Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28016
Title: An Investigation of Graph Signal Processing Applications to Muscle BOLD and EMG
Authors: Sooriyakumaran, Thaejaesh
Advisor: Noseworthy, Michael
Department: Biomedical Engineering
Keywords: MRI;EMG;Graph Signal Processing;Muscle;Signal Processing;BioSignal
Publication Date: 2022
Abstract: Graph Signal Processing (GSP) has been used in the analysis of functional Magnetic Resonance Imaging(fMRI). As a holistic view of brain function and the connections between and within brain regions, by structuring data as node points within the brain and modelling the edge connections between nodes. Many studies have used GSP with Blood Oxygenation Level Dependent (BOLD) imaging of the brain and brain activation. Meanwhile, the methodology has seen little use in muscle imaging. Similar to brain BOLD, muscle BOLD (mBOLD) also aims to demonstrate muscle activation. Muscle BOLD depends on oxygenation, vascularization, fibre type, blood flow, and haemoglobin count. Nevertheless the mBOLD signal still follows muscle activation closely. Electromyography (EMG) is another modality for measuring muscle activation. Both mBOLD and EMG can be represented and analyzed with GSP. In order to better understand muscle activation during contraction the proposed method focused on using GSP to model mBOLD data both alone and jointly with EMG. Simultaneous mBOLD imaging and EMG recording of the calf muscles was performed, creating a multimodal dataset. A generalized filtering methodology was developed for the removal of the MRI gradient artifact in EMG sensors within the MR bore. The filtered data was then used to generate a GSP model of the muscle, focusing on gastrocnemius, soleus, and tibialis anterior muscles. The graph signals were constructed along two edge connection dimensions; coherence and fractility. For the standalone mBOLD graph signal models, the models’ goodness of fits were 1.3245 × 10-05 and 0.06466 for coherence and fractility respectively. The multimodal models showed values of 2.3109 × -06 and 0.0014799. These results demonstrate the promise of modelling muscle activation with GSP and its ability to incorporate multimodal data into a singular model. These results set the stage for future investigations into using GSP to represent muscle with mBOLD, EMG, and other biosignal modalities.
URI: http://hdl.handle.net/11375/28016
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Thaejaesh_Sooriyakumaran_FinalSubmission2022August_MASc.pdf
Open Access
13.31 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue