Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27730
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSun, Hong-jin-
dc.contributor.authorHaponenko, Hanna-
dc.date.accessioned2022-07-20T15:50:23Z-
dc.date.available2022-07-20T15:50:23Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/11375/27730-
dc.descriptionThis thesis encompasses five chapters. Chapter 1 details the background literature for how the inhibition of return effect manifests in 3D environments. Additional summary is provided about how positioning cues and targets within the boundary of the same objects affects the spread of IOR when compared to when attention is cued in empty space. Finally, the literature review also provides a background for whether the IOR effect is affected by a viewer-centered or world-centered frame of reference. Chapters 2-4 are empirical chapters. Chapter 2 observes a depth-specific IOR effect in a 3D composed of pictorial depth cues. Chapter 3 suggests that this depth-specificity can only occur when cues and targets are positioned in different objects rather than when positioned within a single object. Chapter 4 investigates how the distances between viewer and cue, viewer and target, and cue and target affect the magnitude of IOR, suggesting that the world-centered reference frame influences IOR. Chapter 5 serves as a general discussion and conclusion chapter, discussing the findings and implications of each empirical chapter.en_US
dc.description.abstractThe distribution of human attention in space can be modulated by spatial and temporal factors. This dissertation studied inhibition of return (IOR), a robust behavioural effect obtained through a spatial cueing paradigm where observers exhibit slower detection times to a target appearing over 300 ms after a cue in a previously cued location. Most research has studied the IOR effect in two-dimensional space; thus, it remains unclear whether, in three-dimensional space (3D) space, slower reaction times occur due to a target appearing in the same world location (defined in 3D coordinates) or in the same retinal location as the cue (i.e., anywhere along an observer’s line of sight to the cue). My thesis examines IOR in a computer-simulated 3D environment, with the location of the cue and target residing in the same versus different depth/distance position either within the same or different object and either relative to the observer or to the world environment. Following a general literature review (Chapter 1), the first empirical chapter (Chapter 2) demonstrates that IOR is depth-specific when the direction of depth switch between cue to target occurs from far-to-near space, suggesting a behavioural advantage for near space in the human attention system. Chapter 3 shows that this depth-specificity and depth-asymmetry of IOR is maintained only when cues and targets are not part of the same object; object membership can therefore override the depth-specific property of IOR in 3D scenes. Chapter 4 introduces motion of the viewpoint, showing that IOR is depth-specific when the cue and target appear in different depth locations in the world environment even when located at the same relative distance from the observer’s viewpoint. Thus, IOR could be the result of an inhibitory tag placed at a location relative to the environment rather than at a location relative to the viewpoint.en_US
dc.language.isoenen_US
dc.subjectinhibition of returnen_US
dc.subjectspatial cueingen_US
dc.subjectspatial attentionen_US
dc.titleInhibition of Return is Depth-Specific, Object-Based, and Relies on a World-Centered Frame of Reference in 3D Spaceen_US
dc.title.alternativeInhibition of Return in 3D Spaceen_US
dc.typeThesisen_US
dc.contributor.departmentPsychologyen_US
dc.description.degreetypeDissertationen_US
dc.description.degreeDoctor of Science (PhD)en_US
dc.description.layabstractHuman attention can be distributed over space and affected by external events. Prior research using 2D environments has shown that some time after the first stimulus (a cue), the reaction time to a subsequent stimulus (a target) appearing in the same location is typically slower compared to when this target appears elsewhere. Thus, attention likely moves away from a previously observed to more novel location of interest. I examined, in a 3D environment, whether this “location” of reduced attention resides in the same 3D location or retinal location as that of the cue. I also assessed the impact on reaction time for when the cue and target belong to the same or different object and when their locations differ in reference to the observer or world environment. My research suggests that humans maintain a higher level of attention for nearer space when the cue previously appears at a farther location.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Haponenko_Hanna_202207_PhD.pdf
Access is allowed from: 2023-07-20
3.24 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue