Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27891
Title: IMPROVING THE UNDERSTANDING OF ENVIRONMENTAL STRESS CRACKING IN POLYETHYLENES
Other Titles: IMPROVING THE UNDERSTANDING OF ENVIRONMENTAL STRESS CRACKING IN POLYETHYLENES BY MODIFICATION OF THE BELL TEST
Authors: Gritsichine, Vladimir
Advisor: Thompson, Michael
Vlachopoulos, John
Department: Chemical Engineering
Publication Date: Nov-2022
Abstract: One of the most common failures of plastics while in use is environmental stress cracking (ESC). Studies were conducted in this thesis to improve our understanding of ESC, through experimentation to modify the existing and most-used standardized test for ESC, namely the Bell Test (ASTM D-1693). Given the large variability of failure times associated with the Bell Test, the first study consisted of developing a novel heat notching technique. This technique consisted of a heated blade used for notching and showed decreased variability compared to the standard method of notching. Given the success, this work further highlighted a growing theory that the local phase morphology of the notch was critically important to assessing environmental stress cracking resistance. The second study in this thesis explored the ESC failure mechanism on this new viewpoint that the local region of the notch and the structural arrangement of polyethylene therein was critically influential. The work related the failure mechanism to the localized absorption of the typical stress cracking agent, IGEPAL CO-630, in conjunction with the localized stress development in the notch, using an organic dye tracer and computer vision aided analysis. The study reinforced the importance of the local amorphous and crystalline regions, seen in the heat notch study, and found a two-stage stress-dependent absorption mechanism for IGEPAL occurring as cracking developed in the polyethylene samples.
URI: http://hdl.handle.net/11375/27891
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Gritsichine_Vladimir_202209_MASc.pdf
Access is allowed from: 2024-09-26
1.86 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue