
An Investigation of Graph Signal Processing Applications to

Muscle BOLD and EMG



An Investigation of Graph Signal Processing
Applications to Muscle BOLD and EMG

By Thaejaesh Sooriyakumaran, B.Eng

McMaster University © Copyright by Thaejaesh
Sooriyakumaran August 22, 2022

http://www.mcmaster.ca/


Master of Applied Science (2022)

School of Biomedical Engineering

McMaster University

Hamilton, Ontario, Canada

TITLE: An Investigation of Graph Signal Processing Applications

to Muscle BOLD and EMG

AUTHOR: Thaejaesh Sooriyakumaran, B.Eng

SUPERVISOR: Dr. Michael D. Noseworthy

NUMBER OF PAGES: xvii,167

ii

https://www.eng.mcmaster.ca/msbe
http://www.mcmaster.ca/


Lay Abstract

Magnetic Resonance Imaging(MRI) and electromyography (EMG) are techniques

used in the analysis of muscle, for detecting injury or deepening the understanding

of muscle function. Graph Signal Processing (GSP) is a methodology used to

represent data and the information flow between positions. While GSP has been

used in modelling the brain, applications to muscle are scarce. This work aimed

to model muscle activation using GSP methods, using both MRI and EMG data.

To do so, a method for being able to simultaneously record MRI and EMG data

was developed through hardware construction and the software implementation

of EMG signal filtering. The collected data were then used to construct multiple

GSP models based on the coherence and complexity of the signals, the goodness

of fit for each of the constructed models were then compared. In conclusion, it

is feasible to use GSP to model muscle activity with multimodal MRI and EMG

data. This shows promise for future investigations into the applications of GSP to

muscle research.
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Abstract

Graph Signal Processing (GSP) has been used in the analysis of functional Mag-

netic Resonance Imaging(fMRI). As a holistic view of brain function and the con-

nections between and within brain regions, by structuring data as node points

within the brain and modelling the edge connections between nodes. Many stud-

ies have used GSP with Blood Oxygenation Level Dependent (BOLD) imaging of

the brain and brain activation. Meanwhile, the methodology has seen little use in

muscle imaging. Similar to brain BOLD, muscle BOLD (mBOLD) also aims to

demonstrate muscle activation. Muscle BOLD depends on oxygenation, vascular-

ization, fibre type, blood flow, and haemoglobin count. Nevertheless the mBOLD

signal still follows muscle activation closely. Electromyography (EMG) is another

modality for measuring muscle activation. Both mBOLD and EMG can be rep-

resented and analyzed with GSP. In order to better understand muscle activation

during contraction the proposed method focused on using GSP to model mBOLD

data both alone and jointly with EMG. Simultaneous mBOLD imaging and EMG

recording of the calf muscles was performed, creating a multimodal dataset. A

generalized filtering methodology was developed for the removal of the MRI gradi-

ent artifact in EMG sensors within the MR bore. The filtered data was then used

to generate a GSP model of the muscle, focusing on gastrocnemius, soleus, and

tibialis anterior muscles. The graph signals were constructed along two edge con-

nection dimensions; coherence and fractility. For the standalone mBOLD graph

iv



signal models, the models’ goodness of fits were 1.3245 × 10-05 and 0.06466 for

coherence and fractility respectively. The multimodal models showed values of

2.3109 × -06 and 0.0014799. These results demonstrate the promise of modelling

muscle activation with GSP and its ability to incorporate multimodal data into

a singular model. These results set the stage for future investigations into using

GSP to represent muscle with mBOLD, EMG, and other biosignal modalities.
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Chapter 1

Lower Limb Background

1.1 Muscle

1.1.1 Anatomy

Muscle, due to its ability to contract, is the tissue responsible for movement.

Muscular tissue is subdivided into three categories; cardiac, skeletal, and smooth,

each having a specific role within the body (Noto et al. 2020); cardiac (i.e. heart)

being responsible for circulating blood, skeletal being responsible for movement of

bones, and smooth for peristaltic movement of the viscera and vasoconstriction in

arterioles. The following is a description specifically of skeletal muscle. Muscle is

both highly vascularized and highly metabolically active. (Noto et al. 2020) It is

a multi-nucleated tissue with high numbers of mitochondria per cell; this allows

muscle to generate the large amounts of energy necessary for contraction.

The fundamental contractile unit is the sarcomere, comprised of myofilaments.

Myofilaments come in two protein types; thick comprised of myosin, and thin made

of actin.

Sarcomeres are joined end to end to form a myofibril. Muscle cells are referred
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Figure 1.1: Muscle Structure Illustration: Visualization of Mi-
crostructure to Macrostructure. Sarcomere to Muscle, the hierar-
chical grouping of substructure. (Credits: "OLI - Drawing Struc-
ture of skeletal muscle - English labels" at AnatomyTOOL.org by
Open Learning Initiative, license: Creative Commons Attribution-
NonCommercial-ShareAlike)
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to as muscle fibres and are made up of myofibrils. The fibres are multi-nucleated

and elongated cells. These fibres are bundled within sheaths of connective tissues;

the bundles are called fascicles. Groupings of fascicles, along with the vascular

and nervous tissue, comprise a muscle (Noto et al. 2020).

Motor neurons are efferent neurons that innervate muscle fibres; a motor unit

(MU) is defined as a motor neuron and all the muscle fibres that it innervates(Noto

et al. 2020). A NeuroMuscular Junction (NMJ) is the junction between the motor

nerve and the motor unit endplate. The endplate connects to the sarcolemma;

a tissue that acts like a sleeve containing the myofibrils within a muscle fibre.

(Noto et al. 2020) The sarcolemma invaginates deep into the muscle cells, the

invaginations are termed transverse tubules (T-Tubules). Between the T-Tubules

are sarcoplasmic reticuli (SR), hollow structures that contain Ca2+. (Noto et al.

2020)

1.1.2 Physiology

The myofibrils actin and myosin found within muscle cells are responsible for con-

traction. The sliding of these myofibrils past each other allows for the contraction

of individual sarcomeres; multiple sarcomeres contracting together is what allows

a muscle fibre to contract. This contraction is fueled by high energy phosphate

from adenosine triphosphate (ATP), which is maintained through the hydrolysis of

phosphocreatine (PCr) to creatine (Noto et al. 2020). The binding sites on myosin

are where ATP is hydrolyzed into ADP, the protein tropomyosin covers these bind-

ing sites. When Ca2+ is present, it causes troponin to bind to tropomyosin which

then causes tropomyosin to uncover the ATP binding sites; allowing for contrac-

tion to occur (Noto et al. 2020). Muscle contraction is a metabolically demanding
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action, sustained contraction requiring large amounts of energy. To have access to

that much energy, glycogen, an endogenous polysaccharide macromolecule made

up of multiple glucose units, is hydrolysed into multiple glucoses. The resultant

glucose is then oxidized for energy via glycolysis, to generate the necessary amounts

of energy for the muscle. In addition to the glucose, large amounts of oxygen is

also needed (McLean et al. 2018; T. et al. 2013). This process is called aerobic

respiration, and continues while sufficient oxygen is supplied. In the case that the

energy demand outpaces the cardiovascular system’s ability to provide oxygen to

a muscle, the regime transitions from aerobic to anaerobic respiration (McLean

et al. 2018). The energy deficit is compensated by using alternative pathways

of extracting energy from the glucose molecules that do not rely on the supplied

oxygen (T. et al. 2013). Anaerobic respiration is not used until aerobic respiration

(and oxygen delivery) cannot keep up with demand because it is less efficient and

creates waste byproducts, such as lactate, that need to be excreted (McLean et al.

2018; T. et al. 2013).

1.1.2.1 Electrophysiology

The motor neuron conducts an action potential (AP) from the central nervous

system (CNS) to the motor unit towards a synapse that terminates at the neu-

romuscular junction (NMJ) (Noto et al. 2020). The AP crosses via a cholinergic

synapse causing the muscle fibre to depolarize; however this creates not an AP but

an end plate potential (EPP). The EPP opens voltage gated sodium (Na+) chan-

nels resulting in an AP that is propagated by sarcolemma (Noto et al. 2020). The

AP travels deep into the tissue along the sarcolemma, into the T-Tubules. The
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AP triggers voltage gated Ca2+ channels lateral sac of SR, this kicks off contrac-

tion by releasing Ca2+ into the sarcomere. (Noto et al. 2020; Rodríguez-Carreño

et al. 2012) The electrophysiological signal is called a motor unit action potential

(MUAP), similar to an AP but encompasses all of the fibres in the motor unit

(Noto et al. 2020; Rodríguez-Carreño et al. 2012).

1.1.2.2 Skeletal Muscle

Skeletal muscle is responsible for more than just movement; it plays a role in tem-

perature regulation, and is vital to maintaining proper posture. Skeletal muscle

is the only muscle tissue that can be voluntarily controlled, garnering it name

voluntary muscle (Institute n.d.). Skeletal muscle is defined as muscles that con-

nect to bone and actuate the skeletal system. This is generally the case, however,

in the case of ocular muscles they connect to and actuate the eyeball. Skeletal

muscle is attached to bones via tendons, these bundles of connective tissue aid

muscles in movement by absorbing shock, and acting as springs to rebound en-

ergy. This rebounding is crucial to energy efficient movement, reusing energy that

could otherwise damage the body if not properly counter-balanced.

Contraction/Activation Modes

The energy needed for contraction of muscle is supplied by constant levels of ATP,

which is maintained by PCr. This releases energy that is then used by the muscle

to contract. The ATP available to a muscle is limited by; ATP stores in the

muscle, glycogen and triacylglycerols stores in the muscle, and the muscle’s ability

to generate ATP during sudden metabolic demand (Baker et al. 2010).
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Muscles do not have large stores of ATP, with a density of 8mmol per kg of

muscle (Baker et al. 2010). This ATP store is quickly depleted in highly metabol-

ically active cells like myocytes. There are three pathways for replenishing the

ATP; direct phosphorylation, aerobic respiration, and anaerobic glycolysis.

Direct phosphorylation, transfers a phosphate group from PCr to adenosine

diphosphate (ADP), regenerating an ATP molecule. This is the fastest and most

direct method of phosphorylating an ADP. It is so direct that the muscle stores

much more PCr than ATP, since it can replenish direct ATP stores as they begin

depletion. However PCr levels will also be depleted quickly, leading to the other

two methods of ATP generation.

When PCr is low, phosphorylation will have to be performed using blood glu-

cose and muscle glycogen. The glucose is broken down into pyruvate at which point

the pathway splits based on oxygen availability. In the case of sufficient muscle

oxygen supply and fibre perfusion, aerobic respiration will metabolize pyruvate

via oxidative metabolism in the mitochondria to create carbon dioxide, water, and

ATP. In the alternate case of insufficient oxygenation, pyruvate is reduced to lac-

tic acid (via lactate dehydrogenase) in an anaerobic fashion and much less ATP is

produced; 19 molecules of ATP are produced in aerobic respiration for every one

in anaerobic respiration. (Rockel 2017)

Fibre Type

Skeletal muscle can be split into two fibre types; Type I and Type II. Type I

are slow-twitch muscles designed for prolonged activation, and reduced reaction

time compared to Type II. Type I fibres are also known as slow oxidative fibres.

Slow-twitch fibres have increased delivery of oxygen and nutrients within the fibre.
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Slow-twitch muscles also have large capillary systems to facilitate oxygen supply

necessary for the large number of mitochondria to maintain aerobic metabolism.

The oxygen is both stored and shuttled around the muscle fibre by myoglobin

(Muscle Fibre Types 2022). Slow oxidative fibres have large amounts of this protein

which increases oxygen delivery and consequently the endurance of the fibre type

(Muscle Fibre Types 2022; Human Skeletal Muscle Fiber Type Classifications |

Physical Therapy | Oxford Academic 2022).

Type II are fast-twitch muscles. These are better suited for short duration

contraction, with greater speed and force. Fast-twitch fibres respond faster but

are not suited for extended periods of activation. Type II is further divided into

two subcategories; Type IIa and Type IIb. The majority of fast-twitch fibres are

Type IIb, or anaerobic fibres with reduced oxygen demand. This results in reduced

mitochondrial numbers and blood supply. On the other hand, Type IIa fibres per-

form oxidative metabolism(Muscle Fibre Types 2022). Type IIb fibres are called

fast glycolytic fibres, while IIa fibres are also called fast oxidative fibres. The fibre

type composition of a skeletal muscle is drives the functional characteristics of

the muscle. Muscles that require the ability to exert great amounts of rapid force

have larger proportions of fast-twitch fibres, while the so called "anti-gravity" mus-

cles associated with posture and stabilization are primarily slow-twitch fibres that

are more suited to long, constant contraction(Muscle Fibre Types 2022; Human

Skeletal Muscle Fiber Type Classifications | Physical Therapy | Oxford Academic

2022).
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Exercise

Exercise is defined as the flexion of muscles. The ends and purposes of which are

dependent on the scenario. An exercise paradigm can greatly impact the way the

muscles function and are used. Flexion and relaxation, onset and offset, nutrient

and oxygen supply will all be influenced by multiple factors.

Muscle contraction can be divided into two categories defined by muscle tension

and length; isometric and isotonic. Isometric contraction refers to the length

of a muscle staying static while tension changes, whereas isotonic contraction is

maintenance of muscle tension while muscle length changes. The change in length

of isotonic contraction has two further divisions; the elongation of the muscle is

eccentric and the shortening of the muscle is concentric.

The efficacy of the contraction of a muscle is dictated by the anatomy of the

joints and the force exerted by the muscle. The anatomy is important as it directs

the force of a contracting muscle in a desired direction. If a muscle crosses over

a joint, it will act upon; if it attaches to a bone, it will pull on it. This is made

evident by antagonistic muscles such as the biceps and triceps muscles of the upper

arm. They both actuate on the elbow and it is the differences in attachment that

make the biceps responsible for flexion of the elbow and the triceps for extension.

The contractile force generated by a muscle can be modeled as a function of

its cross sectional area (Zamparo et al. 2022). This shows that a muscle’s force

output is non-linear along the length of its contraction, as the change in cross

sectional area is also non-linear along its range of motion. Interpreting this to

the micro-scale it is due to the sarcomeres producing highest amounts of tension

when there is a certain overlap of the thick and thin filaments. Either more or
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less overlap results in reduced output. The contractile force of a sarcomere is due

to molecular cross-bridge activation binding. The hydrolysis of ATP causes the

cross-bridge to extend in order to attach to actin, then the cross-bridge undergoes

the power stroke before detaching from the actin. This results in the movement of

one filament in reference to another, shortening the distance between sarcomere z-

discs. This cycle will repeat causing further contraction. This is done en masse by

the sarcomeres leading to the contraction of the entire muscle. This explains why

innervation of muscle is so deep, and why asynchronous contraction of sarcomeres

within a muscle creates irregularities in contraction. This may have side-effects

such as; reduced coordination and delaying full contraction.

Recovery

While a muscle is contracting, resources are being used to perform the activity.

The units of a muscle are self-limiting in their exertion, preventing the muscle

from contracting to the point of damaging the contractile units. There is strong

negative feedback from the Golgi tendon organs. Though undamaged, the offset

of exertion causes the muscle to enter a recovery stage that can be differentiated

from the muscle at rest as it is physiologically different.

The muscle is not able to perform to the same extent during recovery. This

could be short lived while the muscle is flushed with blood to supply oxygen,

replenish nutrients, and remove by-products of the exertion. It could also be

longer term if the muscle must be physically repaired from the damage.

For a muscle that has undergone exercise that only used ATP stored in the

muscle, the recovery will be characterized by the restoring ATP. For a muscle that

was exerted to the point of direct phosphorylation, recovery will also incorporate
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the replenishing of PCr within the muscle. Furthermore for a muscle recovering

from anaerobic respiration, in addition to the ATP and PCr replenishment, lactate

must be cleared and the resultant acidic effectson the local environment must be

repaired.

1.1.3 Innervation

The innervation of muscle differentiates itself from other tissues as the innervation

penetrates deep into the tissue so that the entirety of the muscle contracts in

synchrony. This is facilitated by the anatomy of the muscle, with deep reaching

transverse tubules and sarcolemma.

1.1.4 Blood Supply/Vascularization

Muscle is a very resource intensive tissue, requiring elevated blood flow to supply

resources. Each muscle is home to many capillaries; the more capillaries the lesser

the diffusion distances of oxygen and nutrients. This also greatly increases the

muscle’s efficiency at removal of waste products into the blood stream. This is es-

pecially important when muscle is contracting. The flow of arterial blood into the

muscle is restricted due to the morphological changes in muscle during contraction.

This is inverse to venous flow. Skeletal muscle contraction compresses the compli-

ant venous vasculature, increasing blood pressure. This drives blood through the

body, preventing pooling of blood. The flow changes with extended contraction

resulting in vasodilation, allowing increased blood flow. This extends the time

a muscle can remain in the aerobic respiration regime and hastens recovery post

contraction (18.7C 2018).
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Figure 1.2: Cross Sectional View of Human Calf. Gastrocnemius,
soleus, and tibialis anterior muscles are shown. The tibialis anterior
shown lateral to the tibia. The soleus and gastrocnemius shown
on posterior of the leg, with the soleus deep to the gastrocnemius.
(Credits: from commons.wikimedia.org scanned from (Braus 1921))

1.2 Lower Leg

1.2.1 Skeletal Muscles

Anatomically, the lower leg is defined as the region between the knee and the ankle.

In this area, there are a plethora of muscles necessary to move the ankle and toes

through their large number of movements with limited effect on the knee.
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1.2.1.0.1 Gastrocnemius

The gastrocnemius is the most superficial muscle on the posterior aspect of the

lower leg. It is comprised of a medial and lateral head. It is a muscle that has a

high fast-twitch fibre fraction and plays a significant role in explosive movements

such as jumping. The medial and lateral heads originate from the medial and

lateral femoral condyles respectively. These then insert into an aponeurosis that

attaches alongside the soleus’ tendon creating the Achilles tendon.

Figure 1.3: Gastrocnemious Muscle(Credits: Taken from Gas-
trocnemius | Encyclopedia | Anatomy.app | Learn anatomy | 3D
models, articles, and quizzes 2022)

The gastrocnemius has two separate blood supplies, one for the lateral and one

for the medial head. Separate as they may be, both are supplied by sural branches

of the popliteal artery. The innervation of the gastrocnemius is done by the tibial

nerve from the S1 and S2 levels of the spinal column (Gastrocnemius 2022).

12



M.A.Sc. Thesis – Thaejaesh Sooriyakumaran McMaster–Biomedical
Engineering

1.2.1.0.2 Soleus

The soleus muscle is deep to the gastrocnemius and attaches to the Achilles ten-

don. Conversely to the gastrocnemius, the soleus has a high slow-twitch fraction.

It plays a vital role in standing posture. The difference between the soleus and the

gastrocnemius is the fibre composition differences. This difference generates huge

disparities in function making the gastrocnemius more suited for quick, powerful

movements and the soleus more for slow, sustained movements. Unlike the gas-

trocnemius, the soleus originates on the fibula, with a spread over the posterior

aspect of the fibular head, posterior surface of the fibular, and to a tendon that

connects the two other origin points. The soleus then joins with the gastrocnemius

to insert into the Achilles tendon.

The soleus is supplied by the posterior tibial, peroneal, and sural arteries

(Soleus 2022). Also, similar to the gastrocnemius, the soleus is innervated by

the tibial nerve from the same S1 and S2 spinal levels.

1.2.1.0.3 Tibialis Anterior

The tibialis anterior is found on the anterior aspect of the lower leg, lateral to the

tibia. It runs along the leg and inserts medially on the foot. Contraction of the

tibialis anterior results in dorsi-flexion of the heel and inversion of the foot. The

muscle also features very consistent muscle fibre orientation, making it ideal for

imaging methods that are sensitive to fibres and their orientations. The tibialis

anterior originates on the lateral side of the tibia, which it also runs along. The

origin points include the lateral tibial condyle, the lateral surface of the tibial shaft

and interosseus membrane (Tibialis Anterior 2022).
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Figure 1.4: Soleus Muscle (Credits: Taken from
massagetherapy.com/articles/soleus-muscle-strain
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Due to the tibialis anterior being on the anterior aspect of the leg, the blood

supply comes from the anterior tibial artery. The innervation differs from the

gastrocnemius and soleus, and is innervated by the deep peroneal nerve from spinal

levels L4, L5, and S1 (Tibialis Anterior 2022).

Figure 1.5: Tibialis Anterior Muscle (Credits: Taken from
mobilephysiotherapyclinic.in/tibialis-anterior-muscle-details/
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Chapter 2

MRI and Applications in Muscle

2.1 MR Theory

Nuclear magnetic resonance (NMR) is the fundamental basis underlying magnetic

resonance imaging (MRI). It begins with the use of a large static magnetic field (B0)

to affect (align) nuclear spins. The spins are then excited using radio frequency

(RF) pulses that are modeled as a tipping of nuclear gyrating axes away from the

direction of the main magnetic field. As nuclei precess back into alignment with

the field, they release energy which induces a voltage in an appropriately tuned

RF receiver coil. Due t its abundance the proton (i.e. hydrogen, 1H) is the most

routinely probed atomic nucleus. The frequency at which a proton will precess is

proportional B0 and to its gyromagnetic ratio, γ the product of which is called the

Larmor frequency. This is defined by the equation:

ω = γ ∗ B (2.1)

The gyromagnetic ratio of hydrogen is 42.58 MHz/T. Therefore for a field strength

of 3 Tesla, the Larmor frequency of hydrogen is 127.74 MHz.
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2.2 MRI

For spatial localization pre-defined (in space and time) linear non-uniformities

in B0 are introduced. This is accomplished by superimposing three orthogonal

linear magnetic field gradients (X, Y, Z) at specific timings and with varying

amplitudes. The imaging pulse sequence manipulates these gradients in order

to encode imaging space. The manipulation of these gradients also allows for

different types of scans to be performed, permitting the imaging of different tissue

properties. Equations 2.2 to 2.4 show the individual formulae for each of the

gradients, the gradients are defined as the derivative of the field with respect to a

cardinal direction. Equation 2.2 describes the X gradient as the spatial derivative

of Bz along the X-axis. Any of these can be substituted into the Larmor frequency

calculation, doing so replaces Equation 2.1 with Equation 2.5, creating an equation

that can be used to calculate the Larmor frequency as a function of location.

Furthermore Equation 2.6 describes field strength at a specific position.

Gx = ∂Bz

∂x
(2.2)

Gy = ∂Bz

∂y
(2.3)

Gz = ∂Bz

∂z
(2.4)

ω(x) = γB(x), ω(y) = γB(y), ω(z) = γB(z) (2.5)

B(x) = B0 + x · Gx (2.6)
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These equations describe the resultant frequency encoding of spins along those

directions. This is also accompanied with phase and slice encoding directions.

The phase encoding is done to create a phase gradation along a direction that

is used to back-calculate the position of a proton based on its phase. Following

that is the slice selection gradient that is used to determine the slice that is being

imaged.MRI is capable of collecting three dimensional images, this is generally

done by collecting multiple two dimensional slices. The collected two dimensional

slices are in the frequency domain. The Fourier transform is a mathematical

operation capable of converting spatial domain information into frequency domain

information. MRI takes the collected frequency and phase data and uses the

inverse Fourier transform to convert the slices into spatial domain data. Although

MRI is well suited for resolving details, meaning it has fine spatial resolution, it

is not suited for detecting rapid changes; in other words MRI has poor temporal

resolution. Acquiring the images requires RF pulse to tip the alignment of the

nuclei away from the main field. These sequences are designed to create desired

tip angles and field realignment.

The two basic families of pulse sequences are spin echo and gradient echo. The

Former, in the most basic sense, has a refocusing RF pulse that minimizes loss

of signal due to differences in magnetic susceptibility. The latter refocuses spins

with a gradient, and although faster than spin echo is more sensitive to magnetic

susceptibility. Using combinations of operator set parameters echo time (TE)

repeat time (TR) and flip angle 9for gradient echo, not spin echo) one can result

in different contrast weightings, called T1 and T2 weighted images. Both types

of weighting can be achieved with either spin echo or gradient echo. T1 weighted

images have bright fat and dim water as fat is fast to return to an equilibrium
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state, whereas water is slower (Vadera and Jones 2009).

2.3 The BOLD Effect

Blood oxygen level dependent (BOLD) imaging is a method of acquiring func-

tional magnetic resonance imaging (fMRI) data first described in 1990 (Ogawa et

al. 1990). Its function hinges on the oxygenation state differences of hemoglobin,

oxygenated hemoglobin (oxyHb) being diamagnetic with deoxygenated hemoglobin

(deoxyHb) being paramagnetic (Ogawa et al. 1990; Murphy and Gaillard 2008).

This means blood flowing to supply a tissue with oxyHb will exhibit diamagnetic

qualities and after supplying the tissue it will gain paramagnetism as deoxyHb. In

order to image this change, the MRI sequence must be capable of highlighting the

hemoglobin’s change in magnetic susceptibility. A T2* weighted image is used to

measure this change, it should be noted that it is also susceptible to other inho-

mogeneities in the field, such as those due to the structure of the subject (Murphy

and Gaillard 2008). The following equations relate the change in signal T2 with

changing magnetic field inhomogeneity:

1
T 2*

= 1
T 2

+ 1
T 2’

(2.7)

1
T 2*

= 1
T 2

+ ∆B0γ (2.8)

T2* is the effective T2 decay, with the change in homogeneity in the field

creating a shift from the expected T2. The difference from homogeneity of the field

is due to the magnetic susceptibility of the tissues and tissue structures interacting

19



M.A.Sc. Thesis – Thaejaesh Sooriyakumaran McMaster–Biomedical
Engineering

with the field, resulting in deflections in the field lines away from homogeneity.

This is shown in Equation 2.7 with the T2’ term, which represents the shift in the

expected T2 as the product of the difference from the expected field strength and

the gyromagnetic ratio.

As BOLD is dependent on blood flow and oxygenation, it is used to determine

metabolic activation in the body (Ogawa et al. 1990). Blood flow to the brain

is related to mental load, meaning that BOLD can be used to observe regions of

brain activity. This is not limited only to the brain, BOLD can also be used to

image other tissues. For example, muscle, which is highly vascularized, requires

large volumes of oxygen when active (Jordan et al. 2004). Using BOLD to image

muscle can glean information on muscle function and status. Carcinomas also

have high levels of vascularization and oxygen use, therefore BOLD could is used

to measure activity within cancerous tissue(Baudelet and Gallez 2002).

2.4 BOLD Imaging

BOLD imaging builds on the BOLD effect, which uses a gradient-echo pulse se-

quence that is sensitive to differences in magnetic susceptibility induced through

changes in the ratio of oxyHb/deoxyHb. Using a cylindrical sample with a mag-

netic susceptibility model ∆χ:

OutsideCylinder : ωs

ω0
= 2π∆χ(r

a
)2[(2cos2θ − 1)] (2.9)

InsideCylinder : ωs

ω0
= −2π

3 ∆χ (2.10)
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The model represents the frequency shift ωs created by the magnetic suscep-

tibility, with: r and θ being the polar coordinates of the position in respect to

the center of the cylinder, and a as the radius of the cylinder(Ogawa et al. 1990).

Ogawa et al. assumed the field to be homogeneous within the cylinder, and noted

that the T2 decay is quadratically related to the blood water oxygenation (Ogawa

et al. 1990).

BOLD imaging in the brain, aims to measure neuronal activity by correlating

neuronal activation with metabolism which, in turn, is reliant on blood oxygena-

tion. The approach indirectly measures activation via a MR signal change that

is comprised of a combination of changes in cerebral blood volume (CBV), cere-

bral blood flow (CBF), and the cerebral metabolic rate of oxygen consumption

(CMRO2). However, this indirect measurement is closely correlated with neuronal

activation (Lajoie et al. 2016; Huber et al. 2019). BOLD is an easily accessible

and widely accepted technique.

2.5 Functional MRI (fMRI)

BOLD plays a tremendous role in fMRI as the foremost used technique, so much

so that the terms BOLD and fMRI have colloquially become interchangeable.

However as new techniques are developed, other functional imaging methods have

become valid options for assessing function. Researchers have also used methods

such as; arterial spin labeling (ASL), vascular space occupying (VASO) imaging,

and calibrated fMRI as methods to more directly measure the underlying phe-

nomena that BOLD indirectly measures (i.e. CBF, CBV, and CMRO2 imaging)
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Figure 2.1: fMRI Alternative Options: These alternatives might
be better served imaging muscle exercise and its underlying physi-
ology than muscle BOLD. They would need to be re-calibrated for
muscular tissues as opposed to grey and white matter. (Credits:
Reprint with permission from (Huber et al. 2019) from Elsevier
Publishing)

(Huber et al. 2019). Each method has advantages and drawbacks compared to

BOLD. As seen in Figure 2.1,

Another parametric mapping technique is chemical shift imaging (CSI) where

the spectroscopic amplitude of a molecular NMR peak is used. Furthermore ad-

vancements in acquisition technologies and methods have started to blur the lines

between fMRI and functional magnetic resonance spectroscopic imaging (fMRSI).

Being able to perform spectroscopy acquisitions on a voxel level resulting in a

functional image, brings the two fields closer together. Leftin et al., as seen in Fig-

ure 2.2, has shown that fMRSI of muscle activation is possible with interleaving a

stimulus (Leftin et al. 2014).
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Figure 2.2: Functional Spectroscopy Imaging: Imaging of Pyru-
vate and Lactate over time in response to stimulus in murine leg.
Imaging paradigm with bolus, stimulus, and imaging interleaved.
Translation of this sequence to human models can be a powerful
tool for imaging metabolite levels during exercise. (Credits: Reused
from doi.org/10.1371/journal.pone.0096399.g005 )
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2.5.1 Muscle BOLD (mBOLD)

BOLD MRI techniques have been adapted for uses outside of the brain. Muscle

BOLD (mBOLD) has become both a clinical and research tool. As oxygen ex-

change occurs in muscle and thus Hb paramagnetic changes, BOLD is well suited

for imaging muscle. The large blood and oxygen demand of active muscle creates

strong BOLD contrast. That being as it may, mBOLD has differences and con-

founding factors not noted in cerebral BOLD. The fibre composition, for example,

plays a role in BOLD. Due to Type I, IIa, and IIb skeletal muscle fibres having

different physiological and chemical properties, the BOLD effect can vary between

them. This is further muddled by the fibre to fibre variations in myoglobin, dis-

tance from a capillary, or the time varying oxygenation status of the fibre. Some

factors such as myoglobin, as discussed below, have a direct impact on BOLD

measurement.

2.5.1.1 Myoglobin and Hemoglobin

Myoglobin (Mb) is a molecule similar to Hb. It is found throughout skeletal mus-

cle. The half-saturation pressure of Mb is an order of magnitude lower than that

of hemoglobin, resulting in a greater oxygen affinity. In skeletal muscle, unlike

other tissues, myoglobin can be desaturated( dMb) when performing rigorous ex-

ercise or during ischemic bouts. That being said, the BOLD portion of myoglobin

cannot be easily measured in vivo due to the presence of hemoglobin (Michel et al.

2019). "The blood oxygen level dependent (BOLD) effect of in-vitro myoglobin and

hemoglobin" reaffirmed what Ogawa et al. had discussed in their seminal BOLD

paper about the oxygenation effects of hemoglobin on its T2 and T2* values (Michel
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et al. 2019). However, Michel et al. also studied the effects of oxygenation on the

measured decay constants of myoglobin, observing a BOLD-like effect. This was

done using equine metmyoglobin (metMb) that was converted into MbO2. For

various oxygenation levels of Mb and Hb samples; T1, T2, T2*, and balanced

steady-state free precession (bSSFP) mapping were done.

2.5.1.2 mBOLD and Oxygenation

As per its namesake, mBOLD fMRI has been used extensively to assess the impact

of oxygen supply to muscle on its function. Many studies have induced changes

in oxygen supply to study the response or to emulate musculo-vascular conditions

that similarly impact muscle. For example, induced ischemia is popular as it is

easy to perform via tourniquet and can gleam insight into the muscle’s response

to transient oxygen shortage.

The offset of induced ischemia causes reactive hyperemia as an inrush of blood

is supplied to the muscle which also creates learning opportunities. Reactive hy-

peremia emulates the elevated blood supply of post-contractile hyperemia without

the interference of muscular contraction during the scan. Be that as it may, the

differences between post-contractile and reactive hyperemia have been studied.

The differences determine the efficacy of reactive hyperemia as a viable emulation

of post-contractile hyperemia.

As research continues, confounding factors of the mBOLD technique are discovered

in addition to alternative theories and perspectives on its function. The contrac-

tion of muscle restricts the inflow of arterial blood while increasing the outflow of

venous blood (18.7C 2018). Vasodilation of arteries results in increases in blood

flow, creating a characteristic blood flow curve around contraction that can be
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modelled. This hemodynamic response can be implemented to better model con-

traction.

The oxygen availability to the muscle and its oxygen requirements come in

three flavours; hypoxia, hyperoxia, and normoxia. When there is adequate oxygen

supply to a muscle it is deemed normoxia. The other two are when the supply and

demand do not match up. Hypoxia is a lack of oxygen whereas hyperoxia is an

excess of oxygen to the muscle. Though categorized under hypoxia and hyperoxia,

there are many different causes that can result in either case. The simplest is

contractile hypoxia as the oxygen demand of the muscle outpaces the available

supply. This is followed by post-contractile hyperoxia as the increased blood flow

lingers after contraction ends, leading to an excess supply of oxygen to the muscle.

Induced hypoxia is the synthetic creation of a hypoxic environment by restricting

blood flow through the use of tools such as a tourniquet. This also leads to a state

of transient hyperemia when the tourniquet is removed causing a large influx of

blood bringing oxygen along with it resulting in reactive hyperoxia. All of these

have different physiological responses, each of which needs to be further studied

to create a holistic understanding of muscle oxygenation.

Another application for BOLD-like measurements is as a metric of muscle oxy-

gen extraction, measuring not the activation but the oxygen used. Uwano et al.

investigated the oxygen extraction fraction (OEF), using a quantitative suscepti-

bility mapping (QSM) method with a 7T scanner in brain (Uwano et al. 2017).

This was done to replicate the OEF measurement done with positron emission

tomogrophy (PET) and was done using T2* weighted 3D images and a multiple

dipole-inversion algorithm (Uwano et al. 2017). The OEF maps were based on

differences in susceptibility seen in brain tissue and the venous structures (Uwano
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et al. 2017). There is an opportunity for this QSM-OEF to be applied to muscle

studies.

(Chopra et al. 2009) also contrasted BOLD R2* and oxygen electrode measure-

ments. R2* is the reciprocal of T2*, shown in Equation 2.12. The study showed

promise for R2* as a prostate cancer hypoxia quantifying metric.

R2∗ = 1
T 2∗

(2.11)

In 2016 Lajoie et al., investigated mapping CMRO2, OEF, and the BOLD cali-

bration parameter M. Using quantitative O2(QUO2), a calibrated BOLD method-

ology (Lajoie et al. 2016). Simultaneously they measured cerebral blood flow

(CBF) and R2* during rest, hypercapnia, and hypoxia. The team created mul-

tiple maps of oxygen, blood flow, and R2*, that were then used to estimate re-

producibility. Within and between subject variabilities were calculated for seven

regions. The reproducibility metrics of grey-matter for O2 delivery, M, and OEF

were 3.87%, 16.8%, and 13.6% respectively(Lajoie et al. 2016), indicating more

research is needed to decrease noise levels.

2.5.1.3 mBOLD and Muscle Function

The resultant BOLD image is further affected by the specific muscle in question,

its fibre type composition and oxygenation status. Furthermore there are other

factors such as age, athletic status, or disease.

With age, muscle conditioning and composition changes. Consequently age is a

factor in mBOLD imaging that must be considered. The atrophy and loss of mus-

cle fibres with age is not uniform within a muscle nor is it consistent with muscle
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or muscle fibre type. Fast-twitch fibres are preferentially atrophied, skewing the

signal (Falaschi and Marsh 2021). There is also a neurological factor involved as

the force production reduction is not totally explained by the loss of muscle volume

(Wilkinson et al. 2018). This is also accompanied by anabolic resistance that de-

velops in the elderly (Wilkinson et al. 2018). Unsurprisingly athletic conditioning

impacts muscle and measurements of muscle activation. Resistance exercise leads

to increase muscle perfusion, increased neurological connection, increased mus-

cle protein synthesis, and increased recovery. It is widely accepted that fibre type

composition determines athletic inclinations. Sports requiring explosive power will

benefit greatly from Type II fibres with their larger diameters and wide-ranging

sarcoplasmic reticulum, allowing for faster and harder contraction through the

rapid and perfuse release of calcium. For endurance applications, Type I fibres are

more suited. The rate of recovery of athletes is higher than those with a sedentary

lifestyle.

Disease can impact the muscle and imaging of the muscle. The effect of which

depends on the disease and its interaction with the BOLD effect. Peripheral arte-

rial occlusive disease (PAOD) is a form of atherosclerosis. It manifests as occlusions

and stenoses within the blood vessels. This then leads to changes in muscle mi-

crovasculature and muscle composition change which ultimately affects mBOLD

as the blood supply is affected (Partovi et al. 2012). Another disease that also

affects muscle vasculature on the micro and macro levels is diabetes; affecting the

BOLD image that is tied to the vascular function of muscle(Partovi et al. 2012).

Smoking is an activity with a plethora of deleterious impacts on the body. One

such impact is a reduction of lung function. One secondary effect includes change

in muscle blood flow response (MFR) which then indirectly changes the temporal
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response of mBOLD data. This impacts the BOLD signal of smokers relative to

non-smokers presenting as longer T1/2peak and time to peak (TTP) (Nishii et al.

2015).

Muscle function is unique to each muscle, as previously discussed, the fibre

composition of a muscle is heavily influenced by the function. Donahue et al. used

simultaneous gradient-echo and spin-echo echo planar imaging (EPI) to image

graded ischemia in muscle (Donahue et al. 1998). When measuring relaxation

rates for both gradient- and spin-echo the response varied between gastrocnemius

and soleus muscles. This suggested that susceptibility dependent techniques may

be used for mapping ratios of large and small blood vessels within muscle (Donahue

et al. 1998). This can be extrapolated to map fibre type fractions in muscles, due

to difference in vascularization in fast and slow twitch fibres.

2.5.1.4 mBOLD and Field Strength

The equations that govern MR imaging are dependent on the field strength and

thus systems with differing field strengths will vary in response. The following

equations show that T2* changes depending on the strength of the static field

B0, due to the T2’ term that accounts for inhomogeneities of the field. This

inhomogeniety could be caused by; the homogeneity of the static field, materials

within the field that are external to the tissue of interest, or the tissue itself.

1
T 2*

= 1
T 2

+ 1
T 2’

(2.12)

1
T 2*

= 1
T 2

+ ∆B0γ (2.13)

M0 = ρ0γ
2h̄

4kT
B0 (2.14)
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Mx(t) = M0e
-t/T2sin(γB0t) (2.15)

My(t) = M0e
-t/T2cos(γB0t) (2.16)

M z(t) = M0(1 − e-t/T1) (2.17)

Equation 2.14 shows the relation between the field inhomogeneities and the

effective T2 decay. The M0 denotes the net magnetization, which is dependent

on the target nuclei density, gyromagnetic ratio, field strength, Plank’s constant,

Boltzmann constant, and temperature.

Since the effective T2 of MRI changes with field strength, the images also

changes. Thus it is necessary to verify that techniques that work at one field

strength are still viable at another. As seen in Equations 2.12 to 2.17, the mea-

sured T2* is dependent on field strength. Equations 2.16 and 2.17 specifically show

the transverse magnetization components, and consequentially the measured sig-

nal is a function of T2. Equation 2.18 shows that the longitudinal magnetization

is not affected by the T2, this is expected as T2 is known as the transverse relax-

ation time. It can also be shown that the noise in the system is proportional to

the strength of B0, however the signal increases according to B0
2 thus the signal-

to-noise ratio (SNR) increases linearly with B0(Robert et al. 2014). The larger

field strength also interacts more with regions of high bulk magnetic susceptibil-

ity (BMS), meaning that field homogeneity is more easily affected by endogenous

sources of magnetic susceptibility, such as the oxygenation status of hemoglobin.

Therefore, for applications that make use of BMS, changes will show more dis-

tortion at higher field strengths. The magnetic susceptibility effects increase with

B0 and some that are negligible at lower field strengths must be accounted for at

higher field strengths(Robert et al. 2014).
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CylinderInternalF ieldShift = ∆χ

6 (3cos2θ − 1)B0 + 1
3χeB0 (2.18)

CylinderExternalF ieldShift = ∆χ

2
a2

ρ2 (sin22ϕ)B0 + 1
3χeB0 (2.19)

The local field effects of the vessels are modelled by an infinite cylinder. This

model shows part of the impact of field strength on the BOLD signal, the field

inhomogeneity is modelled as linear with field strength but as shown, this is not

directly linear with signal (Robert et al. 2014). Equations 2.19 and 2.20 show the

field shift internal and external to a cylinder with a susceptible material compo-

sition. With χ being the susceptibility, a being the diameter of the cylinder, θ

being the angle of the cylinders to the field, ρ and ϕ are the polar coordinates

for the model. This model translates from brain BOLD to muscle BOLD as the

structure of muscle can be modelled as cylinders, therefore there is room for the

modelling of the muscle BOLD signal building on the cylindrical model already

used in brain. This model is used throughout brain imaging, in muscle BOLD it is

even more relevant due to the structure of muscle being comprised of hierarchical

sizes of fibrous structures. From the muscle fibre down to the sarcomere, all can be

modelled as cylinders with internal and external field shifts. This is also shown in

the mBOLD R2* assessments of Towse et al. discussed below (Towse et al. 2016).

2.5.1.5 Multimodal mBOLD

Imaging modalities each have their strengths and weaknesses. Pairing modalities

can improve outcomes by covering the weaknesses of the combined modalities with

the strengths of the others. This comes in multiple forms; compensation for spatial
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or temporal resolution, redundancy in measurements, or additional dimensional-

ity. Arm over head (AOH) is an imaging position designed to permit the BOLD

imaging of brain and forearm muscle simultaneously. The study by Tang et al.

focused on the connection between default brain modes and muscular activation.

Finding that there may be default mode networks responsible for muscular activa-

tion, only possible by combining brain BOLD imaging and muscle BOLD imaging

(Tang et al. 2020).

Ledermann et al. concurrently measured mBOLD, TransCutaneous Oxygen

Pressure (TCPO2), and Laser Doppler Flowmetr y(LDF). This was done to com-

pare the mBOLD signal intensity with the more quantitative measures of blood

oxygenation. Calculating the correlation of mBOLD measurements through the

time course of reactive hyperemia, showing differing results for varying parameters

(Ledermann et al. 2006).

Towse et al. used a multimodal approach in their efforts to quantify mBOLD

viability at 7T, since the R2* of muscle changes with field strength (Towse et

al. 2016). Using an induced ischemic protocol in conjunction with both Doppler

ultrasound and Near-InfraRed Spectroscopy (NIRS) to measure blood flow and

oxygenation changes in scans at 3T and then again at 7T, they found R2* at 7T

was greater than at 3T by nearly a factor of 6. From this work they concluded 7T

had increased sensitivity to muscle vasculature (Towse et al. 2016).
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2.6 Electromyography (EMG)

Electromyography (EMG) records the electrical activity generated during muscle

activation. EMG records MUAPs through electrodes, as well as amplifying, fil-

tering, and processing the signal. EMG can be single or multi-channel, meaning

singular or multiple readings can be made concurrently. In general, multi-channel

recordings result in multiple concurrent parallel readings. EMG requires elec-

trodes, be they surface electrodes or invasive. Invasive electrodes offer greater

signal fidelity as they are closer to the source, at the cost of being recorded from

a smaller volume of tissue and not representing the activity of the whole muscle.

Surface electrodes are widely used as they are non-invasive and are more represen-

tative of the entire muscle’s activity. The signals at the skin are in the microVolt

to milliVolt ranges, thus amplification is needed; however amplifying such small

signals results in the amplification of any noise resulting in the needed for filtering

and processing. EMG can capture rapid changes, with high temporal resolution,

but lacks in spatial resolution (in comparison to MR imaging). When using surface

electrodes the signal passes through multiple tissues before reaching the electrode,

thus pinpointing specific motor units is difficult.

2.6.1 Application

Recording MUAPs from a MU grants insight into the function of the muscle, this

information can then be used to assess and diagnose the state of the MU. MUAP

waveforms have distinct components that each represent a step in the MUAP

generation process, variations from the norm can be inspected to determine the

causes of any malfunctions.Another application of EMG is for control, since it
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captures MUAPs that are meant to control muscle, the signals can also be used

to control electronics. These signals can be fed to prostheses or augmentations.

2.7 Multimodal fMRI

The idea of using other modalities alongside fMRI is not new, Allen et al. published

in 2000 discussing the removal of imaging artifacts introduced into EEG signals

during fMRI scanning. (Allen et al. 2000) The paper addresses one of the major

hurdles of multimodal systems, intermodal noise, the noise introduced into a signal

due to another modality. In this case, the noise introduced into the fMRI readings

are negligible unlike the impact the fMRI has on the EEG. The gradient switching

of the MRI induces large amounts of noise that swamps out the EEG signal, This

noise has to be removed using processing procedures. The method proposed by

Allen et al. later known to be the Allen method is to have a channel measuring

only the gradient noise and then subtracting that from the noisy EEG signal. This

is shown to denoise the signal to a significant level. (Allen et al. 2000) This has

become a staple technique for the combined use of EEG and MRI, and a starting

point for more advanced techniques to be developed to better remove gradient

noise.

EMG and fMRI have been used together, Behr built a system to collect the

concurrent data and remove gradient artifacts from the EMG data (Behr 2016).

A custom built EMG system sampling at 4kHz was utilized alongside a General

Electric MR750 3T MRI scanner fitted with an extremity coil with 8 channels. The

data underwent artifact removal, the method being an adaptation of the FASTR

procedure outlined by Niazy et al. originally designed for EEG/fMRI (Niazy et
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al. 2005). Consisting of slice timing alignment, artifact template subtraction, fol-

lowed by principle component analysis (PCA) residual removal, and adaptive noise

cancelling (Behr 2016). The experimental procedure consisted of two experiments;

one with a phantom and one with a human participant. The main scans being EPI

BOLD with parameters; TE = 35ms, TR = 250ms, flip angle = 33 degrees, 3-4

10mm thick slices. The human experiment focused on plantar flexion of the right

medial gastrocnemius in a block design using 30% and 50% of the participants

Maximum Voluntary Contraction(MVC).

EMG, fMRI, and Graph Theory have been explored by Piovanelli et al. using

a sEMG array in concert with T2 mapping of the right forearm, termed mus-

cle functional MRI(mfMRI) (Piovanelli et al. 2020). The muscle currents were

then modelled using graph theory using the fMRI data to segment the data and

register the electrodes in space. Back calculation of the signals generated a con-

ductance matrix throughout the forearm and also patterns for the currents within

the muscles(Piovanelli et al. 2020). The team created a novel method for assessing

muscular currents specific to the anatomy and function.

An alternative imaging technique to BOLD is parametric T2 mapping (Lota

et al. 2017). T2* mapping is also possible using gradient echo sequences. It

is used in cardiomyopathy imaging for viewing iron overload (Lota et al. 2017).

Physiological mechanisms for T2 have been proposed; the earliest hypothesis is the

post contraction hyperemia resulting in the increased signal intensity. It has been

shown that perfusion effects alone are not enough to generate the signal increase.

Oxygenation level of the tissue is another possible explanation. T2* does decreases

along with oxygenation yet during reperfusion the T2* decay does not return along

with the hyperperfusion. Later understanding points to muscle water moving to

35



M.A.Sc. Thesis – Thaejaesh Sooriyakumaran McMaster–Biomedical
Engineering

the myofibrillar space (Patten et al. 2003).
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Chapter 3

Graph Signal Processing,

Stockwell Transform, and

Spatio-Time-Frequency

Representations

Graph Signal Processing (GSP) is a technique capable of replicating physical and

functional connections by manner of how it constructs the dataset. It can be used

to represent MRI data, by way of generating a sparse functional connectivity map

of sampled points. The GSP approach to data focuses not only the specific points

that were sampled but also the features between points presented as edges(Ortega

et al. 2018).

The Stockwell Transform (ST) is a technique for converting time and space

domain signals into signals in time, space, and frequency (Battisti and Riba 2016;

Wang n.d.). It has seen use in geology, climatology, and increasingly in med-

ical imaging. In its simplest form, the Stockwell Transform is a alternative to

the Fourier Transform that is Gaussian windowed in time and space, resulting
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in a spatio-temporal frequency representation. However the applications of the

Stockwell Transform have been hindered by its high order dimensionality lead-

ing to infeasibly high memory usage. This makes it functionally impossible to

use the Stockwell Transform on larger images and especially functional data over

time(Wang n.d.).

GSP can be used to circumvent this issue by reducing the size of data trans-

formed. Instead of transforming an entire volume-time series, singular or groups

of points can be transformed and linked via Graph edges (Ortega et al. 2018).

The use of GSP to compensate for this drawback is investigated in this study

using muscle functional MRI (fMRI), also known as muscle BOLD (mBOL). Fo-

cused on the three muscles of Tibialis Anterior (TA), Gastrocnemius (GC), and

Soleus (SOL), this study investigated the use of GSP and the ST for classifying

intermuscular and intramuscular activation.

3.1 Graph Signal Processing

Graph Signal Processing(GSP) is a technique capable of replicating physical and

functional connections by manner of how it constructs the dataset. Used to rep-

resent MRI data, it can generate a sparse functional connectivity map of sampled

points. The GSP approach to data focuses not only on the specific points that

were sampled but also features between points presented as edges (Ortega et al.

2018).
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3.1.1 Graphs

Graphs are a data structure that contain data within two different forms; nodes

and edges. Structurally, nodes are positions within the graph and the edges are

the connections between nodes. The data is contained in both the nodes and the

edges. This can be used to represent many things, most commonly for navigation

where the nodes represent locations and destination while the edges represent the

distance between nodes, time to travel between nodes, and traffic between the two

nodes. This also takes advantage of the fact that edges can be multi-dimensional,

holding information from multiple information types.

3.1.2 Graph Signals

A graph signal is a signal superimposed over the graph. This can be in the form

of a time varying signal. For example the temperatures in different locations

throughout the week embedded as a time varying signal overlaid onto node data.

This is not specific to nodes, the edges can also be representing a changing signal.

Graph signals are now a combination of data structure and a signal. This means

processing methods for both are now possible. Traversal of graphs is an area of

mathematics with wide ranging economic and logistical applications.

3.1.3 Graph Signal Processing

Data can be represented in multiple ways; the default is the one in which the

data were acquired. The data may be grouped together in space or time; but

there is no relationship defined between data points, other than the position of

adjacent voxels. A Graph is defined by a set of points, named nodes or vertices,
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and connections between them are called edges. Imposing a signal over the nodes

and edges of a Graph is called a Graph Signal. This change in representation may

seem trivial, but it allows for Graph Signal specific processing methods and visual

representations, that may be more intuitive to viewers. The field of processing

Graph Signals is known as Graph Signal Processing (GSP).

3.2 Stockwell Transform

3.2.1 Frequency Domain Representation

The field of signal processing depends heavily on spectral analysis; the analysis

of a signal after converting it into the frequency domain. The main method of

frequency domain transformation is the Fourier Transform (FT), the issue with

the FT is that the generated frequency spectrum is a time averaged one. Meaning

that any time dependent frequency components are indiscernible. This is not an

issue with just the FT but frequency domain representations as a whole. The

solution to this issue is found in joint time-frequency domain representations.

3.2.2 Time-Frequency Domain Representation

These representations simultaneously represent the data in time and frequency, so

time dependent frequency components are preserved. That is not to say that all

transforms for generating time-frequency domain representations are created equal.

The Short-time Fourier Transform (STFT) uses a sliding window and generates

multiple frequency spectra over time, outputting a spectrograph. The Wavelet

Transform (WT) is another time-frequency transform, but phase information is
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not absolutely referenced and amplitude response varies with frequency. These

drawbacks are mitigated in using the Stockwell Transform (ST). Which uses a

Gaussian window.

3.2.3 Generalized Fourier Transform

The differences between these transforms can be highlighted by first outlining the

similarities (Wang n.d.). A Generalized Fourier Transform (GFT) for a single

dimensional signal is described as:

GFT (t, f) =
∞∫

−∞

x(t)w(t − τ, σ)e−j2πftdt (3.1)

The aforementioned transforms can be represented using the GFT equation

with differences between them shown. Firstly the Fourier Transform, is easily

fit to the GFT form when the window function w(t − τ, σ) is a constant, more

specifically 1.

Fourier Transform Equation as a GFT variant:

FT (f) =
∞∫

−∞

x(t)e−j2πftdt (3.2)

As shown by the GFT form of the Fourier Transform, it can be considered

one which has a singular time window over all time resulting in the expected time

averaged spectrum. Other transforms are only minor differences away from the

standard Fourier Transform. Introducing a rudimentary windowing function in

place of the constant results in the STFT. The window function has σ of constant
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value shifting w(t − τ, σ) into w(t − τ). This window can be filled using popular

windows such as: Hanning, Hamming, Rectangular, etc.

STFT as GFT variant

STFT (t, f) =
∞∫

−∞

x(t)w(t − τ)e−jωtdt (3.3)

The STFT window is used to create multiple frequency spectra over time, re-

sulting in a spectrograph. This represents the change in frequency over time. The

Wavelet Transform is another method of generating a time-frequency representa-

tion.

WT as GFT variant

WT (a, b) = 1√
a

∞∫
−∞

Ψ(t − b

a
)x(t)dt (3.4)

The Wavelet Transform is inherently different from Fourier based transforms in

that it is not based on the same basis function. Where the FT uses sinusoids, the

WT uses a Mother Wavelet that is chosen by the user. In this case, the Fourier

Transform can be considered a sub-form of the WT that uses a sinusoid as its

Mother Wavelet in place of another such as: Haar, Daubechies, Morlet, or others.

This is observed in Equation (3.4); the sinusoid basis otherwise known as the kernel

of the GFT, e−j2πft and the window function w(t − τ, σ) have been combined into

Ψ( t−b
a

). Where a and b are the scaling and time shifting factors respectively. In

contrast to the STFT, the WT window both translates and scales. The scaling

term a is analogous to the σ in the GFT window, and is non-constant when

compared to the STFT. To this effect, the Stockwell Transform can be considered
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a mix of the STFT and the WT. Retaining the sinusoidal kernel of the STFT and

having a scaling window function that is explicitly a Gaussian with σ = f .

3.2.4 Stockwell Transform

ST as a GFT variant:

ST (τ, f) =
∞∫

−∞

x(t) |f |√
2π

e− (t−τ)2f2
2 e−j2πftdt (3.5)

Classic description of the ST:

ST (τx, τy, τt, fx, fy, ft) =
+∞+∞+∞∫∫∫
−∞−∞−∞

h(x, y, t) |fx||fy||ft|
(
√

2π)3
·

e−
(x−τx)2f2

x(y−τy)2f2
y (t−τt)2f2

t
2 ·

e−j2π(fxx+fyy+ftt)dxdydt

(3.6)

The Stockwell Transform Gaussian window is generated over all dimensions of

the input signal. This creates a multidimensional space that contains temporal,

spatial, and spectral information.

The Stockwell Transform was used in this investigation due to the its benefits

over the Wavelet Transform. In comparison to the WT, the ST retains information

about phase in respect to the input signal. That is not to say it does not come with

its drawbacks. The main drawback is the sheer size of the output, the number of

dimensions is double that of the input as seen in Equation (3.6).

This can quickly balloon out of hand, as the output becomes less and less

manageable as the size of the input grows, limiting large images or higher sampling

frequencies. A small volume-time series of size 256x256x4x1024 can be stored
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in memory using 256MB, after transforming using the ST in four dimensions it

becomes size 256x256x4x1024x256x256x4x1024 requiring size 65536TB. As regions

or time spans of interest increase, the amount of memory needed to work with the

ST can become unruly or impossible to compute, greatly impeding the feasibility

of the ST for image processing. This can be circumvented by using small regions

of interest.

Nyquist, Redundancy, and the DOST: When sampling in digital systems, dis-

crete data is collected and discrete transforms are used. The discretized form of

the ST, DST is available, but another form is better used.

The Nyquist-Shannon sampling theorem outlines the relationship between the

frequency content of a signal and the necessary sampling rate to capture that

signal. This implies that for a given frequency content, sampling frequencies higher

than the Nyquist sampling rate prove less necessary and increasingly redundant.

In the case of a time-frequency representation, the lower frequency components

require less resolution than the higher frequency components. Thus a constant

sampling frequency is redundant; this also applies to the Stockwell Transform,

leading to the use of the Discrete Orthogonal Stockwell Transform(DOST). The

DOST creates a more Nyquist-Shannon efficient output compared to the standard

DST.
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3.3 Stockwell Transform + Graph Signal Pro-

cessing

Using a Graph Signal, containing multiple nodes within regions of interest can

greatly reduce the effective region of interest and thus make the use of the Stock-

well Transform without running into computational roadblocks. This method

creates an opportunity for multi-resolution analysis of data features at and be-

tween points and anatomical regions. Expanding on the concept of nodes, the

establishment of layers of nodes can provide more insight. Renaming the single

voxels so far called nodes as micronodes, and the 3x3x3 block centered around

the micronode as a macronode. The information contained between micronode

and macronode can show local changes in the time-frequency representation. This

sparse-ST generation will reduce the aforementioned example image data from

256x256x4x1024 to 3x3x3x1024 (256MB to 27kB/macronode) and the post-ST

size from (256x256x4x1024)2 to (3x3x3x1024)2 (65536TB to 729MB/macronode).

The total amount of memory required for the macronode subsampling method will

depend on the number used, but is drastically less than that needed for the entire

volume series.
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Chapter 4

Problem, Hypothesis, and

Objectives

4.1 Problem Definition

The proper function of muscle is vital in the maintenance of walking and sitting

posture, mobility, individual autonomy, among others. Studying the activation of

muscle pre, during, and post-voluntary contraction is pivotal in understanding how

to maintain normal muscle function through disease, injury, and aging. Analysis

of muscle function and physiology is a field that is rapidly expanding. Various

techniques have been adapted from other areas to analyze muscle. The use of

GSP, not used previously with muscle, has been used in the analysis of brain

images. Just as brain GSP has allowed for the observation of network activation

trends and other unique metrics, muscle GSP could show promise for illuminating

new understanding in muscle. To date, there is no methodology for modelling

muscle activation using a GSP approach nor for the multimodal representation of

muscle in a single data structure.

46



M.A.Sc. Thesis – Thaejaesh Sooriyakumaran McMaster–Biomedical
Engineering

4.2 Proposed Solution

The proposed solution aimed to use a GSP approach to assess mBOLD data col-

lected from calf muscles of healthy males. An exercise paradigm was used that had

muscles contracting and resting in intervals. The data was acquired concurrently

with electromyography scans. The study was approved by the local research ethics

board.

To improve computational memory efficiency the use of the node sub-sampling

method, outlined in chapter 3, was used. The nodes were analyzed without the

macronode structure due to the imaging parameters. The graph signals were con-

structed with coherence and fractility to assess two features within one structure.

This was then fit and statistically analyzed to determine efficacy in representing

the data with a goal of being a building block for further studies into muscle

physiology with GSP.

4.2.1 Hypothesis

Muscle BOLD has been used as a measure of muscle activation to assess activation

and function. Work in the brain has demonstrated the applicability of GSP to

functional data. This investigation hypothesizes that the application of GSP to

both mBOLD and EMG/mBOLD will result in a deeper comprehension of the

physiology of muscle during voluntary contraction.

The objectives of this work were:

• To generate coherence and fractility graph signals for mBOLD signals derived

from calf muscles with and without an accompanying EMG signal;
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• To analyze generated graph signals with a Generalized Linear Mixed Effect

(GLME) model as a statistical test to determine which feature-set is most

suited to modelling voluntary plantar flexion;

• To create a processing pipeline that can be expanded upon in future explo-

rations of muscle GSP.
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Chapter 5

Methods

5.1 Experimental Subjects

The studies described below were all performed on 10 healthy volunteers aged

23 to 31 (10 male, mean age = 25.6 ± 5.4). The research was funded from a

Natural Sciences and Engineering Research Council (NSERC) Discovery Grant to

Dr. Michael Noseworthy and was approved by our local research ethics board

(Hamilton Integrated Research Ethics Board, HiREB).

5.2 EMG

The EMG system consisted of 6 parts; the electrodes, leads, extension cable, EMG

amplifier, Analog to Digital Converter (ADC), and acquisition computer. The

electrodes shown in Figure 5.22 were not EMG specific but MR compatible elec-

trocardiogram (ECG) electrodes by ConMed (ConMed ClearTrace Radiolucent

Electrode2700-003 adult ECG electrode, Utica, New York). The electrode fea-

tured the following specifications: MR safe, conductive gel adhesive, carbon snap,

Ag/Ag chloride, and a waterproof membrane. These were used as they were easily
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accessible within the lab with prior proof of viability for use with EMG (Behr 2016).

Similarly, the leads for the EMG system were also MR compatible and designed

for ECG. The leads were composed of non-ferrous carbon-fibres, and reduced the

impact of the MR gradient fields on the acquired signal. The extension cable was

used to extend the lead cable out to the 5 Gauss line within the MR room. It

was also made of carbon fibre. The EMG amplifier was designed and assembled in

house, with the PCB manufactured by JLCPCB (https://jlcpcb.com). The power

supply(Analog Discovery 2 by Digilent, 1300 NE Henley Ct. Pullman, WA, USA)

and ADC(NI USB-6221 by National Instruments, 11500 North MoPac Expressway

Austin, TX, USA) were off-the-shelf systems sandwiching the amplifier.

5.2.1 EMG Amplifier Construction

The EMG amplifier was designed and built in house, with the printed circuit

board sent out for manufacturing by JLCPCB. This was done using the free to use

software EasyEDA (https://easyeda.com), to lay out both the circuit schematic

and PCB routing. The amplifier was split into stages; pre-amplifier, amplification

and filtering, and a variable amplification stage.

5.2.1.1 Electronics Design

Pre-Amplifier Design

The pre-amplifier was centered around the use of an instrumentation amplifier.

Specifically the INA128. Instrumentation amplifiers are a component class used

widely in bio-signal acquisition, due to the highly matched input impedances,

high gain, and high CMRR. The instrumentation amplifier can be defined as an
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operational amplifier with matched high impedance input buffer. This device also

allows for the recording of a differential signal with regards to a reference signal.

This stage also has programmable gain through resistor R1 shown in Figure 5.1.

The gain resistor is calculated through the Equation 5.1.

G = 1 + 50kΩ
RG

(5.1)

Figure 5.1: Instrumentation Amplifier Implementation: INA128
preamplifier stage, with 1kWgain programming resistor. Reference
electrode tied to reference voltage.

Filter Design

The filtering stage was a higher order cascade filter-amplifiers. The majority of

which, were second order Sallen-Key filters with set gains. The Sallen-Key ar-

chitecture was chosen for properties such as; stability, ease of design, filtering

characteristics, and ability to be cascaded. The first filtering stage was a 2nd
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order high pass filtering stage, this was chosen as the first stage as it removes

low frequency components in the signal. This included the Direct Current (DC)

portion of the signal so that it is not also amplified by the rest of the system. This

allowed for more head room in amplifying the much smaller Alternating Current

(AC) component. The high pass filtering also removed signal artifacts associated

with movement which had a high fraction of low frequency components.

(a) High pass filter stage, 2nd order Sallen
Key with frequency cut off of 25Hz and gain
of 1.01

(b) Low pass filter stage, 2nd order Sallen
Key with frequency cut off of 513Hz and
gain of 1.18

Figure 5.2: FilterStages 1 and 2

The second filtering stage was also a 2nd order filter, however this stage was a

low pass filter; responsible for removing high frequency components associated with

stochastic noise. This noise was caused by sources such as resistor thermal noise,

changing fields, ElectroMagnetic Interference (EMI), and some of the gradient

noise from the MRI and from the cold-head.

The third stage was a multiple feedback low pass filter and the fourth was

another Sallen Key low pass filter. With a fifth and final filter being low pass

filters, identical to stages 2 and 4, to further improve the noise rejection charac-

teristics.This creates a higher order filter resulting in sharper bandwidth cutoffs
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(a) High pass filter stage,
2nd order Multiple Feedback
with frequency cut off of
26Hz and gain of 1

(b) Low pass filter stage, 2nd

order Sallen Key with fre-
quency cut off of 513Hz and
gain of 1.18

(c) Low pass filter stage, 2nd

order Sallen Key with fre-
quency cut off of 513Hz and
gain of 1.18

Figure 5.3: FilterStages 3,4, and 5

and higher rejection of unwanted frequencies.

Variable Gain Amplifier

The variable gain amplifier was the final stage before the ADC, it was responsible

for a final bout of signal amplification however runs the risk of clipping to the

supply rails if the gain is too large.

It was designed as an inverting amplifier with a manually switchable resistor

bank to determine the gain, gain settings are given in Table 5.1.

Power Supply

The power for the system is provided by the Analog Discovery Kit 2, a multi-

purpose electronics tool by Agilent. The device was used in DC output mode to

provide a power supply of differential +-5V to the positive and negative external
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Figure 5.4: Variable Gain Amplifier: Dip switch programmable
gain, 10 different gain values. Adapting gain to adapt to participant
EMG and gradient artifact amplitudes.

Table 5.1: Variable Gain Stages

Position Gain
1 2.00
2 2.44
3 2.65
4 2.85
5 3.00
6 3.20
7 4.00
8 5.23
9 5.51
10 8.57

rails, shown in Figure 5.6. However this does not provide the necessary ground

reference voltage. This was remedied with a floating ground generator.

This was comprised of a simple resistor voltage divider to create a voltage

point of 0V between the two power rails. This divider was kept more stable

from power supply noise with smoothing capacitors between each rail and the

generated floating ground. This was then buffered with a unity gain buffer so
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Figure 5.5: Analog Discovery 2 by Agilent: Connected to host
computer via USB and supply dual power rail to amplifier circuitry.

that the voltage divider was not effected by the amplification circuit which would

change the reference voltage as the load changes.

Figure 5.6: Virtual Ground Circuitry: Take input dual power rail
supply and output midpoint. Generate ground between the ±5V
rails.
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Table 5.2: Analog to Digital Converter Specifications

Model NI USB-6221
Analog Inputs 8
Analog Output 2
Sampling Rate 250 kSps
Digital I/O 8

Analog to Digital Converter

ADC was a NI USB-6221 by National Instruments. The technical specifications

are shown in Table 5.2.

The data was acquired using a custom interface through LabView by National

Instruments. Sampling was done at 5kHZ. This sampling frequency was deter-

mined as it sufficiently samples the frequency bandwidth of the EMG signal. The

highest frequency component of the EMG power spectrum is 500Hz as per the

Nyquist-Shannon criterion, a 1kHz sampling rate is sufficient to avoid aliasing but

a 5kHz will be able to better recreate the signal(Boxtel et al. 1998).

5.2.1.1.1 Construction

The EMG was assembled within the IRC. Using both a soldering iron and hot air

soldering station. The components were assembled in order of the signal path; this

was done so that each stage could be tested one by one.

Verification

The EMG system was verified outside of the MR scanner, attached to the the biceps

muscle of the upper limb. This was done as a preliminary step to ensure that the

prototype worked as intended as well as for the final device after assembled on a
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Figure 5.7: National Instruments USB-6221 Analog to Digital
Converter: Convert analog output from amplifier into 16-bit digital
signal computer logging.

Figure 5.8: PCB Renders: Models of deisgned PCB prior to man-
ufacturing.

PCB. This was then repeated within the MR room with and without the scanner

acquiring an image. Both scenarios showed the EMG working as intended.
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Figure 5.9: Testing of EMG Prior to Beginning Scan: Verifying
the that the EMG system is able to record the EMG signal within
the MR scanning room.

Usage Precautions

When in use with the MR scanner, a number of precautions must be observed

for optimal performance and safety of the EMG system. The first is to avoid

any looping of the lead cables, this can act as an inductive antenna leading to

unaccounted currents. When in the scanning room, the cable should come out

along the field lines of the bore until passing the 5 Gauss line denoted on the

ground to minimize the induced noise along the length of the cable. Another cable

precaution to be taken into account is the power supply of the ADC. The EMG

cable should be kept away from the power cable of the ADC, as it uses a Switch

Mode Power Supplies (SMPS) that achieves its efficiency by chopping up the power

from the wall. As efficient as it is, it generates a lot of chopping noise that can

couple to the EMG cable and induce very significant noise.
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5.2.1.2 EMG Filtering

A major hurdle in multimodal MR imaging is the noise induced into other modal-

ities. The magnetic field changes induce signals in electrodes and cables. EMG is

not excluded from this effect, the EMG signal is swamped by the induced noise.

This is seen in Figure 5.10 For the recorded EMG data to be usable, it must first

be filtered to remove the gradient induced artifact.

Wavelet Denoising and Impulse Train Filtering

The filtering of the EMG data in order to remove the gradient noise in addition to

other sources of noise was done with a custom filtering pipeline. The figures shown

below are of surface EMG recordings of the tibialis anterior muscle during a block

exercise paradigm of alternating 30 second blocks of rest and plantar flexion.

Figure 5.10: Raw EMG Signal: Waveform of the EMG signal
corrupted with MR gradient artifact, prior to filtering processing.

This was built on prior work within the lab and the work done by Ganesh et al.

(Ganesh et al. 2007). The technique takes advantage of the repetitive TR of the

scan and the consistency of the gradient artifact. Since the induced artifact was

self-similar and repeating, it can be modelled as a signal that had a characteristic

waveform and was repeating at some interval τR. It is known that for a given

59



M.A.Sc. Thesis – Thaejaesh Sooriyakumaran McMaster–Biomedical
Engineering

Figure 5.11: Raw EMG Spectrum: Frequency spectrum of EMG
signal, MR gradient artifact seen as impulse train of 4Hz spacing
with silhouette of Sinc function.

continuous temporal waveform, it will have a continuous frequency representation.

If that same waveform is then repeated periodically, the frequency representation

will then become a discrete impulse train with a matching envelope to that of the

continuous form. The property of interest is: the frequency spacing, fR of the

impulse train is consistent and reciprocal to τR. This property is simply explained

as the resulting convolution of the original waveform with a impulse train.

Applying this to gradient noise leads to an interesting insight, the τR was

equal to the TR of the scanning sequence. Meaning the spacing of impulse train,

otherwise known as a comb function, was the MR scanning frequency. As done by

Ganesh et al., a comb filter tuned to 1
T R

can then be used to remove the gradient

noise. The method used in this thesis used a power line noise removal tool, the

intended purpose of which was to remove 50 and 60Hz noise and their harmonics,

caused by the power supply. In this case however, for a TR of 250ms, a frequency

of 4Hz was used as the spacing of the impulse train. Figure 5.11, shows this 4Hz
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spacing throughout the bandwidth of the spectrum.

This is shown in the Figures 5.12 and 5.13. This greatly reduces the gradient

noise, the harmonic filtering is repeated for 60Hz as the power supply for the ADC

induces large amounts of noise into the signal.

Figure 5.12: EMG After Line Removal: Resultant EMG wave-
form after dampening 4Hz harmonics from the spectrum. The har-
monics of the of the 4Hz initial impulse span the entirety of the
spectrum.

The remaining signal was a mix of the desired EMG signal and unwanted

noise sources such as; motion, cold head noise, and left over gradient noise. This

was tackled using wavelet denoising. The chosen wavelet is the Bior6.8 wavelet,

see Figure 5.14, this was chosen due to the topological similarities to the MUAP

waveform.

This made it a good fit for extracting the desired EMG waveform while rejecting

the background noise. 64 scales were generated with only the higher 48 used, this

works as a high pass filter, removing noises sources such as motion. Figure 5.15
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Figure 5.13: EMG Spectrum After Line Removal: EMG spec-
trum post 4Hz harmonic suppression. 4Hz is the frequency corre-
sponding to the repetition time of 250ms. The artifact spanning the
spectrum being suppressed results in suppression of the artifact.

shows the EMG after the wavelet denoising. The output still contained noise

from multiple sources. During the rest portions of the exercise paradigm, the

subject’s foot was resting against a pedal, consequentially there may be postural

activation of the tibialis anterior raising the baseline of the resting signal this can

be seen in Figure 5.21. The signal was then filtered with a digital Finite Impulse

Response(FIR) bandpass filter of order 500. The cutoff frequencies of the filter

being 20Hz and 500Hz, the output of which is shown in Figures 5.16 and 5.17, all

frequency components outside of the frequency band of interest have been removed.

The Teager-Kaiser Energy Operator (TKEO) was calculated for the signal,

making it easier to determine the onset and offset of contraction. Finally the

filtered signal was downsampled, using a linear interpolation, to match the time

sampling of the mBOLD data. The downsampling was performed because the

processing pipeline requires that the EMG signal match the time span and number
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Figure 5.14: Bior6.8 Wavelet: Wavelet topology resembling that
of the fundamental waveform of the EMG signal. Corresponding
to the motor unit action potential sent from the motor unit nerve
to the muscle. The blue line representing the mother biorthogonal
6.8 wavelet and the red line representing the scaling function.

of samples as the mBOLD data.

The greatest strength of this methodology is that it is widely applicable to MR

scanning with a sensor. This is because the requirements are that the gradient

noise be a repetitive and self similar, and that the TR is known. A prior model

for the waveform of the MR noise is not required. Figure 5.21 hows the ability

of the process to recover the EMG signal that can then be further processed with

conventional EMG techniques. Another large benefit of this technique, as Ganesh

et al. showed in their work, is its ability to be used real time, as data is streaming

in, a comb filter can be applied via hardware digital signal processing. Meaning

that it can be used to analyze signal quality during scanning and direct subjects
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Figure 5.15: EMG After Wavelet Denoising: Waveform of the
EMG signal after wavelet denoising. High pass filtering behaviour
of wavelet denoising as lower scales are omitted. 64 scales were
generated, signal reconstructed using only top 48 scales. Omission
of lower wavelet scale removes motion artifacts and low frequency
noise.

accordingly(Ganesh et al. 2007).

5.3 Scanning Setup

The scanning setup begins with the participant changing into MR compatible

gowns. They were then asked to rest in the supine position, this was done to

normalize blood flow in the leg prior to scanning. This rest lasts for 30 minutes

prior to scanning begin. During the rest period, the leg was prepped for EMG

acquisition.

64



M.A.Sc. Thesis – Thaejaesh Sooriyakumaran McMaster–Biomedical
Engineering

Figure 5.16: EMG Spectrum After Wavelet Denoising: Signal
frequency spectrum after wavelet denoising. High pass filtering
behaviour of wavelet denoising as lower scales are omitted. 64
scales were generated, signal reconstructed using only top 48 scales.
Omission of lower wavelet scale removes motion artifacts and low
frequency noise.

5.3.1 EMG Preparation

The first step in the EMG preparation was to clean the region with an AllKare

Protective Barrier wipe by ConvaTec. Subsequently, the area was abraded using

NuPrep cream and a towelette. The abrasion was done in order to remove the

outermost layer of skin so as to reduce the impedance seen by the EMG amplifier.

The participant was then asked to move their ankle in plantar- and dorsi- flexion

to locate the tibialis anterior muscle. The three surface EMG electrodes are then

placed. The first signal electrode was placed over the muscle belly, the second

7.0cm distal to the first towards the insertion of the muscle.

The third reference electrode, was placed on the tibia, electrodes along the

3.5cm midline between the other electrodes. Tape was then used to reinforce
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Figure 5.17: EMG After BPF: Digital finite impulse response
band pass filter with order 500 implemented with frequency cut
offs of 20Hz and 500Hz to match bandwidth of the EMG signal.
Band pass filtering removes high frequency noise from signal.

Figure 5.18: EMG Before and After Denoising: Impact of digital
band pass filtering and wavelet denoising of the signal, increasing
quality of signal at baseline thus increasing SNR.
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Figure 5.19: EMG Signal Raw(top), After Line Removal(middle),
and Energy Operator output(bottom). Highlighting the ability of
the proposed filtering technique to remove gradient noise and con-
dition EMG signal. Done without modelling the gradient artifact
with only TR known.

the adhesion of the electrodes to the leg. When developing the protocol it was

found that the adhesive on the electrodes was not sufficient to keep the electrodes

attached throughout the entirety of the scanning procedure, thus necessitating the

tape.

5.3.2 Determination of Maximal Voluntary Contraction (MVC)

In order to standardize foot flexion, a percentage of the participant’s Maximum

Voluntary Contraction (MVC) was used. In order to achieve this, a wooden mech-

anism was constructed by Joshua E. McGillivray. This provides resistance for both

dorsi- and plantar- flexion for both legs. The data for this thesis were collected

with only plantar-flexion of the right leg. The handcrafted device sports boxes that

are for adding weights, in this case lead scuba diving weights, to add resistance
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Figure 5.20: EMG Downsampling: The resultant EMG signal
is of too high sampling frequency to be matched to the mBOLD
signal. Interpolating the 5000Hz EMG signal down(top) to the
4Hz signal(bottom) to match the fMRI sampling rate.

to the ankle flexion. The amount of weight is determined by measuring the MVC

of the participant, with 40% used for the scanning protocol. It was designed to

fit onto the bed of the MRI and slot into the notches found under the bed covers.

The top half of then registers on top of the bottom half with alignment dowels.

The right side weight box was added followed by the required lead weights for the

participants. The left side box was not added, instead the Flex Coil used comes

in two parts; the coil and the and the transceiver. The transceiver was placed in

the spot of the left side box, this was done as it was the only way to have the coil

along the calf and still be able to plug the transceiver into the MR scanner.
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Figure 5.21: Cleaned EMG Signal: Signal outputting after per-
forming the filtering pipeline. Showing the ability of the pipeline
to remove gradient artifact without template of artifact waveform.
The cleaned signal is ready to be processed with traditional EMG
techniques now that gradient noise has been removed.

5.4 Scanning Protocol

The scanning protocol contained sequences not relevant to this investigation but for

others, only those pertinent to this investigation are mentioned below. Sequences

omitted also include locator scans at start of scanning session, meant for alignment

of ROI for the subsequent scans.
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(a) Spacing between readout electrodes:
Electrodes placed 7cm apart from edge to
edge, distance maintained across all sub-
jects.

(b) All 3 EMG electrodes placed on participant:
Reference electrode placed superficial to tibia.

Figure 5.22: Placement of EMG electrodes

Figure 5.23: Skin Preparation Products: Area wiped first by
AllKare wipe, then NuPrep applied to clean towel which is then
used to abrade the skin, the electrodes were then adhered.

5.4.1 Anatomical Scan

The anatomical scan is a Proton Density scan that creates a high resolution image

that was used to outline the anatomy, specifically to determine the bounds of

muscles and their fascia. This was important to place ROIs for the rest of the scan
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Figure 5.24: Subject Leg While Attaching Electrode Leads: Elec-
trodes connected to leads with tape restraining movement of con-
nections. Flex coil padded to distance leg slightly from coil surface.
Leg propped up with padding to properly position leg within the lab
designed MRI compatible ergometer. Ergometer has been loaded
with weight corresponding to subject’s 40% MVC.

and for binary masks of the muscles used in the data analysis.

The anatomical scan has the parameters outlined below:

Table 5.3: Anatomical Scan Parameters

Sequence Fat Suppressed Proton Density Weighted
Slices 15

Slice Size 512x512
Voxel Size 0.625mmx0.625mmx4mm

Slice Thickness 4mm
Slice Spacing 1mm

TE 30ms
TR 3000ms

Flipping Anlge 111 °
Time 4:51
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Figure 5.25: Anatomical Scan of Leg: Cross sectional view of
calf, region encapsulating the electrodes. Fat Suppressed Proton
Density scan, used to determine separation of muscles within the
leg and functional slice placement. Slices for functional scan are
selected based on muscle separation seen in anatomical scan.

5.4.2 mBOLD Scans

The muscle BOLD scans are done across two slices, encompassing the entirety of

the cross section of the leg. The slices are chosen to be between the top electrode

and the reference electrode. The scan was also repeated with a saturation band,

both done at rest and with an exercise paradigm. The parameters of the scan

feature a TE of 35 ms, TR of 110 ms, across 2 slices. The full parameter set is

shown in Table 5.4. The resting state mBOLD scans lasted 4:29 minutes whereas

the exercise scans lasted 8:50 minutes. During the exercise paradigm, the subjects

were asked to plantar flex within woody for periods of 66 seconds. The scan was

started at rest, the subject was asked to switch states from rest to flexion or vice

versa. This timeline generated the ground truth activation vector later used in the
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Table 5.4: Resting BOLD Scan Parameters: Sequence parameters
of standalone mBOLD scan.

Sequence BOLD (EPI)
Slices 2

Slice Size 64x64
Voxel Size 2.5mmx2.5mmx10mm

Slice Thickness 10mm
Slice Spacing 0mm

TE 35ms
TR 110ms

Flipping Anlge 70 °
Time 4:29 or 8:50

analysis as seen in Figure 7.1.

5.4.2.1 Saturation Band Impact

A 50mm saturation band superior to the slices of interest was added to suppress

the impacts of arterial blood flow into the leg. The effect of the blood flow is

hyper intensities in the acquired mBOLD images. The difference in the scans

is pronounced, the saturation bands heavily reduced ghosting artifacts that were

present in some participants. The severity of the artifact was participant depen-

dent. For those that were scanned on multiple occasions, the effect varied scan

to scan. This artifact being reduced by the addition of saturation bands was also

observed by Robinson et al. as early as 1998, stating: "... SE[Spin Echo] images

showed small intense features that were eliminated by application of outer slice

saturation bands, eliminate the effect of in-flow signal enhancements." (Robinson

et al. 1998). They further went on to perform histological testing showing the

effects were caused by large blood vessel (Robinson et al. 1998). Figure 5.26 shows

the placement of the saturation band in the protocol, a 50mm saturation band
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was placed directly above the most superior slice of the scan. This was done to

reduce the impact of the in-flow effects on the image.

Figure 5.26: Placement of the Saturation Band: 50mm band
placed superior to slices to reduce impact of inflowing blood. Slice
selection shown overlaid locator scan images, slices placed between
EMG electrodes with the saturation band placed afterwards.

5.4.3 Concurrent EMG/fMRI

The next scan performed was another exercise paradigm that recorded both EMG

and mBOLD data from the participant with scan parameters shown in Table 5.5.

The paradigm differed from the previous in the length of the exercise blocks, 30

seconds of alternating rest and plantar flexion, starting at rest similarly to the

mBOLD standalone scans. The mBOLD scan was first prepped and shimming

was performed. Once that was over, then both the mBOLD and EMG begin

recording at approximately the same time. This was done by having one person
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Table 5.5: EMG BOLD Scan Parameters: Parameters of BOLD
sequence for concurrent mBOLD and EMG acquisition. Exercise
paradigm changed to 30 second blocks of contraction and rest.

Sequence BOLD (EPI)
Slices 2

Slice Size 64x64
Voxel Size 2.5mmx2.5mmx10mm

Slice Thickness 10mm
Slice Spacing 0mm

TE 29ms
TR 250ms

Flip Angle 70 °
Time 5:05

in the MR room, while wearing hearing protection, start the LabView script while

coordinating with the person operating the MR scanner.
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Chapter 6

Data Analysis

6.1 Pre-Processing

The pre-processing of the data was done in FSL. Motion correction was performed

on the functional data to compensate for the movement of subjects throughout the

scan and during contraction. Smoothing was not performed so that complexity

components pertinent to the fractility measure were not removed.

6.1.1 Hardware Specifications

The computation and analysis of the data was performed on a computer with the

specifications shown in Table 6.1.

Table 6.1: Computer Specifications

Model HP Spectre x360 15-bl0XX
Processor Inter(R) Core(TM) i7-7500U CPU @ 2.70-2.90GHz
RAM 16 GB DDR4
GPU Intel(R) HD Graphics 620 & NVIDIA GeForce 940MX
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6.1.2 Masking

For each of the participants’ scans, a binary mask was drawn for each of the

muscles of interest. This was done by using the high resolution anatomical scans

as reference to create the masks with the same resolution as the mBOLD images.

The initial masks, seen in Figure 6.2, were created by Joshua McGillivray.

In the process of making the masks over the mBOLD scans, seen in Figure 6.1,

vasculature and fascia were avoided. Another factor considered when generating

the masks was the angle of the leg. Due to the slice thickness of the functional

scans being 10mm, depending on the angle of the leg, the position of the muscle

fibres can cross voxel boundaries. This results in voxel-voxel cross talk due to the

difference between the laboratory frame and the leg orientation.

Figure 6.1: Functional mBOLD Scan: Image acquired during
mBOLD sequence. The functional data is extracted from the image
concatenated over time.
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(a) Gastrocnemious Mask (b) Soleus Mask

(c) Tibialis Anterior Mask

Figure 6.2: mBOLD Muscle Masks: The binary masks outline
the muscles of interest; gastrocnemius, soleus, and tibialis anterior.
The masks are used in the analysis to extract only information
from the intended muscle. Masks were created using high resolu-
tion anatomical images as reference with resolution of the masks
matching the 64x64 size of the functional scans. The masks were
created using FSL and Matlab to pixel by pixel match the muscle
groups while also avoiding blood vessels, fascia, and partial volume
effects. Masks were made smaller than bounds of the muscles to
compensate for movement during contration.

6.2 Generated Graph Signal

The masks were then used to create a point cloud of nodes, the process of creating

the nodes is shown in Figure 6.3. There was an equal number of nodes created78



M.A.Sc. Thesis – Thaejaesh Sooriyakumaran McMaster–Biomedical
Engineering

within each muscle. These were created using the binary masks created specifically

for each subject, the nodes were randomly seeded within the bounds of each mask

without any seeds sharing the same location. This generated point cloud was the

graph that signals were superimposed onto. The time series data of the voxel

corresponding to each node was then registered onto those nodes. Thresholding of

the time signal was performed so that any voxels that showed no activation were

rejected and another sampling was performed. Figure 6.3 shows the selected points

overlaying the mBOLD image in the top left. These same points are shown in a

three dimensional space, the graph space, in the top right image. The time series

response of a single voxel is also shown. Overall the figure shows the generation

of the graph signal from the mBOLD data.

Figure 6.3: Point Cloud Generation: Visualization of functional
scan with selected points overlaid(top left), the three muscle masks
used to select points within(top center), 3 dimensional space with
representation of placed nodes(top right), and the normalized time
series data from the last placed node(bottom).
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6.3 Spatio-Time-Frequency Transformation

The data was converted into a sparse spatial representation via the node sub-

sampling. The time-series data of the nodes was then transformed using the Stock-

well Transform, more specifically the Discrete Orthogonal Stockwell Transform

(DOST)(FFT-fast S-transforms 2022; Battisti and Riba 2016). This generated

a Graph Signal that contained information in three domains; spatial, temporal,

and frequency. The representation in this case was encoded in time and frequency

for each node position. The frequency-time charts are then correlated along time

between each node pair; resulting in a coherence vector over time for each edge.

Coherence being the correlation in the frequency domain, further defined as the

measure of the covariance between two signals as a function of frequency. This

was encoded onto the edges of the graph to complete the coherence dimension of

the graph signal.

6.4 Feature Extraction

On top of coherence, other features can be extracted between the nodes and used

to fill another dimension of the graph signal. In this case, the fractal dimension

also known as the fractility, of a signal was used. For this to match with the size of

the coherence layer, the signal was windowed and the fractility was calculated for

each window(Sumanth 2022), thus creating the second feature layer for the graph,

a time-varying fractility measure between nodes. This is expandable for multiple

other features, this investigation focused on the coherence and temporal fractility.

Figures 6.5 and 6.6 show constructed connectomes for the coherence and fractility
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Figure 6.4: Activation Function Transformation: Visualization of
times series activation function(top), frequency spectrum of activa-
tion function(middle), and time-frequency representation of activa-
tion function(bottom).

domains respectively. The connectomes display the edge metrics as dotted lines

between nodes. The greater the value of the metric, the thicker the lines. The

colours of the lines denote whether the line represents a positive or negative value.

In Figure 6.5, green edges stand for positive coherences between two nodes at

that time point, likewise for red edges and negative coherences. For fractility, the

differences between fractility measures were used. To highlight the edges of greatest

strength, the connectomes in the figures were thresholded. The same goes for the

node radii and colours; the greater the correlation of the node to the activation

function. Meanwhile the colour represents the sign of the correlation magnitude,

again red for negative and green for positive. The edge connections can also be
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shown as an adjacency matrix; these are also presented in the figures. As the

connection between two hypothetical nodes A and B are isometric, the connection

A to B was the same as B to A. Meaning the adjacency matrix was symmetric

along the identity axis. This is true for the feature dimensions of coherence and

fractility, but may not be the case for others, an an-isometric feature would lead

to a non-redundant adjacency matrix.

Figure 6.5: Constructed Coherence Connectome: Nodes with
edge connections thresholded to Coherences above 0.85, edges visu-
alizing coherence magnitude by diameter and sign by colour(left).
The node positions in the functional scan(top right) and connec-
tome connections shown as a matrix(bottom right).

6.5 Statistical Analysis

The statistical testing of any data analysis is vital to determining the efficacy

of said analysis. Otherwise it becomes a tool without a metric for its use. The

standard statistical test is the Analysis of Variance(ANOVA) used to determine

if two populations, or more, have equal population means. It is widely used but
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Figure 6.6: Constructed Fractality Connectome: Nodes with edge
connections thresholded to Fractility values above 0.5, edges visu-
alizing coherence magnitude by diameter and sign by colour(left).
The node positions in the functional scan(top right) and connec-
tome connections shown as a matrix(bottom right).

it cannot be used for all analyses as it has underlying assumptions for its use;

if a data-set does not meet those assumptions, the test is invalid. The data-set

generated in this study, the graph signal, was one for which the ANOVA is not

valid. The reasons it is so were multi-fold; the data was not normally distributed,

the data was inherently not comprised of independent observations, and an N-way

analysis was necessary. Due to these reasons other tests such as the Kruskal-Wallis

test, which cannot perform N-way analysis, were also not viable.

6.5.1 Statistical Model

When exploring the possibilities, there were only a few viable options. Possibilities

considered include; Multivariate ANOVA(MANOVA), Friedman’s Test, Wilcoxon

83



M.A.Sc. Thesis – Thaejaesh Sooriyakumaran McMaster–Biomedical
Engineering

Signed-Ranked Test, Aligned Rank Transform(ART), and machine learning ap-

proaches. The two most viable options were a Generalized Model(GM) or a ma-

chine learning approach. This investigation used a Generalized Linear Mixed Ef-

fect(GLME) model which is a subset of a Generalized Linear Model(GLM). This

allowed for all of the testing needing for graph signals as a GLM can model a

non-normal response variable. This is possible as a distribution that is not nor-

mal can be represented as an equation with regression coefficients that are linear.

This decision was reinforced by referencing the CONN toolbox that uses a similar

method to analyze graph signals.

The difference between this methodology of analyzing the data and others tests

such as an ANOVA, is that it requires a model to which to fit the data. It is the

generated fit that is statistically analyzed. In reality this is not inherently different

from the standard analyses as, at their simplest, they measure the ability to fit a

data set to a normal distribution.

In the case of the GLME tool built into MATLAB, the model to fit the data

was input by the user. This is done by providing the model in Wilkinson notation.

This notation models the output as the interaction of inputs and groups with the

ability to specifically outline which interactions are to be included and which to

be excluded. The equations are written in the form Responses ∼ Predictors +

(Random|Groupings). The variables responses and predictors are the outputs and

inputs that the model is trying to fit. These are represented as a linear combination

of individual response and predictor variables. Random variables are those that are

random and not predictors with groupings being variables that represent groups

within the data. This allows for the tuning of the model to specific applications

and variables.
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Chapter 7

Results and Discussion

7.1 Results

7.1.0.1 Subjects

A total of 12 subjects were scanned to collect data. However only 10 were used in

the final analysis due to the collected data being unusable. Reasons for removing

a subject were; intolerable levels of movement during the scans, signal dropout

within the leg, or failure to comply with the protocol. Due to such sources of

error, certain subjects were removed from the analysis. In this case only two

subjects were not used, others were re-scanned to remedy the anomalies.

7.1.1 Analyses

For the two feature dimensions of coherence and fractility, the outputs of the gen-

erated models are shown below. The model was fit with user input of an equation

based on response, predictor, and grouping variables. Multiple permutations were

attempted and shown below.
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As the DOST transformation is built on the FFT for efficiency, the data lengths

must be a power of 2. For the exercise paradigm, 4800 volumes were acquired

meaning 4096 is the largest number that fit within the dataset. Figure 7.1 shows

a time truncated series. Meaning 704 volumes had been discarded; these volumes

were from the beginning of the acquisition so contractile volumes were preserved.

Figure 7.1: Activation Function: The ideal activation function of
the exercise paradigm corresponding to the time periods subjects
were asked to contract and relax. Cropped to a power of 2 to be
used with the analysis, as non-power of 2 signal lengths are not
compatible with DOST function.

The largest hurdle to processing all of the data was lack of sufficient com-

pute power. The amount of RAM required to run the Stockwell transform time-

frequency transformation was mitigated with the GSP subsampling but other steps

during analysis were also memory intensive. The two culprits were the edge connec-

tion calculations as they were on the order of N3 with data size and the statistical

modelling as it performed multiway analysis of the aggregate data. Steps were

taken to minimize the memory needed; however this led to trade-offs, not com-

plete solutions. The trade-offs to the analysis were a limitation to the number of
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nodes and time points that could be analyzed. For this investigation those num-

bers were 18 nodes, 19 in the EMG model, and 1024 as the largest power of 2 that

was possible for said number of nodes. This was a drawback of the pipeline that

can be improved in future work.

Below are the model formulae of the coherence and fractal models for both

the standalone mBOLD and the EMG and mBOLD models. The model output

parameters and goodness of fits are seen in Appendix A.

7.1.1.1 Exercise mBOLD Model Equations

7.1.1.1.1 Coherence

mBOLD Coherence Formula
Coherence ~ 1 + Time_Point + Edge_Eucl

+ Edge_Dijkstra_C + Node_Type_N:Edge_Type_N

+ (1 | Activation)

+ (1 + Node_Type_N:Edge_Type_N | Subject_Number)

Model output shown in Appendix A.1.

7.1.1.1.2 Fractility

mBOLD Fractal Formula
Fractal ~ 1 + Time_Point + Edge_Eucl + Edge_Dijkstra_C

+ Node_Type_N:Edge_Type_N

+ (1 | Activation)

+ (1 + Node_Type_N:Edge_Type_N | Subject_Number)

Model output shown in Appendix A.2.
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7.1.1.2 EMG Results

7.1.1.2.1 Coherence

EMG Coherence Formula
Coherence ~ 1 + Time_Point + Edge_Eucl + Edge_Dijkstra_C

+ Node_Type_N:Edge_Type_N:EMG

+ (1 | Activation)

+ (1 + Node_Type_N:Edge_Type_N:EMG | Subject_Number )

Model output shown in Appendix A.3

7.1.1.2.2 Fractility

EMG Fractal Formula
Fractal ~ 1 + Time_Point + Edge_Eucl + Edge_Dijkstra_C

+ Node_Type_N:Edge_Type_N:EMG

+ (1 | Activation)

+ (1 + Node_Type_N:Edge_Type_N:EMG | Subject_Number)

Model output shown in Appendix A.4

7.2 Discussion

7.2.1 Comparisons

Exercise mBOLD

When comparing the coherence and fractility models, the feature better fit was

evident when contrasting the significance of fit values. The two models are shown
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in Appendices A.1 and A.2. The coherence model boasts a statistically significant

value of 1.3245 × 10-05 whereas the fractility model had a non-significant value of

0.06466. This shows a drastic difference in fit between the two models suggests

that the coherence dimension of the graph is a better metric to use in modelling

the activation of the leg. It can be said that the fractility measure is close to

significant, nearly missing the 5% significance mark. This may indicate that the

measure is better omitted in the analysis to speed up analysis and reduce size of

the data.

EMG

mBOLD vs. EMG

With the addition of the EMG signal to the data, creating a multimodal dataset,

the models show different levels of fit. The two model are shown in Appendices

A.3 and A.4. The coherence significance of fit was 2.3109 × -06 and 0.0014799

for the fractility. This difference pushed the fractility measure into the realm of

significance, indicating that the fractility of the connection between the mBOLD

signal and the EMG signal was better suited to being modelled than the mBOLD

alone. This also applied to the coherence model as the model fit was also better

in that model as well. Compared to the model with solely the mBOLD signal, the

measures that showed promise may shift with the introduction of new modalities.

The underlying fundamentals of the modalities and their interactions will dictate

which features and measures are most appropriate; showing reasoning for further

explorations of the multimodal applications of muscle GSP.
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7.2.2 Alternatives

In this thesis, the hypothesis focused on modelling the coherence and fractility with

the GSP approach; the statistical analysis also followed this approach. However,

the modelling can be done in the reverse direction with the activation function of

the exercise protocol being the response. The function for such a model is shown

below with the output shown in Appendix A.5. The purpose of such a model would

be to estimate an activation pattern of the muscle from the measured mBOLD

and EMG data. The applications of such a model might include recovering the

activation pattern of involuntary contraction.

Alternative Formula
Activation ~ 1 + Time_Point + Edge_Dijkstra_C

+ Edge_Dijkstra_CL + Coherence*Fractal

+ Node_Type_N:Edge_Type_N:Edge_Eucl

+ (1 + Node_Type_N*Edge_Type_N + Coherence*Fractal | Subject_Number)
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Chapter 8

Future Work and Conclusions

8.1 Future Work

8.1.1 EMG Improvements

Moving forward, redesigning and rebuilding the EMG system should be done to

improve both signal quality and system usability. The first step would be to

replace the through hole components with surface mount components to be able to

drastically reduce the footprint of the device; reducing the loop lengths of the board

in the process. The next improvement would be to replace the Analog Discovery

2 as a power supply with a battery and a non-switching voltage regulator to keep

noise to a minimum. The schematic for such a rail splitting and conditioning

circuit is shown in Figure 8.2. The current instrumentation amplifier pre-amplifier

can be expanded for better performance with AC decoupling and boosting the

signal integrity with noise return paths as shown in Figure 8.1. Following that,

the removal of the external ADC and adding an onboard chip that will run off the

same battery as the amplifier, thus drastically reducing the footprint. Designing

the system with connectors for future expansion means that multiple channels can
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be used in the future. This would allow for techniques such as calculating the

inverse source calculation of muscle currents by creating an EMG mesh network.

Finally, the EMG system should be integrated into the MR system so that starting

the acquisition can be automated. Figure 8.3 shows what such a revision would

look like, being much more compact while also adding and improving functionality.

Figure 8.1: Compact EMG System: Pre-Amplifier stages showing
blocks for different portions of the circuit. AC coupling to improve
the impedance matching of the signal. Driven leg return paths to
compensate for rejection loss caused by AC coupling stage. DC
suppression of the reference electrode to drive ground noise to low
values.

8.1.2 Calf Atlas

One source of variance in this investigation was the inter-participant differences

in calf morphology. This can be remedied going forward by creating a calf atlas

92



M.A.Sc. Thesis – Thaejaesh Sooriyakumaran McMaster–Biomedical
Engineering

Figure 8.2: Compact EMG System: Virtual ground circuitry.
Using battery supply as opposed to an active supply to remove wall
outlet noise. The proposed circuit works with the help of a singular
voltage regulator to clamp the battery output as it discharges to
a constant 12V level. This is followed by a complementary pair of
± 5V regulators to generate and clamp the positive supply rails.
These two regulators are also part of a network that is then used
to create the virtual ground exactly half the potential of the two
rails.

similar to those used in brain analyses to tether all scans to one brain. This would

also make expanding the data-set to more practical. Adding participants would

become easier as a single set of masks could be used for all new legs. In contrast,

manually generating masks for each incoming leg would both be tedious and add

unnecessary subjectivity to the masks.

It should also be noted that there are other anatomical properties of the calf

that are distinctively different from the head. The leg is more likely to store fat

than the human head, meaning that there are signal impacts that can be induced

due to the fat. One such artifact that can arise is the dielectric effect artifact,

which causes signal intensities and losses due to the creation of a standing wave

within the anatomy. When standardizing scans, phenomena like the dielectric

effect must be either compensated- or accounted-for.
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Figure 8.3: Compact EMG System: Rendering showing the pro-
posed system. With a much smaller footprint than the current
EMG amplifier while also containing the power supply and sam-
pling circuitry. This would drastically reduce the effort needed in
moving the system into the scanner room.

8.1.3 Graph Signal Operations

One benefit for transforming data into a graph signal representation is that there

are operations that are exclusive to graphs and graph signals. One example of

this is Djikstra’s algorithm for finding the shortest path of traversal through the

nodes. There is merit to this metric as the metric changed over time with the

continued exertion of the muscle. There exist other functions from the graph

theory field that are prime candidates for further investigation. An example of

this determining the energy within a network. The scope of this field is large and

diverse; application-specific operations can be extremely useful in modelling data.
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Figure 8.4: Functional mBOLD Data Sampling: Depending on
the chosen voxel position, there may not be any activation recorded
even within the bounds of the muscle. This could be remedied with
the creation of a calf atlas space so voxel selection does not require
random sampling.

8.1.4 Scanning Protocol

To improve the accuracy of the pipeline, the acquired data must have the resolu-

tion to do so. Due to the coarse spatial resolution of the mBOLD imaging, fibre

level analysis is not possible and is a partial volume effect. Improving the spatial

resolution would allow for much finer analysis of the muscle. This can be done

with multi-band acquisition to retain the temporal resolution. The protocol can

also be adapted to use isometric contractions to minimize the motion artifact and

to ensure muscle fibres remain within the same voxel during rest and contraction.

8.1.5 Processing

As discussed previously, the processing pipeline developed in this thesis is very re-

source intensive. Further optimization of the code and a transition away from
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MATLAB to a more resource efficient framework will be vital in making the

pipeline more efficient.

Additionally, incorporating the modelling of the underlying physiological phe-

nomena will improve the correlation between the analysis and bodily function.

Similarly to the cerebral blood flow which has been modelled in response to a

stimulus. The addition of a muscle blood flow response to the analysis will im-

prove determination of contraction onset.

Another factor to be added in future endeavours is the inclusion of fibre-

tracking diffusion imaging. This would allow for a fibre directional weighting to be

added to the analysis, so that any directional effect of the muscle fibre directions

can be incorporated into the model.

8.1.6 Co-Acquisition brain and muscle BOLD

The concurrent acquisition of both brain and muscle functional data would allow

for the analysis of both brain and muscle networks at rest, exercise onset, fatigue

onset, exercise offset, and recovery. Overall it would push forward the understand-

ing of cortico-muscular connections and how they respond to exercise. Currently

this is not easy to do, the arm over head technique allows for such imaging (Tang

et al. 2020). However the AOH is hindered by distortion and is not applicable to

other muscles in the body. Before this can be implemented into this pipeline, the

ability to image both types of BOLD concurrently must be further developed.
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8.2 Conclusions

This investigation collected mBOLD and concurrent EMG/mBOLD data, gener-

ated a pipeline for creating graph signal representations of the data, and assessed

the generated models for significance. The results of this project highlight the

promise GSP as a tool for human muscle analysis; for assessing exercise in a mus-

cle BOLD functional scan, and in a multimodal form with the addition of an EMG

signal.

Further refinement and adaptations would create a more robust framework

that could be used for other muscles throughout the body. The analysis could

also be used for those outside of the healthy range, to model progression of muscle

activation for various pathologies. Examples being neurogenic myopathies present

differently than diabetic myopathies. These differences may be better represented

with a GSP approach. In conclusion, this investigation showed the viability of

graph signal processing approaches to muscle analysis, warranting further explo-

ration in the pursuit of representing and understanding muscular function.
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Appendix A

Model Results

A.1 Exercise mBOLD Coherence Model
Coherence

Generalized linear mixed-effects model fit by PL

Model information:

Number of observations 1566720

Fixed effects coefficients 5

Random effects coefficients 22

Covariance parameters 5

Distribution Normal

Link Identity

FitMethod MPL

Formula:

Linear Mixed Formula with 7 predictors.

Model fit statistics:

AIC BIC LogLikelihood Deviance

2.6266e+06 2.6267e+06 -1.3133e+06 2.6266e+06

Fixed effects coefficients 95% CIs:

Name Estimate SE tStat DF

’Intercept’ 0.19698 0.045221 4.356 1.5667e+06

’Time_Point’ -4.0499e-06 1.5126e-06 -2.6775 1.5667e+06
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’Edge_Eucl’ -0.0063962 4.801e-05 -133.22 1.5667e+06

’Edge_Dijkstra_C’ -0.016332 0.00017762 -91.954 1.5667e+06

’Node_Type_N:Edge_Type_N’ -0.034511 0.013434 -2.5689 1.5667e+06

pValue Lower Upper

1.3245e-05 0.10835 0.28562

0.0074168 -7.0145e-06 -1.0854e-06

0 -0.0064903 -0.0063021

0 -0.016681 -0.015984

0.010201 -0.060841 -0.0081811

Random effects covariance parameters:

Group: Activation 2 Levels

Name1 Name2 Type Estimate

’Intercept’ ’Intercept’ ’std’ 0.0051318

Group: Subject_Number 10 Levels

Name1 Name2 Type Estimate

’Intercept’ ’Intercept’ ’std’ 0.14208

’Node_Type_N:Edge_Type_N’ ’Intercept’ ’corr’ -0.89169

’Node_Type_N:Edge_Type_N’ ’Node_Type_N:Edge_Type_N’ ’std’ 0.042473

Group: Error

Name Estimate

’sqrtDispersion’ 0.55948

A.2 Exercise mBOLD Fractal Model
Fractal

Generalized linear mixed-effects model fit by PL

Model information:

Number of observations 1566720

Fixed effects coefficients 5

Random effects coefficients 22

Covariance parameters 5

Distribution Normal
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Link Identity

FitMethod MPL

Formula:

Linear Mixed Formula with 7 predictors.

Model fit statistics:

AIC BIC LogLikelihood Deviance

-2.6363e+06 -2.6362e+06 1.3182e+06 -2.6363e+06

Fixed effects coefficients 95% CIs:

Name Estimate SE tStat DF

’Intercept’ 0.007983 0.0043207 1.8476 1.5667e+06

’Time_Point’ -8.694e-06 2.8194e-07 -30.836 1.5667e+06

’Edge_Eucl’ -0.00014854 8.9514e-06 -16.594 1.5667e+06

’Edge_Dijkstra_C’ 0.00048586 3.3116e-05 14.672 1.5667e+06

’Node_Type_N:Edge_Type_N’ -0.0030606 0.0012904 -2.3718 1.5667e+06

pValue Lower Upper

0.06466 -0.00048548 0.016451

0 -9.2465e-06 -8.1414e-06

0 -0.00016608 -0.00013099

0 0.00042096 0.00055077

0.017701 -0.0055897 -0.00053145

Random effects covariance parameters:

Group: Activation 2 Levels

Name1 Name2 Type Estimate

’Intercept’ ’Intercept’ ’std’ 0.00021591

Group: Subject_Number 10 Levels

Name1 Name2 Type Estimate

’Intercept’ ’Intercept’ ’std’ 0.013612

’Node_Type_N:Edge_Type_N’ ’Intercept’ ’corr’ -0.51741

’Node_Type_N:Edge_Type_N’ ’Node_Type_N:Edge_Type_N’ ’std’ 0.0040773

Group: Error

Name Estimate

’sqrtDispersion’ 0.10432
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A.3 EMG and mBOLD Coherence Model
EMG Coherence Results

Generalized linear mixed-effects model fit by PL

Model information:

Number of observations 1751040

Fixed effects coefficients 5

Random effects coefficients 22

Covariance parameters 5

Distribution Normal

Link Identity

FitMethod MPL

Formula:

Linear Mixed Formula with 8 predictors.

Model fit statistics:

AIC BIC LogLikelihood Deviance

2.8096e+06 2.8097e+06 -1.4048e+06 2.8095e+06

Fixed effects coefficients 95% CIs:

Name Estimate SE tStat DF

’Intercept’ 0.10825 0.022914 4.7242 1.751e+06

’Time_Point’ -3.801e-05 1.3805e-06 -27.534 1.751e+06

’Edge_Eucl’ -0.0070176 3.0562e-05 -229.62 1.751e+06

’Edge_Dijkstra_C’ -0.022023 0.00014997 -146.85 1.751e+06

’Node_Type_N:Edge_Type_N:EMG’ 0.0011258 0.0043495 0.25883 1.751e+06

pValue Lower Upper

2.3109e-06 0.063339 0.15316

0 -4.0716e-05 -3.5305e-05

0 -0.0070775 -0.0069577

0 -0.022317 -0.021729

0.79577 -0.007399 0.0096506

Random effects covariance parameters:

Group: Activation 2 Levels

101



M.A.Sc. Thesis – Thaejaesh Sooriyakumaran McMaster–Biomedical
Engineering

Name1 Name2 Type Estimate

’Intercept’ ’Intercept’ ’std’ 0.0068923

Group: Subject_Number 10 Levels

Name1 Name2 Type Estimate

’Intercept’ ’Intercept’ ’std’ 0.069587

’Node_Type_N:Edge_Type_N:EMG’ ’Intercept’ ’corr’ -0.23966

’Node_Type_N:Edge_Type_N:EMG’ ’Node_Type_N:Edge_Type_N:EMG’ ’std’ 0.013747

Group: Error

Name Estimate

’sqrtDispersion’ 0.53971

A.4 EMG and mBOLD Fractal Model
EMG Fractal

Generalized linear mixed-effects model fit by PL

Model information:

Number of observations 1751040

Fixed effects coefficients 5

Random effects coefficients 22

Covariance parameters 5

Distribution Normal

Link Identity

FitMethod MPL

Formula:

Linear Mixed Formula with 8 predictors.

Model fit statistics:

AIC BIC LogLikelihood Deviance

-2.8859e+06 -2.8858e+06 1.443e+06 -2.8859e+06

Fixed effects coefficients 95% CIs:

Name Estimate SE tStat DF
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’Intercept’ 0.015664 0.0049279 3.1786 1.751e+06

’Time_Point’ -7.5004e-06 2.7168e-07 -27.608 1.751e+06

’Edge_Eucl’ -0.00053071 6.0101e-06 -88.302 1.751e+06

’Edge_Dijkstra_C’ 0.0012603 2.9491e-05 42.736 1.751e+06

’Node_Type_N:Edge_Type_N:EMG’ 0.00050386 0.0004326 1.1647 1.751e+06

pValue Lower Upper

0.0014799 0.0060053 0.025322

0 -8.0329e-06 -6.9679e-06

0 -0.00054249 -0.00051893

0 0.0012025 0.0013181

0.24414 -0.00034403 0.0013517

Random effects covariance parameters:

Group: Activation 2 Levels

Name1 Name2 Type Estimate

’Intercept’ ’Intercept’ ’std’ 0.0045252

Group: Subject_Number 10 Levels

Name1 Name2 Type Estimate

’Intercept’ ’Intercept’ ’std’ 0.011209

’Node_Type_N:Edge_Type_N:EMG’ ’Intercept’ ’corr’ -0.64762

’Node_Type_N:Edge_Type_N:EMG’ ’Node_Type_N:Edge_Type_N:EMG’ ’std’ 0.0013653

Group: Error

Name Estimate

’sqrtDispersion’ 0.10614

A.5 EMG and mBOLD Alternative Model
EMG Fractal

Generalized linear mixed-effects model fit by PL

Model information:

Number of observations 1575936

Fixed effects coefficients 12
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Random effects coefficients 0

Covariance parameters 1

Distribution Normal

Link Identity

FitMethod MPL

Formula:

Linear Mixed Formula with 7 predictors.

Model fit statistics:

AIC BIC LogLikelihood

-6.4528e+06 -6.4526e+06 3.2264e+06

Deviance

-6.4528e+06

Fixed effects coefficients 95% CIs:

Name Estimate

’Intercept’ 0.00087627

’Node_Type_N’ -3.2569e-07

’Edge_Type_N’ 2.2963e-06

’Coherence’ -1.6456e-05

’Fractal’ 0.0008106

’Edge_Eucl’ 4.1213e-08

’Edge_Dijkstra_C’ -1.7393e-05

’EMG’ -3.3151e-05

’Coherence:Fractal’ 0.00028756

’Coherence:EMG’ 0.00014129

’Fractal:EMG’ 9.4086e-05

’Coherence:Fractal:EMG’ -0.0016887

SE tStat DF pValue

8.8167e-05 9.9387 1.5759e+06 2.8296e-23

1.1047e-05 -0.029482 1.5759e+06 0.97648

7.1826e-05 0.03197 1.5759e+06 0.9745

4.7757e-05 -0.34459 1.5759e+06 0.73041

0.0002458 3.2979 1.5759e+06 0.00097419

2.2059e-06 0.018683 1.5759e+06 0.98509

8.5721e-06 -2.029 1.5759e+06 0.042459
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0.00012433 -0.26664 1.5759e+06 0.78975

0.00047108 0.61043 1.5759e+06 0.54158

0.00014596 0.96801 1.5759e+06 0.33304

0.00088047 0.10686 1.5759e+06 0.9149

0.0016501 -1.0234 1.5759e+06 0.30611

Random effects covariance parameters:

Group: Error

Name Estimate

’sqrtDispersion’ 0.031235
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Appendix B

Code

B.1 Point Cloud and Table Generation

1 %% 1a. Load in data; an anatomical and functional data

set

2

3 filepath = 'C:\ Users\sstje\ Desktop \ Schtough \School\GRAD\

Signal Processing \ FINAL_DATA \';

4

5 warning ('off ', 'all ')

6 addpath ( genpath (pwd))

7

8 %% 1b. Load in data; an anatomical and functional data

set

9

10 victims = {'ALEX ', 'BHANU ', 'CALVIN ', 'CAM ', 'ESTEBAN ', '

ETHAN ', 'JOSH ', 'KONRAD ', 'TJ', 'YVES '};

11 for qqq = 1 : size(victims ,2)
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12 victim = char( victims (qqq))

13 V_anat = load_nii ([ filepath victim '\Niftis\Anat.nii ']);

14 vol_anat = V_anat.img;

15

16 V_act = load_nii ([ filepath victim '\Niftis\

BOLD_Block_SAT_MC_AL .nii.gz']);

17 V_rst = load_nii ([ filepath victim '\Niftis\

BOLD_Rest_SAT_MC_AL .nii.gz']);

18 vol = V_act.img;

19

20 dt = V_act.hdr.dime.pixdim (5);

21

22 imshow(rot90( vol_anat (: ,: ,1 ,1)) ,[])

23

24

25 %% 1c. Load in masks for the leg muscles

26

27 mask_gas = load_nii ([ filepath victim '\Niftis\

BOLD_mask_gas_consrv_less .nii.gz']);

28 mask_sol = load_nii ([ filepath victim '\Niftis\

BOLD_mask_sol_consrv_less .nii.gz']);

29 mask_tib = load_nii ([ filepath victim '\Niftis\

BOLD_mask_tib_less .nii.gz']);

30 V_mask_gas = mask_gas .img;

31 V_mask_sol = mask_sol .img;
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32 V_mask_tib = mask_tib .img;

33

34 %% 1d. Load in downsampled EMG data

35

36 EMG = load ([ filepath victim '\EMG_ds.mat ']);

37 emg = EMG.yds ';

38 clear EMG

39

40 %% 2. Generate Point cloud and visualize time series

from points and point cloud

41 % Number of points , must be a multiple of the number of

masks , in this case

42 % 3

43 % Was 48

44 N = 18;

45

46 set = 30; % Time of exercise block

47 % Get volume -series size data

48 [length , width , depth , time_points ] = size(vol);

49

50 nt = 1024;

51 ns = 2^11;

52 dt = 0.250;

53 sess = 30;

54
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55

56 sesst = nt/( sess*dt);

57 t = 0:dt:(nt -1)*dt;

58 % Generate activation function

59 act = 1-flip(mod( floor( t(end -nt +1: end)/( sesst*dt) )

,2));

60

61 plot(t, act)

62 title('Activation Function ')

63 xlabel('Time (s)')

64 ylabel('Block (ON/OFF)')

65

66 emgc = emg(end -nt +1: end);

67 % hold on

68 % plot(t,emgc)

69 % hold off

70 %

71

72 %%

73 % Time series holding varible

74 T = zeros(N+1, nt);

75

76 % Slices to visualize point cloud

77 x = vol (: ,: ,1 ,1);

78

109



M.A.Sc. Thesis – Thaejaesh Sooriyakumaran McMaster–Biomedical
Engineering

79 % Point cloud

80 %First list points by the axes

81 X = zeros (1,N);

82 Y = zeros (1,N);

83 Z = zeros (1,N);

84

85

86 % Generate truth vectors for point positions

87 M_gas = zeros (1,N);

88 M_sol = zeros (1,N);

89 M_tib = zeros (1,N);

90

91 i = 1;

92 valid = 0;

93

94 for (i = 1:N)

95

96

97 if (i >= 1 && i <= N/3)

98 [x_co , y_co , z_co] = ind2sub (size( V_mask_gas ),

find( V_mask_gas ));

99 M_gas(i) = 1;

100 elseif (i > N/3 && i <= 2*N/3)

101 [x_co , y_co , z_co] = ind2sub (size( V_mask_sol ),

find( V_mask_sol ));
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102 M_sol(i) = 1;

103 elseif (i > 2*N/3 && i <= N)

104 [x_co , y_co , z_co] = ind2sub (size( V_mask_tib ),

find( V_mask_tib ));

105 M_tib(i) = 1;

106 end

107

108 while (valid == 0)

109

110 xyz_rand = randperm (size(x_co ,1) ,1);

111 X(i) = x_co( xyz_rand );

112 Y(i) = y_co( xyz_rand );

113 Z(i) = z_co( xyz_rand );

114

115 vv = (double( squeeze (vol(Y(i),X(i),Z(i),end -nt

+1: end)))./ double( squeeze (vol(Y(i),X(i),Z(i),

end -nt +1))));

116

117 plot(vv)

118

119 if (max(vv) > 1.5 || (qqq ==8))

120 valid = 1;

121 end

122

123 % pause (1)
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124 end

125 valid = 0;

126 end

127

128 %%check if equal number of points in each mask region

129

130 for ( i = 1:N )

131 if (i == (N))

132 if ( ~( (sum(M_gas) == N/3) && (sum(M_sol) == N

/3) && (sum(M_tib) == N/3) ) )

133 disp('Not equal ')

134 elseif ( (sum(M_gas) == N/3) && (sum(M_sol) == N

/3) && (sum(M_tib) == N/3) )

135 disp('Equal ')

136 end

137 end

138 end

139

140

141 % Aggregate points into point cloud

142 % P = [X;Y;Z]; Reorder due to MATLAB matrix notation

143 P = [Y;X;Z];

144

145

146 % Subplot positions
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147 pos1 = [0.01 0.4 0.3 0.5];

148 pos2 = [0.35 0.4 0.25 0.5];

149 pos3 = [0.7 0.4 0.25 0.5];

150 pos4 = [0.05 0.075 0.9 0.3];

151

152 % h=figure;

153 h=gcf;

154 clf(h);

155 % set(h, 'Position ', get(0, 'Screensize '));

156 imshow(x ,[])

157 filename = 'PointACQ .gif ';

158 % Show point and time series corresponding to the point

159

160 Legend = cell (3 ,1);

161 lg = legend ();

162

163 for i = 1:N

164 x( X(i) , Y(i) ) = 5000;

165

166 T(i ,:) = squeeze (vol(P(1,i),P(2,i),P(3,i),end -nt +1:

end));

167 subplot ('Position ',pos1)

168 imshow(rot90(x) ,[],'InitialMagnification ', 'fit ')

169 title('Randomly Selected Points ')

170
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171 subplot ('Position ',pos2)

172 ha = imshow(rot90(vol (: ,: ,1 ,1)) ,[]);

173 ha. AlphaData = 0.5;

174 hold on

175 hc = imshow(rot90(imfuse( V_mask_sol (: ,: ,2) ,

V_mask_gas (: ,: ,2))));

176 hc. AlphaData = 0.3;

177

178 hb = imshow(rot90( V_mask_tib (: ,: ,1)) ,[]);

179 hb. AlphaData = 0.3;

180 title('Muscle Masks ')

181 hold off

182

183 hd = subplot ('Position ',pos3);

184 hold on

185 if (M_gas(i) == 1)

186 hd1 = plot3(P(1,i),P(2,i),P(3,i),'ro', '

MarkerSize ', 10, 'MarkerFaceColor ', 'r');

187 % lg = legend(hd , {' Gastrocnemius '})

188 elseif (M_sol(i) == 1)

189 hd2 = plot3(P(1,i),P(2,i),P(3,i),'mh', '

MarkerSize ', 10, 'MarkerFaceColor ', 'm');

190 % lg = legend(hd , {'Soleus '})

191 elseif (M_tib(i) == 1)
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192 hd3 = plot3(P(1,i),P(2,i),P(3,i),'yd', '

MarkerSize ', 10, 'MarkerFaceColor ', 'y');

193 % lg = legend(hd , {'Tibialis '})

194 else

195 plot3(P(1,i),P(2,i),P(3,i),'ko', 'MarkerSize

', 10);

196 end

197 view( 45, 15)

198 grid on

199

200 % legend(hd , {' Gastrocnemius ', 'Soleus ', 'Tibialis

'}, 'Location ', 'northwest ')

201 title('Selected Points in 3D Space ')

202

203 % Legend {1} = '1';

204 % Legend {2} = '2';

205 % Legend {3} = '3';

206 % legend(Legend)

207 hold off

208

209

210

211 % imshow(rot90(z) ,[],' InitialMagnification ', 'fit ')

212 % truesize ([1024 512])

213 % subplot (2 ,1 ,2)
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214 subplot ('Position ',pos4)

215 plot(t,T(i ,:) ./(T(i ,1)))

216 title('mBOLD intensity ')

217 xlabel('Time (s)')

218 pause (0.1)

219 % set(h, 'Position ', get(0, 'Screensize '));

220 % frame = getframe (h);

221 % im = frame2im (frame);

222 % [imind ,cm] = rgb2ind (im ,256);

223

224 % if i==1

225 % imwrite (imind ,cm ,filename ,'gif ','Loopcount ',

inf);

226 % else

227 % imwrite (imind ,cm ,filename ,'gif ','WriteMode ','

append ');

228 % end

229 end

230

231 subplot ('Position ', pos3)

232 legend ([hd1 , hd2 , hd3], {'Gastrocnemius ','Soleus ','

Tibialis '}, 'Location ' , 'northeast ')

233

234 %%

235
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236 N = N+1;

237 T(end ,:) = emgc;

238

239

240 %% 3. Run Pipeline

241

242 % Add Mask Truth Vectors to Point Cloud

243 P = [Y;X;Z;M_gas;M_sol;M_tib ];

244 P = padarray (P ,[1 1], 'post ');

245 P(end ,end) = 1;

246 P(1:3 , end) = 1;

247 vol_pipe = double(vol (:,:,:,end -nt +1: end));

248 vol_pipe (1 ,1 ,1 ,:) = (emgc);

249

250 %%

251 gr = Pipeline_EMG ( vol_pipe , act , N, P, nt );

252

253 %% 4. Visualize Generated Graph

254 %

255 % thres1 = 0.1;

256 % disp(' Viewing Dimension 1: DOST Coherence ,')

257 % disp(' Threshold : ')

258 % disp(thres1);

259 % Visualize_Graph_EMG (gr , thres1 , 1 , vol_pipe );

260 %
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261 %%

262 % thres2 = 0.05;

263 % disp(' Viewing Dimension 2: Fractal (HFD) Difference ,')

264 % disp(' Threshold : ')

265 % disp(thres2);

266 % Visualize_Graph_EMG (gr , thres2 , 2 , vol_pipe );

267

268 %% 5. Extract Statistical Information

269 %% 5a. Extract Edge Connection Types

270

271 % Edge Types (6 Total)

272 % - Gas --Gas

273 % - Gas --Sol

274 % - Gas --Tib

275 % - Sol --Sol

276 % - Sol --Tib

277 % - Tib --Tib

278

279 % 1 = GG | 2 = GS | 3 = GT | 4 = SS | 5 = ST | 6 = TT

280

281

282 %%

283

284 Mask_Type_Enum = {'Gas ' 'Sol ' 'Tib ' 'EMG '};

285
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286 Edge_Type_Enum = cell (1, factorial (size( Mask_Type_Enum ,2)

));

287 Conn_Type_Enum = zeros(size( Edge_Type_Enum ));

288

289 idx = 1;

290

291 for i = 1: size( Mask_Type_Enum ,2)

292 for ii = i:size( Mask_Type_Enum ,2)

293 if(idx > size( Edge_Type_Enum ,2))

294 break

295 end

296 Edge_Type_Enum (idx) = strcat( Mask_Type_Enum (i),

'-', Mask_Type_Enum (ii));

297 if (i == ii)

298 Conn_Type_Enum (idx) = 0;

299 else

300 Conn_Type_Enum (idx) = 1;

301 end

302 idx = idx + 1;

303 end

304 end

305

306

307 %% 5b. Generate Table
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308 NV = N*(N -1) /2; % Number of Non - Repeated Values in a

Symmetric Matrix

309 Subject_Number = qqq*ones(NV ,1);

310

311 tbl = table( Subject_Number , 'VariableNames ', {'

Subject_Number '});

312 tbl. Time_Point = ones(NV ,1);

313 tbl. Node_Type = cell(NV ,1);

314 tbl. Node_Type_N = zeros(NV ,1);

315 tbl. Edge_Type = cell(NV ,1);

316 tbl. Edge_Type_N = zeros(NV ,1);

317 tbl. Coherence = zeros(NV ,1);

318 tbl. Fractal = zeros(NV ,1);

319 tbl. Edge_Eucl = zeros(NV ,1);

320 tbl. Edge_Dijkstra_C = zeros(NV ,1);

321 tbl. Edge_Dijkstra_CL = zeros(NV ,1);

322 tbl. Edge_Dijkstra_F = zeros(NV ,1);

323 tbl. Edge_Dijkstra_FL = zeros(NV ,1);

324 tbl. Activation = zeros(NV ,1);

325 tbl.EMG = zeros(NV ,1);

326

327

328 %
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329 % tbl = table( vert_frac , vert_edges , vert_node ,

vert_edge_type , 'VariableNames ' , {'Fractal ', '

Coherence ', 'EdgeType ', 'NodeType '});

330 %

331

332 idx = 1;

333 for i = 1:N

334 for j = i+1:N

335

336 a = Mask_Type_Enum (find(gr. Node_Positions (4:end ,

i)));

337 b = Mask_Type_Enum (find(gr. Node_Positions (4:end ,

j)));

338

339 if ((i == 7) || (j == 7))

340 %disp(i )

341 tbl. Edge_Type (idx) = {'2EMG '};

342 tbl. Edge_Type_N (idx) = 2;

343 tbl.EMG(idx) = 1;

344 else

345 if isequal (a,b)

346 tbl. Edge_Type (idx) = {'0Intra '};

347 tbl. Edge_Type_N (idx) = 0;

348 else

349 tbl. Edge_Type (idx) = {'1Inter '};
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350 tbl. Edge_Type_N (idx) = 1;

351 end

352 end

353

354

355 tbl. Node_Type (idx) = strcat(a, '-', b);

356

357 for ii = 1: size( Edge_Type_Enum ,2)

358 if isequal (tbl. Node_Type (idx),Edge_Type_Enum (ii)

)

359 tbl. Node_Type_N (idx) = ii;

360 end

361 end

362

363

364 tbl. Coherence (idx) = gr. Edge_Weights (1,i,j ,1);

365 tbl. Fractal (idx) = gr. Edge_Weights (2,i,j ,1);

366 tbl. Edge_Eucl (idx) = sqrt( (gr. Node_Positions (1,i)-

gr. Node_Positions (1,j))^2 + ...

367 (gr. Node_Positions (2,i)-gr. Node_Positions (2,j))

^2 + ...

368 (gr. Node_Positions (3,i)-gr. Node_Positions (3,j))

^2);

369 [costC routeC] = dijkstra ( squeeze ( gr. Edge_Weights

(1 ,: ,: ,1)), i, j);
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370 tbl. Edge_Dijkstra_C (idx) = costC;

371 tbl. Edge_Dijkstra_CL (idx) = size(routeC ,2);

372 [costF routeF] = dijkstra ( squeeze ( gr. Edge_Weights

(2 ,: ,: ,1)), i, j);

373 tbl. Edge_Dijkstra_F (idx) = costF;

374 tbl. Edge_Dijkstra_FL (idx) = size(routeF ,2);

375 tbl. Activation (idx) = act (1);

376 idx = idx + 1;

377 end

378 end

379

380

381

382 temptbl = tbl (1:NV ,:); % Will copy over the

Node_Type and Edge_Type values over so only need to

change the metrics

383 tempCoherence = zeros(NV ,1);

384 tempFractal = zeros(NV ,1);

385

386 for tt = 2:nt

387 temptbl . Time_Point (:) = tt*ones(NV ,1);

388 idx = 1;

389 for i = 1:N

390 for j = i+1:N
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391 tempCoherence (idx) = gr. Edge_Weights (1,i,j,

tt);

392 if (isinf(gr. Edge_Weights (2,i,j,tt)))

393 tempFractal (idx) = 0;

394 else

395 tempFractal (idx) = gr. Edge_Weights (2,i,j

,tt);

396 end

397 [costC , routeC] = dijkstra ( squeeze ( gr.

Edge_Weights (1,:,:,tt)), i, j);

398 tbl. Edge_Dijkstra_C (idx) = costC;

399 tbl. Edge_Dijkstra_CL (idx) = size(routeC ,2);

400 [costF , routeF] = dijkstra ( squeeze ( gr.

Edge_Weights (2,:,:,tt)), i, j);

401 tbl. Edge_Dijkstra_F (idx) = costF;

402 tbl. Edge_Dijkstra_FL (idx) = size(routeF ,2);

403 tbl. Activation (idx) = act(tt);

404 idx = idx +1;

405 end

406 end

407 temptbl . Coherence = ( tempCoherence );

408 temptbl . Fractal = ( tempFractal );

409 tbl = vertcat (tbl , temptbl );

410 end

411
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412 %%

413 save ([ filepath , '\ FINAL_verts_long \EMG\', victim ,'

_verts.mat '], 'tbl ')

414 %%

415

416 disp('done ')

417

418

419 end

420

421 %
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B.2 Pipeline

1 function [ graph ] = Pipeline_EMG ( vol , act , N, PC , tp )

2 %% Function to perfom Graph Theory/S-Transform Pipeline

3 % Inputs:

4 % fMRI BOLD Volume -Time Series {vol}

5 % Activation Function {act}

6 % Number of points {N} %Redundant ,

can use length(PC)

7 % instead

8 % Point Cloud Coordinates {PC}

9 % Number of Time Points (2^N) {tp} %Redundant ,

can use 4th dimension

10 % length of vol

11 %

12 % Outputs :

13 % Graph structure {graph}

14 %

15

16 disp('PIPELINE STARTED ')

17 tic

18 %% 0. Graph Structure

19 % Create data structure to store graph:

20 % Node weights }--> function of time?

21 % Edge weights }--> is a function of time
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22 % Number of Nodes

23 % Edge connections

24

25

26 graph = struct('Nodes ', {}, ...

27 'Node_Weight_dim ', {}, 'Node_Weights ', {}, ...

28 'Node_Positions ', {}, ...

29 'Edge_Weight_dim ', {}, 'Edge_Weights ', {}, ...

30 'Time_Points ', {}, 'Data_Points ', {}, ...

31 'Basis ', {});

32

33 %% 1. Extract time series from Points

34

35 T = zeros(N, tp);

36

37 for i = 1:N

38 %If you want the first tps

39 % T(i ,:) = squeeze ( vol( PC(2,i) , PC(1,i) , PC(3,i)

, 1:tp ) );

40 %If you want the last tps

41 T(i ,:) = squeeze ( vol( PC(2,i) , PC(1,i) , PC(3,i) ,

end -tp +1: end ) );

42

43 end

44
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45 %% 2. Generate DOST Spectrographs for each Time Series

46

47 ns = tp;

48 t = linspace (0,1,ns); % signal of 1s (0 to 1) sampled ns

-times

49 f = linspace (-ns/2,ns/2 -1,ns); % frequencies

50

51 disp('Generating DOSTs ')

52

53 % Generate DOST of the activation function

54 in = act (1: ns); % crop data to given power of 2

55 % fftIn = ST. fourier (in);

56 % fftIn(f==0) = 1;

57 dostIn = ST.dost(in);

58 recdostIn = ST.idost(ST.dost(in));

59

60 readableDostIn = ST. rearrangeDost (dostIn);

61 readableDostIn ((f== -1) ,:) = readableDostIn ((f== -1) ,:)./

max(max( readableDostIn ));

62

63 act_DOST = readableDostIn ;

64

65 Out = zeros( N , tp , tp );

66

67 % Generate DOST of the data points from the Point Cloud
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68 for i = 1:N

69

70 in = T(i ,1: ns);

71

72 % fftIn = ST. fourier (in);

73 % fftIn(f==0) = 1;

74 dostIn = ST.dost(in);

75 recdostIn = ST.idost(ST.dost(in));

76

77 readableDostIn = ST. rearrangeDost (dostIn);

78 readableDostIn ((f== -1) ,:) = readableDostIn ((f== -1)

,:)./ max(max( readableDostIn ));

79

80 Out( i , : , : ) = readableDostIn ;

81

82 end

83 disp('Done DOST Generation ')

84

85 %% 3. Correlation Time Series with Activation Function

86

87 % c_act = zeros(N, 2*tp -1, 2*tp -1);

88 g_act = zeros(N ,2 ,2);

89 G = zeros(N ,1);

90

91 disp('Correlating Activation Function ')
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92 for i = 1:N

93

94 % c_act(i ,: ,:) = xcorr2( ( squeeze ( Out(i ,: ,:) ) ) ,

act_DOST );

95 g_act(i ,: ,:) = corrcoef ( ( squeeze ( Out(i ,: ,:) ) ),

act_DOST );

96 G(i) = g_act(i ,1 ,2);

97 end

98 disp('Done Activation Function Correlation ')

99 %% 4. Column -wise Correlation of the DOST

100 % disp('Columns ')

101 R = zeros(N,N,tp);

102 clf

103 disp('Starting Column -wise Correlation ')

104 for i = 1:N

105 for ii = i:N

106 for j = 1:tp

107 A = squeeze ( real( Out(i,:,j) ) );

108 B = squeeze ( real( Out(ii ,:,j) ) );

109 R (i,ii ,j) = corr( A' , B' );

110 R (ii ,i,j) = R (i,ii ,j);

111 end

112 end

113 end

114 disp('Done Columin -wise Correlation ')
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115 %% 5. Populate Graph

116

117 graph (1).Nodes = N;

118 graph. Node_Positions = PC;

119 graph. Node_Weights (1 ,:) = G;

120 graph. Edge_Weights (1 ,: ,: ,:) = R;

121 graph. Node_Weight_dim = 1;

122 graph. Edge_Weight_dim = 1;

123 graph. Time_Points = tp;

124 graph. Data_Points (1 ,: ,:) = T;

125 graph.Basis = act;

126

127 %%

128 %% 6. Generate Second Dimension of Graph (Node and Edge

Weights)

129

130 %% 6a. Fractal Dimension of Nodes

131

132 disp('Extracting Fractal Dimension ')

133 Gf = zeros(N ,1);

134

135 Window_Size = 128; %Window Size

136 Overlap_Window = 127; %Window Overlap

137

138 in = T(1 ,1: ns);
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139 [wdata] = SWG(in , Window_Size , Overlap_Window );

140 [r , ~] = size(wdata);% r gives the number of windows

141 % disp(r)

142 FD = zeros(N,r);

143 % disp(size(FD))

144

145 for i = 1:N

146

147 % Extract ( truncated ) Data from Node i

148 in = T(i ,1: ns);

149 % Generate windows for Time Series from Node i

150 [wdata] = SWG(in , Window_Size , Overlap_Window );

151

152 % Calculate Fractal Dimension

153 for j=1:r

154 % Fill Nxr (r=tp - Overlap ) array with 1x1 fractal

dimensions

155 FD(i,j)= HFD_LCALC (wdata(j ,:));

156 end

157

158 Gf(i) = HFD_LCALC (in);

159

160 end

161

162 disp('Done Extracting Fractal Dimension ')
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163

164 %% 6b. Windowed Fractal Dimension of Nodes

165

166 disp('Correlating Fractal Dimension ')

167 Rf = zeros(N,N,tp);

168 clf

169 for i = 1:N

170 for ii = i:N

171 for j = 1:r %tp

172 % A = FD(i ,:);

173 % B = FD(ii ,:);

174 A = FD(i,j);

175 B = FD(ii ,j);

176 % Rf (i,ii ,j) = corr( A' , B' );

177 Rf(i,ii ,j) = A-B;

178 Rf(ii ,i,j) = B-A;

179 end

180 end

181 end

182

183 disp('Done Fractal Correlation ')

184

185 %% 5. Populate Graph

186

187 % graph (1).Nodes = N;
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188 % graph. Node_Positions = PC;

189 graph. Node_Weights (2 ,:) = Gf;

190 graph. Edge_Weights (2 ,: ,: ,:) = Rf;

191 graph. Node_Weight_dim = 2;

192 graph. Edge_Weight_dim = 2;

193 disp('Fractal Dimension Data Zero Padded with 31 zeros ')

194 graph. Data_Points (2 ,: ,:) = padarray (FD , [0

Overlap_Window ], 0,'post ');

195 % graph.Basis = act;

196

197 %%

198 disp('PIPELINE DONE ')

199 toc

200 end

201

202

203

204

205

206

207

208

209

210

211
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212

213

214

215

216

217

218

219 %% Code Graveyard
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B.3 EMG Filtering

1

2 filepath = 'C:\ Users\sstje\ Desktop \ Schtough \School\GRAD\

Signal Processing \ FINAL_DATA \';

3 Fs = 5000;

4 T = 5*60;

5 lpf = 200;

6 hpf = 20;

7 TR = 0.250;

8 LF = 1/TR; % 4

9

10 N = T*Fs; % Retrieve size of data

11 t = 0:1/ Fs:(N -1)/Fs; % Reconstruct time vector

12 f = (-N/2:1:(N -1) /2)*Fs/N; % Construct frequency vector

13 victims = {'ALEX ', 'BHANU ', 'CALVIN ', 'CAM ', 'ESTEBAN ', '

ETHAN ', 'JOSH ', 'KONRAD ', 'TJ', 'YVES '};

14

15 for qqq = 1 : size(victims ,2)

16

17 %%

18 victim = char( victims (qqq));

19

20 direc = dir( fullfile ([ filepath victim '\'], '*. lvm ')

);
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21 Data = lvm_import (direc.name);

22 y = Data. Segment1 .data (1:T*Fs ,2);

23 y = y./ max(y);

24 clear Data direc

25

26 %% Plot raw data

27

28 plot(t./60 ,y) %Plot data with time

29 xlabel('Time ( minutes )')

30 ylabel('normalized amplitude (V/V)')

31 title('Rectified EMG during MRI Sequencing ')

32

33 HpFilt = designfilt ('highpassfir ', 'FilterOrder ',

500, 'CutoffFrequency ', 3, ...

34 'SampleRate ', Fs);

35

36 bpFilt = designfilt ('bandpassfir ', 'FilterOrder ',

500, 'CutoffFrequency1 ', hpf , 'CutoffFrequency2 ',

lpf , ...

37 'SampleRate ', Fs);

38

39 %%

40

41 plot(f, real( fftshift (fft(y))))

42 title('Raw EMG Spectrum ')
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43 xlabel('Frequency (Hz)')

44 ylabel('Amplitude (V/V)')

45

46 %%

47

48 plot(t,y)

49 hold on

50

51 y = filter(HpFilt , y);

52 plot(t,y)

53 hold off

54

55 %% Wavelet denoising

56

57 yt = removeLineNoise_SpectrumEstimation (y', Fs , ['LF

= ' num2str (LF) ', NH = 625 ']) ';

58 yt = removeLineNoise_SpectrumEstimation (yt ', Fs ,'LF

= 56, NH = 5, HW = 4') ';

59

60

61 plot(t./60 , yt);

62 title('EMG after Line Noise Removal ')

63 xlabel('Time ( Minutes )')

64 ylabel('Amplitude (V/V)')

65 %%
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66 plot(f, real( fftshift (fft(yt))))

67 title('EMG after Line Noise Removal ')

68 xlabel('Frequency (Hz)')

69 ylabel('Amplitude (V/V)')

70 %%

71 coefs = cwt(yt ,16:64 , 'bior6 .8');

72 %%

73 yw = sum(coefs (16: end ,:));

74 ywr = yw./ max(yw);

75 clear coefs

76 plot(t./60 , ywr)

77 title('EMG after Wavelet Denoising ')

78 xlabel('Time ( Minutes )')

79 ylabel('Amplitude (V/V)')

80 % plot(t,abs(ywr))

81 %%

82 plot(f,real( fftshift (fft(ywr))))

83 title('EMG Spectrum after Wavelet Denoising ')

84 xlabel('Frequency (Hz)')

85 ylabel('Amplitude (V/V)')

86

87 %%

88

89 ywr = removeLineNoise_SpectrumEstimation (ywr , Fs ,['

LF = ' num2str (LF) ', NH = 625 ']) ';
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90 plot(t,ywr)

91

92 %%

93

94 ywrt = filter(bpFilt , ywr);

95 ywrt = removeLineNoise_SpectrumEstimation (ywrt ', Fs

,['LF = ' num2str (LF) ', NH = 625 ']) ';

96

97 plot(t./60 , ywrt)

98 title('EMG Spectrum after Bandpass Filtering ')

99 xlabel('Time ( Minutes )')

100 ylabel('Amplitude (V/V)')

101

102

103 %%

104 % clear coefs

105

106 % figure

107 subplot (2 ,1 ,1)

108 plot(t./60 , yt)

109 xlabel('Time ( minutes )')

110 ylabel('EMG amplitude (V/V)')

111 title('EMG Signal ( Denoised )')

112

113 subplot (2 ,1 ,2)
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114 plot(t./60 , ywrt)

115 xlabel('Time ( minutes )')

116 ylabel('EMG amplitude (V/V)')

117 title('EMG Signal ( Denoised and Filtered ) ')

118

119

120 %% Frequency plots

121 figure

122 subplot (3 ,1 ,1)

123 plot(f, real( fftshift (fft(yt))))

124 xlabel('Frequency (Hz)')

125 ylabel('EMG amplitude (V/V)')

126 title('Raw EMG Signal (60 Hz Removed )')

127

128 subplot (3 ,1 ,2)

129 plot(f, real( fftshift (fft(ywr))))

130 xlabel('Frequency (Hz)')

131 ylabel('EMG amplitude (V/V)')

132 title('Wavelet Denoised Signal ')

133

134 subplot (3 ,1 ,3)

135 plot(f, real( fftshift (fft(ywrt))))

136 xlabel('Frequency (Hz)')

137 ylabel('EMG amplitude (V/V)')
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138 title('Wavelet Denoised - 16 Hz Line Noise Removed

Signal ')

139

140 %%

141

142 % [u,v] = envelope (abs(ywrt)); %Detect top and

bottom envelopes of the data

143 % j = u; %Copy upper envelope

144 % j = j - min(u);

145 j = ywrt;

146 k = j(2:end -1) .*j(2:end -1) - j(1:end -2) .*j(3: end); %

Teager -Kaiser Discrete Time Energy Operator

147

148 %%

149 % figure

150 subplot (3 ,1 ,1)

151 plot(t./60 , y)

152 xlabel('Time ( Minutes )')

153 ylabel('EMG amplitude (V/V)')

154 title('Raw EMG Signal ')

155

156 subplot (3 ,1 ,2)

157 plot(t./60 , ywrt)

158 xlabel('Time ( Minutes )')

159 ylabel('EMG amplitude (V/V)')
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160 title('Final Denoising ')

161

162 subplot (3 ,1 ,3)

163 plot(t(2:end -1) ./60 , abs(k))

164 title('Teager -Kaiser Energy Operator ')

165 xlabel('Time ( Minutes )')

166 ylabel('Normalized Energy (W/W)')

167

168

169 %%

170 save ([ filepath victim '\EMG.mat '], 'ywrt ')

171

172 %%

173 yds = abs( downsample (( real(ywrt)), Fs*TR));

174 subplot (2 ,1 ,1)

175 plot(t./60 , abs(ywrt))

176 xlabel('Time ( Minutes )')

177 ylabel('EMG amplitude (V/V)')

178 title('Final Denoising ')

179 subplot (2 ,1 ,2)

180 tds = 0:300/1200:300 -1/4;

181 plot(tds ./60 , yds)

182 xlabel('Time ( Minutes )')

183 ylabel('EMG amplitude (V/V)')

184 title('Final Denoising Downsampled ')
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185

186 %%

187 save ([ filepath victim '\EMG_ds.mat '], 'yds ')

188

189 end
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B.4 Graph Visualization

1 function [ ] = Visualize_Graph_EMG ( graph , thres , dim

, anat )

2

3 %% Extract Data from Graph

4

5 tp = graph. Time_Points ;

6 Data = graph. Data_Points ;

7 PC = graph. Node_Positions ;

8 N = graph.Nodes;

9 Nnw = graph. Node_Weight_dim ;

10 New = graph. Edge_Weight_dim ;

11 GT = graph. Node_Weights ;

12 RT = graph. Edge_Weights ;

13 act = graph.Basis;

14

15 [size_p ~] = size(PC);

16 % disp(PC)

17 disp(size_p)

18

19

20 %% 6. Visualize Graph

21 disp('Visualizing ')

22 % thres = 0.8;
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23 lim = 0.5;

24 scale = 5;

25

26 G = squeeze (GT(dim ,: ,: ,:));

27 R = squeeze (RT(dim ,: ,: ,:));

28

29 h = gcf;

30 clf

31 hold off

32

33

34 %For each time point

35 for k = 1:10: tp

36

37 h1 = subplot (1 ,2 ,1);

38 cla(h1)

39

40

41 plot3( PC (1 ,:) , PC (2 ,:) , PC (3 ,:) , 'ko', 'MarkerSize '

, 10);

42 title('Connectome ');

43 hold on

44

45 for i = 1:N

46
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47 if (size_p > 3) % If masks have been packaged with

PC

48 for j = 1: size_p -3 % For each mask vector

49 if (PC(j+3,i) == 1) % If mask vector is a 1

at given point

50 if (j == 1)

51 % disp('gas ')

52 plot3(PC(1,i),PC(2,i),PC(3,i),'ko',

'MarkerSize ', 15 , '

MarkerFaceColor ' , 'r');

53 elseif (j == 2)

54 plot3(PC(1,i),PC(2,i),PC(3,i),'kh',

'MarkerSize ', 15 , '

MarkerFaceColor ' , 'm');

55 % disp('sol ')

56 elseif (j == 3)

57 plot3(PC(1,i),PC(2,i),PC(3,i),'kd',

'MarkerSize ', 15 , '

MarkerFaceColor ' , 'y');

58 % disp('tib ')

59 elseif (j == 4)

60 plot3(PC(1,i),PC(2,i),PC(3,i),'k+',

'MarkerSize ', 15 , '

MarkerFaceColor ' , 'bl');

61 end
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62 end

63 end

64 else

65 % For correlation with the activation function

66 if ( G(i) < 0)

67 plot3(PC(1,i),PC(2,i),PC(3,i),'ko', '

MarkerSize ', 50* abs( G(i) ) , '

MarkerFaceColor ' , 'r');

68 else

69 plot3(PC(1,i),PC(2,i),PC(3,i),'ko', '

MarkerSize ', 50* abs( G(i) ) , '

MarkerFaceColor ' , 'g');

70 end

71 end

72 % view ( -45 ,30)

73 view (130 , -20)

74 grid('on')

75 % view (0 , -90)

76 end

77

78 for i = 1:N

79 for j = i+1:N

80

81 if ( abs( R(i,j,k) ) < thres )

82 continue
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83 end

84

85 if ( R(i,j,k) > thres )

86 plot3 ([PC(1,i) PC(1,j)],[PC(2,i) PC(2,j)

],[PC(3,i) PC(3,j)],'k-', 'LineWidth '

, 0.5)

87 plot3 ([PC(1,i) PC(1,j)],[PC(2,i) PC(2,j)

],[PC(3,i) PC(3,j)],'g--', 'LineWidth

', R(i,j,k)*scale)

88 elseif ( R(i,j,k) < -thres )

89 plot3 ([PC(1,i) PC(1,j)],[PC(2,i) PC(2,j)

],[PC(3,i) PC(3,j)],'k-', 'LineWidth '

, 0.5)

90 plot3 ([PC(1,i) PC(1,j)],[PC(2,i) PC(2,j)

],[PC(3,i) PC(3,j)],'r--', 'LineWidth

', abs(R(i,j,k))*scale)

91 end

92

93 end

94 end

95

96 h2 = subplot (2 ,2 ,2);

97

98 if (size_p == 3)

99 plot( act (1: tp), 'LineWidth ', 3)
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100 title( ['Activation Function : ', num2str (k)] )

101 hold on

102 plot(k,act(k),'.', 'MarkerSize ', 50)

103 hold off

104 elseif (size_p > 3)

105 % for i = 1:N

106 % plot( squeeze (Data (1,i ,:)))

107 % % pause (0.00001)

108 % end

109 imshow (( squeeze (anat (: ,: ,14))), []);

110 hold on

111 anat_scale = 1;

112 for i = 1:N

113 if (size_p > 3) % If masks have been

packaged with PC

114 for j = 1: size_p -3 % For each mask

vector

115 if (PC(j+3,i) == 1) % If mask vector

is a 1 at given point

116 if (j == 1)

117 hd1 = plot( anat_scale *PC(1,i

),anat_scale *PC(2,i), 'ro

', 'MarkerSize ', 10, '

LineWidth ', 2, '

MarkerFaceColor ', 'r');
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118 elseif (j == 2)

119 hd2 = plot( anat_scale *PC(1,i

),anat_scale *PC(2,i), 'mh

', 'MarkerSize ', 10, '

LineWidth ', 2, '

MarkerFaceColor ', 'm');

120 elseif (j == 3)

121 hd3 = plot( anat_scale *PC(1,i

),anat_scale *PC(2,i), 'yd

', 'MarkerSize ', 10, '

LineWidth ', 2, '

MarkerFaceColor ', 'y');

122 elseif (j == 4)

123 hd4 = plot( anat_scale *PC(1,i

),anat_scale *PC(2,i), 'b+

', 'MarkerSize ', 10, '

LineWidth ', 2, '

MarkerFaceColor ', 'b');

124 end

125 end

126 end

127 end

128 end

129 hold off
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130 legend ([hd1 , hd2 , hd3 , hd4], {'Gastrocnemius ','

Soleus ','Tibialis ', 'EMG '}, 'Location ', '

east ')

131

132 view (270 ,90)

133 end

134

135

136 h3 = subplot (2 ,2 ,4);

137 colormap ('default ')

138 imagesc (R(:,:,k))

139 % Add colour bar

140 title( ['Adjacency Matrix at time: ', num2str (k)] )

141 h = colorbar ;

142 set(h, 'ylim ', [-1 1])

143 set(h, 'location ', 'eastoutside ')

144

145

146 % h4 = subplot (2 ,4 ,4);

147

148

149 pause (0.1)

150

151

152
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153 end

154 hold off

155

156 disp('Visualize DONE ')

157

158

159

160

161 end
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B.5 Pipeline

1 %% Load in "Verticalized" Data from all Subjects and

Assign Subject Numbers

2

3 % victims = {'Alex ', 'Bhanu ', 'Calvin ', 'Cam ', 'Ethan ', '

Josh ', 'Neil ', 'Sam ', 'TJ '};

4 victims = {'ALEX ', 'BHANU ', 'CALVIN ', 'CAM ', 'ESTEBAN ', '

ETHAN ', 'JOSH ', 'KONRAD ', 'TJ', 'YVES '};

5 % victim = 'ALEX ';

6

7 filepath = 'C:\ Users\sstje\ Desktop \ Schtough \School\GRAD\

Signal Processing \ FINAL_DATA \ FINAL_verts_long \EMG\';

8

9 tbl_all_EMG = load ([ filepath char( victims (1)) '_verts.

mat ']);

10 % tbl_all .tbl. SubjectNo = ones(height( tbl_all .tbl) ,1);

11

12 %%

13 i = 2;

14 for i = 2: length( victims )

15 tbl2 = load ([ filepath char( victims (i)) '_verts.mat '

]);

16 %tbl2.tbl. SubjectNo = i*ones(height(tbl2.tbl) ,1);

17
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18

19 tbl_all_EMG .tbl = [ tbl_all_EMG .tbl; tbl2.tbl ];

20 disp (['Loaded: ' char( victims (i))])

21 end

22

23 clear tbl2 victims victim i filepath

24 clearvars -except tbl_all

25

26 %% Run a Fit on the Coalesced Data

27 %{

28 Variables

29 Subject_Number

30 Time_Point

31 Node_Type_N

32 Edge_Type_N

33 Coherence

34 Fractal

35 Edge_Eucl

36 Edge_Dijkstra_C

37 Edge_Dijkstra_CL

38 Edge_Dijkstra_F

39 Edge_Dijkstra_FL

40 EMG

41

42 %}
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43

44 % Cglme = fitglme ( tbl_all .tbl , 'Coherence ~ 1 +

Edge_Eucl + Edge_Dijkstra_C + EMG + (1| Activation ) +

(1| Subject_Number ) ',...

45 % 'DummyVarCoding ', 'effects ', 'FitMethod ', 'mpl ')

46

47 Cglme = fitglme ( tbl_all_EMG .tbl , 'Coherence ~ 1 +

Node_Type_N : Edge_Type_N :EMG + Edge_Eucl +

Edge_Dijkstra_C + Time_Point + (1| Activation ) + (

Node_Type_N : Edge_Type_N :EMG| Subject_Number )',...

48 'DummyVarCoding ', 'effects ', 'FitMethod ', 'mpl ')

49

50

51

52 %%

53 Fglme = fitglme ( tbl_all_EMG .tbl , 'Fractal ~ 1 +

Node_Type_N : Edge_Type_N :EMG + Edge_Eucl +

Edge_Dijkstra_C + Time_Point + (1| Activation ) + (

Node_Type_N : Edge_Type_N :EMG| Subject_Number )',...

54 'DummyVarCoding ', 'effects ', 'FitMethod ', 'mpl ')

55

56 %%

57
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58 Nglme = fitglme ( tbl_all_EMG .tbl , 'Node_Type_N ~ 1 +

Coherence + Fractal + Edge_Type_N + Edge_Eucl +

Edge_Dijkstra_C + Edge_Dijkstra_CL + Edge_Dijkstra_FL

+ Time_Point + (1| EMG) + (1| Activation ) + (1|

Subject_Number )',...

59 'DummyVarCoding ', 'effects ', 'FitMethod ', 'mpl ')

60

61

62 %%

63

64 Eglme = fitglme ( tbl_all_EMG .tbl , 'Edge_Type_N ~ 1 +

Coherence + Fractal + Node_Type_N + Edge_Eucl +

Edge_Dijkstra_C + Edge_Dijkstra_CL + Edge_Dijkstra_FL

+ Time_Point + (1| EMG) + (1| Activation ) + (1|

Subject_Number )',...

65 'DummyVarCoding ', 'effects ', 'FitMethod ', 'mpl ')

66

67 %%

68

69 diary('Cglme.txt ')

70 diary on

71 disp(Cglme)

72 diary off
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Appendix C

Figures, Rights, and Permissions

Figure 2.2: This figure was published in Plos One, April 2014. With open-access

status. Figure 2.1: This figure was published in NeuroImage Volume 197, August

2019, Pages 742-760. Copyright Elsevier Inc., 2022.
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