Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27710
Title: Hybrid and data-driven modeling and control approaches to batch and continuous processes
Authors: Ghosh, Debanjan
Advisor: Mhaskar, Prashant
Department: Chemical Engineering
Keywords: Hybrid modeling;Advanced Process Control;Batch Processes
Publication Date: 2022
Abstract: The focus of this thesis is on building models by utilizing process information: from data, from our knowledge of physics, or both. The closer the model approximates reality, the better is the expected performance in forecasting, soft-sensing, process monitoring, optimization and advanced process control. In the domain of batch and continuous manufacturing, quality models can help in ensuring tightly controlled product quality, having safe and reliable operating conditions and reducing production/operation costs. To this end, first a parallel grey box model was built which makes use of a mechanistic model, and a subspace identification model for modeling a batch poly methyl methacrylate (PMMA) polymerisation process. The efficacy of such a parallel hybrid model in the context of a control problem was illustrated thereafter for reducing the volume of fines. Real-time implementation of models in many cases demand the model to be tractable and simple enough, and thus the parallel hybrid model was next adapted to have a linear representation, and then used for control computations. While the parallel hybrid modelling strategy shows great advantages in many applications, there can be other avenues of using fundamental process knowledge in conjunction with historical data. In one such approach, a unique way of adding mechanistic knowledge to improve the estimation ability of PLS models was proposed. The predictor matrix of PLS was augmented with additional trajectory information coming strategically from a mechanistic model. This augmented model was used as a soft-sensor to estimate batch end quality for a seeded batch crystallizer process. In a collaborative work with an industrial partner focusing on estimating important variables of a hydroprocessing unit, an operational data based input-output model was chosen as the right fit in the absence of available mechanistic knowledge. The usefulness of linear dynamic modeling tools for such applications was demonstrated.
URI: http://hdl.handle.net/11375/27710
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Ghosh_Debanjan_202206_PhD.pdf
Access is allowed from: 2023-06-20
6.29 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue