitute formalized mathematics. A proof checker can automatically

verify whether the steps and details in the language are correct.

There are different ways of formalizing or specifying natural number arithmetic,

the most notable ones being the axiomatic and algorithmic methods. The axiomatic

method expresses knowledge as an axiomatic theory consisting of a language and set

of axioms. The assumptions about the theory are expressed by the axioms. Logical

consequences of the axioms are the facts of the theory. The axiomatic method is

well suited to provide results that are both exact and systematic. The algorithmic

method in comparison uses an algorithmic theory. The algorithmic theory consists

of a language and a group of algorithms, which perform symbolic computations over

the expressions of the language. The algorithmic method is well suited to encoding

the relation between the input and output of mathematical operations.

1.2 Research motivation

Software development has increasingly become a significant and vital activity in

our society. It controls all significant parts and activities of our lives including

communication, power generation, and travel. One major characteristic of

high-quality software is its correctness. Formal software correctness is a notion that

has become highly prevalent. In software engineering, the correctness of a program

or system is achieved if it behaves exactly as intended for all of its use-cases.

Proof assistants based on type theory (simple type theory or dependent type

theory) or set theory, have shown their ability to systematically prove the

correctness of critical software. Isabelle is one of the most widely used proof

2

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

assistants. Its expressive syntax and readability make it a natural choice for

someone with limited knowledge of formal methods. Yushkovskiy and Tripakis

(2018) explain how Isabelle was built in a modular manner and can be extended by

numerous basic theories making it expressive and relatively concise.

The motivation behind my thesis is to explore the workings of a proof assistant

like Isabelle and attempt to formalize a case study consisting of eight seemingly

simple biform theories (BT), linked by theory morphisms. Very few proof assistants

provide the means to directly build theory graphs in a straightforward manner. A

theory graph is a directed graph whose nodes are theories and edges are theory

morphisms. This thesis aims to explore whether a body of mathematical knowledge

can be effectively formalized as a theory graph of biform theories in a proof

assistant.

1.3 Case study

The topic of this thesis has been based on and inspired by Carette and Farmer

(2017). The aim of the thesis is to express and formalize this case study in

Isabelle/HOL. The biform theories are theories of natural number arithmetic. Seven

of the theories are in first-order logic and one is in simple type theory. BT1 and

BT5 are theories of 0 and S (the successor function). BT2 and BT6 are theories of

0, S, and +. BT3, BT4, and BT7 are theories of 0, S, +, and ∗. BT8 is a theory of

higher-order Peano arithmetic with the type ι of individuals and constants 0ι and

Sι→ι. The eight theories are connected by theory morphisms. Figure 1.1 gives a

graphical representation of how the eight theories are connected with strict and

non-strict theory inclusions and an interlogical theory morphism (see page 16 for

3

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

Figure 1.1: Biform theory graph test case

4

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

precise definitions). These eight are chosen because they naturally fit together and

have simple axiomatizations.

The case study includes a number of algorithms that manipulate expressions.

We have added a variety of useful algorithms to the theories as functions on

expressions. For example, we use the transformer subTerm that substitutes a term

for the free occurences of a variable in a given term. We have defined another

transformer, subForm that substitutes a term for the free occurences of a variable in

a given formula. subTermand subForm manipulate the syntax of terms and

formulas, respectively.

The term first-order logic, abbreviated as FOL, is used to indicate first-order

predicate logic, which is the most popular formal logic. Simple type theory is a

version of classical higher-order predicate logic. It is a highly expressive natural

extension of first-order-logic. Farmer (2008) argues that “simple type theory is an

attractive alternative to first-order logic for practical-minded scientists, engineers,

and mathematicians.” The eight theories have been formalized using locales, a

module system in Isabelle used for managing theory hierarchies through

interpretations. The theory morphisms between the theories have been formalized

using sublocales.

Details about the case study biform theory graph are found later in Chapter 3.

1.4 Challenge problem

The challenge problem for the thesis is to express the theory graph of the case

study consisting of eight biform theories of natural number arithmetic (see

Figure 1.1 above) in Isabelle. The case study is particularly interesting because it

5

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

consists of a variety of theories. We have theories that are simple and very weak

(e.g., the simple theory of 0 and S) as well as theories that are highly expressive

(e.g., higher-order Peano arithmetic).

6

Chapter 2

Background

2.1 Traditional predicate logic

There are many definitions of logic in the literature. I would like to understand

logic as a system that aims to draw a conclusion from a set of given assumptions in

a sound way. Logic uses data to make inferences. This thesis deals with logic in a

formal or mathematical manner. FOL and STT can be distinguished based on what

they quantify over. In FOL, we are allowed to quantify only over individuals. In

STT, we are allowed to quantify over individuals as well as other objects. For

instance, we can also quantify over higher-order objects such as functions and

predicates. The following is an example of an FOL formula:

∀x (∃y R(x, y) → R(x, f(y))).

x and y are variables which denote individual objects of a chosen domain. f is a

function symbol which denotes a (unary) function from the domain to the domain.

R is a predicate symbol representing a (binary) relation of objects of the domain.

7

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

∀x and ∃y are quantifiers which range over individuals, i.e., the members of the

domain. First-order logic is restricted to this form of quantification. STT has a type

of individuals as well as more complicated types such as:

(ι → ι) → (ι → o)

where ι is the type of individuals and o is the type of truth values.

The following expression, compose, is an example of an STT expression:

λf : (ι → ι) . λg : (ι → ι) . λx : ι . f(g(x)).

If f and g are variables of the type (ι → ι), then compose(f)(g) is an expression in

STT that denotes the composition of the functions denoted by f and g.

2.1.1 First-order-logic

First-order-logic is the leading form of predicate logic. It quantifies over

individuals such as natural numbers. It cannot quantify over higher-order objects

such as functions and predicates. First-order logic adds terms, predicates, and

quantifiers to propositional logic. A first-order language (or signature) can be

formally defined as a triple L = (C,F ,P), where:

� C is a set of constant symbols that denote individuals.

� F is a set of function symbols with assigned arities that denote functions on

individuals.

� P is a set of predicate symbols with assigned arities that denote predicates on

individuals.

8

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

BT2 of the case study is the simple theory of 0, S and +. The axiomatic part of

BT2 is in FOL and can be represented in the language L = (C,F ,P) where:

� C = {0}

� F = {S,+}, where S is a unary operator and + is a binary operator.

� P = {=}, where = is binary.

2.1.2 Simple type theory

Simple type theory is a prevalent form of type theory. It is higher-order because

it quantifies over higher-order objects such as functions and predicates. Simple type

theory is based on the same principles as in first-order logic. It includes nth-order

logic for all n ⩾ 1. Various proof assistants are based on Church’s type theory, a

version of simple type theory that is based on functions and uses lambda-notation

and lambda-conversion to build and apply functions. These include IMPS, that can

handle undefined expressions (Farmer et al., 1993); Isabelle (Wenzel et al., 2008),

the proof assistant we use in this thesis; ProofPower (Oliveira et al., 2006), a group

of tools that support specification and proof in Higher Order Logic (HOL) and the

Z notation; PVS (Owre et al., 1992); HOL Light (Harrison, 2009); HOL4 (Slind and

Norrish, 2008), and TPS, an automatic theorem proving system for Church’s type

theory (Andrews et al., 1996). BT8 of the case study is a theory of simple type

theory.

9

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

2.1.3 Transformers

A transformer is a program whose input and output are expressions.

Transformers represent syntax-manipulating operations. Algorithms that apply

arithmetic operations to numerals or transpose matrices are examples of a

transformer. The computational behavior of a transformer is the relationship

between its input and output expressions. A

2.1.4 Syntax-based mathematical algorithms

A number of the algorithms used in mathematics work by manipulating the

syntactic structure of mathematical expressions. A syntax-based mathematical

algorithm (SBMA) is a transformer that manipulates the expressions of a formal

language in a mathematically meaningful way. When a transformer is an SBMA, its

mathematical meaning is the relationship between the mathematical meanings of its

input and output expressions. A meaning formula for an SBMA is a statement that

expresses the meaning of the SBMA.

2.1.5 Limitations of logic

Traditional logic, such as first-order logic or simple type theory, can make it

challenging to express statements that capture the association between the input

and output of transformers. This is usually because there is no direct way to refer

to the syntactic structure of the expressions in the logic. Farmer (2014) argues that

to express the meaning of transformers adequately, a logic is needed that has (1) an

inductive type of syntactic values that represent the syntactic structures of the

expressions in the logic, (2) a quotation operator in the logic that map expressions

10

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

to syntactic values, and (3) an evaluation operator in the logic that maps syntactic

values to the values of the expression they denote.

Another notable limitation for expressing ideas about syntax in logic is that

syntactic notions, such as a “free variable”, may depend on the semantics of the

expression as well as its syntax. This makes operations like substitution a lot more

complicated to express than in traditional logic.

2.2 Axiomatic theories

An axiom is a statement that serves as a starting point from which other

statements are logically derived. An axiomatic theory, contains a formal language

and a group of axioms expressed in the language. It specifies a set of mathematical

structures: the language provides names for the objects in the structures, and the

axioms define the properties of the objects. In formal mathematics, it can be

represented as (L, Γ), where L is the language of the theory and Γ is the set of

axioms of the theory.

2.3 Algorithmic theories

An algorithm is defined as a finite sequence of instructions that may take input

and produce output. An algorithmic theory uses a set of algorithms to represent

mathematical knowledge. In formal mathematics, an algorithmic theory is defined

as (L, Π), where L is a language, and Π is the set of transformers (algorithms) that

manipulate the expressions in L. Algorithmic theories alone are laborious to

formalize in traditional logic without machinery to reason about syntax.

11

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

Figure 2.1: Representation of biform theory

2.4 Biform theories

A biform theory combines an axiomatic theory and an algorithmic theory to

support the integration of reasoning and computation. Formalizing biform theories

is difficult as it requires a way to express statements about algorithms: What they

do and what their actions mean mathematically. There are various transformers for

natural number arithmetic. They manipulate expressions to build bigger expressions

or check whether the expression satisfies certain syntactic properties. A biform

theory can be represented as the tuple (L, Γ, Π), where L is a language of the

underlying logic, Π is the set of transformers (algorithms) that implement functions

on expressions of L, and Γ is a set of axioms of L. Then (L, Γ) is an axiomatic

theory, and (L, Π) is an algorithmic theory. Figure 2.1 shows the diagramatic

representation of biform theories.

12

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

2.4.1 An example: BT2

BT2 of the case study is the simple theory of 0, S, and +. The biform theory is

expressed using four axioms and includes an algorithm add that performs the

addition of binary numerals.

We will show how BT2 could possibly be expressed in a partial manner in

many-sorted first-order logic. Many-sorted first-order logic is a version of first-order

logic that works with multiple domains of individuals (referred to as sorts). This

makes it more practical than standard first-order logic.

The language of the MSFOL is a tuple

Σ = (B, C, F , P , τ)

where:

B is the nonempty set {Nat, BinNum} of base types.

C is the set {0, Zero, One} of constant symbols.

F is the set {S, +, JoinZero, JoinOne, val, add} of function symbols.

P is the set {=} of predicate symbols.

τ is a function that maps the constant, function and predicate symbols to base

types and function types constructed from the base types.

τ(0) = Nat

τ(Zero) = BinNum

τ(One) = BinNum

τ(S) = Nat → Nat

τ(JoinZero) : BinNum → BinNum

τ(JoinOne) : BinNum → BinNum

τ(val) = BinNum → Nat

13

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

τ(add) = BinNum x BinNum → BinNum

The “no-confusion” axioms for Nat are:

A1 : S(x) ̸= 0

A2 : S(x) = S(y) =⇒ x = y

The axioms for + are:

A3 : x+ 0 = x

A4 : x+ S(y) = S(x+ y)

The “no confusion” axioms for BinNum are:

A5 : Zero ̸= One

A6 : Zero ̸= JoinZero(u)

A7 : Zero ̸= JoinOne(u)

A8 : One ̸= JoinZero(u)

A9 : One ̸= JoinOne(u)

A10 : JoinZero(u) ̸= JoinOne(u)

A11 : JoinZero(u) = JoinZero(v) =⇒ u = v

A12 : JoinOne(u) = JoinOne(v) =⇒ u = v

The function val is defined by:

A29 : val(Zero) = 0

A30 : val(One) = S(0)

A31 : val(JoinZero(u)) = val(u) + val(u)

A32 : val(JoinOne(u)) = val(u) + val(u) + S(0)

The function add is defined by:

14

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

A13 : add(Zero, u) = u

A14 : add(u, Zero) = u

A15 : add(One, One) = JoinZero(One)

A16 : add(One, JoinZero(u)) = JoinOne(u)

A17 : add(JoinZero(u), One) = JoinOne(u)

A18 : add(One, JoinOne(u)) = JoinZero(add(One, u))

A19 : add(JoinOne(u), One) = JoinZero(add(One, u))

A20 : add(JoinZero(u), JoinZero(v)) = JoinZero(add(u, v))

A21 : add(JoinZero(u), JoinOne(v)) = JoinOne(add(u, v))

A22 : add(JoinOne(u), JoinZero(v)) = JoinOne(add(u, v))

A23 : add(JoinOne(u), JoinOne(v)) =

JoinZero(add(add(u, v), One))

2.5 Local vs. global reflection

In order to formalize biform theories, an infrastructure is required to reason

with the expressions manipulated by an SBMA. There are two main approaches to

building the infrastructure: local and global. In local reflection, the infrastructure is

for L, the language of the SBMA’s inputs and outputs. The local reflection

infrastructure consists of: (1) An inductive type of syntactic values L′ that

represents the expressions in the language L. (2) a quotation operator ⌜·⌝ that maps

the expressions in L to the syntactic values of L′. (3) An evaluation operator J·K

that maps syntactic values of L′ to the expressions in L. The quotation operator is

the inverse of the evaluation operator. The local approach does not scale up since

15

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

each SBMA may require a separate infrastructure (Carette and Farmer, 2017).

The global approach has been proposed as the alternative approach to the local

approach in (Farmer, 2013). The global reflection consists of a single infrastructure

for all SBMAs, which consists of: (1) An inductive type representing the entire set of

expressions. (2) A global quotation operator ⌜·⌝. (3) A global evaluation operator

J·K. The biform theory graph of the test case of natural number has been formalized

in CTTuqe using the global approach (Carette and Farmer, 2017). The quotation

and evaluation operators enable the formalization of syntax-based mathematical

algorithms (Farmer, 2016). The biform theory graph of the test case of natural

number has been formalized in Agda using the local approach (Carette and Farmer,

2017). Both methods are discussed in more detail later in chapter 3.

2.6 Theory morphisms

A theory morphism is a mapping of formulas of one theory to the formulas of

another such that valid formulas are always mapped to valid formulas (Farmer,

2017). The theories can be considered abstract mathematical models, and the

morphisms enable definitions and theorems to be transported from one theory to

another without losing meaning. A morphism Σ → Σ′ consists of a list of

assignments, a source theory Σ, and a target theory Σ′. A theory inclusion from a

source theory to a target theory is a theory morphism whose mapping is the identity

function. A theory inclusion could be strict, or non-strict. A theory inclusion is

strict when all the axioms of the source theory are mapped to axioms in the target

theory. A theory inclusion is non-strict when some of the axioms of the source

theory are mapped to theorems that are not axioms. If there is a theory morphism

16

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

going both ways, i.e, from theory A to theory B, and from theory B to theory A, the

two theories are said to beequivalent.

Fig 1.1 in chapter 1 shows the biform theories in the case study connected by

theory morphisms. The solid arrows show strict theory inclusions. The morphism

from BT4 to BT7 is a non-strict mapping. The theory morphism from BT7 to BT8

is interlogical since their corresponding logics are different. The morphism maps 0

to 0ι, S to Sι→ι, + to +ι→ι→ι and ∗ to ∗ι→ι→ι where +ι→ι→ι and ∗ι→ι→ι are defined

constants in BT8.

2.7 Theory graphs

A theory graph is a directed graph whose nodes are theories and edges are

theory morphisms. Kohlhase (2014) says that the main idea of the theory graph

with respect to mathematical knowledge management is to use morphisms to

structure mathematical knowledge in a modular manner. Theory graphs are well

suited for formalizing mathematical knowledge because the knowledge can be

expressed at “the most convenient level of abstraction using the most convenient

vocabulary” (Carette and Farmer, 2017). A theory graph does away with any

duplication of concepts and facts. Figure 1.1 is the theory graph for the case study

of biform theories of natural numbers. It shows the theory morphisms between the

biform theories.

17

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

2.8 Isabelle

Isabelle is a popular proof assistant that was built around a relatively small

core. Numerous fundamental theories are utilised to extend the core. HOL is a

theorem prover for higher-order logic. The theory of higher-order logic is

implemented as Isabelle/HOL, and is commonly used because of its powerful

specification tools. In proofs, Isabelle combines HOL as a functional programming

language and Isar as the language for describing procedures in order to manipulate

the proof. Isabelle/jEdit is the official graphical interface to interact with Isabelle.

While carrying out a proof, Isabelle saves the proof state and a list of goals that

need to be proved. The proof assistant often acquires the features of an automated

theorem prover and can automatically solve or prove complex statements with auto.

In the past 20 years, Isabelle has been used by numerous researchers and

students of computer science and mathematics worldwide. Isabelle has an extensive

library with many pre-proven lemmas and theorems.

2.8.1 Isabelle theories

An Isabelle theory is the basic structure used in an Isabelle file (all Isabelle files

have the extension .thy). It is a collection of types, functions, and theorems. The

general format of the theory is as follows:

theory T

imports B1 · · · Bn

begin

18

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

...declarations, definitions, and proofs

end

where:

� B1· · ·Bn are the names of existing theories that T is based on. B1· · ·Bn are the

direct parent theories of T. Everything defined in the parent theories (and

their parents, recursively) is automatically visible in T.

� Declarations represent the newly introduced types.

� Definitions refer to the functions, locales and theorems.

� Proofs prove new theorems.

2.8.2 Overview of Isar

Isar stands for Intelligible Semi-Automated Reasoning. Isar (Wenzel and

Paulson, 2006) is a textual proof format inspired by the pioneering Mizar system.

The Mizar project started around 1973 as an attempt to reconstruct a mathematical

vocabulary in a computer-oriented environment. It makes it possible to write

structured, readable proofs. The Isar subsystem is an extension of Isabelle. It hides

the implementation language almost wholly. Isar supports a calculational style of

reasoning and allows us to provide structured proofs which are presented like

traditional mathematical proofs and are understandable for both humans and

machines.

A proof can be written in two different ways:

� Compound manner (formal method using proof - qed).

19

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

� Atomic manner using by.

A typical proof skeleton has an assumption, intermediate results, and a conclusion.

2.8.3 Isar commands

The following are some of the main commands used in the Isar proof language

which appear regularly in the code in the thesis:

� Primitive commands: locale, sublocale, lemma, proof, fun,

function, interpretation.

� Automatic commands: simp, auto, blast, standard.

The primitive commands build the basic structure of our biform theories. The

individual theories are built by locales. Supporting functions and transformers are

built by functions. Morphisms of the theory are built by sublocales and

interpretations.

The above automatic commands are very useful in our implementations. simp

uses the simplifier, which applies theorems with the simp attribute automatically.

auto uses the simplifier and classical reasoning. Isabelle allows users to tell these

reasoners to add or delete specific rules. These automatic reasoners help users prove

theorems easier and make proofs shorter.

2.9 Locales

Locales is a modular system in Isabelle (Ballarin, 2014) that is used to represent

complex interdependencies between structures. They are helpful for expressing

20

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

hierarchies of concepts and reducing the number of parameters and assumptions

that must be treated through formal development. Due to their easy extension and

importation, they are the key to representing our case study of eight biform theories

and their morphisms. A locale declaration consists of a sequence of parameters that

are indicated with the keyword fixes and assumptions indicated with the keyword

assumes.

Figure 2.2: Example of a locale

Here in Figure 2.2 the locale th1 has parameters zero and suc, along with its

assumptions. Locales are a mechanism to support abstract theories. import and

interpretation enable parameters and assumptions to be transported to other

contexts for reuse.

2.9.1 Sublocales

Sublocales are a form of interpretation of locales and is useful for conveying the

logical relations between locales. The command sublocale l2 ⊆ l1 causes l1 to be

interpreted in the context of l2 and all the theorems of l1 are made available in l2.

Hence the sublocale effectively establishes a theory morphism from l1 to l2. The

morphism is an inclusion if its mapping is the identity mapping. An inclusion is

21

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

strict if each axiom of the source theory is mapped to an axiom of the target theory.

If there is a strict inclusion from l1 to l2, then l1 is a subtheory of l2.

2.9.2 Locale interpretations

An interpretation is effectively a morphism from the locale to the background

theory. They are used to instantiate, combine, and modify locales. They are also a

robust way to verify the satisfiability and consistency of the respective locale. The

command interpretation is for the interpretation of a locale in theories.

22

Chapter 3

Objective

The purpose of the thesis is to illustrate how a theory graph of biform theories

can be formalized in Isabelle. For this, we have used the case study presented

in Carette and Farmer (2017) as a test case. The case study is a theory graph

consisting of eight biform theories of natural number arithmetic linked by theory

morphisms.

3.1 Case study

The eight biform theories of the case study start with a very simple theory of

the successor function and end with full higher-order Peano arithmetic. Seven of the

biform theories are in FOL, and one is in STT. The case study is a good test of a

proof system’s capability to formalize biform theories. The following are the

theories in the case study:

� BT1 is the simple theory of 0 and S (the successor function). The theory is

written in FOL. It contains the following constants, axioms, and transformers:

23

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

Constants:

0 : nullary

S : unary

Axioms:

A1 : S(x) ̸= 0

A2 : S(x) = S(y) =⇒ x = y

Transformers:

– Recognizer of the language of BT1.

� BT2 is the simple theory of 0, S, and +. It is written in FOL and extends

BT1 by adding the plus function, which is written in infix notation. It

contains the following additional constants, axioms, and transformers:

Additional constants:

+ : binary

Additional Axioms:

A3 : x+ 0 = x

A4 : x+ S(y) = S(x+ y)

Additional transformers:

– Recognizer of the language of BT2.

– Addition algorithm for binary numerals.

� BT3 is the simple theory of 0, S, +, and ∗. It is written in FOL and extends

BT2 by adding the times function, which is written in infix notation. It

contains the following additional constants, axioms, and transformers:

24

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

Additional constants:

∗ : binary

Additional axioms:

A5 : x ∗ 0 = x

A6 : x ∗ S(y) = (x ∗ y) + x

Additional transformers:

– Recognizer of the language of BT3.

– Multiplication algorithm for binary numerals.

� BT4 is the Robinson Arithmetic. It is written in FOL and extends BT3. It

contains one additional axiom:

A7 : x = 0 ∨ ∃y . S(y) = x

� BT5 is the complete theory of 0 and S. It is written in FOL and extends BT1.

It contains the following infinite set of axioms given by the induction schema

A8 : (A(0) ∧ ∀x . (A(x) → A(S(x)))) → ∀x . A(x)

where A is a formula of BT1 and A(t) is the result of replacing each free

occurence of x in A with t.

Additional transformers:

– Generator for the instances of the induction schema of BT5.

– A decision procedure for BT5.

� BT6 is the Presburger Arithmetic. It is written in FOL and extends BT2 and

BT5. It contains the following infinite set of axioms given by the induction

25

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

schema

A9 : (A(0) ∧ ∀x . (A(x) → A(S(x)))) → ∀x . A(x)

where A is a formula of BT2. This is different from the axiom schema in BT5

because the language of BT2 includes + unlike the language of BT1.

Additional transformers:

– Generator for the instances of the induction schema of BT6.

– A decision procedure for BT6.

� BT7 is the theory of first order Peano Arithmetic. It is written in FOL and

extends BT3 and BT6. BT7 contains the following infinite set of axioms given

by the induction schema

A10 : (A(0) ∧ ∀x . (A(x) → A(S(x)))) → ∀x . A(x)

where A is a formula of BT3. This is different from the axiom schema of BT6

because the language of BT3 includes ∗ unlike the language of BT2.

Additional transformers:

– Generator for instances of the induction schema of BT7.

� BT8 is a theory of higher-order Peano arithmetic. The theory is written in

STT. It uses the following two constants where ι is the base type of

individuals.

Constants:

0ι : nullary

Sι→ι : unary

Axioms:

26

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

A11 : Sι→ι(xι) ̸= 0ι

A12 : Sι→ι(xι) = Sι→ι(yι) =⇒ xι = yι

A13 : (pι→o(0) ∧ ∀xι . (pι→o(x) =⇒ pι→o(S(xι)))) =⇒ ∀xι . pι→o(xι)

Here, A13 is the induction principle for the natural numbers.

Figure 1.1 shows the morphisms that connect the eight theories. The solid

arrows (→) are strict theory inclusions. The morphism from BT4 to BT7 is a

non-strict theory inclusion. Each axiom of BT4 is mapped to a theorem of BT7.

The theory morphism from BT7 to BT8 is interlogical since their logics are

different. It is defined by the mapping of 0 to 0ι, S to Sι→ι, + to +ι→ι→ι and ∗ to

∗ι→ι→ι where +ι→ι→ι and ∗ι→ι→ι are defined constants in BT8.

3.2 Challenges of the case study

The formalization of the case study of eight biform theories in Isabelle presents

the following challenges.

� Creating the individual theories.

The theories in the case study need to be formulated from scratch without

using any pre-defined structures. This cannot be done simply by adding

axioms to Isabelle, since the result would be one large theory with the

properties of BT1 to BT8. We need to extend the background theory while

keeping our individual theories separate. A number of additional functions

and lemmas will need to be defined along the way to support the biform

theories and their transformers.

� Formalizing the transformers for the biform theory test case in Isabelle.

27

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

The transformers are the algorithms that, along with the axioms, make up the

test case biform. Formalizing them requires being able to refer to the syntax

of expressions. We cannot do this directly in standard logic, and hence, this

may be a challenge.

� Reasoning about syntax-based mathematical algorithms.

SBMAs are transformers that manipulate syntax in a mathematically

meaningful way. In order to reason about and prove facts about SBMAs, we

need to reason about the interplay of syntax and semantics. This is hard to do

since we cannot directly refer to the syntax in the logic of Isabelle.

� Formalizing the axiom schemas.

Each of BT5, BT6, and BT7 have an infinite set of axioms given by axiom

schemas. It is difficult to directly formalize axiom schemas in Isabelle and

dealing with an infinite set of axioms is a challenge.

� Finding ways to express theory morphisms in Isabelle.

The case study includes theory morphisms. Expressing the theory morphisms

requires us to find a way in which the axioms of one theory can be imported

or expressed in another theory.

3.3 Research questions

To reiterate the research problem, the aim of the thesis is to express and

formalize the eight theories of the case study in Carette and Farmer (2017) in

Isabelle/HOL. The case study has provided us with a good insight into Isabelle’s

28

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

capabilities. While formalizing the case study in Isabelle has been challenging, we

seek to answer several questions.

� RQ1: Can abstract axiomatic theories be formalized in Isabelle?

� RQ2: Can SBMAs be formalized in Isabelle?

� RQ3: Can the decision procedures for BT5 and BT6 be formalized in Isabelle?

� RQ4: Can theory morphisms be formalized in Isabelle?

Isabelle provides an interactive environment for undertaking proof in an

axiomatic manner. The eight theories can be formalized using locales. Locales are a

module system in Isabelle used for managing theory hierarchies through

interpretations. A variety of valuable transformers are added to the theories

through functions and interpretations. The theory morphisms between the theories

can be formalized using sublocales.

3.4 Previous solutions

In Carette and Farmer (2017), the case study of the biform theory graph has

been formalized in two ways. The first method is to use global reflection in CTTuqe

(Farmer, 2016), a version of Church-type theory with undefinedness, quotation, and

evaluation. The second method is to use local reflection in Agda, a dependently

typed programming language.

29

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

3.4.1 CTTuqe

CTTqe is a version of Church’s type theory with global quotation and evaluation

operators. It can reason about the interplay of syntax and semantics. CTTuqe is a

variant of CTTqe that accepts and works with undefined expressions, partial

functions, and multiple base types of individuals. It is preferred over CTTqe as a

logic for building networks of theories connected by theory morphisms.

A biform theory in CTTuqe is a triple (L,Π,Γ) where

� L is a language of CTTuqe. It is generated by a set of base types and constants

of CTTuqe.

� Π is a set of transformers over the expressions of L.

� Γ is a set of formulas of L.

CTTuqe follows the global approach for reflection. It contains a logical base type

ϵ, a global quotation operator ⌜·⌝ and a typed global evaluation operator J·K. The

type ϵ is a built-in inductive type of “syntactic values” that represent the

expressions of the languages. A single reflection framework is used for all the

languages in the theory graph, which makes the global approach scalable, unlike the

local approach in Farmer (2017). The formalization in CTTuqe works very well and

shows that the global reflection is a viable approach and an effective mechanism for

integrating formal deduction and symbolic computation.

CTTuqe has not been implemented, but CTTqe (Church’s type theory with

quotation and evaluation) has been implemented in HOL Light (Carette et al.,

2018b).

30

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

3.4.2 Agda

Unlike CTTuqe, that uses the global approach for reflection, Agda uses local

reflection. Agda (Carette and Farmer, 2017) uses a set of inductive types to

formalize the biform theories. The abstract theories are modeled as records. The

built-in type N, defined as an inductive type, is used as the syntax for natural

numbers.

For each theory that consists of an inductive type, evaluation needs to be

defined separately. The inductive type consists of an

1. Inductive type of syntactic values that represent the expressions in L′ (which

is a subset of the language of the underlying logic).

2. An informal quotation operator which maps the expressions of L′ to syntactic

values.

3. A formal evaluation operator that maps syntactic values to the values of the

expressions in L′ that they represent.

In general, Agda requires that new local infrastructures must be created each time a

new theory is added to the theory graph. This means we may have more than one

infrastructure for our theory graph. The Agda version also does not implement any

theory morphisms as the record definitions are not first-class in Agda. The Agda

version has some additional features compared to the implementation in CTTuqe.

The transformers bplus and btimes are implemented to carry out addition and

multiplication among binary numerals, respectively. Recognizers are used in this

version to check that the theories used are the ones that are wanted. There is an

31

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

actual implementation for the local approach in Agda; however, it does not support

biform theories well.

32

Chapter 4

Approach

4.1 The different approaches

With most proof assistants having limited support for biform theories, the

project’s aim is two-fold:

1. To explore Isabelle/Isar as a proof assistant.

2. Test Isabelle’s ability to formalize biform theories and link them using theory

morphisms.

There are several ways in which axiomatic theories could be expressed in Isabelle.

� Introducing new axioms : Isabelle has many structures that allow it to define

axioms with or without recursive definitions. This allows us to provide it with

a certain number of axioms as assumptions. Axiomatizations allow us to

introduce several constants simultaneously while stating axiomatic properties.

However, this is not a viable approach due to the inability to separate theories

33

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

from one another. Adding axioms to the theory would result in no difference

among the eight biform theories.

� Using locales and sublocales : Locales are used in Isabelle to deal with the

theorem proving context. Abstract algebra has complex interdependencies

between structures. The module system of locales helps considerably with the

representation of these structures. Locales are an uncomplicated yet robust

extension of the Isar proof language. The notion of locales represent abstract

theories in a theory graph, with a flexible form of extension and reusability.

Sublocales allow interpretations of locales in other contexts, creating a

network of import and interpretation relations.

� Using type classes : A third possibility that is similar to locales is that of type

classes. Isabelle supports type classes (like those in Haskell, albeit more

restrictive), and so one could create a type class and then instantiate it for

concrete types. Type classes allow one to specify abstract parameters together

with corresponding specifications. The abstract parameters can be

instantiated using a particular type. Type classes have a direct link to the

Isabelle module system of locales.

� Using an inductive type of theories: A powerful method of building the theory

graph would be to create an inductive type of theories. This would involve

creating new theories and members of the theories using the datatype

command. While this would be a strong way to approach the research

problem, it would also be an extremely involved and complicated process.

34

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

4.2 Our approach

Formalizing our test case of eight biform theories is a two-step process:

1. Formalizing the axiomatic theories:

The eight biform theories are defined and formalized as regular axiomatic

theories with the ability to import and extend axioms. In Isabelle/HOL,

definitional extensions are favored over axiomatic extensions because

axiomatization can create inconsistency in the proof systems and destroy

Isabelle’s guarantee of soundness. However, axiomatic reasoning is an integral

part of mathematics and needs to be carried out safely in Isabelle.

Fortunately, we can reason from axioms locally in a sound way and instantiate

the axioms later using locales. Locales usually have:

� Constants of a theory declared using fixes.

� Axioms of a theory declared using assumes.

Inside a locale, definitions can be made and theorems proved based on the

constants (parameters) and axioms (assumptions). A locale can

import/extend other locales and may also be interpreted in the context of

another locale. This creates morphisms between the two locales (or theories,

in this case). Our case study with eight theories has many morphisms and

dependencies. This makes the usage of locales a natural approach to

expressing the theories. There is no easy way to formalize the axiom schemas

for BT5, BT6 and BT7. We allow instances of the induction schema to be

added to the theories as needed. The axiomatic formalizations of the eight

biform theories, along with their interpretations and theory morphisms have

35

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

been formalized in Isabelle in the theory file theory graph.thy.

2. Formalizing the algorithmic component of the theories:

The algorithms are transformers that manipulate syntax to make the theories

biform theories. We define inductive types which represent the language of the

theories. A quotation operator is required that maps the expressions of the

language to its syntactic values. We also need to formalize an evaluation

operator, which maps the syntactic values to the values of the expressions in

the language of the theory. We also reason about syntax-based mathematical

algorithms through an evaluation mechanism that states and proves the

meaning formulas for our algorithms through a lemma. The evaluation

function has not been implemented for the entire language of theories, instead

it has currently been implemented for sequences of 0s and 1s. All inductive

types and transformers which manipulate the syntax of these types has been

formalized in syntax operations.thy. BinNum.thy contains the transformers

which specifically manipulate binary numerals in our theory graphs.

36

Chapter 5

Axiomatic theory graph

5.1 The formalization of the biform theories

The main theory file, theory graph.thy, formalizes the axiomatic parts of the eight

biform theories in the case study. In the next chapter, we will extend our work to

include the transformers of the theories, i.e, the algorithmic parts of the biform

theories. The eight theories are represented by locales. Each locale has its own set

of parameters (which are introduced by fixes) and assumptions (which are

introduced by assumes). The parameters and assumptions of the locale represent

the constants and axioms of the theory that the locale represents. When a locale B

extends another locale A, the constants and axioms of A are imported into B.

The eight biform theories are formalized as locales in the following manner:

� BT1, the simple theory of 0 and S, is expressed in Isabelle as:

locale th1 =

37

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

fixes

zero :: "’a"

and suc :: "’a =⇒ ’a"

assumes

"suc n ̸= zero"

and "suc n = suc m → n = m"

Here ’a is a type variable that represents an abstract type of natural

numbers. Each constant in this and the other locales includes ’a in its type.

� BT2 is BT1 plus + and the two axioms that define +. BT2 is expressed in

Isabelle as:

locale th2 = th1 +

fixes

plus :: "’a =⇒ ’a =⇒ ’a"

assumes

plus_zero: "plus n zero = n"

and plus_suc: "plus n (suc m) = suc (plus n m)"

� BT3 is BT2 plus ∗ and the two axioms that define ∗. BT3 is expressed as:

locale th3 = th2 +

fixes

mul :: "’a =⇒ ’a =⇒ ’a"

assumes

times_zero: "mul n zero = zero"

and times_suc: "mul n (suc m) = plus (mul n m) n"

38

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

� BT4 is BT3 plus an additional axiom for Robinson arithmetic. It is expressed

in Isabelle as:

locale th4 = th3+

assumes

"n = zero ∨(∃m. suc m = n)"

� BT5 is the complete theory of 0 and S. It is formalized in the theory file as

th5 and extends th1 with the induction schema for the language of th1.

Since, we cannot express an axiom schema with an infinite number of

instances in Isabelle, we let the user add instances of the induction schema to

the locale as they want. The instances should be in the language of th1. th5

keeps changing over time and will always be an approximation of the full

formalization of BT5. The current version of th5 is:

locale th5 = th1 +

assumes

th5_inst1: "(λp. p zero ∧ (p x → p (suc x)) → (∀x. p x))

(λn . (n = zero) ∨ (∃m . suc m = n))"

with one instance of the induction schema for BT5. The instance is written as

a function application f q, where q is a property of the natural numbers, that

beta-reduces to a substitution instance of the induction principle.

� BT6 is the complete theory of 0, S and +. It is formalized in the theory file as

th6 and extends th2 with the induction schema for the language of th2. As

was done in th5, we let the user add instances of the induction schema to the

locale as they want.

39

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

The current version of th6 is:

locale th6 = th2 + th5

with no new instances of the induction schema for BT6.

� BT7 is the complete theory of 0, S and + and ∗. It is formalized in the theory

file as th7 and extends th3 with the induction schema for the language of

th3. In th7 as well, we allow users to add instances of the induction schema

to the locale as they want.

The current version of th7 is:

locale th7 = th3 + th6

with no new instances of the induction schema for BT7.

� BT8 is the theory of higher-order Peano arithmetic. We formalize BT8 in two

separate ways as two different theories: th8a and th8b.

– th8a: th8a is a direct formalization of BT8. It extends th1 and has one

additional axiom, the induction principle. The locale also defines plus

and times using definite description.

locale th8a = th1 +

assumes

induction_principle:

"((p zero ∧ (∀x. p x → p (suc x))) → (∀x. p x))"

begin

definition

plus where

40

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

"plus = (THE f. ∀ x y. f x zero = x

∧ f x (suc y) = suc (f x y))"

definition

times where

"times = (THE g. ∀ x y. g x zero = zero

∧ g x (suc y) = plus (g x y) x)"

end

– th8b: This locale extends th3 and has the induction principle as an

additional axiom. Since th8b extends th3, it already contains axioms

that define plus and times, unlike th8a.

locale th8b = th3 +

assumes p1:

"
∧

x. ((
∧

x . p zero ∧ (p x → p (suc x)))) → p x"

Hence th8b does not directly formalize BT8 because it contains the axioms of

plus and times.

5.2 Interpretations

Each locale has an interpretation that creates an instance of it in the

background theory of Isabelle. Thus an interpretation is a theory morphism from

the locale to the background theory. Locales allow theorems to be proven in an

abstract manner using a set of assumptions. Interpretations allow these theorems to

be used in other contexts.

41

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

An interpretation of a locale includes a white-space separated list of terms,

which provide a complete interpretation of the locale parameters. ’a is interpreted

as nat in the background theory. The parameters are referred to by order of

declarations. The declarations create a list of goals that then need to be proved. A

number of theorems can be applied to the interpretation to simplify and prove the

goals. The interpretations show that our locales have been consistently formulated.

It also enables us to use the results proved in the locales with the type nat and

other operators over nat.

The Interpretations for the locales are given as below:

� Interpretation for th1.

interpretation int1: th1

"0 :: nat"

"Suc :: nat =⇒ nat"

by unfold_locales auto

� Interpretation for th2.

interpretation int2: th2

"0 :: nat"

"Suc :: nat =⇒ nat"

"(+) :: nat =⇒ nat =⇒ nat"

by unfold_locales auto

� Interpretation for th3.

interpretation inst3: th3

42

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

"0 :: nat"

"Suc :: nat =⇒ nat"

"(+) :: nat =⇒ nat =⇒ nat"

"(*) :: nat =⇒ nat =⇒ nat"

by unfold_locales auto

� Interpretation for th4.

interpretation inst4: th4

"0 :: nat"

"Suc :: nat =⇒ nat"

"(+) :: nat =⇒ nat =⇒ nat"

"(*) :: nat =⇒ nat =⇒ nat"

proof

show "
∧
n. n = 0 ∨ (∃m. Suc m = n)"

using not0_implies_Suc by auto

qed

In some cases, simply unfolding our locales might not prove the subgoals of

our interpretation. In this case we may have to carry out a structured formal

proof, where the proof begins with the keyword proof, and is concluded with

the keyword qed. not0 implies Suc is a lemma defined in Theory Nat that

can be found in the Isabelle/HOL library.

� Interpretation for th5.

interpretation inst5: th5

43

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

"0 :: nat"

"Suc :: nat =⇒ nat"

proof

show "
∧
x. (0 = 0 ∨ (∃m. Suc m = 0))

∧ (x = 0 ∨ (∃m. Suc m = x) → Suc x = 0

∨ (∃m. Suc m = Suc x)) → (∀x. x = 0 ∨ (∃m. Suc m = x))"

using not0_implies_Suc by auto

qed

� Interpretation for th6.

interpretation inst6: th6

"0 :: nat"

"Suc :: nat =⇒ nat"

"(+) :: nat =⇒ nat =⇒ nat"

by unfold_locales

� Interpretation for th7.

interpretation inst7: th7

"0 :: nat"

"Suc :: nat =⇒ nat"

"(+) :: nat =⇒ nat =⇒ nat"

"(*) :: nat =⇒ nat =⇒ nat"

by unfold_locales

� Interpretation for th8a.

44

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

interpretation inst8a: th8a

"0 :: nat"

"Suc :: nat =⇒ nat"

proof

show "
∧
p. p 0 ∧ (∀x. p x → p (Suc x)) → (∀x. p x)"

using nat_induct by auto

qed

� Interpretation for th8b.

interpretation inst8b: th8b

"0 :: nat"

"Suc :: nat =⇒ nat"

"(+) :: nat =⇒ nat =⇒ nat"

"(*) :: nat =⇒ nat =⇒ nat"

proof

show "
∧
p x. (

∧
x. p 0 ∧ (p x → p (Suc x))) =⇒ p x"

using nat_induct by auto

qed

5.3 Sublocales

Figure 1.1 shows the theory morphisms that connect the eight theories in the

biform theory graph test case. The expression sublocale B ⊆ A asserts that there

is a theory morphism from the locale A to the locale B. Thus a sublocale is

equivalent to a theory morphism.

45

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

Recall that a theory inclusion is strict when the axioms of one locale are already

present in another locale. These theory inclusions are proved by unfolding locales.

� th1 to th2 is a strict theory inclusion and is expressed in the following

manner:

sublocale th2 ⊆ th1

proof

unfold_locales

qed

� th2 to th3 is a strict theory inclusion and is expressed in the following

manner:

sublocale th3 ⊆ th2

proof

unfold_locales

qed

� th3 to th4 is a strict theory inclusion and is expressed in the following

manner:

sublocale th4 ⊆ th3

proof

unfold_locales

qed

� th1 to th5 is a strict theory inclusion and is expressed in the following

manner:

46

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

sublocale th5 ⊆ th1

proof

unfold_locales

qed

� th2 to th6 is a strict theory inclusion and is expressed in the following

manner:

sublocale th6 ⊆ th2

proof

unfold_locales

qed

� th3 to th7 is a strict theory inclusion and is expressed in the following

manner:

sublocale th7 ⊆ th3

proof

unfold_locales

qed

� th5 to th6 is a strict theory inclusion and is expressed in the following

manner:

sublocale th6 ⊆ th5

proof

unfold_locales

qed

47

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

� th6 to th7 is a strict theory inclusion and is expressed in the following

manner:

sublocale th7 ⊆ th6

proof

unfold_locales

qed

� th4 to th7 is a non-strict inclusion which is expressed in the following

manner:

sublocale th7 ⊆ th4

proof

unfold_locales

show "
∧
n. n = zero ∨ (∃m. suc m = n)"

by (meson th5.axioms(2) th5_axioms th5_axioms_def)

qed

� BT7 to BT8, which is a non-strict theory inclusion has two separate parts.

– There is a non-strict theory inclusion from th7 to th8a. There are a

number of lemmas which aid in the proof of the sublocale. q is a

function in th8a which checks if a given function f represents +.

Similarly, r is a function which checks if a given function g represents ∗.

fun (in th8a) q :: "(’a ⇒ ’a ⇒ ’a) ⇒ bool"

where

48

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

"q f = (∀ x y. (f x zero = x ∧ f x (suc y) = suc (f x y)))"

fun (in th8a) r :: "(’a ⇒ ’a ⇒ ’a) ⇒ bool"

where

"r g = (∀ x y. g x zero = zero

∧ g x (suc y) = plus (g x y) x)"

The lemmas definite plus and definite times express the functions

f and q by definite description.

lemma (in th8a) definite_plus: "plus = (THE f. q f)"

proof(simp add: plus_def)

qed

lemma (in th8a) definite_times: "times = (THE g. r g)"

proof(simp add: times_def)

qed

lemmas plus exist unique and times exist unique show the

existence and uniqueness of plus and times.

lemma (in th8a) plus_exist_unique: "∃! f. q f"

sorry

lemma (in th8a) times_exist_unique: "∃! g. r g"

sorry

We have not completely proved the above two lemmas; however, here is

49

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

how they could be proved: we require a statement that says there is a

finite approximation of f that satisfies q up to n by induction. With the

proof of existence of finite approximations, we can define a complete

function and show that the function satisfies q. This will help us prove

the uniqueness and existence of plus. A similar method needs to be

followed in order to prove the uniqueness and existence of times. The

lemma th8a f enforces that f and plus are equivalent.

lemma (in th8a) th8a_f: "∀f. q f → plus = f"

proof(simp add: definite_plus plus_def plus_exist_unique)

show "∀f. (∀x. f x zero = x

∧ (∀y. f x (suc y) = suc (f x y))) → (THE f. ∀x. f x zero =

x

∧ (∀y. f x (suc y) = suc (f x y))) = f "

by (smt (z3) q.elims(3) plus_exist_unique theI_unique)

qed

The lemma th8a g enforces that g and times are equivalent

lemma (in th8a) th8a_g: "∀g. r g → times = g"

proof(simp add: definite_times times_def times_exist_unique)

show "∀g. (∀x. g x zero = zero

∧ (∀y. g x (suc y) = local.plus (g x y) x))

→ (THE g. ∀x. g x zero = zero

∧ (∀y. g x (suc y) = local.plus (g x y) x)) = g"

by (smt (z3) Uniq_def r.simps th8a.times_exist_unique

th8a_axioms the1_equality’)

50

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

qed

The non-strict theory inclusion from th7 to th8a is expressed in the

following manner:

sublocale th8a ⊆ th7 zero suc "local.plus" "local.times"

proof unfold_locales

show "
∧
n. local.plus n zero = n"

using th8a_f plus_exist_unique by auto

show "
∧
n m. local.plus n (suc m) = suc (local.plus n m)"

using th8a_f plus_exist_unique by auto

show "
∧
n. local.times n zero = zero"

by (metis r.elims(2) times_exist_unique

definite_times the_equality)

show "
∧
n m. local.times n (suc m)

= local.plus (local.times n m) n"

by (metis times_exist_unique definite_times th8a.r.simps

th8a_axioms theI)

show "
∧
x. (zero = zero ∨ (∃m. suc m = zero))

∧ (x = zero ∨ (∃m. suc m = x) → suc x = zero

∨ (∃m. suc m = suc x)) → (∀x. x = zero ∨ (∃m. suc m = x))"

by (metis q.elims(2) r.elims(2) plus_exist_unique

times_exist_unique

th8a_g th8a.definite_times th8a_axioms theI’)

qed

– There is a non-strict theory inclusion from th7 to th8b, which is

51

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

expressed in the following manner:

lemmas (in th8b) th8_b = p1 [where

?p = "λn . (n = zero) ∨ (∃m . suc m = n)"]

sublocale th8b ⊆ th7

proof unfold_locales

show "
∧
x. (zero = zero ∨ (∃m. suc m = zero))

∧ (x = zero ∨ (∃m. suc m = x) → suc x = zero

∨ (∃m. suc m = suc x)) → (∀x. x = zero ∨ (∃m. suc m = x))"

using th8_b by blast

qed

The keyword lemmas declares a new theorem, th8 b, which defines an

instance of p1. th8 b replaces the attribute p in p1, which is an existing

assumption in th8b, as can be seen above.

In the formalization of the case study in Isabelle, th7 does not contain all the

instances of the induction schema. hence all sublocales with th7 have to be

redone every time a new instance in added to th7.

� There is a strict theory inclusion from th8a to th8b since all the axioms in

th8a are included as axioms in th8b.

sublocale th8b ⊆ th8a

proof unfold_locales

show "
∧
p. p zero ∧ (∀x. p x → p (suc x)) → (∀x. p x)"

52

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

using p1 by auto

qed

� There is a non-strict theory inclusion from th8b to th8a. + and ∗ has been

defined in th8a by definite description. By proving the sublocale, we prove

that the + and ∗ in th8a is the plus and times defined axiomatically in th2

and th3, respectively.

The sublocale is expressed in the following manner:

sublocale th8a ⊆ th8b zero suc "local.plus" "local.times"

proof unfold_locales

show "
∧
p x. (

∧
x. p zero ∧ (p x → p (suc x))) =⇒ p x"

by (metis th8a.axioms(2) th8a_axioms th8a_axioms_def)

qed

Since there are morphisms going both ways, i.e, from th8a to th8b, and from

th8b to th8a, the two theories are equivalent theories as dicussed in the

background chapter.

Since the users are able to add instances of the induction schema of th5, th6 and

th7 to the locales, the proofs involving these locales have to be updated as the

instances are added.

So far we have discussed the axiomatic part of the biform theory case study.

Considering our theories have taken a slightly different shape and all the theories

have been expressed in the logic of Isabelle, we have a new biform theory graph test

case in Isabelle that shows the morphisms that connect our reformed theories in the

next page.

53

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

Figure 5.1: Biform theory graph test case in Isabelle

54

Chapter 6

Biform theory graph

This section discusses the algorithmic aspect of the biform theories, bringing to

light what makes them biform. There are a number of transformers in the case

study which manipulate the syntax of the biform theories.

6.1 Transformers which manipulate numerals

BT2 and BT3 have algorithms for adding and multiplying natural numbers as

binary numerals respectively. We introduce the following inductive type and

functions in order to assist in the formalization of these transformers:

� BinNum is an inductive type whose members represent binary numerals. It is

defined by

datatype BinNum = Zero | One | JoinZero BinNum | JoinOne BinNum

An example of a binary numeral is JoinZero(JoinOne(One)) which

represents the numeral “110”.

55

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

� len: This function returns the length of a given binary numeral (BinNum).

The function is defined by recursion and pattern matching. The length of

both One and Zero is one, and each application of JoinOne or JoinZero

increases the length by one. For example the expression len

(JoinZero(JoineOne(One))) would return 3. The function is defined in the

following manner:

fun len :: "BinNum =⇒ nat"

where

"len Zero = 1"|

"len One = 1"|

"len (JoinZero x) = len x + 1"|

"len (JoinOne x) = len x + 1"

� val: This function returns a natural number equivalent of a given binary

numeral (BinNum). The function is defined by recursion and pattern matching

in the following manner:

fun val :: "BinNum =⇒ nat"

where

"val Zero = 0"|

"val One = 1"|

"val (JoinZero x) = 2 * (val x)"|

"val (JoinOne x) = 2 * (val x) + 1"

For instance, val (JoinZero(One)) returns 2 since “10” is 2 in binary.

56

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

6.1.1 Evaluation function for binary numerals

An evaluation function has been implemented for evaluating a binary numeral

as a member of the ’a type in th2. It has been defined in the following manner:

fun (in th2) evalBinNum :: "BinNum =⇒ ’a"

where

"evalBinNum Zero = zero"|

"evalBinNum One = suc(zero)"|

"evalBinNum (JoinZero x) =

plus (evalBinNum x) (evalBinNum x)"|

"evalBinNum (JoinOne x) =

plus (plus (evalBinNum x) (evalBinNum x)) (suc zero)"

We use plus in the definition since mul has not been introduced in th2. While the

definition of evalBinNum has the same form as that of val, val gives the natural

number value for BinNum and is used in the interpretations. evalBinNum, on the

other hand, evaluates BinNum as a member of our locale th2.

6.1.2 Addition of binary numerals

addBinNum is the addition algorithm for binary numerals. The function is

defined in the following manner:

function addBinNum :: "BinNum =⇒ BinNum =⇒ BinNum"

where

"addBinNum Zero x = x"|

"addBinNum x Zero = x"|

57

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

"addBinNum One One = JoinZero One"|

"addBinNum One (JoinZero x) = JoinOne x"|

"addBinNum (JoinZero x) One = JoinOne x"|

"addBinNum One (JoinOne x) =

JoinZero (addBinNum One x)"|

"addBinNum (JoinOne x) One =

JoinZero (addBinNum x One)"|

"addBinNum (JoinZero x) (JoinZero y) =

JoinZero (addBinNum x y)"|

"addBinNum (JoinZero x) (JoinOne y) =

JoinOne (addBinNum x y)"|

"addBinNum (JoinOne x) (JoinZero y) =

JoinOne (addBinNum x y)"|

"addBinNum (JoinOne x) (JoinOne y) =

JoinZero (addBinNum (addBinNum x One) y)"

by pat_completeness auto

termination addBinNum by size_change

The termination command sets up the termination goal for a specified function.

Isabelle determines that the addBinNum function is total using size change, which

is a proof method related to recursive definitions. It uses a variant of the

size-change principle which has been discussed in Krauss (2009). pat completeness

is a proof method from the function package that automates proof of completeness

for patterns of datatype constructors.

58

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

6.1.3 Multiplication of binary numerals

mulBinNum is the algorithm for the multiplication of two binary numerals. It is

structured similar to addBinNum. It is defined in the following manner:

function mulBinNum :: "BinNum =⇒ BinNum =⇒ BinNum"

where

"mulBinNum x Zero = Zero"|

"mulBinNum Zero x = Zero"|

"mulBinNum x One = x"|

"mulBinNum One x = x"|

"mulBinNum (JoinZero x) (JoinZero y) =

JoinZero (JoinZero (mulBinNum x y))"|

"mulBinNum (JoinZero x) (JoinOne y) =

addBinNum (JoinZero (mulBinNum x y)) (JoinZero x)"|

"mulBinNum (JoinOne x) (JoinZero y) =

addBinNum (JoinZero (mulBinNum x y)) (JoinZero y)"|

"mulBinNum (JoinOne x) (JoinOne y) =

JoinOne (addBinNum (addBinNum x y) (mulBinNum x y))"

by pat_completeness auto

termination mulBinNum by size_change

Here, since all the subgoals express pattern compatibility, pat completeness

automates proof of completeness for mulBinNum. Isabelle determines that the

function is total since it terminates using size change.

59

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

6.1.4 Meaning formulas for addition and multiplication

The meaning formulas for addBinNum and mulBinNum state that these functions

correctly implement plus and times on BinNum. The meaning formula for plus is

proved by strong induction using associativity and commutativity of plus. It is

defined as:

lemma (in th8b) addMeaningFormula:

"evalBinNum (addBinNum x y) = plus (evalBinNum x) (evalBinNum y)"

using plus_assoc and plus_commute

by (induction rule: addBinNum.induct, auto) (metis plus_zero)+

It is supported by the following lemmas that prove plus has the properties of

its definition with the arguments reversed in th8b:

lemma (in th8b) lemma_plus_zero: "plus zero n = n"

proof(induction n rule: p1)

case (1 x)

then show ?case

by (simp add: plus_zero plus_suc)

qed

lemma (in th8b) lemma_plus_suc: "plus (suc m) n = suc (plus m n)"

proof(induction n rule: p1)

case (1 x)

then show ?case

using plus_zero plus_suc by presburger

qed

60

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

The following lemmas prove that plus is associative and commutative in th8b:

lemma (in th8b) plus_commute: "plus x y = plus y x"

proof(induction x rule: p1)

case (1 x)

then show ?case

by (simp add: plus_zero lemma_plus_suc lemma_plus_zero plus_suc)

qed

lemma (in th8b) plus_assoc: "plus (plus x y) z = plus x (plus y z)"

proof(induction x rule: p1)

case (1 x)

then show ?case

using lemma_plus_suc lemma_plus_zero by presburger

qed

The meaning formula for times is proved similarly to that of plus, using

commutativity and associativity. It is defined in the following manner:

lemma (in th8b) mulMeaningFormula:

"evalBinNum (mulBinNum x y) = times (evalBinNum x) (evalBinNum y)"

using times_commute and times_assoc

by (induction rule: mulBinNum.induct)

(metis plus_zero plus_commute lemma_times_zero lemma_times_suc)

The meaning formula for times is supported by the following lemmas, which

prove that times can be defined in a recursive manner in th8b:

lemma (in th8b) lemma_times_zero: "times zero n = zero"

61

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

proof(induct n rule: p1)

case (1 x)

then show ?case

using plus_zero times_zero times_suc by auto

qed

lemma (in th8b) lemma_times_suc:

"times (suc m) n = plus (times m n) n"

proof(induction n rule: p1)

case (1 x)

then show ?case

by (smt (verit) plus_zero plus_assoc plus_commute

plus_suc times_zero times_suc)

qed

The following lemmas prove that times is associative and commutative:

lemma (in th8b) times_commute: "times x y = times y x"

proof(induction x rule: p1)

case (1 x)

then show ?case

using lemma_times_suc lemma_times_zero times_zero

times_suc by presburger

qed

lemma (in th8b) times_assoc:

62

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

"times (times x y) z = times x (times y z)"

proof(induction x rule: p1)

case (1 x)

then show ?case

by(metis plus_zero plus_commute lemma_times_zero

lemma_times_suc times_zero)

qed

6.2 Transformers which manipulate expressions

6.2.1 Language of the theories

The file syntax operations.thy contains three datatypes: Var, Term and

Form. These datatypes correspond to the first-order component of the language of

the theories.

Var is defined by:

datatype Var = Var string

Term is defined by:

datatype Term = V Var | Z | S Term |

Plus Term Term | Times Term Term

Term is the datatype whose members represent the expressions from the

theories. It contains the following constructors:

� Z refers to the natural number 0 and is of type Term.

63

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

� S refers to successor. It can take a Term and returns a type Term.

� Plus refers to addition. It can take two Terms and returns a Term.

� Times refers to multiplication. It takes two Terms and returns a Term.

Form is a datatype that enables the creation of formulas using quantifiers,

boolean and connectives in propositional calculus. Form is defined by:

datatype Form = Eq Term Term | Neg Form | Imp Form Form |

And Form Form | Or Form Form |

Forall Var Form | Forsome Var Form

It contains the following constructors:

� Eq refers to = and takes two Terms and returns a Form.

� Neg refers to ¬ and takes a Form and returns a Form.

� Imp refers to → and takes two Forms and returns a Form.

� And refers to ∧ and takes two Forms and returns a Form.

� Or refers to ∨ and take two Forms and returns a Form.

� Forall refers to ∀ and takes a Var and a Form and returns a Form.

� Forsome refers to ∃ and takes a Var and a Form and returns a Form.

64

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

6.2.2 Recognizers of the formulas of the theories

BT1, BT2 and BT3 have recognizers of the formulas of their respective theories.

� isTh1Term : th1 is the implementation of BT1, which is a theory of 0 and S.

If the term does not contain a plus or times, then it is in th1 and the

function isTh1Term returns a True. However if a plus or times is detected

in the term, then the function isTh1Term returns a False. The function

isTh1Term is defined in the following manner:

fun isTh1Term :: "Term =⇒ bool"

where

"isTh1Term (V v) = True"|

"isTh1Term Z = True" |

"isTh1Term (S n) = isTh1Term n" |

"isTh1Term (Plus s t) = False" |

"isTh1Term (Times s t) = False"

� isTh1Form :

IsTh1Form checks if a given formula is in th1. It is defined in the following

manner:

fun isTh1Form :: "Form =⇒ bool"

where

"isTh1Form (Eq a b) = (isTh1Term a ∧ isTh1Term b)"|

"isTh1Form (Neg a) = isTh1Form a"|

"isTh1Form (Imp a b) = (isTh1Form a ∧ isTh1Form b)"|

"isTh1Form (Forall a b) = isTh1Form b"|

65

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

"isTh1Form (Forsome a b) = isTh1Form b"|

"isTh1Form (And a b) = (isTh1Form a ∧ isTh1Form b)" |

"isTh1Form (Or a b) = (isTh1Form a ∧ isTh1Form b)"

The function IsTh1Form returns True only if its individual components

belong to th1. For example the formula isTh1Form (Imp (Eq (V v) Z) (Eq

Z Z)) returns the value True since each individual component of the formula,

(Eq (V v) Z), (Eq Z Z) and (Imp (Eq (V v) Z) (Eq Z Z)) as a whole

are in th1.

� isTh2Term: If a term does not contain Times, then it is in th2 and the

function isTh2Term returns a True. If the Term contains Times, isTh2Term

returns False. The function isTh2Term is defined in the following manner:

fun isTh2Term :: "Term =⇒ bool"

where

"isTh2Term (V v) = True"|

"isTh2Term Z = True"|

"isTh2Term (S n) = isTh2Term n"|

"isTh2Term (Plus m n) = (isTh2Term m ∧ isTh2Term n)"|

"isTh2Term (Times m n) = False"

� isTh2Form : This function returns True for a formula if its individual

components are in th2. For example, isTh2Form (Imp (Eq (V v) (Times Z

Z)) (Eq Z Z)) is going to return the value False. This is because Times Z Z

is a term in th3. The function isTh2Form is defined in the following manner:

fun isTh2Form :: "Form =⇒ bool"

66

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

where

"isTh2Form (Eq x y) = (isTh2Term x ∧ isTh2Term y)"|

"isTh2Form (Neg x) = isTh2Form x"|

"isTh2Form (Imp x y) = (isTh2Form x ∧ isTh2Form y)"|

"isTh2Form (Forall x y) = isTh2Form y"|

"isTh2Form (Forsome x y) = isTh2Form y"|

"isTh2Form (And x y) = (isTh2Form x ∧ isTh2Form y)" |

"isTh2Form (Or x y) = (isTh2Form x ∧ isTh2Form y)"

� Since the language for the theories in based on th3, all formulas and terms are

by default in the language of th3, and hence we need no recognizers for this

theory.

6.2.3 Induction schema generators

BT5, BT6 and BT7 contain generators for the instances of the respective

theory’s induction schemas. The instances of the induction schema for th5, th6

and th7 are generated through one base parent function.

fun indSchemaInst :: "Form =⇒ Var =⇒ Form"

where

"indSchemaInst a x = Imp (And (subForm Z x a)

(Imp (Forall x a) (subForm (S (V x)) x a))) (Forall x a)"

There are functions specific to each theory which checks if a given formula is in

the form of th5, th6 or th7. They have been formalized in Isabelle in the

following manner:

67

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

fun indSchemaInstT5 :: "Form =⇒ Var =⇒ Form"

where

"indSchemaInstT5 a x = (if (isTh1Form a)

then (indSchemaInst a x) else (Eq Z Z))"

fun indSchemaInstT6 :: "Form =⇒ Var =⇒ Form"

where

"indSchemaInstT6 a x = (if (isTh2Form a)

then (indSchemaInst a x) else (Eq Z Z))"

fun indSchemaInstT7 :: "Form =⇒ Var =⇒ Form"

where

"indSchemaInstT7 a x = indSchemaInst a x"

We take the help of two functions, subTerm and subForm to create the

induction schemas and be able to instantiate them.

� subTerm substitutes a Term for the free occurence of a variable in a Term. It

is defined in the following recursive manner:

fun subTerm :: "Term =⇒ Var =⇒ Term =⇒ Term"

where

"subTerm t (Var x) (V (Var y)) =

(if (x = y) then t else V (Var y))"|

"subTerm t (Var x) Z = Z"|

"subTerm t (Var x) (S t1) =

S (subTerm t (Var x) t1)"|

68

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

"subTerm t (Var x) (Plus t1 t2) =

Plus (subTerm t (Var x) t1) (subTerm t (Var x) t2)"|

"subTerm t (Var x) (Times t1 t2) =

Times (subTerm t (Var x) t1) (subTerm t (Var x) t2)"

� subForm substitutes a Term for the free occurences of a variable in a Form. It

is defined in the following recursive manner:

fun subForm :: "Term =⇒ Var =⇒ Form =⇒ Form"

where

"subForm t (Var x) (Eq t1 t2) =

Eq (subTerm t (Var x) t1) (subTerm t (Var x) t2)"|

"subForm t (Var x) (Neg a) =

Neg (subForm t (Var x) a)"|

"subForm t (Var x) (Imp a b) =

Imp (subForm t (Var x) a) (subForm t (Var x) b)"|

"subForm t (Var x) (Forall (Var y) a) =

(if y = x then Forall (Var y) a

else Forall (Var y) (subForm t (Var x) a))"|

"subForm t (Var x) (Forsome (Var y) a) =

(if y = x then Forsome (Var y) a

else Forsome (Var y) (subForm t (Var x) a))"|

"subForm t (Var x) (And a b) =

And (subForm t (Var x) a) (subForm t (Var x) b)"|

"subForm t (Var x) (Or a b) =

69

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

Or (subForm t (Var x) a) (subForm t (Var x) b)"

6.2.4 How do we connect the transformers to the locales?

The evaluation function for BinNum (evalBinNum) has been created successfully.

However, this has not been done for other inductive types. The induction schemas

for th5, th6, and th7 have been created and instantiated. However, we do not have

a way to take an instance and evaluate it so that it becomes an actual axiom, or a

theory of the locale. Quotation and evaluation functions are required in order to

carry out this operation. Similarly, the recognizers are not directly connected to the

locales, it gives us a piece of data that represents a term or a formula in th1, th2, or

th3. The transformers cannot be connected to the locales in a general way. The

connection has been created for addBinNum and mulBinNum through the meaning

formulas which connect these transformers to plus and times.

In summary, we have created a model of the syntax of all of the locales but have

limited success in connecting the model of the locales to their transformers.

6.3 Decision procedures

The decision procedures for BT5 and BT6 are represented as transformers in

BT5 and BT6. However, the formalization of the case study graph of biform

theories in Isabelle does not have an implementation for these decision procedures.

A decision procedure for Presburger theory, which is BT6 in our case study graph,

has already been implemented in Isabelle (Chaieb (2021)). A decision procedure for

BT5 could be constructed from the decision procedure for BT6 by restricting the

70

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

domain. Implementing these two decision procedures would be a large undertaking

and is currently out of the scope of the project.

71

Chapter 7

Related work

The field of formal methods has various techniques and approaches to developing

libraries of algebraic theories. We have referred to and studied a lot of this work in

order to understand how the process of formalization of biform theories in Isabelle

should go about. We split the work related to the thesis into three sections:

� Formalization of mathematical theories in Isabelle: This section will

primarily look into the various mathematical theories that have been

previously formalized in Isabelle.

� Formalization of biform theories in mathematical systems: This

section digs into previous attempts at the formalization of biform theories.

� The use of locales in Isabelle: This section looks into the various tutorials

and reports written on the usage of locales. It also reviews some of the

introductory material on the official Isabelle website.

72

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

7.1 Formalization in Isabelle

As a strong proof assistant, Isabelle has successfully formalized a number of

proofs in higher-order logic, first-order logic, and Zermelo-Fraenkel (ZF) set theory.

A complete compilation of the proofs can be found on the official Isabelle website.

While formalizing the theory graph (Carette and Farmer, 2017) we come across

several common mathematical theories. The formalization of a significant number of

mathematical theories has been carried out and documented in Isabelle through the

Archive of Formal proofs. The Archive of Formal Proofs is an assemblage of proof

libraries, examples, and significant scientific developments, all mechanically checked

in the theorem prover Isabelle.

Robinson arithmetic, a first-order theory whose signature is that of first-order

Peano arithmetic, has been represented in the theory graph as th4. It has been

formalized in Isabelle as a separate AFP entry in Popescu and Traytel (2020).

Presburger arithmetic is the theory of natural numbers with addition in FOL.

The signature of Presburger arithmetic contains the successor, the addition

operation and equality. It omits the multiplication operation entirely. The axioms

include a schema of induction. Presburger arithmetic is much weaker than Peano

arithmetic (discussed below). It includes addition and multiplication operations.

Unlike Peano arithmetic, Presburger arithmetic is a decidable theory. A theory is

decidable if it is possible to decide, whether a sentence belongs to the theory.

Presburger arithmetic has been formalized in Isabelle in Chaieb and Nipkow (2003).

The decision algorithm is formulated as a functional program. It makes minimal

assumptions and is created in an adaptable way for theorem provers.

First-order Peano arithmetic is a system that consists of a constant 0, a unary

73

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

function S, and the binary function symbols + and ∗. Full Peano arithmetic cannot

be directly formalized in first-order logic because the induction principle involves

quantification over predicates, which is not directly expressible in first-order logic.

The archive contains the following formal proofs: “Soundness and Completeness

of an Axiomatic System for First-Order Logic” (From, 2021) works on the

formalization of the soundness and completeness of an axiomatic system for

first-order logic in Isabelle. Paulson (2021) formalizes Gödel’s incompleteness

theorem using the nominal package in Isabelle for dealing with bound

variables (Urban and Kaliszyk, 2012).

IsaFoR/CeTA (Isabelle/HOL Formalization of Rewriting for Certified Tool

Assertions) is a project that consists of two parts; a library that comprises of the

formalization of concrete techniques and abstract results of rewriting literature in

Isabelle/HOL, and CeTA, which is an automatically generated Haskell program for

certifying proofs (Sternagel et al., 2012). IsaFoR (Isabelle Formalization of

Rewriting) supports a number of techniques, including termination of functions via

rewriting (Krauss et al., 2011), certified ordered completion (Sternagel and Winkler,

2018), non-termination of rewrite systems and equational reasoning. IsaFoL is a

repository that contains several formalizations of logical calculi in Isabelle. The

project aims to develop lemma libraries and methodology for formalizing modern

research in automated reasoning.

7.2 Formalization of biform theories

The formalization of mathematics is a relatively new method where human

beings explain mathematical proofs and definitions to computer systems (Massot,

74

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

2021), and it makes sense to dig into the benefits of formalized mathematics. The

primary benefit of formalized mathematics is the certainty that a proof is correct.

The idea of a biform theory was first introduced as a part of a Formal Framework

for Managing Mathematics (FFMM) in Farmer and von Mohrenschildt (2003). It

was developed as a part of the MathScheme project (Carette et al., 2011) at

McMaster University. The goal of FFMM is to combine computer algebra and

computer theorem proving into a single system. Biform theories are one of the

principle ideas in FFMM, providing a formal context in which deduction and

computation can be combined. The formalization of biform theories has been

carried out previously in Chiron (Farmer, 2007), Agda (Carette and Farmer, 2017),

and CTTqe (Carette and Farmer, 2017).

Chiron is designed as a practical, general-purpose logic for mechanizing

mathematics. It includes elements of type theory, a method for handling

undefinedness, and a way to reason about the syntax of expressions. It is an

exceptionally well-suited logic for formalizing biform theories. Farmer (2007)

illustrates how biform theories can be formalized in Chiron. In Ni (2009), a

pre-constructed built-in operator is used to implement a data structure for biform

theories. This helps biform theories translate semantic definition to code

implementation. In order to formalize biform theories efficiently, we need to be able

to effectively link axiomatic and algorithmic theories. Hence, if a symbol is

manipulated, it should correspond to a semantic function defined axiomatically.

Carette et al. (2018a) describes a project that can effectively generate a network of

biform theories using a methodology that can express, manipulate and manage

mathematical knowledge.

75

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

A major practical limitation of most frameworks is the development of large

libraries of biform theories. Kohlhase et al. (2013) introduces The Universal

Machine that makes it easy to write biform theories using MMT. MMT is a

knowledge representation format focusing on modularity and independence of logic.

A rule-based rewriting engine that consists of snippets of implementation occuring

in the biform MMT theory graph is created. The machine helps convert between a

biform theory’s axiomatic and algorithmic realm.

Formalizing biform theories directly in Chiron can be verbose and slightly

tedious due to Chiron’s low-level logic. This lays the foundation for MathScheme

Language (MSL), a high-level specification language developed on top of Chiron.

MSL, which can be seen as high-level syntactic sugar for Chiron, is more convenient

for specifying and relating theories when building the library of formalized

mathematics. The MathScheme Library is established upon the little theories

method in which a network of biform theories is created out of a part of

mathematical knowledge. The biform theories are interconnected via theory

morphisms. Tran (2011) explains the techniques that have been developed and used

to construct the MSL.

A robust theory library goes a long way in making a mechanized mathematical

system useful. Abbasi (2009) demonstrates how to generate an extensive theory

library for an MMS using the module system Mei and the underlying logic of

Chiron. Biform theories are used to represent the theories built in the theory

library. Zhang (2009) also uses biform theories to build a library of theory types.

This library is based on module systems of typed programming languages and

algebraic specification languages, independent of the underlying logic.

76

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

Church’s type theory is a formal logical language. It includes classical first-order

and propositional logic, and is extremely expressive in a practical sense. It is used in

most modern applications of type theory. Farmer (2017) discusses whether the little

theories method can be used to formalize biform theories in CTTqe. It is stated here

that the “long-range goal is to implement a system for developing biform theory

graphs utilizing logic equipped with quotation and evaluation”. This has been

carried out in Carette and Farmer (2017) utilizing CTTuqe, a version of Church’s

type theory with undefinedness, quotation, and evaluation. CTTuqe supports global

reflection. The paper also formalizes the biform theory graph in Agda, a

dependently typed programming language. Agda uses the local reflection for

formalizing the biform theories. Both methods have been discussed extensively in

Chapter 3.

7.3 Review of available literature on locales

Isabelle is a comprehensive system for implementing logical formalisms. During

the formalization of the theory graph of eight biform theories, we had to create

various recursive functions and transformers. Nipkow (2013) is a thorough

document that introduces various concepts that are required to work with Isabelle,

including HOL as a functional language and how to write simple inductive proofs

and the various proof patterns we could come across. While writing out an

Isabelle/Isar document for the first time, the inner and outer syntax can be

confusing. The inner syntax in Isabelle consists of types and terms of the logic. The

outer syntax is that of Isabelle/Isar theory sources (specifications and proofs). The

Isabelle/Isar Reference Manual Wenzel and Paulson (2006) is a comprehensive

77

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

guide to everything Isabelle. It describes all general language elements, including

locales and their interpretations.

The modular construct of locales has made them an attractive choice for the

formalization of biform theories in Isabelle. Our case study has clearly defined

theory hierarchies and Ballarin (2014) discusses locales as a module system for

mathematical theories. We look at locales as a system that manages theory

hierarchies in a theorem prover. Well-defined examples of theories and morphisms

are generated through extensions (locales).

The earliest available report on locales is (Kammüller et al., 1999) where the

process of local assumptions and definitions along with sectioning in theorem

provers are supported through locales. The report works as an early tutorial

explaining rules, definitions, scope, and instances. The current official tutorial for

locales on the Isabelle page has come a long way since both design and

implementation of locales have evolved considerably since Kammüller and Wenzel

released the report (Kammüller et al., 1999). Ballarin (2010) covers all significant

facilities of locales, including the use of locales and their interpretations in theories

and proofs. Locales also need to be used in contexts where proofs need to be

created with regular usage. Ballarin (2006) explains how locales may be seen as

detached proof contexts and allow reuse of specifications. The paper also serves as a

report to better understand locales, as acknowledged by the author.

Theory morphisms are often considered an alternative to axiomatic type classes

to allow theorems to be reused across families of types. They have been

implemented in theorem provers such as IMPS (Farmer et al., 1993) and

PVS (Owre et al., 1992). Isabelle uses locales as a lightweight implementation of

78

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

theory morphisms.

79

Chapter 8

Conclusion and future work

The main aim of the work done was to express and formalize the case study of

eight biform theories in Carette and Farmer (2017) in Isabelle/HOL. The case study

includes a variety of valuable transformers. Transformers represent

syntax-manipulating operations such as inference and computation rules. The case

study has been previously formalized in Agda using local reflection and in CTTuqe

using global reflection. This thesis partially formalizes the case study in Isabelle, an

interactive theorem prover. Since transformers are algorithms that manipulate

expressions, the meaning formulas of biform theory rules can only be directly

formalized in a logic with support for reasoning about the syntax of expressions.

While traditional logic does not offer this kind of support, Isabelle is relatively well

suited to formalize biform theories. While carrying out the formalization, we also

draw conclusions on whether we can express theory morphisms and induction

schemas for theories in Isabelle adequately.

80

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

8.1 Conclusion of contribution

The conclusions of the contribution to the thesis have been laid out based on

the research questions that have been asked in Chapter 4.

� RQ1: Can abstract axiomatic theories be formalized in Isabelle?

Axiomatization is a general language element in Isabelle, it introduces several

constants simultaneously. Locales have helped formalize our abstract

axiomatic theories as separate individual theories in Isabelle. Our

formalization starts with this step. The formalization of the axiomatic theories

in locales works smoothly when the number of axioms is finite. However, with

an infinite number of axioms, the formalization becomes challenging. The

theory of higher-order peano arithmetic has been formalized in Isabelle in two

separate ways: th8a and th8b. th8b is simpler to formalize, but it is not a

direct formalization of BT8. th8a, on the other hand, is a direct formalization

of BT8. It uses definite description to define plus and times. Extra work is

needed to show that these definitions define the real plus and times.

� RQ2: Can SBMAs be formalized in Isabelle?

SBMAs can be expressed in a straightforward manner. We have defined

transformers that manipulate expressions in a mathematically meaningful way.

These transformers are our SBMAs. The functions addBinNumand mulBinNum

are SBMAs since they apply arithmetic operations to binary numerals.

However, we have not been able to completely express the transformers for all

languages of the theory graph due to the lack of a reflection infrastructure for

quotation and evaluation.

81

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

� RQ3: Can decision procedures for BT5 and BT6 be formalized in

Isabelle?

Yes, the decision procedure for BT6 has already been implemented in

Isabelle Chaieb and Nipkow (2003). Thus, the decision procedure for BT5 can

be implemented as well by restricting the domain of the decision procedure for

BT6.

We have successfully defined functions that create instances of the induction

schema. BT5 and BT6 are decidable theories. While BT5 and BT6 are also

complete, BT7 is neither complete nor decidable. An induction schema

instance has been created with the help of a number of functions and the

recursive datatype Var, Term and Form. This helps us conclude that

induction schemas for complete and decidable theories can be expressed

adequately in Isabelle. However, the induction schemas cannot be used in

BT5, BT6 and BT7

� RQ4: Can theory morphisms be formalized in Isabelle?

The sublocales between the theories are a strong representation of theory

morphisms. Hence the theory morphisms for the case study graph can be

expressed adequately in Isabelle.

8.2 Recommended work

It is recommended that the following work be carried out for the future of the

biform theory graph case study and Isabelle:

� Create a reflection infrastructure with quotation, that translates expressions of

82

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

the locales to members of Term and Form, and evaluation, that translates

members of Term and Form to expressions of the locale.

� Provide a way to create axiom schemas with an infinite number of axioms in

locales in Isabelle. This will be useful for fully formalizing BT5, BT6 and BT7

in the biform theory graph case study.

� Add more theories to theory graph of natural number arithmetic:

More biform theories could be added to the case study to investigate Isabelle’s

formalization capabilities. Skolem arithmetic, the complete theory of 0, S, and

∗, which has a complex axiomatization, can be added to the theory graph.

83

Appendix A

Formalization in Isabelle

Here are the theory files written in the Isabelle/HOL environment to formalize

the test case of eight biform theories.

A.1 BinNum.thy

theory BinNum

imports Main

begin

datatype BinNum = Zero | One | JoinZero BinNum | JoinOne BinNum

fun len :: "BinNum =⇒ nat"

where

"len Zero = 1"|

"len One = 1"|

"len (JoinZero x) = len x + 1"|

"len (JoinOne x) = len x + 1"

fun val :: "BinNum =⇒ nat"

where

"val Zero = 0"|

"val One = 1"|

84

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

"val (JoinZero x) = 2*(val x)"|

"val (JoinOne x) = 2*(val x) + 1"

function addBinNum :: "BinNum =⇒ BinNum =⇒ BinNum"

where

"addBinNum Zero x = x"|

"addBinNum x Zero = x"|

"addBinNum One One = JoinZero One"|

"addBinNum One (JoinZero x) = JoinOne x"|

"addBinNum(JoinZero x) One = JoinOne x"|

"addBinNum One (JoinOne x) = JoinZero(addBinNum One x)"|

"addBinNum(JoinOne x) One = JoinZero(addBinNum x One)"|

"addBinNum(JoinZero x) (JoinZero y) = JoinZero(addBinNum x y)"|

"addBinNum(JoinZero x) (JoinOne y) = JoinOne(addBinNum x y)"|

"addBinNum(JoinOne x) (JoinZero y) = JoinOne(addBinNum x y)"|

"addBinNum(JoinOne x) (JoinOne y) =

JoinZero(addBinNum(addBinNum x One) y)"

by pat_completeness auto

termination addBinNum

by size_change

function mulBinNum :: "BinNum =⇒ BinNum =⇒ BinNum"

where

"mulBinNum x Zero = Zero"|

"mulBinNum Zero x = Zero"|

"mulBinNum x One = x"|

"mulBinNum One x = x"|

"mulBinNum (JoinZero x) (JoinZero y) =

JoinZero (JoinZero (mulBinNum x y))"|

"mulBinNum (JoinZero x) (JoinOne y) =

addBinNum (JoinZero (mulBinNum x y)) (JoinZero x)"|

"mulBinNum (JoinOne x) (JoinZero y) =

addBinNum (JoinZero (mulBinNum x y)) (JoinZero y)"|

"mulBinNum (JoinOne x) (JoinOne y) =

JoinOne (addBinNum (addBinNum x y) (mulBinNum x y))"

by pat_completeness auto

termination mulBinNum

by size_change

end

85

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

A.2 Syntax operations

theory syntax_operations

imports Main

begin

datatype Var = Var string

datatype Term = V Var | Z | S Term |

Plus Term Term | Times Term Term

datatype Form = Eq Term Term | Neg Form | Imp Form Form |

And Form Form | Or Form Form | Forall Var Form |

Forsome Var Form

fun isTh1Term :: "Term =⇒ bool"

where

"isTh1Term (V v) = True"|

"isTh1Term Z = True" |

"isTh1Term (S n) = isTh1Term n" |

"isTh1Term (Plus s t) = False" |

"isTh1Term (Times s t) = False"

fun isTh2Term :: "Term =⇒ bool"

where

"isTh2Term (V v) = True"|

"isTh2Term Z = True"|

"isTh2Term (S n) = isTh2Term n"|

"isTh2Term (Plus m n) = (isTh2Term m ∧ isTh2Term n)"|

"isTh2Term (Times m n) = False"

fun isTh1Form :: "Form =⇒ bool"

where

"isTh1Form (Eq a b) = (isTh1Term a ∧ isTh1Term b)"|

"isTh1Form (Neg a) = isTh1Form a"|

"isTh1Form (Imp a b) = (isTh1Form a ∧ isTh1Form b)"|

"isTh1Form (Forall a b) = isTh1Form b"|

"isTh1Form (Forsome a b) = isTh1Form b"|

"isTh1Form (And a b) = (isTh1Form a ∧ isTh1Form b)" |

"isTh1Form (Or a b) = (isTh1Form a ∧ isTh1Form b)"

fun isTh2Form :: "Form =⇒ bool"

where

"isTh2Form (Eq a b) = (isTh2Term a ∧ isTh2Term b)"|

"isTh2Form (Neg a) = isTh2Form a"|

86

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

"isTh2Form (Imp a b) = (isTh2Form a ∧ isTh2Form b)"|

"isTh2Form (Forall a b) = isTh2Form b"|

"isTh2Form (Forsome a b) = isTh2Form b"|

"isTh2Form (And a b) = (isTh2Form a ∧ isTh2Form b)" |

"isTh2Form (Or a b) = (isTh2Form a ∧ isTh2Form b)"

fun subTerm :: "Term =⇒ Var =⇒ Term =⇒ Term"

where

"subTerm t (Var x) (V (Var y)) =

(if (x = y) then t else V (Var y))"|

"subTerm t (Var x) Z = Z"|

"subTerm t (Var x) (S t1) = S (subTerm t (Var x) t1)"|

"subTerm t (Var x) (Plus t1 t2) =

Plus (subTerm t (Var x) t1) (subTerm t (Var x) t2)"|

"subTerm t (Var x) (Times t1 t2) =

Times (subTerm t (Var x) t1) (subTerm t (Var x) t2)"

fun subForm :: "Term =⇒ Var =⇒ Form =⇒ Form"

where

"subForm t (Var x) (Eq t1 t2) =

Eq (subTerm t (Var x) t1) (subTerm t (Var x) t2)"|

"subForm t (Var x) (Neg a) = Neg (subForm t (Var x) a)"|

"subForm t (Var x) (Imp a b) =

Imp (subForm t (Var x) a) (subForm t (Var x) b)"|

"subForm t (Var x) (Forall (Var y) a) =

(if y = x then Forall (Var y) a else Forall (Var y) (subForm

t (Var x) a))"|

"subForm t (Var x) (Forsome (Var y) a) =

(if y = x then Forsome (Var y) a

else Forsome (Var y) (subForm t (Var x) a))"|

"subForm t (Var x) (And a b) =

And (subForm t (Var x) a) (subForm t (Var x) b)"|

"subForm t (Var x) (Or a b) =

Or (subForm t (Var x) a) (subForm t (Var x) b)"

fun indSchemaInst :: "Form =⇒ Var =⇒ Form"

where

"indSchemaInst a v =

Imp (And (subForm Z v a) (Imp (Forall v a)

(subForm (S (V v)) v a))) (Forall v a)"

fun indSchemaInstT5 :: "Form =⇒ Var =⇒ Form"

where "indSchemaInstT5 a v =

87

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

(if (isT1Form a) then (indSchemaInst a v) else (Eq Z Z))"

(* check if a is th5 form *)

fun indSchemaInstT6 :: "Form =⇒ Var =⇒ Form"

where "indSchemaInstT6 a v =

(if (isT2Form a) then (indSchemaInst a v) else (Eq Z Z))"

(* check if a is th6 form*)

fun indSchemaInstT7 :: "Form =⇒ Var =⇒ Form"

where "indSchemaInstT7 a v = indSchemaInst a v"

end

A.3 Theory graph

theory theory_graph

imports Main BinNum syntax_operations

begin

locale th1 =

fixes

zero :: "’a"

and suc :: "’a ⇒ ’a"

assumes

"suc n ̸= zero"

and "suc n = suc m −→ n = m"

locale th2 = th1 +

fixes

plus :: "’a ⇒ ’a ⇒ ’a"

assumes

plus_zero: "plus n zero = n"

and plus_suc: "plus n (suc m) = suc (plus n m)"

fun (in th2) evalBinNum :: "BinNum ⇒ ’a"

where

"evalBinNum Zero = zero"|

"evalBinNum One = suc(zero)"|

"evalBinNum (JoinZero x) = plus (evalBinNum x) (evalBinNum x)"|

"evalBinNum (JoinOne x) =

plus (plus (evalBinNum x) (evalBinNum x)) (suc zero)"

88

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

locale th3 = th2 +

fixes

times :: "’a ⇒ ’a ⇒ ’a"

assumes

times_zero: "times n zero = zero"

and times_suc: "times n (suc m) = plus (times n m) n"

locale th4 = th3 +

assumes

"n = zero ∨ (∃m . suc m = n)"

locale th5 = th1 +

assumes

th5_inst1:

"(λp. p zero ∧ (p x −→ p (suc x))

−→ (∀x. p x)) (λn . (n = zero) ∨ (∃m . suc m = n))"

locale th6 = th2 + th5

locale th7 = th3 + th6

locale th8a = th1 +

assumes

induction_principle:

"((p zero ∧ (∀x. p x −→ p (suc x))) −→ (∀x. p x))"

begin

definition

plus where

"plus = (THE f. ∀ x y. f x zero = x

∧ f x (suc y) = suc (f x y))"

definition

times where

"times = (THE g. ∀ x y. g x zero = zero

∧ g x (suc y) = plus (g x y) x)"

end

fun (in th8a) q :: "(’a ⇒ ’a ⇒ ’a) ⇒ bool"

where

"q f = (∀ x y. (f x zero = x ∧ f x (suc y) = suc (f x y)))"

fun (in th8a) r :: "(’a ⇒ ’a ⇒ ’a) ⇒ bool"

where

89

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

"r g = (∀ x y. g x zero = zero ∧ g x (suc y) = plus (g x y) x)"

locale th8b = th3 +

assumes

p1: "
∧
x. ((

∧
x . p zero ∧ (p x −→ p (suc x)))) =⇒ p x"

interpretation int1: th1

"0 :: nat"

"Suc :: nat ⇒ nat"

by unfold_locales auto

interpretation int2: th2

"0 :: nat"

"Suc :: nat ⇒ nat"

"(+) :: nat ⇒ nat ⇒ nat"

by unfold_locales auto

interpretation inst3: th3

"0 :: nat"

"Suc :: nat ⇒ nat"

"(+) :: nat ⇒ nat ⇒ nat"

"(*) :: nat ⇒ nat ⇒ nat"

by unfold_locales auto

interpretation inst4: th4

"0 :: nat"

"Suc :: nat ⇒ nat"

"(+) :: nat ⇒ nat ⇒ nat"

"(*) :: nat ⇒ nat ⇒ nat"

proof

show "∧n. n = 0 ∨ (∃m. Suc m = n)"

using not0_implies_Suc by auto

qed

interpretation inst5: th5

"0 :: nat"

"Suc :: nat ⇒ nat"

proof

show "∧x. (0 = 0 ∨ (∃m. Suc m = 0))

∧ (x = 0 ∨ (∃m. Suc m = x) −→ Suc x = 0

∨ (∃ m. Suc m = Suc x)) −→ (∀ x. x = 0 ∨ (∃m. Suc m = x))"

using not0_implies_Suc by auto

90

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

qed

interpretation inst6: th6

"0 :: nat"

"Suc :: nat ⇒ nat"

"(+) :: nat ⇒ nat ⇒ nat"

by unfold_locales auto

interpretation inst7: th7

"0 :: nat"

"Suc :: nat ⇒ nat"

"(+) :: nat ⇒ nat ⇒ nat"

"(*) :: nat ⇒ nat ⇒ nat"

by unfold_locales auto

interpretation inst8a: th8a

"0 :: nat"

"Suc :: nat ⇒ nat"

proof

show "∧p. p 0 ∧ (∀x. p x −→ p (Suc x)) −→ (∀x. p x)"

using nat_induct by auto

qed

interpretation inst8b: th8b

"0 :: nat"

"Suc :: nat ⇒ nat"

"(+) :: nat ⇒ nat ⇒ nat"

"(*) :: nat ⇒ nat ⇒ nat"

proof

show "∧p x. (∧x. p 0 ∧ (p x −→ p (Suc x))) =⇒ p x"

using nat_induct by auto

qed

lemma (in th8b) th8_b_ind:

"∀p.((p zero ∧ (∀x. p x −→ p (suc x))) −→ (∀x. p x))"

using p1 by auto

lemma (in th8b) lemma_plus_zero: "plus zero n = n"

proof(induction n rule: p1)

case (1 x)

then show ?case

by (simp add: plus_zero plus_suc)

qed

91

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

lemma (in th8b) lemma_plus_suc:

"plus (suc m) n = suc (plus m n)"

proof(induction n rule: p1)

case (1 x)

then show ?case

using plus_zero plus_suc by presburger

qed

lemma (in th8b) plus_commute: "plus x y = plus y x"

proof(induction x rule: p1)

case (1 x)

then show ?case

by (simp add: plus_zero lemma_plus_suc lemma_plus_zero plus_suc)

qed

lemma (in th8b) plus_assoc:

"plus (plus x y) z = plus x (plus y z)"

proof(induction x rule: p1)

case (1 x)

then show ?case

using lemma_plus_suc lemma_plus_zero by presburger

qed

lemma (in th8b) addMeaningFormula:

"evalBinNum (addBinNum x y)

= plus (evalBinNum x) (evalBinNum y)"

using plus_assoc and plus_commute

by (induction rule: addBinNum.induct, auto) (metis plus_zero)+

lemma (in th8b) lemma_times_zero: "times zero n = zero"

proof(induct n rule: p1)

case (1 x)

then show ?case

using plus_zero times_zero times_suc by auto

qed

lemma (in th8b) lemma_times_suc:

"times (suc m) n = plus (times m n) n"

proof(induction n rule: p1)

case (1 x)

then show ?case

by (smt (verit) plus_zero plus_assoc

92

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

plus_commute plus_suc times_zero times_suc)

qed

lemma (in th8b) times_commute: "times x y = times y x"

proof(induction x rule: p1)

case (1 x)

then show ?case

using lemma_times_suc lemma_times_zero

times_zero times_suc by presburger

qed

lemma (in th8b) times_assoc:

"times (times x y) z = times x (times y z)"

proof(induction x rule: p1)

case (1 x)

then show ?case

by(metis plus_zero plus_commute

lemma_times_zero lemma_times_suc times_zero)

qed

lemma (in th8b) mulMeaningFormula:

"evalBinNum (mulBinNum x y)

= times (evalBinNum x) (evalBinNum y)"

using times_commute and times_assoc

by (induction rule: mulBinNum.induct) (metis plus_zero

plus_commute lemma_times_zero lemma_times_suc)

sublocale th2 ⊆ th1

proof unfold_locales

qed

sublocale th5 ⊆ th1

proof unfold_locales

qed

sublocale th3 ⊆ th2

proof unfold_locales

qed

sublocale th6 ⊆ th2

proof unfold_locales

qed

93

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

sublocale th4 ⊆ th3

proof unfold_locales

qed

sublocale th7 ⊆ th3

proof unfold_locales

qed

sublocale th6 ⊆ th5

proof unfold_locales

qed

sublocale th7 ⊆ th6

proof unfold_locales

qed

sublocale th7 ⊆ th4

proof unfold_locales

show "∧n. n = zero ∨ (∃m. suc m = n)"

by (meson th5.axioms(2) th5_axioms th5_axioms_def)

qed

lemma (in th8a) definite_plus: "plus = (THE f. q f)"

proof(simp add: plus_def)

qed

lemma (in th8a) definite_times: "times = (THE g. r g)"

proof(simp add: times_def)

qed

lemma (in th8a) plus_exist_unique: "∃! f. q f"

sorry

lemma (in th8a) times_exist_unique: "∃! g. r g"

sorry

lemma (in th8a) th8a_f: "∀f. q f −→ plus = f"

proof(simp add: definite_plus plus_def plus_exist_unique)

show "∀f. (∀x. f x zero = x ∧ (∀y. f x (suc y) = suc (f x y)))

−→ (THE f. ∀x. f x zero = x

∧ (∀y. f x (suc y) = suc (f x y))) = f "

by (smt (z3) q.elims(3) plus_exist_unique theI_unique)

qed

94

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

lemma (in th8a) th8a_g: "∀g. r g −→ times = g"

proof(simp add: definite_times times_def times_exist_unique)

show "∀g. (∀x. g x zero = zero

∧ (∀y. g x (suc y) = local.plus (g x y) x))

−→ (THE g. ∀x. g x zero = zero

∧ (∀y. g x (suc y) = local.plus (g x y) x)) = g"

by (smt (z3) Uniq_def r.simps th8a.times_exist_unique

th8a_axioms the1_equality’)

qed

sublocale th8a ⊆ th7 zero suc "local.plus" "local.times"

proof unfold_locales

show "∧n. local.plus n zero = n"

using th8a_f plus_exist_unique by auto

show "∧n m. local.plus n (suc m) = suc (local.plus n m)"

using th8a_f plus_exist_unique by auto

show "∧n. local.times n zero = zero"

by (metis r.elims(2) times_exist_unique definite_times the_equality)

show "∧n m. local.times n (suc m)

= local.plus (local.times n m) n"

by (metis times_exist_unique definite_times th8a.r.simps

th8a_axioms theI)

show "∧x. (zero = zero ∨ (∃m. suc m = zero))

∧ (x = zero ∨ (∃m. suc m = x) −→ suc x = zero

∨ (∃m. suc m = suc x)) −→ (∀x. x = zero ∨ (∃m. suc m = x))"

by (metis q.elims(2) r.elims(2) plus_exist_unique times_exist_unique

th8a_g th8a.definite_times th8a_axioms theI’)

qed

lemmas (in th8b) th8_b = p1 [where ?p = "λn . (n = zero) ∨ (∃m .

suc m = n)"]

sublocale th8b ⊆ th7

proof unfold_locales

show "∧x. (zero = zero ∨ (∃m. suc m = zero))

∧ (x = zero ∨ (∃m. suc m = x) −→ suc x = zero

∨ (∃m. suc m = suc x)) −→ (∀x. x = zero ∨ (∃m. suc m = x))"

using th8_b by blast

qed

sublocale th8a ⊆ th8b zero suc "local.plus" "local.times"

proof unfold_locales

95

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

show "∧p x. (∧x. p zero ∧ (p x −→ p (suc x))) =⇒ p x"

by (metis th8a.axioms(2) th8a_axioms th8a_axioms_def)

qed

sublocale th8b ⊆ th8a

proof unfold_locales

show "
∧
p. p zero ∧ (∀x. p x −→ p (suc x)) −→ (∀x. p x)"

using p1 by auto

qed

end

96

Bibliography

Abbasi, M. (2009). Development of a portion of a theory library for mechanized

mathematics system. Master’s thesis, McMaster University.

Andrews, P. B., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., and Xi, H. (1996).

TPS: A theorem-proving system for classical type theory. J. Autom. Reason.,

16(3), 321–353.

Anonymous (1994). The QED manifesto. In A. Bundy, editor, Automated

Deduction - CADE-12, 12th International Conference on Automated Deduction,

Nancy, France, June 26 - July 1, 1994, Proceedings, volume 814 of Lecture Notes

in Computer Science, pages 238–251. Springer.

Ballarin, C. (2006). Interpretation of locales in Isabelle: Managing dependencies

between locales.

Ballarin, C. (2010). Tutorial to locales and locale interpretation. pages 123–140.

Universidad de La Rioja.

Ballarin, C. (2014). Locales: A module system for mathematical theories. J. Autom.

Reason., 52(2), 123–153.

97

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

Carette, J. and Farmer, W. M. (2017). Formalizing Mathematical Knowledge as a

Biform Theory Graph: A case study. CoRR, abs/1704.02253.

Carette, J., Farmer, W. M., and O’Connor, R. (2011). MathScheme: Project

description. In J. H. Davenport, W. M. Farmer, J. Urban, and F. Rabe, editors,

Intelligent Computer Mathematics - 18th Symposium, Calculemus 2011, and 10th

International Conference, MKM 2011, Bertinoro, Italy, July 18-23, 2011.

Proceedings, volume 6824 of Lecture Notes in Computer Science, pages 287–288.

Springer.

Carette, J., Farmer, W. M., and Sharoda, Y. (2018a). Biform theories: Project

description. In F. Rabe, W. M. Farmer, G. O. Passmore, and A. Youssef, editors,

Intelligent Computer Mathematics - 11th International Conference, CICM 2018,

Hagenberg, Austria, August 13-17, 2018, Proceedings, volume 11006 of Lecture

Notes in Computer Science, pages 76–86. Springer.

Carette, J., Farmer, W. M., and Laskowski, P. (2018b). HOL light QE. volume

abs/1802.00405.

Chaieb, A. (2021). Hol/presburger.thy.

Chaieb, A. and Nipkow, T. (2003). Generic proof synthesis for Presburger

arithmetic. Technical report.

Farmer, W. M. (2007). Biform theories in Chiron. In M. Kauers, M. Kerber,

R. Miner, and W. Windsteiger, editors, Towards Mechanized Mathematical

Assistants, 14th Symposium, Calculemus 2007, 6th International Conference,

98

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

MKM 2007, Hagenberg, Austria, June 27-30, 2007, Proceedings, volume 4573 of

Lecture Notes in Computer Science, pages 66–79. Springer.

Farmer, W. M. (2008). The seven virtues of simple type theory. Journal of Applied

Logic, 6(3), 267–286.

Farmer, W. M. (2013). The formalization of syntax-based mathematical algorithms

using quotation and evaluation. CoRR, abs/1305.6052.

Farmer, W. M. (2014). Meaning formulas for syntax-based mathematical

algorithms. In T. Kutsia and A. Voronkov, editors, 6th International Symposium

on Symbolic Computation in Software Science, SCSS 2014, Gammarth, La

Marsa, Tunisia, December 7-8, 2014, volume 30 of EPiC Series in Computing,

pages 10–11. EasyChair.

Farmer, W. M. (2016). Incorporating quotation and evaluation into Church’s Type

Theory: Syntax and semantics. In M. Kohlhase, M. Johansson, B. R. Miller,

L. de Moura, and F. W. Tompa, editors, Intelligent Computer Mathematics - 9th

International Conference, CICM 2016, Bialystok, Poland, July 25-29, 2016,

Proceedings, volume 9791 of Lecture Notes in Computer Science, pages 83–98.

Springer.

Farmer, W. M. (2017). Theory morphisms in Church’s Type Theory with Quotation

and Evaluation. In H. Geuvers, M. England, O. Hasan, F. Rabe, and O. Teschke,

editors, Intelligent Computer Mathematics - 10th International Conference,

CICM 2017, Edinburgh, UK, July 17-21, 2017, Proceedings, volume 10383 of

Lecture Notes in Computer Science, pages 147–162. Springer.

99

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

Farmer, W. M. and von Mohrenschildt, M. (2003). An overview of a formal

framework for managing mathematics. Ann. Math. Artif. Intell., 38(1-3),

165–191.

Farmer, W. M., Guttman, J. D., and Thayer, F. J. (1993). IMPS: an interactive

mathematical proof system. J. Autom. Reason., 11(2), 213–248.

From, A. H. (2021). Soundness and completeness of an axiomatic system for

first-order logic. Arch. Formal Proofs, 2021.

Harrison, J. (2009). HOL light: An overview. In S. Berghofer, T. Nipkow, C. Urban,

and M. Wenzel, editors, Theorem Proving in Higher Order Logics, 22nd

International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009.

Proceedings, volume 5674 of Lecture Notes in Computer Science, pages 60–66.

Springer.

Kammüller, F., Wenzel, M., and Paulson, L. C. (1999). Locales - A sectioning

concept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin-Mohring,

and L. Théry, editors, Theorem Proving in Higher Order Logics, 12th

International Conference, TPHOLs’99, Nice, France, September, 1999,

Proceedings, volume 1690 of Lecture Notes in Computer Science, pages 149–166.

Springer.

Kohlhase, M. (2014). Mathematical knowledge management and information

retrieval: Transcending the one-brain-barrier. 1226, 8.

Kohlhase, M., Mance, F., and Rabe, F. (2013). A universal machine for biform

theory graphs. In J. Carette, D. Aspinall, C. Lange, P. Sojka, and

100

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

W. Windsteiger, editors, Intelligent Computer Mathematics - MKM, Calculemus,

DML, and Systems and Projects 2013, Held as Part of CICM 2013, Bath, UK,

July 8-12, 2013. Proceedings, volume 7961 of Lecture Notes in Computer Science,

pages 82–97. Springer.

Krauss, A. (2009). Automating recursive definitions and termination proofs in

higher-order logic. Ph.D. thesis, Technische Universität München.

Krauss, A., Sternagel, C., Thiemann, R., Fuhs, C., and Giesl, J. (2011).

Termination of Isabelle functions via termination of rewriting. In M. C. J. D. van

Eekelen, H. Geuvers, J. Schmaltz, and F. Wiedijk, editors, Interactive Theorem

Proving - Second International Conference, ITP 2011, Berg en Dal, The

Netherlands, August 22-25, 2011. Proceedings, volume 6898 of Lecture Notes in

Computer Science, pages 152–167. Springer.

Massot, P. (2021). Why formalize mathematics?

Ni, H. (2009). Chiron: Mechanizing Mathematics in OCaml. Master’s thesis,

McMaster University.

Nipkow, T. (2013). Programming and proving in Isabelle/HOL. In Technical report,

University of Cambridge.

Oliveira, M., Cavalcanti, A., and Woodcock, J. (2006). Unifying theories in

proofpower-z. In International Symposium on Unifying Theories of Programming,

pages 123–140. Springer.

Owre, S., Rushby, J. M., and Shankar, N. (1992). PVS: A prototype verification

system. In D. Kapur, editor, Automated Deduction - CADE-11, 11th

101

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

International Conference on Automated Deduction, Saratoga Springs, NY, USA,

June 15-18, 1992, Proceedings, volume 607 of Lecture Notes in Computer Science,

pages 748–752. Springer.

Paulson, L. C. (2021). A mechanised proof of gödel’s incompleteness theorems using

nominal Isabelle. CoRR, abs/2104.13792.

Popescu, A. and Traytel, D. (2020). Robinson arithmetic. Arch. Formal Proofs,

2020.

Slind, K. and Norrish, M. (2008). A brief overview of HOL4. In O. A. Mohamed,

C. A. Muñoz, and S. Tahar, editors, Theorem Proving in Higher Order Logics,

21st International Conference, TPHOLs 2008, Montreal, Canada, August 18-21,

2008. Proceedings, volume 5170 of Lecture Notes in Computer Science, pages

28–32. Springer.

Sternagel, C. and Winkler, S. (2018). Certified ordered completion. CoRR,

abs/1805.10090.

Sternagel, C., Thiemann, R., Winkler, S., and Zankl, H. (2012). CeTA - A tool for

certified termination analysis. CoRR, abs/1208.1591.

Tran, M. Q. (2011). Algebraic Constructions Applied to Theories. Master’s thesis,

McMaster University.

Urban, C. and Kaliszyk, C. (2012). General bindings and alpha-equivalence in

nominal Isabelle. Log. Methods Comput. Sci., 8(2).

Wenzel, M. and Paulson, L. C. (2006). Isabelle/Isar.

102

M.Sc. Thesis - Lekhani Ray McMaster University - Computing and Software

Wenzel, M., Paulson, L. C., and Nipkow, T. (2008). The Isabelle framework. In

O. A. Mohamed, C. A. Muñoz, and S. Tahar, editors, Theorem Proving in Higher

Order Logics, 21st International Conference, TPHOLs 2008, Montreal, Canada,

August 18-21, 2008. Proceedings, volume 5170 of Lecture Notes in Computer

Science, pages 33–38. Springer.

Yushkovskiy, A. and Tripakis, S. (2018). Comparison of two theorem provers:

Isabelle/HOL and Coq. CoRR, abs/1808.09701.

Zhang, H. (2009). A Language and a Library of Algebraic Theory-types. Master’s

thesis, McMaster University.

103

	Abstract
	Acknowledgements
	Notation and abbreviations
	Introduction and problem statement
	Formal mathematics
	Research motivation
	Case study
	Challenge problem

	Background
	Traditional predicate logic
	First-order-logic
	Simple type theory
	Transformers
	Syntax-based mathematical algorithms
	Limitations of logic

	Axiomatic theories
	Algorithmic theories
	Biform theories
	An example: BT2

	Local vs. global reflection
	Theory morphisms
	Theory graphs
	Isabelle
	Isabelle theories
	Overview of Isar
	Isar commands

	Locales
	Sublocales
	Locale interpretations

	Objective
	Case study
	Challenges of the case study
	Research questions
	Previous solutions
	CTTuqe
	Agda

	Approach
	The different approaches
	Our approach

	Axiomatic theory graph
	The formalization of the biform theories
	Interpretations
	Sublocales

	Biform theory graph
	Transformers which manipulate numerals
	Evaluation function for binary numerals
	Addition of binary numerals
	Multiplication of binary numerals
	Meaning formulas for addition and multiplication

	Transformers which manipulate expressions
	Language of the theories
	Recognizers of the formulas of the theories
	Induction schema generators
	How do we connect the transformers to the locales?

	Decision procedures

	Related work
	Formalization in Isabelle
	Formalization of biform theories
	Review of available literature on locales

	Conclusion and future work
	Conclusion of contribution
	Recommended work

	Formalization in Isabelle
	BinNum.thy
	Syntax operations
	Theory graph

