Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27885
Title: Discovery of Temporal Graph Functional Dependencies
Authors: Noronha, Levin
Advisor: Chiang, Fei
Department: Computing and Software
Publication Date: 2022
Abstract: Real-world graphs are dynamic and evolve over time. Data quality in evolving graphs is essential to downstream decision making and fact checking. This work studies the discovery of Temporal Graph Functional Dependencies (TGFDs), a recently defined class of data quality rules for enforcing consistency over evolving graphs. TGFDs impose topological and attribute dependency constraints over a period of time. We define minimality and support for TGFDs and formalize the TGFD discovery problem. Defining TGFDs manually is a laborious task and requires domain expertise. Hence, we introduce TGFDMiner, a sequential algorithm that discovers minimal and frequent TGFDs. We define various optimizations for TGFDMiner that improve runtime.
URI: http://hdl.handle.net/11375/27885
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Levin_Noronha_Thesis.pdf
Access is allowed from: 2023-07-30
1.92 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue