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ABSTRACT

The focus of this thesis is on building models by utilizing process information: from

data, from our knowledge of physics, or both. The closer the model approximates

reality, the better is the expected performance in forecasting, soft-sensing, process

monitoring, optimization and advanced process control. In the domain of batch and

continuous manufacturing, quality models can help in ensuring tightly controlled prod-

uct quality, having safe and reliable operating conditions and reducing production/-

operation costs.

To this end, first a parallel grey box model was built which makes use of a mecha-

nistic model, and a subspace identification model for modeling a batch poly methyl

methacrylate (PMMA) polymerisation process. The efficacy of such a parallel hy-

brid model in the context of a control problem was illustrated thereafter for reducing

the volume of fines. Real-time implementation of models in many cases demand the

model to be tractable and simple enough, and thus the parallel hybrid model was

next adapted to have a linear representation, and then used for control computa-

tions. While the parallel hybrid modelling strategy shows great advantages in many

applications, there can be other avenues of using fundamental process knowledge

in conjunction with historical data. In one such approach, a unique way of adding

mechanistic knowledge to improve the estimation ability of PLS models was proposed.

The predictor matrix of PLS was augmented with additional trajectory information

coming strategically from a mechanistic model. This augmented model was used as

a soft-sensor to estimate batch end quality for a seeded batch crystallizer process.

In a collaborative work with an industrial partner focusing on estimating important

variables of a hydroprocessing unit, an operational data based input-output model

was chosen as the right fit in the absence of available mechanistic knowledge. The

usefulness of linear dynamic modeling tools for such applications was demonstrated.
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In this chapter, the main theme and overall objectives of the thesis are presented.

The motivation behind developing data and hybrid modeling and control schemes for

Chemical Engineering processes are first described in 1.1 followed by the outline and

objectives of the thesis chapters in 1.2.

1.1 Motivation

Models undoubtedly play a key role in modern day industrial manufacturing. The

ability of models to successfully approximate the process behaviour is of paramount

importance and improving their quality has been a direction of continual research for

many years. In the process engineering domain, incorporation of models have lead to

successful design, optimization, monitoring and control of various complex continuous

and batch processes.

The traditional style of model building over many decades has been the use of physics

based governing laws commonly known as first principles modeling or mechanistic

modeling [3]. These models are typically quite rigorous and can approximate the

process relatively well. However, the task of building such high fidelity models is

not trivial and requires good knowledge and expertise in that field. They also find

limited use in many real time implementations owing to the associated complexity

in using them in many algorithms. The use of simplifying assumptions to obviate

such complexities often lead to biases in model predictions. On the other end of the

spectrum, we have models built from purely log data of historical operation, known

as data based or black box models [1, 6]. These techniques have come into promi-

nence owing to the increasing digitalization of industries, mass storage capabilities

of data, and the increased computing power in the current era. A variety of such

models exist in literature and is chosen depending on their suitability to a particular

application. Their structure is first chosen by the practitioner and the parameters are
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then identified from the database. These models are much more tractable compared

to mechanistic models but suffer from lack of generalizability to different operating

conditions.

Hybrid [4, 5] or grey box modeling (Figure 1.1) schemes offer unique ways of syner-

gizing mechanistic knowledge with purely data based models. These models provide

avenues to better utilize all the available process knowledge along with measurement

data, and try to alleviate certain shortcomings associated with the earlier described

modeling strategies. Several architectures in this category have been mentioned in lit-

erature, among which the series and parallel schemes are the most prominent. These

arrangements provide solutions to correct the biases in the mechanistic models, and

at the same time provide easier and tractable alternatives to the problem of model

maintenance (an important issue encountered in practice). One of the most impor-

tant advantage that a hybrid model presents over a purely data-driven model is the

need of less data for identification. In many critical processes, manipulating all the

inputs for exciting the system may be quite expensive and time consuming. Since

many relationships between inputs and outputs are already embedded in the hybrid

model from the fundamental understanding of the process, these models in principle

require less data in their development.

Apart from the above mentioned strategies of hybrid modeling, there exist other ways

of incorporating fundamental knowledge into data based models where the parameters

of the black box model are identified subject to physical constraints [2] and thus,

leading to better predictive data-based models. However, implementation of grey box

modeling techniques for predicting the behaviour of complex processes, along with

their usage in soft sensing, monitoring and advanced process control has been quite

limited.

In the past, researchers have made some attempts in this direction using non-linear

tools like Artificial Neural Networks (ANN) as the data-driven component in grey

3
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First Principles Black-box

Hybrid

Inputs Outputs

Figure 1.1: Generic hybrid architecture

box modeling. However, such techniques often suffer from the curse of overfitting,

and their usage is limited when historical data is quite scarce owing to the expensive

nature of the experiments/runs, mostly for batch processes. Statistical models like

Partial Least Squares (PLS) and linear algebra based techniques like Subspace Iden-

tification offer attractive solutions in such situations. Their utility as a stand alone

data based model in describing continuous, batch and batch like processes along with

their efficacy in Model Predictive Control (MPC) schemes have been demonstrated

rigorously in the past. However, utilization of such models in a grey box architecture

has not been explored before. In this thesis, the primarily focus is on building hybrid

and data-based (when mechanistic models are not available) approaches using sub-

space identification and PLS models as the main tool for the data-driven component.

These model architectures have been used in a wide range of applications including

dynamic prediction, advanced process control, soft sensing of quality variables etc.

to demonstrate their efficacy, and the potential value added in the area of process

systems engineering.

1.2 Outline of the thesis

Motivated by the challenges associated with the domains of mechanistic and data-

driven techniques, this thesis focuses on building hybrid models with the help of
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linear tools (PLS and Subspace Identification) as the data-driven component, and

demonstrates its usefulness for a variety of applications including prediction, control

and inferential sensing of batch processes like PMMA polymerisation and seeded batch

crystallization. In the case where first principles models was not readily available for

industrial hydroprocessing units, the efficacy of linear dynamic modeling tools was

demonstrated for building input-output models using real industrial data. The rest

of the thesis is organized as follows.

In Chapter 2, the problem of building a parallel hybrid model utilizing a mechanistic

model and subspace identification model for a batch PMMA polymerization process

is considered. The development of this hybrid architecture is first described and its

efficacy in predicting the batch dynamics is demonstrated against the mechanistic

model and a purely data-based subspace model.

Chapter 3 considers the problem of implementing a parallel hybrid architecture in

a MPC scheme. The control objective considered is reducing the volume of fines

generated due to nucleation in a seeded batch crystallization process. One of the

main objective of this study is to maintain the linearity of the model to be used inside

the MPC, and in that direction, first a linear equivalent of the non-linear parallel

hybrid architecture is built and then a MPC formulation embedding the model is

described. Key performance indicators demonstrated the superior performance of the

proposed MPC over a data-based MPC for higher quality constraints.

In Chapter 4, a simple and unique way of incorporating fundamental knowledge to

improve the predictive ability of PLS models is demonstrated. The general idea behind

the development of this hybrid approach is first presented , followed by implementation

of this approach as a soft sensing tool in estimating the final quality for seeded batch

crystallizer is demonstrated. The superior estimation ability of this model compared

to an only data based PLS model is shown.
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In Chapter 5, the usefulness of data-driven dynamic modeling techniques like Dynamic

Partial Least Squares (DPLS) and Subspace Identification for building input-output

models for industrial hydroprocessing units is presented. Challenges involved in mod-

eling using a real data set like handling of missing data in both inputs and outputs

are addressed for subspace identification. The results demonstrate the merits of using

such linear dynamic methods for modeling these processes, and suggests practitioners

to consider these tools in their applications.

Finally in Chapter 6, the key findings, concluding remarks along with directions of

future work are presented.
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Abstract

This paper addresses the problem of synergizing first principles models with

data-driven models. This is achieved by building a hybrid model where the

subspace model identification algorithm is used to create a model for the resid-

uals (mismatch in the outputs generated by the first principles model and the

plant output) rather than being used to create a dynamic model for the process

outputs. A continuous stirred tank reactor (CSTR) setup is used to illustrate

the proposed approach on a continuous system. To further evaluate its effi-

cacy, the proposed methodology is applied on a batch polymethyl methacrylate

(PMMA) polymerization reactor and the predictions are compared with that of

first principles modeling and the data-driven approach alone. The paper demon-

strates the improved modeling capability of the hybrid model over either of its

components.

2.1 Introduction

Good models are integral to process systems engineering, often being the core around

which control and optimization formulations are designed. First principles or mecha-

nistic modeling refers to the type of modeling where explicit knowledge of the process

mechanism is present and utilized. Thus, these models invoke fundamental physical

and chemical laws that describe the system being considered and utilize algebraic, or-

dinary or partial differential equations. Often times, the fewer the assumptions made,

the higher the number of model parameters and the more complex the model structure.

The task of building and maintaining a first principles model [2, 27, 17, 33, 12, 22, 28]

continues to involve significant effort.

Increased availability of data, along with improved computational capabilities have

made the so-called data-driven methods increasingly attractive [30, 14, 4]. In this
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approach, a model structure is chosen a priori and parameters are identified using

the available data. In this direction, several statistical based approaches exist and

are distinguished by the kinds of model structures being utilized, including latent

variable-based methods and subspace identification-based algorithms.

Projection to latent structures (PLS) is one of the most recognized statistical modeling

methodologies and has shown significant advantages over its counterparts. PLS is

one of the latent variable methods where measurement data of high dimension is

projected into lower dimensional space to create simpler and effective models. Their

usefulness to batch processes have been extensively demonstrated, [14, 13] with special

algorithms utilized to enable handling of batches of non-uniform lengths. In this

method, while process knowledge is often integrated into the modeling approach by

utilizing additional calculated variables, a direct integration of first principles models

and latent variables models has not been done.

Another statistical-based modeling approach is subspace identification, which enables

the identification of models having state-space representations. In these methods, a

state trajectory is first identified and the model parameters (for a linear time-invariant

model (LTI)) are then determined (see [30, 26, 39, 18, 10] for examples of subspace

identification methods). Recently, subspace identification-based methods for modeling

batch processes [6, 7, 16, 15] have been proposed. A subspace identification scheme

where the batch lengths do not necessarily have to be of the same size was proposed

in [6] and its merits in prediction and control were demonstrated by applying it to a

batch polymerization process. In addition, a modeling strategy was proposed in [7]

that allows discrete addition during the batch. The usefulness of this identification

scheme was shown in [16, 15] by applying it to a batch particulate process and a

hydrogen plant start-up process.

The approaches described above, however, have not demonstrated the utilization

of available process knowledge in synergy with the data-driven modeling approach.

10



PhD Thesis - Debanjan Ghosh; McMaster University - Chemical Engineering

There have been some examples in the past of approaches that have utilized a priori

knowledge in combination with artificial neural networks (ANNs; see [32, 1, 19, 20])

to create hybrid, or grey-box, models. Readers are encouraged to go through [38],

where an excellent overview of different hybrid semi-parametric modeling approaches

is provided. The various applications of these models, such as process monitoring, op-

timization and control in the field of process systems engineering are also discussed.

It should be noted that in this work, hybrid semi-parametric models are referred to

as simply hybrid models. Hybrid modeling approaches can be broadly categorized

as either series (where the models are used one after the other) or parallel (where

the models are used in parallel to one another). Examples of the series approach are

provided in [36, 29, 17] where the hybrid model is built by first by developing the first

principles model and neural networks are subsequently used to determine the parame-

ters. The approach was later demonstrated in [17] with uncertain, unmeasurable and

unknown parameters.

In the parallel approach, a data-driven modeling structure is utilized to model the

error between process outputs and the predicted outputs from the first principles

model (referred to as residuals). Typically, a neural network model is utilized as the

data-driven modeling scheme [34, 40]; however, the utility of ANN-based models to

capture the process dynamics while avoiding the problem of overfitting continues to be

an active research focus. On the other hand, statistical approaches such as subspace

identification-based models permit a more direct handling of the overfitting problem.

Therefore, the proposed approach follows a parallel hybrid modeling scheme and uses

subspace identification as the data-driven component.

A key advantage to the hybrid modeling approach is that it offers an alternative

approach to addressing the issue of model maintenance that is associated with using

first principles models. As process conditions change and new data becomes available,

a recalibration of the first principles model (re-identifying the model parameters from

11



PhD Thesis - Debanjan Ghosh; McMaster University - Chemical Engineering

process data) will likely result in a more informative model. As stated earlier, the

recalibration process is limited by the difficulties associated with solving a highly

complex optimization problem. The hybrid modeling approach instead exploits the

fact that even though the first principles model may no longer be able to predict the

variables precisely, it still accounts for the qualitative nature of the (often nonlinear)

process dynamics. Therefore, building a simpler data-driven model that captures the

residuals negates the need for model recalibration or re-identification given that the

hybrid model accounts for both the process nonlinearity, and the effect of the new

process conditions.

In summary, while the ability of the subspace algorithm for modeling batch processes

has been established [7, 6, 16], this effective modeling tool has not yet been inte-

grated with first principles model in a hybrid modeling framework. Motivated by

these considerations, a hybrid model integrating first principles modeling with sub-

space identification algorithm is proposed in this work. The rest of manuscript is

organized as follows: Section 2.2.1 presents a PMMA batch process as a motivating

example and a brief overview of the subspace identification method employed is given

in Section 5.2.4. Section 2.3 describes the development of the proposed methodology.

The hybrid approach is first illustrated using a CSTR case study in Section 2.3.4.

The methodology is also applied to a PMMA polymerization process and compared

with the existing subspace identification approach in Section 2.4. Finally, concluding

remarks are presented in Section 2.5.

2.2 Preliminaries

In this section, we briefly review a PMMA polymerization process example to motivate

the proposed research. Given that the model in the proposed methodology considers

subspace methods as the identification tool, a brief review of subspace identification
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is presented in the following subsection.

2.2.1 Motivating example: PMMA polymerization reactor

A batch polymerization of PMMA in a stirred tank reactor is used as the motivat-

ing example in this study. The ingredients of this recipe are the monomer methyl

methacrylate, the initiator AIBN and toluene as solvent. The reactor temperature is

maintained using a cooling/heating jacket. To simulate the process, the mechanistic

model presented in [11], with alterations taken from [12, 31] is utilized (see [5] for

further details). A total of nine states are present in this mechanistic model, which

includes the concentration of monomer, the concentration of initiator, the reaction

temperature and six moments of living and dead polymer chains. The model with the

associated parameters is considered as the ’process’ in the present manuscript.

To replicate practice, data is generated for the batches using variation in the initial

conditions. The measured outputs for this polymerization process are chosen to be

the reaction temperature, log viscosity, and density. The manipulated input variable

is the jacket temperature (Tjk). The process dynamics display significant nonlinearity

and are highly dependent on initial conditions, making it important for the hybrid

modeling approach to be implemented in a way that estimates current process states

before being used for prediction purposes.

For the purpose of model identification, it is thus assumed that a total of NT training

batches and NV validation batches are available with Db, b = 1 . . . , NT and Dv, v =

1, . . . , NV being the duration of training and validation batches respectively. Note

that the training and validation batches are not required to be of uniform length.

The input (jacket temperature) is denoted by u = Tjk and the measured outputs

(reaction temperature, log viscosity, and density) are represented by the column vector

y =
[
Treac log µ ρ

]T
. It is assumed that a first principles model for the process is

13



PhD Thesis - Debanjan Ghosh; McMaster University - Chemical Engineering

available, albeit with a mismatch between the process and model. Note that using

existing results, a subspace model between the input and outputs can be readily

determined. This paper specifically addresses the problem of developing a hybrid

model that combines the first principles and data-driven models. Before proceeding to

present the proposed approach, the subspace identification method is briefly reviewed.

2.2.2 Subspace identification

Subspace identification techniques are methods which use matrix decomposition con-

cepts of linear algebra such as SVD (singular value decomposition) and QR factoriza-

tion for the identification of a discrete time linear time-invariant state-space model of

the form below:

xsd[k + 1] = Axsd[k] +Busd[k]

ysd[k] = Cxsd[k] +Dusd[k]
(2.1)

where xsd[k] denote the subspace states of the system at a time instant k and is a

(n × 1) vector. The subspace states of the system are abstract in nature and may

not directly relate to the states described by the first principles model. The number

of states, nsd, is the order of the identified system and is also one of the parameters

of the identification procedure. ysd[k] and usd[k] are (lsd × 1) and (m × 1) vectors

respectively and denote the predicted outputs and manipulated inputs.

For a system of a particular order, the model parameters to be computed include the

matrices A, B, C and D, and the initial condition of the state variable for the training

data set. In this approach, a state trajectory is first identified and the system ma-

trices are later computed using linear regression. These methods are non-iterative in

nature, as opposed to prediction error minimization (PEM) algorithms, which involve

estimation using linear and nonlinear optimization problems. Some of the widely used

14



PhD Thesis - Debanjan Ghosh; McMaster University - Chemical Engineering

subspace algorithms are canonical variate analysis [21] (CVA), numerical algorithm

for subspace state-space identification [24] (N4SID) and multivariate output error

state-space [37] (MOESP). These methods were shown to be the interpretation of an

unified framework in [25], with the different methods resulting from decomposition of

weighing matrix chosen differently in each case. The subspace identification algorithm

presented in [23] has been used in the present work.

2.3 Proposed modeling approach

While other instances of hybrid or grey-box models exist in the literature [3, 29,

34, 35, 40], the specific architecture proposed for the hybrid dynamic model is key

to achieving the objective of enhancing the first principles models. In the present

section, the hybrid modeling approach is described for the more challenging case of

batch data (including data from multiple batches of non-uniform length). The first

simulation example illustrates the approach using the simpler case of a continuous

CSTR followed by the application to the motivating batch PMMA polymerization

example.

2.3.1 Model identification

Model identification is the process of using measured data to build a mathematical

model of a dynamic system. Following identification, model validation techniques are

used to verify that the estimated model accurately reproduces the dynamic behaviour

of the system. When identifying a dynamic model, both the model parameters and

the initial state of the system are identified. This is true for dynamic models in

general, regardless of the technique used, whether that be subspace identification or

other techniques such as neural networks. For a new data set, the model simply
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cannot predict (accurately) until the states of the system have been estimated using a

portion of the new data. In contrast, when developing static models, once a model has

been developed/trained, it can be directly implemented for new data to predict the

modeled variable. To account for this feature of dynamic models, the identification

step is described first, followed by the validation step.

Recall that a total of NT training batches and NV validation batches are available,

with Db, b = 1 . . . , NT and Dv, v = 1, . . . , NV being the duration of the training and

validation batches, respectively. Thus, for the bth batch, input and output data of the

form [uk, yk]
b is available. It is assumed that a first principles model for the process

is available, albeit with mismatch between the process and model. Note that using

existing results, a subspace model between the input and outputs can be readily

determined. This paper specifically addresses the problem of developing a hybrid

model that combines the first principles and data-driven models.

First principles model

The first step in this modeling approach is to create the first principles model using

available process knowledge. Note that the key contribution of the proposed approach

is not the development of a first principles model, but the utilization of the first

principles model within a hybrid modeling framework. To this end, we assume the

existence of a first principles model of the form:

ẋfp = f(xfp,ufp)

yfp = g(xfp,ufp)
(2.2)

where xfp ∈ Rnfp denote the nfp first principles model states, and f and g are

functions (possibly nonlinear) which determine the evolution of the states and outputs.

yfp ∈ Rlfp are the predicted outputs and ufp ∈ Rnm are the inputs. lfp and nm denote
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the number of measured outputs and manipulated inputs and are considered the same

as the process. As the first step of the hybrid model identification procedure, the

predictions for all the batches are generated using known initial conditions of the first

principles model and the known input values for the batches. Thus ufp are chosen

to be the same as u (inputs to the process) to compute the first principles model

prediction. The predicted values of the states and outputs at the k th instant for any

batch b are respectively denoted by x
(b)
fp [k] and y

(b)
fp [k].

Remark 1. We assume the availability of the initial states (x0
fp) of the first principles

model for all the batches. In general, we may not have measurements of all the initial

state values. In such situations, the first principles model would need to be run with an

appropriate state estimator first and then be available for prediction after the outputs

converge. This is not a limitation of the present work and would be required even in the

absence of the hybrid modeling. In other words, if the first principles model is such that

the initial states of the model are not available for measurement, the implementation of

the first principles model would require the state estimation setup. Thus, the proposed

hybrid modeling framework does not impose any additional requirements. An explicit

illustration of this scenario is a subject of future work.

Remark 2. In deciding whether or not the first principles models alone, the data-

driven model alone or the hybrid model alone should be utilized, the following guideline

is suggested: For the cross-validation batches, compute the Mean Absolute Scaled Error

(MASE) under the first principles model and the best data-driven model only (where

the data-driven model is directly modeling the process inputs and outputs). Next, using

the number of states in the data-driven model as the upper bound, determine the best

hybrid model. The model that yields lowest MASE should be the one chosen. The

expected outcomes of this exercise are one of the two: Either the hybrid model is

chosen or the data-driven model alone is chosen, with the outcomes dependent on the

predictive capability of the first principles model. In particular, if the first principles

model is not sufficiently quantitatively informative, the data-driven model will typically
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outperform a poor first principles model and be chosen. Note that such an outcome

could also be used as a trigger to re-calibrate the first principles model. On the other

hand, if the first principles model has useful information, then the hybrid model is the

expected chosen outcome, with the residual data-driven model improving upon the first

principle model.

Remark 3. The first principles model does not necessarily have to be in the form of

an explicitly written differential algebraic equations (DAE) set. Instead, it could very

well be a complex industrial simulator which combines several interconnected units to

generate the outputs. The only requirement is that the inputs and outputs should be

the same as those of the plant. Again, this is not a limitation imposed by the proposed

approach, but would need to be in place for the first principles model, to begin with.

Finally, for the first principles model to be useful in real time for control purposes, it

should be possible for the simulation for each step to be completed significantly faster

than the sampling time between measurements.

Subspace-based residual model

Consider now the scenario where plant data (y,u) for training and validation is avail-

able and the first principles predictions (yfp) have been generated according to Sec-

tion 2.3.1. This section illustrates the development of the model between the residuals

e = y − yfp and the input. Figure 2.1 shows the layout of the model building step.

The identified model is a discrete LTI sytem of the form:

xhm[k + 1] = Ahmxhm[k] +Bhmuhm[k]

ehm[k] = Chmxhm[k] +Dhmuhm[k]
(2.3)
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Figure 2.1: A schematic illustrating the integrated modeling approach. The top
schematic shows the input-output data collected from the process. The same input is fed
to the first principles model to generate the respective outputs. Finally, a model is built

between the error and process inputs.

where xhm ∈ Rnhm denote the nhm subspace identified residual model states. Ahm,

Bhm, Chm and Dhm are the system matrices. ehm ∈ Rlhm is the vector of residuals

where lhm denotes the size of the vector and is the same as lfp . The system matrices

are computed by utilizing the batch subspace identification outlined below. uhm is

the input to the model and is same as ufp.

One of the key steps in subspace identification is the arrangement of input-output

data to create appropriate Hankel matrices to be used in the algorithm. Instead of

using the outputs, in the proposed approach, the Hankel matrix of residuals for the

bth batch is formed as shown below:

E
(b)
1|i =


e(b)[1] e(b)[2] · · · e(b)[j(b)]

...
...

...

e(b)[i] e(b)[i+ 1] · · · e(b)[i+ j(b) − 1]

 (2.4)

A total of 1, 2, . . . , i, . . . , i + j − 1 continuous measurements are used to build the

matrix. The subscript 1|i in this matrix refers to the aspect that elements 1 to i is

present in the first column of the Hankel matrix. To appropriately utilize data from

multiple batches, the data from each batch is concatenated [6] to create a Hankel like
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matrix, given by:

E1|i =
[
E

(1)
1|i E

(2)
1|i · · · E

(NT )
1|i

]
(2.5)

with NT being the total number of batches used for training the model.

The input matrix U
(b)
1|i is created in a similar manner. The value of i is chosen to be

slightly greater than the expected number of subspace states. This modeling approach

can naturally handle batches of non-uniform length. Note that the index value i is

the same for all batches to create a matrix that has an equal number of rows for all

the batches. However, the number of columns can vary depending on the duration of

the batches.

From Equation 2.3, through repeated substitutions, the following equation is obtained:

Eh = Γi.X+Ht.Uh (2.6)

where, Eh and Uh are the output and input Hankel matrices, Γi is the extended

observability matrix, X is the consecutive state vector sequence and Ht is the lower

triangular block Toeplitz matrix. Two matrices H1 and H2 are constructed via the

concatenation of E1|i, U1|i and Ei+1|2i, Ui+1|2i respectively, as shown in Equation 3.14.

The subscript i+ 1|2i indicates that elements indexed from i + 1 to 2i are arranged

in the first column of that Hankel matrix.

H1 =

E1|i

U1|i

 ; H2 =

Ei+1|2i

Ui+1|2i

 (2.7)

Next, matrix H is constructed as the concatenation of H1 and H2 as shown below:

H =

H1

H2


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The state vector is realized as the intersection of the row space of the two block

Hankel matrices H1 and H2. Therefore, the state sequence vector can be obtained

by performing an SVD of the matrix H, and is given by X2 = [ xhm[i + 1] xhm[i +

2] · · · xhm[i+ j] ].

Subsequently, the system matrices are computed using least squares of the over de-

termined set of equations shown below:xhm[i+ 2] · · · xhm[i+ j]

ehm[i+ 1] · · · ehm[i+ j − 1]

 =

Ahm Bhm

Chm Dhm

 .

xhm[i+ 1] · · · xhm[i+ j − 1]

uhm[i+ 1] · · · uhm[i+ j − 1]


(2.8)

Alternative approaches exists in literature [37], where the system matrices are com-

puted directly from the I/O data without the requirement of first computing the state

sequence.

In this subspace-based model building methodology, nhm and i are the parameters that

need to be specified and thus have to be chosen adequately for the model to provide

good predictions. Both nhm and i can be determined by using cross validation, or i

chosen heuristically (while satisfying i > nhm, and for the present application, i =

nhm + 4. In the existing batch subspace identification [6, 7] results, these parameters

were chosen by trial and error. In the present results, a cross validation technique

for determining the best number of states is utilized and presented in Section 2.3.3.

Having picked the best values of nhm using cross validation, the entire training data

set is utilized to determine the system matrices. Before presenting the cross validation

method, however, the model validation approach is presented in the next section to

enable a clearer understanding of cross validation.

Remark 4. One of the key difficulties with the utilization of first principles models is

known to be the model maintenance aspect, more so than the model development aspect.
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In other words, while it may be possible to put in the resources to develop a detailed

first principles model, practitioners struggle with the resources required to update or

maintain the model as process conditions change or new data becomes available. The

proposed approach is developed to address model maintenance; therefore the model is

not recalibrated as new data becomes available (i.e. the parameters of the original first

principles model are not re-identified). Instead, the new data is used to ’correct’ the

error between the existing first principles model and the process data, thus requiring

the development of a model that captures the residual.

Remark 5. It is important to recognize that the hybrid model does not try simply to

model the residuals as a stochastic process. If one were to do that, one would lose

the opportunity of recognizing (and quantifying) that the discrepancy between the first

principles model and the process could be impacted by the inputs themselves. The

proposed hybrid modeling approach builds a dynamic model between the inputs and

the residuals between the process outputs and the first principles predictions, allow-

ing the residuals to be predicted forward. Using this structure, the hybrid model is

able to capture much of the nonlinear process behaviour that is accessible through the

first principles model as well as the remaining (often almost linear) dynamics that is

captured by the subspace identification-based model. Thus, the structure of the model

chosen in the proposed hybrid model framework is key to the success of the proposed

hybrid approach.

Remark 6. Note that a hybrid model could very well include the first principles model

and an empirical nonlinear model. It is generally expected that the resultant hybrid

model would still perform better than a purely first principles or purely empirical non-

linear model. The concern of overfitting with nonlinear empirical models, however,

continues to be a research challenge. In contrast, the subspace identification-based

approaches generally tend to not overfit, and the ‘information’ captured through ad-

ditional states can be readily inferred from inspecting the SVD of the block Hankel

matrices, and utilizing cross validation, as illustrated in the manuscript.
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Remark 7. For continuous processes, the data sets required for building the model

can be generated by operating the process around a desired operating point. However,

in batch processes, the operation is typically over significantly varied dynamics. Thus,

a model which captures the varying dynamics of the process over the entire range is

required. Since different batches have varying initial conditions, a model built with

data from a single batch would be inept to make desired predictions and, therefore,

necessitates the use of training data sets collected from multiple batches. The use of

data from multiple batches, especially in a way that recognizes that the endpoint of

one batch is not the starting point of another batch is important and is utilized in the

proposed approach.

2.3.2 Model validation

For a fresh batch of data, the model can be used for the purpose of prediction only after

the states of the residual model have been adequately computed. A state estimator,

denoted by SEhm(e, u), is used initially to estimate the subspace state vector sequence

x̄hm and generate the outputs ēhm. The estimated output of the hybrid framework

is given by ȳ = yfp + ēhm. The estimator is used until the output (ȳ) converges

to the actual process output (y), after which the hybrid model is ready to predict.

From this time point on, the converged state is considered to be the initial state of

the identified state-space model for prediction. The model is then used to predict

the output ehm using future values of inputs (u). ypred = ehm + yfp is the predicted

output of the hybrid model. The above model validation procedure is schematically

shown in Figure 2.2.

Thus, the validation sequence consists of first a portion where the outputs from the

validation batch are being utilized for state estimation (as shown in Figure 2.8(a))

and the prediction stage where the outputs are being predicted using only the future
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Figure 2.2: A schematic illustrating the validation procedure

inputs and the state estimated during the state estimation step (as shown in Figure

2.8(b)).
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Figure 2.3: A schematic illustrating the model validation procedure, where (a) shows how
the measured outputs and inputs from the present data are used to compute the state

estimate and (b) depicts how the model can be used for prediction purposes.

Remark 8. In this work, a Kalman filter is used for state estimation. The error
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tolerance value considered for convergence using the Kalman filter is chosen be a user

specified value in the two case studies. However, it can be set by finding the average

standard deviation values of the error trajectories of the training batches. This method,

however, is not restricted to this particular choice of the state estimator and any other

suitable state estimation scheme can be utilized as a part of the hybrid model.

Remark 9. The ability of the model to be able to predict (without requiring measured

outputs and observer) is of key importance to their potential use in advanced control

strategies. In particular, for instance, at a particular time step, a model predictive

control (MPC) formulation utilizes the model and candidate future inputs to predict

future outputs and evaluate objective functions. It is this predictive capability of the

model that imbues the MPC with all the optimality benefits. Thus, for cross validation

purposes, the model’s predictive capability is evaluated, not just the ability of the state

estimator to estimate outputs and states using measured outputs.

2.3.3 Cross validation methodology

The cross validation approach to determine the order of the subspace based model is as

follows. The batches used for model building are first divided randomly into k groups

or partitions. For the purpose of cross validation, these k groups are divided into

training groups, which are collectively represented as CVtraining, and the validation or

testing group is represented as CVtest. For the first run, the first group is chosen to be

the validation set (CVtest) and the rest of the k− 1 groups constitute the training set

(CVtraining). With a particular choice of the number of states in the identified model,

nhm, the model is built using the batches present in the training set. The model is

then tested/validated on the validation set to evaluate its predictive capability.

The prediction error is quantified by calculating the mean absolute scaled error of

the square error (MASE) between the model prediction and the plant output data
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and is given by MASE =
∑T

t=1 |et|
T

T−1

∑T
t=2 |Yt−Yt−1|

where et = Yt − Y pred
t , Yt and Y pred

t being

the process output and the predicted output respectively at the t th sampling instant

and T is the range over which the error is calculated. This procedure is repeated k

times so that each group has acted as the validation set once. The cumulative error

value is then calculated for that particular state value. Once this is done, the number

of states is increased by one and all the steps are repeated and the final error value

recorded. Finally, the model order (number of subspace states) is chosen as the one

that yields the least error during the process.

2.3.4 Simulation results for a CSTR

Consider the case where a first order exothermic irreversible reaction A → B takes

place in a CSTR that is surrounded by a jacket. The first principles model is given

by the equations below and the parameter values are listed in Table 2.1.

dCA

dt
=

F

V
(CA,in − Ca)− k0 exp

(
−E

RT

)
CA

dTreac

dt
=

F

V
(Tin − Treac)−

∆H

ρCp

k0 exp

(
−E

RTreac

)
CA +

Q

ρCpV

(2.9)

Parameter nomenclature
CA,in: Concentration of A in feed stream ∆E: Activation energy
CA: Concentration of A in reactor V : Reactor volume
∆H: Heat of reaction ρ: Density
Cp: Heat capacity Q: Heat removal/addition
k0: Pre-exponential factor F : Volumetric flowrate
R: Ideal gas constant
Treac: Temperature in the reactor
Tin: Inlet Feed temperature

Table 2.1: CSTR parameters
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The CSTR setup as described above is utilized as a test bed for the simulation study.

All process data is generated by using the above set of differential equations for the

CSTR. The inputs considered are the heat removal/addition (Q) and inlet concen-

tration of species A (CA,in). The inputs are constrained between bounds (Table 2.5)

and their initial value is randomly chosen from a uniform distribution between the

boundary values. They are implemented in a way such that they are held constant

over a period of 50 time steps, where each step is one minute. The measured out-

puts are the concentration of species A (CA) in the reactor and reaction temperature

(Treac). The initial values of CA and the Treac are randomly chosen each time from

a normal distribution with a standard deviation value provided in Table 2.6. Plant

output data is considered to be corrupted by measurement noise. The noise is as-

sumed to be Gaussian with zero mean and the individual standard deviation value

are listed in Table 2.6. A moving average filter is used to attenuate the effect of noise

on the output signals. The process is run for 1000 minutes with data sampled every

one minute to generate 12 sets of data.

We also assume that we know a model of the process, albeit with error to replicate

a real life scenario. The first principles model has the same model structure as the

process model, except with 5% deviation in its parameters (5% for ∆E and -5% for

k0). The parameter values considered for this case study are listed in Table 2.4. The

training and cross validation is carried out as described in the previous sections. The

cross validation approach is implemented to find the best choice of states for both the

hybrid and subspace case. To this end, the 12 data sets are randomly divided into

four groups as shown in Figure 2.6(a). An initial choice of 7 Hankel rows is considered

for both the methods. As explained in the previous Section 2.3.3, the model is trained

on three groups and validated on the remaining one group. This training/validation

method is carried out until each of the four groups have acted once as the testing set.

Model validation is then carried out as per the steps explained in Section 2.3.2. A

Kalman filter is used to estimate the states using the knowledge of system matrices,
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the output measurements, and noise data. The measurement noise data is listed in

Table 2.6. The initial state value of the Kalman filter is considered to be a zero vector.

The model is used to predict for the rest of the batch once the outputs have converged.

For the validation batches, the outputs converge at different time instances. In order

to have a fair comparison, all the error values in the different simulation runs were

computed after the first 250 time instances.

The cross validation step yields 3 as the best choice of subspace states. The validation

results for a fresh run are shown in Figure 2.4 and the prediction error values are

listed in Table 2.2. In order to correctly judge the quality of the model, only the

model prediction part of the two methods is considered for comparative analysis. The

Kalman filter is used till the outputs for both the methods converged and is kept in

closed loop up to k = 250 th instant. The error values for the model prediction part

are calculated from that point onward to the end of the batch. There are a number

of observations to be made from the validation results in Figure 2.4. The first is that

the first principles model, while not predicting accurately, still captures the general

nature of the process, thus making it a useful component of the hybrid model. This

is corroborated by the fact that the results from the hybrid model predictions are

better when compared to the predictions using a classical subspace model alone. In

summary, it can be seen that the hybrid model enables improved predictive capability

with respect to both the first principles model and the direct modeling of the process

outputs using the subspace-based approach.

Table 2.2: Cumulative MASE Error Analysis

Model Type Cumulative MASE (12 batches)
First Principles 1620.47

Subspace Identification 72.3703
Proposed Hybrid Modeling Approach 23.3738
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Figure 2.4: Validation results for a fresh batch using three different modeling techniques:
first principles (· · · ), subspace identification (−.−) and the proposed hybrid modeling

approach (−−). The process output is represented by the solid black line (—) for
comparison. Figures (a) and (b) show the prediction results (excluding the initial state
estimation portion) for outputs CA (mol/m3) and Treac (K) respectively. The input

sequences for CA,in (mol/m3) (top) and Q (J/hr) (bottom) are shown in (c).

2.4 Applications to the PMMA polymerization reac-

tor

In this section, the proposed methodology is applied to the PMMA batch polymer-

ization process. To this end, first the database is described and later the validation

results for new batches are shown.
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2.4.1 Database description

A first principles model for the PMMA polymerization process is used to generate

the data. This mechanistic model consists of a series of differential equations and

algebraic equations. For model building, the input-output (I/O) data was generated

for 18 batches similar to the database [6] generated in an earlier study. Of these 18

batches, six batches were operated with nominal inputs perturbed by a pseudo ran-

dom binary sequence (PRBS). Note that PRBS are simply used in the present work

to illustrate the proposed approach. Specifically designed input signals to yield rich

data sets exist in the literature [8, 9]. Nine historical batches were subjected to Pro-

portional Integral (PI) set-point trajectory tracking and rest three were produced by

superimposing a PRBS signal to the PI trajectory tracking input. Table 2.7 tabulates

the composition of the training data set and also the PI settings used for trajectory

tracking. Measurement noise was added to the output data. The noise is considered

to be Gaussian white noise with zero mean and standard deviation reported in Table

2.9. As is common practice - a filter, in the present case - a moving average filter

is used to attenuate the effect of the noise under PI control. All the batches were

started with different initial conditions to imitate real life scenario. The initial batch

conditions and the standard deviation data are shown in Table 2.8. For the testing

set, I/O data was generated for six batches in a similar fashion and two batches of

each type were chosen, as described earlier. The process is run for 240 minutes with

data sampled every minute.

2.4.2 Hybrid data-driven modeling of PMMA polymerization

A first principles model is assumed to be available and, in the present example, has

the same structure as the process model, but with erroneous parameter values listed in

Table 2.10. A model with a greater number of simplifying assumptions that results in
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a lower value of states, or, in general, with a different structure can also be chosen as

the first principles model. Demonstrating the utility of the hybrid modeling approach

for such a case remains the subject of future study.

The cross validation methodology is implemented with an initial choice of 12 Hankel

rows and 3 subspace states for both the hybrid and subspace model. The 18 training

batches considered in this study were divided into six groups with the random selection

of three batches in each group as shown in Figure 2.7(a). For the first iteration, the

first group is taken as the validation or testing set. Using the subspace identification

algorithm [23], the model is built with the remaining five groups listed in Figure

2.7(b).

As explained previously, the initial state estimation for the validation set is carried out

with the aid of a Kalman filter. The measurement noise data used in its formulation

is listed in Table 2.9 and process noise standard deviation is chosen to be 0.001. The

initial state value of the Kalman filter is a zero vector and the error tolerance value for

convergence is kept to be
[
0.375 0.375 0.375

]
. Once the outputs have converged,

the model is used to predict for the rest of the batch. In cross validation methodology,

as the outputs converge at different time instances for different testing groups, all the

error values in the different simulation runs in this case are computed for the first 100

time instances. We get the least prediction error using 8 as the number of states. For

both modeling approaches (considering 8 states), the model is built (using data from

all 18 batches) and the outputs are generated for the validation set (30 batches). The

model predictions after convergence for a representative batch in the validation set are

shown in Figure 2.5. The cumulative prediction error values for all the 30 validation

batches for the first principles, subspace, and hybrid approach are listed in Table 2.3.

As can be seen from the MASE values in Table 2.3 and the profiles in Figure 2.5, the

hybrid model yields a significant improvement over the subspace model alone or the

first principles models alone.
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Figure 2.5: Validation results for one of the batches using the three different modeling
techniques: first principles (· · · ), subspace identification (−.−) and the proposed hybrid
modeling approach (−−). The process output is represented by the solid black line for

comparison. Figures (a), (b) and (c) show the predicted results (excluding the initial state
estimation portion) for outputs Treac(K), logµ and ρ(Kg/m3) respectively. The input

sequence for the jacket temperature Tjk(K) is shown in (d).

Table 2.3: Cumulative MASE Error Analysis

Model Type Cumulative MASE (30 batches)
First Principles 1160.14

Subspace Identification 217.429
Proposed Hybrid Modeling Approach 156.534
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2.5 Conclusions and future work

In this manuscript, a hybrid modeling approach was presented that judiciously syn-

ergizes first principles models with subspace-based data-driven model identification.

The validity of the approach for prediction purposes (not just process monitoring)

was illustrated using a CSTR example and demonstrated on a PMMA batch process

example. An important aspect in the implementation of the hybrid modeling ap-

proach is that the quality of predictions is not greatly hindered by the choice of states

in the residual model. Thus, in the simulation results, choosing a number of states

even as low as 2 yields a model that is significantly better than the subspace model

for the process outputs. It thus provides the flexibility of working with lower order

models without significantly diminishing the predictive quality. A more automated

approach to select the number of states and observer parameters remains the subject

of future work. In addition, the illustration of the proposed modeling approach in a

feedback control scenario remains the subject of future work. Additional issues that

need to be investigated include the ability to handle missing data and delays, as well

as automating the choice (offline and online) of using the data driven alone, the first

principles alone or the hybrid model based on an appropriate monitoring framework.
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2.7 Appendices

2.7.1 CSTR simulation
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Figure 2.6: (a) A schematic showing the groups and the randomly distributed data sets
used in the simulation. (b) Data set arrangement for the first iteration in the cross

validation methodology showing that the model is built using the training groups (top) and
then validated on the remaining group (bottom).

Table 2.4: Parameter values for the CSTR example of Equation 2.9.

Parameter Value Unit
F 50 m3/hr
ρ 1000 kg/m3

V 0.1 m3

Cp 0.239 J/(kgK)
∆H 4780 J/mol
k0 7.2e9 hr−1

Tin 310 K
∆E/R 5000 K

Table 2.5: Input parameters and their bounds.

Input Variable Bounds Unit
CA,in [5 10 ] mol/m3

Q [300 320 ] J/hr
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Table 2.6: Initial conditions of measured outputs and noise parameters.

Output Variable Initial values , σ σnoise Unit
CA 2 , 0.5 0.1 mol/m3

Treac 310 , 5 0.2 K

2.7.2 PMMA batch polymerization simulation

Input policy Number of Batches
PI trajectory tracking( KC = −0.1, TI = 0.5) 9

PI trajectory tracking superimposed with PRBS 3
Nominal input superimposed with PRBS 6

Total batches 18

Table 2.7: Model Identification database summary

Variable Value σ Units
Initiator concentration 2.06 ∗ 10−2 .00316 kg/m3

Monomer concentration 4.57 .07071 kg/m3

Temperature 61 .15811 °C

Table 2.8: Initial values and standard deviation data

Output Variable σ
Temperature .1
Log viscosity .01

Density .1

Table 2.9: Measurement noise data
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Table 2.10: The erroneous parameters used in the PMMA first principles model ( the
original values of these parameters are listed in [11]).

Parameter % Mismatch
kd 5
kp0 5
kt0 -5
kfm 5
kfs 5
kθp 5
kθt -5
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Figure 2.7: (a) A schematic showing the random arrangement of batches into groups used
in the simulation. (b) Arrangement of the groups for the first iteration in the cross

validation methodology showing that the model is built using the training groups (top) and
then validated on the remaining group (bottom).
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Chapter 3

Model predictive control embedding a

parallel hybrid modeling strategy

The contents of this chapter have been published in Industrial & Engineering Chem-

istry Research Journal.

• Model Predictive Control Embedding a Parallel Hybrid Modeling Strategy. De-

banjan Ghosh, Jesús Moreira, and Prashant Mhaskar Industrial & Engineering

Chemistry Research2021, 60 (6), 2547-2562 DOI: 10.1021/acs.iecr.0c05208
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Abstract

This paper addresses the problem of implementing a model predictive control

(MPC) scheme embedding a parallel hybrid subspace model as the predictive

component of the control strategy. The hybrid model considered here is inspired

by the framework proposed in [1], but it is adapted to make it amenable to online

control. In particular, the framework uses a first principles model and a subspace

based residual model (built with error between the process measurement data

and the first principles output of historical batches) in a parallel fashion. The

present manuscript adapts this framework in a way that retains the linearity of

the model utilized within the MPC. This is achieved by first building a subspace

model (built with output data of first principles model) and then appending

it with the residual model to have the same parallel hybrid model structure.

This linear hybrid MPC is applied on a seeded batch crystallization process

to reduce the volume of fines or crystals generated due to nucleation during

the crystallization process, while maintaining a desired product quality at batch

termination. The closed loop results using the proposed control methodology are

compared with purely data driven subspace based model predictive controller.

3.1 Introduction

The need for high purity products in pharmaceutical, polymer and food industries

(to name a few) has really pushed the frontiers in the development of high quality

models and control strategies. The finite duration, highly precise batch and fed-batch

processes with the small scale nature of their reactors facilitate on-spec product and

provide flexibility to the ever changing market demand, thus, making them the ideal

reactors for manufacturing these products. Many such applications employ crystal-

lization and the desired product has very specific requirements where the quality is

defined by the final crystal size distribution, average particle size, morphology of the
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crystals, bulk density, etc.

In the past, open-loop control policies of such processes were implemented to get the

desired batch end product properties. The idea was that the input policy, which led

to a successful batch, would ensure desired quality even for future such applications.

However, these strategies fail to accommodate the batch to batch variations and

within batch disturbances leading to off-spec product. These challenges motivated

the use of closed loop feedback control strategies. In a closed loop proportional-

integral (PI) control implementation [2], the controller is made to track a predefined

set-point trajectory of a process variable. With proper tuning, these controllers were

quite effective in rejecting disturbances and tracking the set-point profile. However,

this does not necessarily ensure that tight quality requirements are met as inevitable

changes in initial batch and process operating conditions could lead to situations where

the predefined manipulated variable trajectory may not effect the process variables

as expected. Such implementations are also not very well suited for handling multi-

variable control problems and the input constraints are enforced in an ad-hoc fashion

which is not ideal.

To address these drawbacks, model based control approaches [3, 4, 5] are implemented

which typically have some form of the process model embedded in them. Availability

of the process model [6] facilitates generation of optimum operation policies of system

variables which can be performed off-line. Model predictive control (MPC) is one

widely used model based control technique which is perfect for handling the multi-

variate nature of complex industrial control problems. The predictive model is the

cornerstone of such strategies and thus significant effort is being continually put to

build MPC relevant high quality models. In the context of crystallization processes,

the models typically utilize population balance equations [4, 7, 5] along with mass

and energy balances, and are written in the form of partial and ordinary differential

equations. Such models describe the process dynamics with relatively good accuracy,

45



PhD Thesis - Debanjan Ghosh; McMaster University - Chemical Engineering

but are not suitable for real time optimization and control due to their distributed pa-

rameter nature. Finite dimensional approximations of these models also lead to very

high order ODE systems which are not suitable for control applications and typically

involve large computation times but remain difficult to develop and maintain. Re-

duced order moment models described by ordinary differential equations (ODE) can

capture the dominant dynamics of the process fairly well and have been successfully

used in the development of efficient controllers. Such simplified first principle models

have found applicability in MPC schemes (e.g., [5, 4, 8]).

With the rapid developments in sensing, data storage and computation facilities, there

has been a significant push towards building data based/black-box models. Various

such modeling techniques (latent variable methods, subspace identification, neural

networks etc.) exist which make use of historical batch data to identify their model

parameters. Projection to latent structures (PLS) is one such latent variable statistical

technique which creates a simple linear model and has found extensive applicability

in modeling, monitoring and control of batch processes [9, 10]. These models are

inherently static, and in order to accommodate the time varying nature of batch pro-

cesses, they are modified to behave like time indexed dynamic models with the help

of missing data algorithms. Since batches can have variable completion times, proper

alignment approaches (either by finding an appropriate alignment variable or dynamic

time warping approaches) are also necessary before building the models. Latent vari-

able modeling based MPC (LV-MPC) [10, 11] were used successfully in the past to

track batch trajectories. These computed control actions over the prediction horizon

are generated using the missing data algorithms and in some sense are influenced by

the correlations in historical batches. Multimodel approaches [12, 13, 14] exist which

exploit the different features and qualities of respective data models involved in the

framework. [12, 13] successfully implemented such techniques where Auto-Regressive

Exogenous (ARX) and PLS models have been applied for modeling and control of

batch polymerization processes.
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Subspace Identification [15, 16, 17, 18] is another statistical modeling approach which

allows identification of dynamic models having a linear time invariant state-space

(LTI) structure. Identification involves first finding a state trajectory that captures

the time varying dynamics and then the model parameters are generated through an

appropriate regression. [19, 20] used this identification scheme to successfully model

and control continuous processes.

This identification technique was adapted for batch processes in [21] and appropriate

adjustments were made to accommodate batches of different sizes. This adaptation

has been extensively used with great success for modeling and control of batch and

batch-like processes [22, 23, 24, 25]. An MPC based on a subspace identified model

for a seeded batch crystallizer was presented in [24] and the goal was to reduce the

volume of fines generated due to nucleation. More recently, an MPC for an uniaxial

rotomolding process was presented in [25] where a subspace model augmented with

a quality based PLS model was built with historical data and then embedded in a

MPC to drive the process towards a desired quality. Koopman operator approach is

another technique that identifies linear state space models and recent contributions

[26] have shown their application in predictive modeling and control schemes.

Non-linear data based models like Artificial Neural Network (ANN) [27, 28], non-linear

PLS [29, 30] have been used in the past to capture batch process dynamics using non-

linear functions. [28] used a Recurrent Neural Network (RNN) based model for a

fed-batch multistage sugar crystallization process and an adaptation of non-linear

MPC for the control problem. However, finding the right parameters for the neural

network based models largely depend on the amount and quality of the data available.

Solving the associated overfitting issue is still a big challenge and an area of active

research. The purely data-driven modeling approaches also mostly do not harness the

plethora of domain knowledge, making them difficult to interpret.

Grey-box or hybrid modeling technique is one such approach that takes advantage of
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both worlds and allows integration of process knowledge through physics based mod-

els with data-driven modeling techniques. They are broadly classified into series[31,

32, 33] and parallel [34, 35, 1] approaches based on the orientation of individual com-

ponents of the model framework. An excellent overview of such models and their

comparison is presented in [36, 37]. Some examples of series approach can be found

in [33, 32] where ANN’s were used in series with a mechanistic model to estimate

its parameters and later implemented in a control framework. Deep neural network

(DNN) was considered for such an approach in a recent study [38], where it success-

fully applied to a hydraulic fracturing case study. [34] proposed the parallel hybrid

approach where an ANN was trained with the residual or error between a first prin-

ciples model’s output and the actual process output. The ANN model prediction was

then used in conjunction with a reduced order first principle model’s output to predict

the outputs for a continuous polymerization reactor. Most of these parallel-hybrid ap-

proaches used in the past involve non-linear ANN models and thus may still face the

overfitting issue. [35, 39] used a PLS based residual model in the parallel framework

for batch to batch and within batch control implementations respectively.

Process knowledge aided with the superior modeling capabilities of subspace identi-

fied models was explored recently and a subspace based parallel hybrid scheme was

proposed in [1] for a batch PMMA polymerization reactor. These statistical subspace

models, elegantly handle the over-fitting issue by choosing the model order via a cross

validation scheme. The hybrid model predicted the outputs with much better accu-

racy than the purely data-based subspace model and the non-linear first principles

model. The parallel hybrid approach presented in [1] can make use of any available

process knowledge, be it, dynamic equations (written down in the form of PDE, ODE,

algebraic equations) or even existing complex industrial simulators. However, usage

of such high fidelity models for real time monitoring and control comes with several

challenges involving large computation times, numerical issues etc., and is often not a

pragmatic option. Therein lies the utility of creating simple yet effective models that
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can be readily implemented for feedback control.

Motivated by the above consideration, the present work proposes a hybrid model

based linear MPC design. The key is the use of a linear hybrid model for MPC calcu-

lations and this involves an appropriate identification and utilization of the detailed

non-linear model. The rest of the manuscript is organized as follows: Section 4.2.1

presents the first principle based dynamic equations for seeded batch crystallization

process (to be used as the test bed) followed by an overview of subspace based identi-

fication methods, subspace based parallel hybrid modeling strategy and the basics of

model predictive control. In Section 4.3, the identification of parameters of the paral-

lel hybrid model using subspace based methods is reviewed followed by the validation

schemes. Section 3.3.3 presents the hybrid architecture of the predictive model inside

the MPC along with the closed loop structure in Section 3.3.4. In Section 3.4.1, the

proposed linear hybrid modeling strategy is applied on the batch crystallization pro-

cess and its predictions are compared with other methodologies. Section 3.4.2 presents

the optimization formulation for the current study and the results are presented in

Section 3.5. Finally, the conclusion is presented in Section 5.4.

3.2 Preliminaries

In this section, a brief review of the first-principle-based equations dictating the dy-

namics of seeded batch crystallizer is followed by a brief overview on subspace based

identification methods and model predictive control.
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3.2.1 Motivating example: Seeded Batch Crystallization pro-

cess

A seeded batch crystallizer is chosen as the simulation test bed for motivating the

research. The crystallizer is initiated with a solution and nucleation is induced ar-

tificially by seeding (introducing seeds of certain quantity and desired quality in the

solution). Seeding is particularly essential in such processes to prohibit unwanted

nucleation and achieve desired particle size distribution at batch end. The batch

crystallizer process is modeled by a population balance equation (PDE) which de-

scribes the evolution of the crystal size distribution n(r, t) over time and two ODE’s

describing the evolution of solute concentration (C) and reaction temperature (T )

respectively as shown in Equation (4.1) (see Table 4.3 for the process parameters and

notation). Temperature inside the reactor is regulated by a coolant (at temperature

Tj). In this case study, agglomeration and breakage of crystals are considered to be

negligible- note that this is simply the case for the test bed and any other test bed

(that includes these effects) can be readily utilized. This model is considered as the

’true process/plant’ and the data generated via simulating this model (with Gaussian

noise added) as ’measurement data’. All the process variables and parameters with

their notations are explained in Table 4.3. In particular, the model for the test bed

is as follows:

∂n(r, t)

∂t
+G(t)

∂n(r, t)

∂r
= 0, n(0, t) =

B(t)

G(t)

dC

dt
= −3ρkvG(t)µ2(t)

dT

dt
= − UA

MCp

(T − Tj)−
∆H

Cp

3ρkvG(t)µ2(t)

(3.1)

where the nucleation rate B(t) and the growth rate G(t) are respectively given by
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Equation (4.2):

B(t) = kbe
−Eb/RT (

C − Cs(T )

Cs(T )
)bµ3

G(t) = kge
−Eg/RT (

C − Cs(T )

Cs(T )
)g

(3.2)

where b and g are exponents relating the nucleation rate and growth rate to super-

saturation.

The equations describing the moments is given by Equation (4.3)

µi =

∫ ∞

0

rin(r, t)dr i = 0, 1, 2, 3 · · · (3.3)

For crystals to grow, the solution concentration (C) must be in between the saturation

and metastable concentrations, Cs and Cm, respectively, i.e., Cs ≤ C ≤ Cm at all times

during the batch run. The saturation and metastable concentration dependence on

temperature is given as follows:

Cs(T ) = 6.29 ∗ 10−2 + 2.46 ∗ 10−3T − 7.14 ∗ 10−6T 2

Cm(T ) = 7.76 ∗ 10−2 + 2.46 ∗ 10−3T − 8.10 ∗ 10−6T 2
(3.4)

The PDE model can be approximated by a simpler ODE moments model with fewer

degrees of freedom [4] and for most practical engineering purposes, only knowledge

about certain dominant aspects of the distribution is necessary to determine and ma-

nipulate quantity and quality of the product. The set of differential equations describe

the evolution of those moments over time and are given by Equation (4.7), where

the process model states (x) is a vector given by : x =
[
T C µn

0 µn
i µs

0 µs
i

]T
,

i = 1, 2, 3. This reduced order model is considered as the first principle model and
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assumed to be available, although with erroneous parameter values.

dµn
0

dt
= B(t)

dµn
i

dt
= iG(t)µn

i−1(t) i = 1, 2, 3

µs
0 = k4

dµs
i

dt
= iG(t)µs

i−1(t) i = 1, 2, 3

dC

dt
= −3ρkvG(t)(µn

2 (t) + µs
2(t)

dT

dt
= − UA

MCp

(T − Tj)−
∆H

Cp

3ρkvG(t)(µn
2 (t) + µs

2(t))

(3.5)

µn
i =

∫ rg

0

rin(r, t)dr

µs
i =

∫ ∞

rg

rin(r, t)dr i = 0, 1, 2, 3 · · ·
(3.6)

µn
i and µs

i are the statistical moments of the crystal size distribution n(r, t) generated

due to nucleation and seeding respectively. These moments can be derived from the

crystal size distribution and are defined using Equation (4.5) where rg is the user

specified radius below which the crystals are considered as fines.

An additional condition is enforced on both the models which ensures that no fur-

ther crystals are formed when the reaction concentration goes below the saturation

concentration and is given by the condition shown in Algorithm 2 below. This is par-

ticularly important with respect to the simulation as C ≤ Cs would lead to complex

values for nucleation and growth rate as can be seen from Equation (4.2) owing to

fractional value of exponents b and g. In the case of the PDE model, the value of G

is further chosen not to be 0 to avoid NaN values during the calculation of crystal

size distribution as per Equation (4.1).

The PDE model is solved to generate data that resemble online process sensor record-
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Algorithm 1 Growth rate and nucleation rate dependence on reaction concentration
if C ≤ Cs then
B = 0

G =

{
1e− 6 PDE model
0 Moments model

else
Use the values generated by Equation (4.2)

end if

ings. The value of parameters are mentioned in Table 4.4. In this case study, online

measurements of all the first principle model states are assumed to be available and the

output vector is given by, y =
[
µn
0 µn

i µs
0 µs

i C T Cs Cm

]T
, i = 1, 2, 3; input

vector is given by u = Tj. The input-output (I/O) time series batch data is generated

while having batch to batch variations in initial conditions (Tables 4.4 and 4.6) to

imitate realistic situations. All of these batches were operated in closed loop under

Proportional Integral (PI) control and the PI settings are provided in Table 4.7. An

input saturation constraint is also present which bounds the manipulated input within

[50 30]◦C. The seed distribution at batch initialization in the crystallizer is considered

to be parabolic similar to the one used in[4, 24]. The radius range considered is 300

to 350 µm with the peak occurring at 325µm and having 2/µm g solvent. The ini-

tial seed distribution has variations in each batch and all the generated measurement

data also have random Gaussian noise to reflect the presence of sensor induced noise

in true measurements. The crystal size distribution at batch initialization is given by

the Equation (4.8) and a schematic of the same is shown in Figure 3.1.

n(r, 0) =


0 r < 300µm

0.0032(350− r)(r − 300) 300µm ≤ r ≤ 350µm

0 r > 350µm

(3.7)

Data from NT = 40 training batches and NV = 15 validation batches of equal duration
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Figure 3.1: Nominal seed distribution at batch initialisation

are respectively used to identify and test the data based models. Out of these 40

training batches, 30 were operated having a optimum temperature (Topt) set-point

trajectory 1 as shown in Figure 3.3. To improve the richness of data, the other 10

batches had a set-point trajectory profile 2 as shown in Figure 3.3.

Each batch was initialized with a different condition and Gaussian white noise was

added to the output data to imitate real life process conditions. To replicate the effect

of impurities in raw materials which induces variations among batches, the exponent

g in Equation (4.2) was chosen randomly from a normal distribution with a mean

(1.5) and standard deviation (0.001) for different batches. The variations in initial

conditions of the measured outputs and noise parameters are reported in Table 4.6.

A moving average filter of window 5 was used to diminish the effect of noisy mea-

surements under PI control. The batches were simulated with the process conditions

described in Table 4.6 and run for 30 minutes with a certain sampling interval (dt).

Figure 4.2 show the batch wise variations of some of the outputs and inputs. The final

crystal size distribution profiles of all the training batches is also shown in Figure 4.2.

The crystals growing from unwanted nucleation during the crystallization process

happen to be of smaller size which degrade the final batch quality (wider PSD) and
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also cause issues in downstream processing. The aim of the control strategy in this

work is to minimize the volume of fines (specifically µ3
n) while maintaining a certain

product quality. The basis for quality here is chosen to be the volume of crystals

growing from seeds and specifically given by µ3
s. This is to be achieved by finding

an optimum cooling policy (inputs) while respecting certain constraints pertaining to

both inputs (Tj) and certain outputs (C, µ3
s).

3.2.2 Subspace Identification

Subspace identification methods (SIM)[40, 17, 16, 41] are statistical system identifi-

cation techniques and identify a discrete time LTI state-space model from I/O data

of the form given by Equation (4.10). These approaches utilize mathematical decom-

position techniques like singular value decomposition (SVD) or QR factorization to

find appropriate model parameters from subspaces of certain data matrices. These

algorithms are not iterative unlike prediction error minimization (PEM) algorithms

(which use non-linear iterative optimization techniques to find model parameters).

SIM’s are found to be numerically very robust and efficient for handling large data

sets. In this work, the approach proposed by [16] has been adopted to determine a

discrete time linear time invariant model of the following form:

xsd[k + 1] = Axsd[k] +Busd[k]

ysd[k] = Cxsd[k] +Dusd[k]
(3.8)

where xsd[k] ∈ Rnsd×1 represent the subspace states of the identified model at any time

instant k and is a nsd×1 vector, where nsd is the identified model order. ysd[k] ∈ Rlsd×1

and usd[k] ∈ Rmsd×1 are the output and input vectors where lsd and msd represent the

number of measured outputs and inputs respectively. A ∈ Rnsd×nsd , B ∈ Rnsd×msd

,C ∈ Rlsd×nsd , D ∈ Rlsd×msd are primarily the identified model parameters by this

identification procedure.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Few output and input profiles generated by the PDE model considered as
process data for 40 batches are shown in the figures. Figures (a) represents the crystal size

distribution at batch end; (b) and (c) show the profile of 3rd moment due to nucleation
(µ3

n) and 3rd moment due to growth (µ3
s) respectively; (d) and (e) show the concentration

and temperature profile data over the course of batch; Figure (f) represent the input profile
trajectory
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(a) (b)

Figure 3.3: Figure (a) and (b) show the set point profile 1 and 2 respectively of the
reactor temperature used to generate data for identification

3.2.3 Parallel hybrid modeling framework involving subspace

identification

A parallel hybrid modeling strategy utilizing a first principles model to work in con-

junction with a subspace based dynamic model, where the subspace model leverages

residual information (difference between the first principles model outputs and the

process outputs) to improve the predictions, and is next reviewed.

The approach was proposed in [1], where the residual model was built based on a

subspace based identification scheme and then added to the non-linear first principles

model in a parallel fashion. This framework consists of two distinct models (first

principles and residual) and is illustrated briefly below. To this end, consider a generic

form of the first principles model (that is consistent with the first principles model of

the crystallization process described in Section 4.2.1) given by Equation (3.9):

ẋfp = f(xfp,ufp)

yfp = g(xfp,ufp)
(3.9)
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where xfp ∈ Rnfp×1 is the vector of nfp first principles model states. The time

evolution of the states and outputs are given by the functions (linear/non-linear) f

and g respectively. yfp ∈ Rlfp×1 are the first principle predictions of the process

outputs and ufp ∈ Rnm×1 are the inputs.

The availability of the first principles model permits the usage of an error/residual

model. The residual model captures the information not explained by the first prin-

ciples model and is built with residual/error data (y− yfp) and the inputs (u) of the

historical batches. A subspace identification algorithm is employed to build the model

and has the same state space structure as given by Equation (4.10), where (A,B,C,D)

are the identified model matrices and the outputs are denoted by eres ∈ Rlsd×1 in

recognition that they are residuals (instead of conventional process outputs ysd). lsd

is therefore the equal to lfp. Once the model is built, the validation for a new batch

is carried out by feeding the same inputs (ufp = usd) to both the first principles as

well as the residual model to generate outputs of the respective models. The process

output predicted by the hybrid model is given by Equation (3.10).

y[k] = yfp[k] + eres[k] (3.10)

One of the biggest advantage of this framework is the ease of maintaining such models

over a period of time. Here, rather than the conventional and challenging way of re-

evaluating the parameters of the first principles model, the maintenance is done by

re-identifying the model matrices of the residual model using data from the latest

batches to account for the mismatch.
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3.2.4 Model Predictive Control

Model Predictive Control (MPC) is a model based control strategy which employs

a dynamic optimization to compute the optimal input profiles to steer the process

towards a desired objective. Typically, the objective is to drive the system towards

an equilibrium point or track a desired output set point profile by minimizing the error

between model predictions and the reference. However, it can also address economic

objectives. For batch processes, for instance, these include maximizing the quality

of the final product or minimizing an impurity formed during the process. A generic

representation of the formulation is presented below:

min
u

f(xi, ui)

s.t. gi(xi, ui) ≥ 0

pi(xi, ui) = 0

xi+1 = h(xi, ui)

(3.11)

f(xi, ui) represents the objective function which is to be minimized and is a function of

the current states (xi) and inputs (ui). The functions g(xi, ui) and pi(xi, ui) represent

the inequality and equality constraints respectively pertaining to certain outputs and

inputs. xi+1 is the future state value and calculated by the function h(xi, ui) with

use of the current state and input values. This function is a generic representation

of the dynamic model equations (linear/non-linear set of equations) embedded inside

the MPC. The present work makes use of a linear model, and a linear objective with

linear constraints makes the MPC optimization a linear program, which is fast, easy

to solve and readily implementable. Typically, the constraints and objective function

values are evaluated over a certain prediction horizon with the aid of the predictive

model. The optimal inputs are generated for the entire horizon (typically till the end

for a batch process) and only the first control move is implemented on the process.

59



PhD Thesis - Debanjan Ghosh; McMaster University - Chemical Engineering

The optimization is repeated at each time step after updating the states using on-

line measurements. In case the states are not measured, appropriate state estimation

techniques are used to reconstruct the states using available measurements.

Complex non-linear models for optimization introduce non-convexity in the problem

which suffer from global optimality issues rendering such problems hard to solve.

Developing efficient algorithms for these problems is an area of active research and

current techniques are not ideal for real time optimization and control of processes

where dynamics change quite fast and require decisions frequently. Complex indus-

trial simulators also face significant challenges in such implementations due to their

rigorous and detailed nature leading to large run times in their usage for optimization.

These challenges motivate the use of simple, linear models and form the rationale be-

hind developing the proposed linear hybrid model presented in the following section.

3.3 Proposed hybrid modeling and control approach

A first principles model is assumed to be available along with historical time series

measurement data of batches. The proposed model, although linear, has an architec-

ture similar to the form presented in [1]. In this section, first the model identification

part is described in detail followed by the validation. The two different arrangements

of the linear hybrid model are presented in the final subsection followed by the closed

loop feedback control structure.

3.3.1 Model identification

A total of NT training batches is assumed to be available and the first principles model

is simulated using initial conditions of those historical batches.
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A generic identification scheme is presented which holds true for the two different

subspace identified models (built with different type of output data) presented in

the following subsections. The identification procedure begins with arranging the

data in a Hankel matrix. Conventional subspace techniques use steady state data

(operation around a nominal point) from continuous processes to configure the Hankel

matrices. To translate that to batch processes, one approach could be to incorporate

information of one batch into the matrix. A Hankel matrix built with such data

will not have sufficient information about variations and disturbances encountered in

multiple batches. The conventional approach is thus not adequate to handle the varied

nature and non-uniform batch lengths of different batches. To alleviate this issue, a

pseudo-Hankel matrix was proposed in [21] which appropriately assigns respective

batch data to distinct positions in the matrix. The approach is adopted in this work

and thus briefly illustrated below:

The Hankel matrix for any output data (y) pertaining to a batch (b) is given by

Equation (3.12)

Y
(b)
1|i =


y(b)[1] y(b)[2] · · · y(b)[j(b)]

...
...

...

y(b)[i] y(b)[i+ 1] · · · y(b)[i+ j(b) − 1]

 (3.12)

The number of Hankel rows ’i’ is a tuning parameter and has to satisfy the condition

(i > n), where n (also a parameter) is the order of the model. The number of columns

’j’ should be sufficiently larger than ’i’, so that the matrix can have as much dynamic

information about the batch as possible. The pseudo-Hankel matrix concatenating

data from all the NT training batches is given by Equation (3.13).

Y1|i =
[
Y

(1)
1|i Y

(2)
1|i · · · Y

(NT )
1|i

]
(3.13)

61



PhD Thesis - Debanjan Ghosh; McMaster University - Chemical Engineering

This matrix Y1|i thus contains information of all the training batches and elegantly

handles the variable batch duration by aligning them with respect to a constant

parameter (Hankel rows). The batches only differ in the number of columns depending

on their duration.

The input pseudo-Hankel matrix U
(b)
1|i with input data (u) is similarly constructed.

The subscript 1|i refers to the continuous measurements ranging from 1 to i that are

stacked up in the first column. Both the input and output pesudo-Hankel matrix are

stacked vertically to create a block Hankel matrix H1 given by Equation (3.14). H2

is similarly constructed where the subscript i+ 1|2i refers to the elements in the first

column (input or output pseudo-Hankel matrix) which are indexed from i + 1 to 2i.

The matrix H is created by the vertical concatenation of matrices H1 and H2.

H1 =

Y1|i

U1|i

 ; H2 =

Yi+1|2i

Ui+1|2i

 ; H =

H1

H2

 (3.14)

The aim of this identification technique is to first generate a valid state vector tra-

jectory and then to find the model matrices (A,B,C,D) using the state sequence and

I/O data. A general state-output equation is first generated by repeated substitution

of Equation (4.10) and given by Equation (3.15).

Yh = Γi.X+Ht.Uh (3.15)

where, Yh and Uh are the output and input Hankel matrices, Γi denotes the extended

observability matrix and Ht represents the lower triangular block Toeplitz matrix and

X is the consecutive state vector sequence. Detailed structure of these matrices is

presented in [16].

For a bth batch, a state vector sequence X
(b)
2 = [ x(b)[i+1] x(b)[i+2] · · · x(b)[i+ j] ]

can be generated at the intersection of the row space of the matrix H by appropriate
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projections of matrices using concepts of linear algebra. Alternately, a more practical

and robust approach of finding the intersection is to perform Singular Value Decom-

position (SVD) on the matrix H. A detailed analysis of the approach is presented in

[16] and has been omitted in this work for the sake of brevity.

The system matrices are next computed using least squares regression of the over

determined set of equations given by Equation (3.16).

Xout

yout

 =

A B

C D

 .

Xpred

upred

 (3.16)

The approach proposed in [21] accommodates multiple batches together and, thus,

for NT training batches the regression is performed using the matrices given by Equa-

tions (3.17) and (3.18).

Xpred =
[
Xpred

(1) Xpred
(2) · · · Xpred

(NT )
]
; (3.17)

Xout =
[
Xout

(1) Xout
(2) · · · Xout

(NT )
]
; (3.18)

where the predictor and outcome state variable vector for a batch b is respectively

given by Xpred
(b) = [ x(b)[i + 2] x(b)[i + 3] · · · x(b)[i + j] ] and Xout

(b) = [ x(b)[i +

1] x(b)[i+2] · · · x(b)[i+ j−1] ]. The output and input vectors are similarly created

to accommodate for multiple batches.

The model order (n) and Hankel rows (i) are parameters which need to be speci-

fied/evaluated during the identification stage. Identifying the right order is a crucial

step in all system identification methods as the predictive quality of the model largely

depends on this choice. A cross validation methodology proposed in [1] is adopted

to evaluate the same which utilizes the training data to figure the best model order
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according to the Mean Absolute Scaled Error (MASE) value given by Equation (3.19).

MASE =

∑T
t=1 |et|

T
T−1

∑T
t=2 |Yt − Yt−1|

, where et = Yt − Y p
t (3.19)

Yt and Y p
t are the measured and predicted output data respectively at the tth sampling

instant. T is the range (typically duration of the batch) over which this error metric

is calculated. The number of Hankel rows i has a constraint of i > n and an optimum

value can be evaluated from cross validation methodology. However, in this current

application, only the number of states is considered as the tuning parameter and the

number of Hankel rows is chosen as i = n + 4. The number of hankel rows was

manually varied over a small range and didn’t lead to any significant variation and

hence was chosen in this fashion. Once the order and the number of Hankel rows are

fixed, the identification procedure is employed to evaluate the system matrices. Next,

the quality of the model is tested by making use of the validation set and is presented

in the following subsection.

3.3.2 Model validation

The utility of a model in a MPC framework lies in its quality of imitating the process

dynamics once initialized. To test the performance of a subspace based model for

a batch process, the model is tested on validation data of a new batch. In [1], a

detailed schematic is presented for the validation procedure of a parallel hybrid sub-

space model. The same approach is followed in this application and briefly illustrated

below. This validation procedure primarily includes two steps:

1. State estimation: Subspace models with a state space structure uses its model

states and future candidate inputs to be able to predict. These states, however,

do not necessarily have a physical realization and thus for a fresh batch there is
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no a priori information available about the initial conditions. The first part in

the validation scheme makes use of a state estimator that estimates the states

(X̂) making use of the model parameters (A,B,C,D), the measured outputs (Y)

and an initial guess of the state vector (X̂0). The estimated state make use of

the output equation to generate the estimated outputs. This estimation step

does not put any limitation on the type of estimation technique to be deployed

and any approach like luenberger observer, kalman filtering, moving horizon

estimator etc. can be appropriately chosen. In this application, a kalman filter

is used as the tool for state estimation. State estimation is carried out till the

point where the estimated outputs converge with the measured outputs over a

significant amount of time. The subspace state at that mark is considered a

usable estimate to be used as the initial state for subsequent model prediction.

2. Model prediction: This is the second step in the validation procedure where

once the initial state is available, the model is allowed to predict (using its

parameters) till the end of the batch. This aspect is particularly important not

only in judging the quality of predictive models (done offline), but also in its

usage inside the MPC (done online) where predictions are made to evaluate

future state values, quality etc. and the current control actions are determined

based on such forecast. The linear parallel hybrid model is used for that purpose

and is presented in Section 3.3.3.

3.3.3 Predictive model in the MPC

A linear predictive model with a simple model structure is formulated as it provides

several practical on-line implementation benefits over their non-linear counterpart.

The parallel hybrid model [1] being non-linear in nature (owing to the first principles

component) renders the MPC optimization as a non-convex optimization problem and

is often time consuming and difficult to solve. A linear equivalent of the non-linear
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Figure 3.4: Schematic of the predictive model embedded in the MPC framework

component of the hybrid model is thus proposed where the first principles model is

appropriately modeled by a linear surrogate model and then considered as a part of

the hybrid framework. This is achieved by building an LTI subspace based model

using I/O data generated by the mechanistic model and will be referred to as the

subspace based first principles (sfp) from here onward. Thus, essentially the hybrid

model structure used in the MPC framework consists of two linear subspace based

models as shown in Figure 3.4 joined together in a parallel fashion. Two such linear

hybrid frameworks are considered each having the sfp model as the common unit in

their framework.

Remark 10. It is important to note that the linear model (sfp) is not a lineariza-

tion of a non-linear set of equations about any steady state operating point. Such an

approximation would not work well in batch processes as the batch dynamics change

significantly over the course of its completion. The proposed approach rather captures

the non-linear time varying dynamics of the batch process by creating a linear invari-

ant (LTI) model with a potentially high model order, i.e. the number of states in such

models is typically higher than the number of states in the first principles model.

• Hybrid-1: In this parallel hybrid framework, the residual considered is the dif-

ference between the measurement data (y) and the output of the sfp model (ysfp)

rather than the non-linear first principles model as used in [1]. Equation (3.20)
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presents the state-space model structure for the sfp model (xsfp are the states,

Asfp, Bsfp, Csfp, Dsfp are the identified model matrices and ysfp is the output)

and the one for the residual model (xres are the states, Ares, Bres, Cres, Dres

are the system matrices and eres is the output). The final model output (yhm)

is the summation of the individual model outputs as given by Equation (3.21)

xsfp[k + 1] = Asfpxsfp[k] +Bsfpusfp[k]

ysfp[k] = Csfpxsfp[k] +Dsfpusfp[k]

xres[k + 1] = Aresxres[k] +Bresures[k]

eres[k] = Cresxres[k] +Dresures[k]

(3.20)

yhm[k] = ysfp[k] + eres[k] (3.21)

• Hybrid-2: This architecture of this hybrid model is similar to the previous one

and is only different with regard to the data used to train the residual model.

In this case the residual model is built with historical inputs and error data

between the process output (y) and the original (in this case non-linear) first

principles model (yfp).

Remark 11. The first principles model considered in this work is ‘flawed’ by intro-

ducing structural as well as parametric uncertainty in the model. This situation of

an imperfect first principles is quite common in practice for complex batch process

modeling and thus motivates the use of an error model that corrects its predictions. A

subspace model built with I/O data of such a first principles model can at best equal

the predictions of this flawed model but will still have biases in its predictions when

compared to the true process measurements. In the event a high fidelity mechanistic

model is available that can predict the dynamics with good accuracy, an error model

predicting the residuals won’t be necessary. However, in the present instance, the
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residual model is in place to correct the error between the first principles model (or its

linear surrogate form) and the process.

3.3.4 Closed loop control
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Figure 3.5: Schematic of the system under closed loop control

The schematic of the hybrid MPC enabled closed loop system is shown in Figure 3.5.

In order to implement the MPC in real time, the non-linear first principles model is run

online for a validation batch. It is imperative that such model equations can be solved

within the sampling interval and necessitates the use of a model structure with more

simplifying assumptions. The simplified ODE model is considered for this purpose in

the current work. It is initiated with the same conditions as the true process (PDE

model) and fed the same inputs. Two state estimators are run simultaneously to

estimate the individual model states (pertaining to the two components of the linear

hybrid model) to be fed to the MPC algorithm. The linear nature of the predictive

model inside the MPC (along with linear constraints and linear/quadratic objective

function) facilitates the optimization formulation be a linear or quadratic program

which can be readily solved to find the optimum set of input values.
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Remark 12. There exist instances of MPC implementation using a parallel hybrid

model (using a simplified first principles with neural network as the residual [42, 43], a

first principles model with a PLS model [35, 39] etc). However, all these models have

at least one non-linear component in their architecture, rendering the optimization

a non-convex problem. This is an issue for systems where process dynamics change

fast and optimum control actions need to be taken at smaller sampling intervals. The

models involving ANN might further face challenges of finding the right parameters to

prevent overfitting when the data available for training is limited and of low quality.

On the other hand, subspace models can elegantly handle the overfitting issue due to

the limited number of model parameters that need to be selected which is practically just

one (the number of states). The design and implementation of such a linear hybrid

model in a MPC framework is one of the contributions of the present manuscript.

Remark 13. The control problem considered in the current study is not of regula-

tory nature (driving a system to an equilibrium point) or a set-point tracking problem.

Although, the linear parallel hybrid MPC would be very well suited for such an appli-

cation, an economic objective (concerning the quality) is considered and its efficacy

as an economic MPC demonstrated through simulation case studies.

Remark 14. A model monitoring mechanism embedded in the MPC framework in

order to check the health of the model over a period of time is extremely important

in all practical situations. One such monitoring scheme for subspace based MPC

was presented in [44] where some performance metrics dictated the current health of

the model suggesting the need for re-identification. The availability of first principle

model for a parallel architecture will greatly aid to create such monitoring schemes and

adequate metrics can be similarly created. This important aspect of model maintenance

will be explored in future studies.
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3.4 Applications to the seeded batch crystallization

In this section, the proposed modeling and control methodology is applied to the

seeded batch crystallization process. To this end, the development of the linear hybrid

model is first described in Section 3.4.1, followed by the validation results for new

batches where the proposed linear hybrid model is compared with other modeling

approaches. The mathematical formulation related to the MPC optimization for the

current problem is subsequently described in Section 3.4.2.

3.4.1 Hybrid data-driven modeling of seeded batch crystallizer

In this section, the development of the linear parallel hybrid model for the batch

crystallizer is presented. The simpler ODE model is assumed to be available for

the batch crystallizer and is considered as the first principles model. Some of the

parameters in the nucleation and growth rate of this model are also considered to

be erroneous, suggestive of the incorrect estimation of the parameters of the model

and the mismatch is listed in Table 4.5. The first principles model predictions are

compared against the process measurements and shown in Figure 3.6. In essence,

this scenario reflects the situation where a first principles model of a process may be

available in which the model captures the key characteristics but incorrectly predicts

the variable values.

The outputs of the linear parallel hybrid model is considered the same as the first

principles model (mentioned in Section 4.2.1). The two components of this framework

and their development is discussed below:

• Subspace based first principles (sfp) model : A subspace model is trained

using 40 batches of I/O data based on simulations by the ODE model. The dif-
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Few candidate profiles generated by the PDE model (considered as process
−) and the ODE model (considered as the first principles model −−) are shown in the
figures. Figures (a),(b) represent the profile of 2nd and 3rd moment due to nucleation;
(c),(d) represent the profile of 2nd and 3rd moment due to growth; (e) and (f) show the

concentration and temperature profile data for a particular batch

ferential equations are simulated using ODE45 in Matlab and the initial condi-

tions for all the batches are kept similar to process (PDE model). The batch data

is centered and scaled with respect to average trajectory value of a candidate
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batch before the identification step. With n = 30 (figured by cross-validation

methodology[1]), the identification algorithm (as described in Section 3.3.1) is

used to generate the model matrices and training states. The number of Hankel

rows is considered to be 34 for the current application.

• Residual model : The residual model is developed according to the Hybrid-1

and Hybrid-2 modeling strategy as discussed in Section 3.3.3. For the Hybrid-1

case, training data comprises of the residual information (y − ysfp) and input

profiles (u) of the training batches. ysfp data is generated by the sfp model

using the states generated from the identification step. These states capture the

dynamics of the training batches and the outputs for each batch are generated

using the Equation (4.10). 61 Hankel rows were used to build the Hankel matrix

and the identified residual model has a model order of 57 (determined by cross

validation). The residual model for Hybrid-2 was similarly constructed but with

residuals (y − yfp) and having a model order of 60.

Once both the components of the framework is identified, the linear parallel hybrid

model f(ysfp, (y− ysfp), u) is validated on 15 fresh batches. A kalman filter is used in

closed loop till the first 10 minutes of the run. The filter is initialized with a zero vec-

tor and the tuning parameters, process noise variance and measurement noise variance,

are respectively chosen to be 0.001 and [0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.09 0.09 0.09].

Once the estimated outputs have converged with the process measurements, the model

is allowed to predict from the 10th minute till the end of batch. The MASE values

are calculated for the model prediction duration only and the cumulative values for

all 15 batches are recorded and presented in Table 3.1.

The predictions using the proposed approach is compared with the predictions of a

non-linear parallel hybrid model[1] f(yfp, (y − yfp), u), an only data based subspace

model f(y, u) and the first principles model f(yfp, u) and shown in Figure 3.7. All

the identification parameters relevant to these models are tabulated in Table 3.9. The
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kalman tuning parameters for these models are chosen to be the same as the linear

parallel hybrid model. The MASE values of the different models are presented in

Table 3.1 and it can be seen that the linear parallel hybrid model has lower error

values compared to the other models. The proposed framework only fairs second to

the non-linear parallel hybrid model and is expcted as this linear model is only an

approximation of its non-linear counterpart. The high quality prediction of the linear

parallel hybrid model makes it an ideal candidate for a predictive model to be used

inside an MPC for closed loop control and is demonstrated in the subsequent sections.

Table 3.1: Cumulative MASE Error Analysis

Model Type Cumulative MASE (15 batches)
Non-linear Hybrid Model 347.25

Hybrid-1 444.17
Hybrid-2 446.24

Subspace Identification 561.19
First Principles 5578.9

Remark 15. One of the most important characteristics of this parallel framework

is that it allows the flexibility of working with a reduced order mechanistic model

with good enough predictive capabilities where the residual model corrects its biases

in predictions. In [1], the first principles model component of the hybrid framework

was assumed to have faulty parameter values and had the same model structure as the

complex process model (used for generating data mimicking the real measurements). In

this current example, the case of using a simplified first principles model is taken into

consideration. This reduced order model is quite tractable and easy to solve and thus,

has significant advantages in real time optimization and control implementations.

Remark 16. Standard subspace algorithms cannot directly handle the missing data

problem in the historical database. Such issues are quite a common occurrence while

handling data from industrial processes. In a recent study [45], these practical concerns

are addressed and it proposes an methodology that makes use of NIPALS algorithm
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Figure 3.7: Predicted profiles of few outputs for a validation batch generated by 5
different modeling approaches are shown in the figures : first principles (gray −), subspace
identification (black−.−), non-linear hybrid (black :), Hybrid-1 (black −−), Hybrid-2 (gray
−−). The process data generated by the PDE model is represented by the solid (black −)
line. Figures (a),(b) represent the profile of zeroth and third moment due to nucleation; (c)

represents the profile of 3rd moment due to seeding; (d) shows the concentration profile

to handle the missing values during one of the model identification stages of subspace

identification. The algorithm was compared with mean replacement and linear in-

terpolation techniques and its superiority was demonstrated. The use of such robust

techniques to identify LTI state space matrices for such scenarios can be very well

extended to the hybrid modeling approach proposed in this work.
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3.4.2 Formulation of the MPC optimization problem

The MPC optimization formulation adopted for this case study is presented in this

section. To handle the plant model mismatch, five sequential layers of optimization

are formulated for the current problem and the subsequent layers are executed only if

the preceding one fails to find a feasible solution. A linear program (LP) is formulated

taking advantage of the linear nature of the model along with a linear objective and

constraints. The output vector (y) mentioned in Section 4.2.1 is notated by Equa-

tion (3.22) for ease of usage. Continuous measurement of these outputs is assumed

to be available.

y =
[
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

]T
(3.22)

The outputs are measured and the inputs are calculated at time instances indexed

by l (1, 2, · · · , lf ). lf is the final sampling instance given by lf = tf/∆, where tf is

the final time and ∆ the sampling interval. k is a variable used for indexing time

instances for MPC predictions and for any sampling instance l, the optimum input

trajectory vector Uf consists of elements indexed from 0 to lf − l. Hc is termed as

the constraint horizon over which certain constraints are enforced. The states X̂(l)

are obtained from the corrected states at the last time step l − 1. The computations

involving state estimation and generation of the optimum input policy are done during

the sampling interval (∆) between samples l and l − 1, so that at the instance l, the

first move of optimum input trajectory Uf is implemented on the process/PDE model

to obtain future measurements. The measurements available at l are used to correct

the state estimates X̂(l) and the same steps are repeated every ∆.

The different layers are described below:

• Case A: Primary optimization layer The optimization problem is formu-
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lated similar to [24] and is presented in Equation (3.24). The formulation al-

though uses mean and centered scaled variables, is written in this manuscript in

terms of original variables for sake of simplicity. The mean centered and scaled

variables are related to the original variables by the following relations :

yi = ȳi ∗ σi + µi; i = 1, 2, · · · , 12

u = ū ∗ σu + µu

(3.23)

where ū, ȳi are respectively the mean centered and scaled value of the input and

the ith output. σu, µu are the mean and standard deviation value used for the

input and σi, µi are the ones used for the corresponding output.

The optimal MPC input trajectory is calculated using the formulation as follows:

min
Uf

y4[lf − l]

s.t. Tj,min ≤ uf [k] ≤ Tj,max, ∀ 0 ≤ k ≤ lf − l

y11[k] + ϵ1 ≤ y9[k] ≤ y12[k] + ϵ2, ∀ k ≤ Hc

|uf [0]− u[l − 1]| ≤ δ,

|uf [k]− uf [k − 1]| ≤ δ, ∀ 1 ≤ k ≤ lf − l

y8[lf − l] ≥ γ + ϵ3,

x[0] = x̂[l]

xsfp[k + 1] = Asfpxsfp[k] +Bsfpu[k]

esfp[k] = Csfpxsfp[k] +Dsfpu[k]

xres[k + 1] = Aresxres[k] +Bresu[k]

yres[k] = Cresxres[k] +Dresu[k]

yhm[k] = ysfp[k] + eres[k], ∀ 0 ≤ k ≤ lf − l

(3.24)

The components of this optimization formulation are briefly summarized below:
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1. MPC objective: The aim of the optimization is to reduce the amount

of fines in the product and is achieved by minimizing y4 at batch end, the

third moment due to nucleation which is directly correlated to the volume

of the crystals formed during the nucleation phase.

2. Constraints:

(a) Output constraints :

i. Concentration constraint: y9 is the solution concentration and

should be between the saturation concentration (y11) and metastable

concentration (y12) at all instances throughout the batch.

ii. Quality constraint: y8 is the product quality and should be above

a certain desired value γ at batch end.

(b) Input constraints :

i. Saturation constraints on the inputs (u) restrict them to be be-

tween bounds [ Tj,min Tj,max].

ii. Rate of change of the manipulated input, du
dt

, over the prediction

horizon and also between the current and last implemented input

is chosen to be a value less than or equal to δ to capture physical

limitations on the control input.

(c) Model equations: The state-space model equations dictate the evo-

lution of the subspace states and the final model output (yhm) is the

summation of individual outputs (ysfp and eres) of the two models that

comprise the hybrid framework.

ϵ1 and ϵ2 are the tuning parameters on the reaction concentration constraint

which accommodates for the plant-model mismatch. Similarly, ϵ3 is the tuning

parameter for the quality constraint.

The p-step ahead model prediction can be written by the equation below by it-
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erative substitution of Equation (3.20) and is given by equation Equation (3.25).

Y [p] = CsfpAsfp
pxsfp[l] + ϕsfpU

p
f + CresAres

pxres[l] + ϕresU
p
f (3.25)

where,

ϕsfp =
[
CsfpAsfp

p−1Bsfp CsfpAsfp
p−2Bsfp . . . CsfpBsfp Dsfp

]
ϕres =

[
CresAres

p−1Bres CresAres
p−2Bres . . . CresBres Dres

]
Up
f = {uf [0], uf [1], · · · , uf [p]}

The value of the ith output p steps ahead in the future can be as follows :

Yi[p] = LiY [p], (3.26)

where, Li ≜
[
01×(i−1) 1 01×(12−i)

]
∀ i = 1, . . . , 12

The terminal constraint on the seeded crystals is given by:

L8Y [lf − l] ≥ γ

=⇒ −L8ϕlf−lU
lf−l

f ≤ −γ + L8CsfpAsfp
lf−lxsfp[0] + L8CresAres

lf−lxres[0]

(3.27)

Constraints on the input move is formulated as follows :

|


u[l]− uf [0]

uf [0]− uf [1]
...

uf [lf − l − 1]− uf [lf − l]

 | ≤ ∆u (3.28)
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=⇒



1 −1 0 · · · 0

0 1 −1 · · · 0
. . . . . . . . .

0 · · · 0 1 −1

−1 1 0 · · · 0

0 −1 1 · · · 0
. . . . . . . . .

0 · · · 0 −1 1



 u[l]

U
lf−l

f

 ≤ ∆u (3.29)

where ∆u is a vector of δ.

Further, the constraints on the concentration, y11 ≤ y9 can be formulated as


L11 − L9

...

L11 − L9

 ◦ΠsfpU(Hc−1) +


L11 − L9

...

L11 − L9

 ◦ΠresU(Hc−1) ≤−


L11 − L9

...

L11 − L9

 ◦


Csfp

CsfpAsfp

...

CsfpAsfp
(Hc−1)

xsfp[0]

(3.30)

−


L11 − L9

...

L11 − L9

 ◦


Cres

CresAres

...

CresAres
(Hc−1)

xres[0]

where, Πsfp is a Toeplitz matrix given by

Πsfp =



Dsfp 0 0 · · · 0

CsfpBsfp Dsfp 0 · · · 0

CsfpAsfpBsfp CsfpBsfp Dsfp · · · 0

. . . . . . . . .

CsfpAsfp
(Hc−2)Bsfp · · · CsfpAsfpBsfp CsfpBsfp Dsfp


(3.31)

Πres is a similar matrix made with the matrices Ares, Bres, Cres, Dres. The constraint
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y9 ≤ y12 can be similarly written in the following fashion:


L9 − L12

...

L9 − L12

 ◦ΠsfpU(Hc−1) +


L9 − L12

...

L9 − L12

 ◦ΠresU(Hc−1) ≤−


L9 − L12

...

L9 − L12

 ◦


Csfp

CsfpAsfp

...

CsfpAsfp
(Hc−1)

xsfp[0]

(3.32)

−


L9 − L12

...

L9 − L12

 ◦


Cres

CresAres

...

CresAres
(Hc−1)

xres[0]

• Case B: Second optimization layer

In this layer, the tuning parameters on the concentration constraint, ϵ1 and ϵ2 are kept

as zero and all other aspects are kept similar to the primary layer.

• Case C: Third optimization layer

In this layer, the quality constraint is removed and an additional term which maxi-

mizes the quality at batch end is added to the objective function having the form as

shown below. The two terms in the objective function are given different weights in

accordance to their importance in the optimization formulation.

min
Uf

1000 ∗ y4[lf − l]− 500 ∗ y8[lf − l] (3.33)

• Case D: Fourth optimization layer

In this layer, the tuning parameters (ϵ1 and ϵ2) from the concentration constraint, and

the constraint on the rate of change of input over the prediction horizon are removed.

The rest is kept similar to the primary layer.

• Case E: Fifth optimization layer

In this layer, only the constraint involving the rate of change of input between the

last implemented input and the current step is kept in the formulation. The objective
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function aims to maximize the difference between the reaction concentration C and

the saturation concentration Cs at each time step over the prediction horizon, rep-

resented mathematically as min
Uf

−
∑lf−l

k=0 (y9[k]− y11[k]), with the model equations

same as the primary layer, and the rate of input change constraint represented as

|uf [k]− uf [k − 1]| ≤ δ, ∀ 1 ≤ k ≤ lf − l.

3.5 Closed loop simulation results

The optimization formulation presented in the previous section is a linear program

and is solved in MATLAB using the linprog function. The parameters related to

the optimization are tabulated in Table 3.10. The tuning parameters used to tighten

the constraints to accommodate for the plant-model mismatch is provided in Equa-

tion (3.34). The constraint horizon (Hc) for the reaction concentration constraint is

considered to be of 25 time steps for lf − l ≥ 25 and due to the shrinking nature of

the prediction horizon, this constraint is active for lf − l time steps when lf − l < 25.

The two different hybrid model MPC are compared with an only data based subspace

MPC for 100 validation batches to compare the quality of the different control strate-

gies. The initial process conditions are kept the same in the three strategies for a fair

comparison.

A PI based controller (settings provided in Table 4.7) is run for the first 10 minutes

in all the cases to obtain a good estimate of the initial state for the subspace based

models, and the MPC is run online from that point onward till the end of the batch.

In case of both the hybrid based MPC’s, the ODE model is run online to generate

the first principle model outputs using the same initial conditions as the process.

The state estimators are appropriately run in closed loop and use the current inputs,

measurements and first principle model outputs to generate states needed for MPC

calculations at each sampling interval. Kalman filter was used as the state estimator
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and the tuning parameters are presented in Table 3.11.

Quality is denoted by the value of third moment due to seeding (µ3
s) at batch end

and three different cases are considered where the quality requirement is sequentially

incremented (1.6e9, 2.6e9, 3e9 respectively for the three cases) on top of the base value

8.3301e9. These increments in quality are representative of instances where market

conditions may dictate a different product, and a rapid change in process operation

to meet the new quality requirements without running extensive experiments and re-

identifying the model. The solution concentration profiles along with the implemented

input trajectories and final crystal size distribution for a particular batch (for the cases

2.6e9 and 3.0e9) are presented in Figure 3.8 and Figure 3.10. The batches were run

under closed loop control of each of the three control strategies and the histograms

presented in Figure 3.9 and Figure 3.11 show the distribution of the amount of fines

at batch end for all of the 100 batches considered. In order to compare the different

control strategies, the mean of the objective function value (MOV) or the volume of

fines at batch end given by µ3
n averaged over 100 batches is presented in Table 3.2 for

all the three quality cases. The average was calculated using data from batches that

were successful in obtaining the desired quality at batch end.

High purity products are manufactured in batch processes where tight quality require-

ments are an absolute necessity, and thus robustness to failures is the one of the most

important criteria in deciding the efficacy of the control strategy. From Table 3.2,

it can be seen that there is only 1 failed batch for the Hybrid-2 case and no failed

batches in the case of Hybrid-1 and subspace strategy considering the 1.6e9 quality

case. The Hybrid-2 seem to perform the best followed by the subspace and Hybrid-1

with respect to minimizing the volume of fines in the final product. However, with

the increase in quality requirement the Hybrid-1 outperforms the only subspace based

strategy. The number of failed batches is also the minimal for Hybrid-1 as compared

to Hybrid-2 and at par with the subspace based MPC. This advantage in performance
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of Hybrid-1 over Hybrid-2 is logical as Hybrid-2 is rather a naive construction of the

parallel framework, trained with residuals between process and first principles instead

of process and sfp model (as in the case of Hybrid-1). Since the linearized first prin-

ciples or sfp model is common in both the hybrid architectures, the error model of

Hybrid-1 constructed with residuals (y − ysfp) is theoretically more appropriate in

correcting the shortcomings of the sfp model and is also well supported by the results.

Thus, only Hybrid-1 is further considered for comparison studies. The advantages

of hybrid MPC over subspace based MPC is evident not only from the MOV values

tabulated in Table 3.2 but also from the histograms in Figure 3.9, Figure 3.11, where

the distribution clearly shows a significantly higher number of batches have lower vol-

ume of fines describing a much smaller spread under the closed loop control of linear

parallel hybrid based MPC as compared to the batches under subspace based MPC.

It can be seen from Table 3.3 that the variance of fines and final product quality is

also lower in the case of the Hybrid-1 MPC, adding to its advantages over the only

data-based subspace MPC.

Table 3.2: Mean of the objective function value (MOV) and failed batch statistics over
100 batches for 3 different quality requirements

MPC Type Quality: 1.6e9 Quality: 2.6e9 Quality: 3e9

MOV Failed batch MOV Failed batch MOV Failed batch

Hybrid-1 1.2326e+ 09 0 1.1457e+ 09 4 1.2218e+ 09 11
Hybrid-2 1.1876e+ 09 1 1.1400e+ 09 8 1.2452e+ 09 17

Subid 1.2009e+ 09 0 1.2284e+ 09 4 1.2788e+ 09 11

Table 3.3: Variance of fines and the final quality at batch end of the successful batches

MPC Type Quality: 1.6e9 Quality: 2.6e9 Quality: 3e9

Var(µ3
n ) Var(µ3

s ) Var(µ3
n ) Var(µ3

s ) Var(µ3
n ) Var(µ3

s )

Hybrid-1 5.0041e+ 16 2.7881e+ 17 17.989e+ 15 8.9099e+ 16 3.2054e+ 15 9.8035e+ 15
Subid 5.5383e+ 16 3.2469e+ 17 36.293e+ 15 18.225e+ 16 18.298e+ 15 80.504e+ 15
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Figure 3.8: Closed loop validation results for Quality 2.6e9 case: Figure (a) represent the
solution concentration profile (−) along with saturation concentration (−−) and

metastable concentration (−.) of a candidate batch using Hybrid-1 based MPC; Figures
(b) and (c) represent the same profile using Hybrid-2 and Subid; Figure (d) represents the

input trajectory generated by the MPC and Figure (e) represents the crystal size
distribution at batch end using the Hybrid-1 (−), Hybrid-2 (−−) and Subid (−.) MPC

(a) (b)

Figure 3.9: Distribution of µ3
n at batch end of successful batches for the closed loop cases:

(a) Hybrid-1 (b) Subid, for the quality 2.6e9 case
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Figure 3.10: Closed loop validation results for Quality 3.0e9 case: Figure (a) represent
the solution concentration profile (−) along with saturation concentration (−−) and

metastable concentration (−.) of a candidate batch using Hybrid-1 based MPC; Figures
(b) and (c) represent the same profile using Hybrid-2 and Subid; Figure (d) represents the

input trajectory generated by the MPC and Figure (e) represent the crystal size
distribution at batch end using the Hybrid-1 (−), Hybrid-2 (−−) and Subid (−.) MPC

(a) (b)

Figure 3.11: Distribution of µ3
n at batch end of successful batches for the closed loop

cases: (a) Hybrid-1 (b) Subid, for the quality 3.0e9 case
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3.6 Conclusions

A novel MPC utilizing a linear parallel subspace based hybrid model for controlling

the volume of fines during a batch crystallization process is presented in this work. To

this end, the superior predictive ability of this model in capturing the batch dynamics

is first demonstrated and then an optimization framework embedding this model is

proposed. This control strategy, through simulations of different quality based cases,

has been shown to perform better than a purely data driven subspace model based

one.
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Seeded batch crystallizer parameters; Seeded batch crystallizer parameter values and
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3.7 Supporting Information for Publication

Table 3.4: Seeded batch crystallizer parameters

Parameter nomenclature
C: Solute concentration T : Reaction temperature
Cm: Metastable concentration Cs: Saturation concentration
µi: ith moment of the particle size distribution Tjk: Jacket temperature
µn
i : ith moment corresponding to nucleation ρ : Density of crystals

µs
i : ith moment corresponding to seed/desired kv: Volumetric shape factor

U : Overall heat transfer co-efficient A: Total heat transfer surface area
M : Mass of solvent in crystallizer Cp: Heat capacity of solution
∆H: Heat of reaction Eb: Nucleation activation energy
Eg: Growth activation energy

Table 3.5: Seeded batch crystallizer parameter values and simulation settings

Parameters Nominal Values
b 1.45
g 1.5
kb 285 s−1µm−3

kg 1.44e8 µm/s
ρ 2.66e-12 g/m3

UA 0.8 KJ s K
kv 1.5
Cp 3.8 KJ/(Kg K)
∆H 44.5 KJ/Kg
Eb/R 7517 K
Eg/R 4859 K
M 27
dt 3.005 seconds
T (0) 50◦C
C(0) 0.1742 g/g
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Table 3.6: Erroneous parameters in the first principles model (original values of these
parameters are listed in Table 4.4).

Parameter % Mismatch
Eb/R 0.8
Eg/R 0.8
g 10
b 10

Table 3.7: Batch initial conditions and noise parameters

Variable σbatchwise σnoise

n 0.2 0.05
C 0.0028 0.008
T 0.52 0.003

µn
i , µ

s
i (i = 1, 2, 3) - 0.001

Table 3.8: Model Identification database summary

Input policy Set-point profile Number of Batches
PI trajectory tracking( KC = 0.85, TI = 38) 1 30
PI trajectory tracking (KC = 0.85, TI = 38) 2 10

Total batches 40

Table 3.9: Model and parameters

Model Hankel rows Model order
Hybrid-1,2: sfp model 34 30

Hybrid-1: residual model 61 57
Hybrid-2: residual model 64 60

Non-linear hybrid: Residual model 64 60
Subspace model 59 55

Table 3.10: Optimization Parameters

Parameters Case -1 Case-2 Case-3
δ 2◦C/min 2◦C/min 2◦C/min
γ 9.930e9 1.093e10 1.133e10
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MPC tuning parameter values (Implemented as per the different layers of
optimization)

ϵ1 =

{
0.0035 g/g, from 10− 22.5 min
0.0015 g/g from 22.5− 30 min

ϵ2 =

{
−0.0035 g/g, from 10− 22.5 min
−0.0015 g/g, from 22.5− 30 min

ϵ3 = 0.4e9, from 10− 30 min

(3.34)

Table 3.11: Kalman tuning parameters used in the state estimation during MPC
implementation for the 3 different MPC’s

MPC - type Model Process noise (σ2) Measurement noise (σ2)

Hybrid-1 sfp 1e− 6 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.003 0.1 0.1 0.1
res 1e− 4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.003 0.1 0.1 0.1

Hybrid-2 sfp 1e− 6 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.003 0.1 0.1 0.1
res 1e− 4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.003 0.1 0.1 0.1

Subid Subspace 1e− 4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.003 0.1 0.1 0.1
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Chapter 4

Hybrid Partial Least Squares models

for batch processes: Integrating data

with process knowledge

The contents of this chapter have been published in Industrial & Engineering Chem-

istry Research Journal.
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Abstract

This paper presents a unique strategy for integrating fundamental process

knowledge with measurement data to build a Partial Least Squares (PLS) model

with improved estimation capability. To this end, variables from two different

sources are combined to create the predictor data matrix for the PLS model.

Measurement data from sensors is stored and used as inputs to a modified first

principles model to generate trajectory data of unmeasured variables. Then the

traditional X data matrix (built with measured data) is augmented with batch

trajectory data of the calculated variables. The PLS model built with this

augmented matrix is referred to as Hybrid/Augmented PLS and this proposed

methodology is tested on a seeded batch crystallization process to illustrate this

straightforward but powerful approach to estimate the final crystal size distri-

bution. The efficacy of the proposed approach is demonstrated using simulation

studies by comparing the results with the standard PLS and subspace based

quality model.

4.1 Introduction

Batch and fed-batch processes [2] play a critical role in today’s fast and constantly

changing market demand of critical products. These small scale processes are char-

acterized by their ability to manufacture on-spec product where quality is of vital

importance, like in pharmaceutical, polymer, biochemicals etc. Open loop policies

were implemented in the past where it was thought that reproducing a successful

recipe for a particular batch would lead to similar results. However, such policies

are rarely successful as each batch experiences a unique set of variations induced by

raw material (impurity levels, variation in weights etc.), operational factors and un-

accounted disturbances during the batch cycle, which lead to significant variations in

the final quality. Automation for tight monitoring and control of such processes is of
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utmost importance in order to achieve desired targets and model based monitoring

and feedback control strategies have been greatly successful in that regard, and thus

significant effort is constantly invested to enhance the quality of such models.

Soft sensors or inferential models come to the aid where online and offline measurement

of certain variables are difficult, infrequent and expensive to obtain. The estimation

of such variables are typically done on the basis of their relation with other measured

variables using process models. The availability of these additional variables has been

harnessed to build more robust and reliable process monitoring and control schemes

[29, 25, 19]. Traditionally, first principle or physics based models were used for such

purposes. These models invoke fundamental governing laws of the process and are de-

scribed in the form of non-linear/linear partial differential equations (PDE), ordinary

differential equations (ODE), algebraic equations etc. and can also be in the form

of detailed industrial simulators. However, developing such models can be a highly

arduous task and needs great deal of process knowledge and expertise. Estimating

model parameters to calibrate such models to process data typically involves a highly

complex non-convex optimization which is quite difficult to solve. Although these

high fidelity models can predict variable trajectories with relatively good accuracy,

their online implementation is restricted due to their intricate nature leading to high

computation times. Moreover, for online process monitoring applications [15], such

models have to be implemented utilizing observers such as Extended Kalman Filters

(EKF), Moving Horizon Estimators (MHE) etc., since all the model states (such as

raw material variations and other disturbance states) are typically not available for

measurement (and initialization of the model) [13, 18, 30].

Recent advancements in data acquisition and storage facilities have paved the way

for building data-based models for monitoring, control, and optimization of complex

process. These approaches are fairly easy to model and have a simple model structure,

which make them well suited for online deployment. Some of the existing techniques
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include Auto-Regressive Exogenous (ARX), Artificial Neural Networks (ANN), la-

tent variable methods (Principal Component Analysis (PCA), Partial Least Squares

(PLS)) and subspace identification, where data from past batches is used to identify

the parameters of the model.

ARX models are linear time invariant dynamic models and it is assumed that the pro-

cess output at any particular sampling instant is a linear combination of past inputs

and outputs. The model coefficients are determined by simple regression techniques

using historical data. However, co-linearity between variables (a common happening

in batch processes ) can lead to improper model estimates affecting the predictive

ability of the model. ANN’s are static models which are adapted to model dynamic

processes and use non-linear functions to relate process inputs and outputs. In the

past, they have been used to model and monitor batch processes [35] but their effi-

cacy relies on the availability of significant amount of historical data relevant to the

application, and often struggle with the issues of overfitting.

Subspace identification methods [22, 26, 27] are linear algebra based approaches which

identify a dynamic state-space model. In one such identification method [22], the

subspace states are first identified and then the model matrices are determined using

regression techniques. Traditionally built for continuous processes, this technique has

been adapted to accommodate batches of different lengths [5] in the identification

step. In the recent past, they have been applied to a variety of batch case studies and

the results have demonstrated their efficacy in batch modeling and control.

PLS is a statistical latent variable modeling method which reduces the dimension of

the original problem, and facilitates computations and visualizations in that lower di-

mensional space. This attribute makes them very well suited for processes associated

with large number of correlated variables. In order to capture the time varying dynam-

ics of batch processes, the inherently static models are appropriately transformed to

effectively time varying linear models, called Multiway Partial Least Squares (MPLS)
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through batch wise unfolding of the historical batch data. Alignment methods have

been developed to accommodate the non-uniformity that arises from the termination

of batches at different time. This Multiway PCA/PLS approach has found tremendous

usage in modeling of batch processes along with online applications like monitoring

and control of such processes [25, 11, 12, 24, 17].

A good review on data based soft sensors has been provided in [16]. Auto-regressive

moving average exogenous (ARMAX) models were used in [4] to determine the par-

ticle size measurement in a grinding circuit. In [38], the product composition of a

distillation column was estimated using latent variable methods and ANN’s. Emis-

sion monitoring of industrial gases was facilitated using soft sensors in [8, 29]. [20]

used a dynamic partial least squares (DPLS) based soft sensor for the online estima-

tion of variables related to product quality in a cement kiln system. In one example

in the polymer sector [31], the use of PLS for such an application was presented where

it was successfully used to estimate quality parameters for a LDPE plant. Further, in

batch polymerization cases [10, 21], successful applications of PLS as a soft sensor for

real time estimation were presented. For process monitoring applications, the useful-

ness of MPCA has been well documented [24, 17]. In [25], on-line monitoring of the

qualities of final product using MPLS for a polymerization case was presented.

Grey-box or hybrid modeling schemes exist which make use of two modeling techniques

to create better and efficient models. They are broadly classified into series [28, 34]

and parallel approaches [33, 9]. [37, 1] present a good review of both the approaches.

In the series approach, data based models like ANN [34], PLS etc. were placed in series

with the first principles models and used to find the parameters of the mechanistic

model. Parallel approaches use the data driven model to act as residual model to

correct the error in prediction of the first principles model. In [33], ANN’s were used

for such purposes where the model was trained with historical error data (difference

between the process and the first principles model). In [23], a series hybrid model
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(using PLS as the data driven unit) was embedded in an EKF to monitor the progress

of key process variables in a mammalian cell culture case study. In another example

[3], a synergistic usage of data and mechanistic model was presented for an online

monitoring case study where an EKF was used to estimate states using predictions

of a mechanistic model and measurement calculations provided by a PLS model.

In a recent application [7], an extended kalman filter (EKF) was used to estimate

variable trajectory data of unmeasured variables which were later appended with

measured variables to create PLS models with enhanced estimation ability used in

process monitoring for early detection of faults. In summary, while various hybrid

modeling approaches exist, a hybrid modeling approach that combines the powerful

PLS models with first principles knowledge for the purpose of estimating quality

variables presently does not exist.

The present manuscript derives the motivation from the above consideration, and

presents a hybrid PLS approach. The proposed approach involves supplementing

the trajectories of recorded variables with additional data (coming from mechanistic

models) in a MPLS modeling approach. The availability of a simplified mechanis-

tic model is leveraged and used to generate trajectory data of variables using initial

conditions and recorded measurement of process variables at each sampling instant.

This simple yet powerful approach is referred to as Hybrid or Augmented PLS and

it obviates the need of using and maintaining an EKF or any other state estimation

technique pertaining to first principles models. An extremely important aspect of

this hybrid modeling approach is that the fundamental model does not have to be

calibrated to process data, and hence, can have significant biases between the true

and the calculated variable trajectories. The only important point to be considered

is that the predicted variations, although biased, should evolve in the direction of

the true process. A motivating example of seeded batch crystallizer is used to illus-

trate the efficacy of the proposed approach. The quality variable - the crystal size

distribution (CSD) at batch end is estimated using the proposed methodology and
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is compared with a standard PLS (trained only with measurement data) and sub-

space based quality model. The remainder of the manuscript is structured as follows:

Section 5.2 describes the batch crystallizer and its modelling equations, followed by

a brief introduction to MPLS and subspace based quality models. The proposed

methodology is presented in Section 4.3 where the identification and validation of the

model are described. Section 4.4 shows the application of the proposed method to

the case considered, and the simulation results are presented where the final quality

is estimated and compared with other methodologies. The conclusions are presented

in Section 5.4.

4.2 Preliminaries

This section first presents two mechanistic models that describe the dynamics of

batch crystallization process. The first model is only for the purpose of generating

the data, i.e., it is used instead of real data coming from a process, while the second

is the ‘model’ available to the practitioner. Next, a brief overview of two system

identification techniques: MPLS and subspace identification based quality models is

presented.

4.2.1 Motivating example: Seeded Batch Crystallization pro-

cess

In this work, a seeded batch crystallization process is considered as the test bed for

demonstrating the utility of the proposed approach. Batch crystallization is a process

where typically an initial seed (crystals of a particular distribution) is thrown in the

reactor containing the solution to initiate the nucleation process. It is expected that

the crystals grow from the seeds over the course of crystallization to a desired crystal
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size distribution. The process of initial seeding restricts, to a degree, the formation

of crystals due to unwanted nucleation, and is vital in obtaining a desired CSD at

batch termination. This is also affected by the reactor temperature, which in turn

affects the growth (of all crystals) and nucleation rate of new crystals. The reactor

temperature is controlled by manipulating the jacket temperature. The PDE model

used in [32] is utilized in this work where the population balance equation describes the

dynamic time evolution of the CSD (n(r, t)), while the two associated ODEs dictate

the time progression of the solution concentration (C) and reaction temperature (T )

contingent on the initial conditions. These equations are presented in Equation (4.1)

and are considered to be the ’process’. Gaussian measurement noise is added to the

simulated data and the process is initiated with variations in the initial conditions

to imitate process conditions. The parameter nomenclature is provided in Table 4.3.

The PDE system of equations has the following form:

PDE model
(Test bed)


∂n(r,t)

∂t
+G(t)∂n(r,t)

∂r
= 0, n(0, t) = B(t)

G(t)

dC
dt

= −3ρkvG(t)µ2(t)

dT
dt

= − UA
MCp

(T − Tj)− ∆H
Cp

3ρkvG(t)µ2(t)

(4.1)

B(t) is the nucleation rate and G(t) is the crystal growth rate, and is described as

the form given in Equation (4.2):

B(t) = kbe
−Eb/RT (

C − Cs(T )

Cs(T )
)bµ3

G(t) = kge
−Eg/RT (

C − Cs(T )

Cs(T )
)g

(4.2)

The moments are calculated from the CSD using Equation (4.3)

µi =

∫ ∞

0

rin(r, t)dr i = 0, 1, 2, 3 · · · (4.3)
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For the crystals to grow, the solution concentration (C) should be in between the

saturation concentration (Cs) and metastable concentration (Cm), i.e., Cs ≤ C ≤ Cm.

The saturation and metastable concentration are related to the reaction temperature

as follows:

Cs(T ) = 6.29 ∗ 10−2 + 2.46 ∗ 10−3T − 7.14 ∗ 10−6T 2

Cm(T ) = 7.76 ∗ 10−2 + 2.46 ∗ 10−3T − 8.10 ∗ 10−6T 2
(4.4)

The moments of CSD generated due to nucleation and seeding are, respectively, de-

noted by µn
i and µs

i (i= 0, 1, 2, 3). They are evaluated using Equation (4.5), where

rg is the defined as the threshold radius below which the crystals are considered to be

as fines.

µn
i =

∫ rg

0

rin(r, t)dr

µs
i =

∫ ∞

rg

rin(r, t)dr i = 0, 1, 2, 3 · · ·
(4.5)

The key features of a mechanistic model available to practitioners are that it is rela-

tively simple to develop and maintain, might be structurally different from the ‘true’

process, and thus may contain process-model mismatch. We next describe such a

simpler mechanistic model having the generic form :

ẋfp = f([x1,x2 · · ·xj · · ·xn], [u1,u2 · · ·um])

= f(xfp,ufp)

Yfp = g(xfp,ufp)

(4.6)

where xfp =
[
x1,x2 · · ·xj · · ·xn

]T
is the vector of the n first principle model states,

ufp =
[
u1,u2 · · ·um

]T
is the vector of m inputs, Yfp is the vector of outputs, f
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and g are functions (linear/non-linear) that describe the progression of the states and

outputs over the duration of the process.

For the crystallizer application, a moments model [32] with fewer degrees of freedom

defined by a set of ODEs is utilized in the present manuscript. This reduced order

model doesn’t describe the time evolution of the CSD, but provides information about

the important aspects of the distribution, and in particular, could be useful in im-

proving purely data driven models. The time marching of the leading moments is

described by the set of differential equations given by Equation (4.7):

ODE moments model
(FP model)



dµn
0

dt
= B(t)

dµn
i

dt
= iG(t)µn

i−1(t) i = 1, 2, 3

µs
0 = k4

dµs
i

dt
= iG(t)µs

i−1(t) i = 1, 2, 3

dC
dt

= −3ρkvG(t)(µn
2 (t) + µs

2(t)

dT
dt

= − UA
MCp

(T − Tj)− ∆H
Cp

3ρkvG(t)(µn
2 (t) + µs

2(t))

(4.7)

The vector, xfp, defining the model states is given by : xfp =
[
µn
0 µn

i µs
0 µs

i C T
]T

,

i = 1, 2, 3 and the input by ufp = Tj. The function f mentioned in Equation (4.6)

describes the evolution of these states and are presented in Equation (4.7). The out-

puts in this study are considered the same as the first principles states, and thus

g(xfp, ufp) = xfp. In this manuscript, this simpler model is assumed to be available

and considered as the first principle (FP) model.

An extra condition given by Algorithm 2 is imposed on both the models which makes

sure that no crystals are generated in the event the solution concentration falls be-

low the saturation concentration during the batch run. This additional constraint

is specifically important in the context of simulating data using the models as the
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fractional value of the exponents b and g (for the case C ≤ Cs) in Equation (4.2)

generate complex values of nucleation and growth rate. The value for growth rate

(G) while implementing this particular condition for the PDE model is chosen to be a

small number rather than 0 to avoid division by zeroes during the calculation of CSD

as per Equation (4.1).

Algorithm 2 Condition on growth and nucleation rate dependence on solution con-
centration

if C ≤ Cs then
B = 0

G =

{
1e− 6 PDE model
0 Moments model

else
Use the values generated by Equation (4.2)

end if

2 variables are assumed to be available as process measurements represented by y =[
C T

]T
, and are generated in response to the manipulated trajectory where the input

vector is given by u = Tj. Batches are initialized with variations in initial conditions

and operated under closed loop using a Proportional Integral (PI) controller which

tracks an optimum set-point trajectory (Topt) of the reaction temperature (T). The

manipulated input (jacket temperature Tj) is kept within the bounds [50 30]◦C using

an input saturation constraint in the PI algorithm. The initial seed distribution

(given by Equation (4.8)) for each batch is considered to be a parabola [32] spread

out between radius 300 to 350 µm and having the maximum number of crystals (2/µm

g solvent) at a radius of 325µm. A schematic of the initial CSD for a candidate batch

and the set-point trajectory profile is shown in Figure 4.1.

n(r, 0) =


0 r < 300µm

0.0032(350− r)(r − 300) 300µm ≤ r ≤ 350µm

0 r > 350µm

(4.8)
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(a) (b)

Figure 4.1: Figure (a) shows the nominal seed distribution at batch initialization and (b)
shows the set-point trajectory profile of the reactor temperature

Data generated from NT = 50 training batches are used to train the data-based models

and validated on NV = 10 validation batches. Variations in the initial seeds, solution

concentration and temperature are introduced in each batch and measurement noise

added to the simulated data at each sampling instant to reflect noisy sensor readings.

Batches differ due to the presence of varying levels of impurities in raw materials and to

reflect such occurrences in the simulation, the value of exponent g in Equation (4.2)

is sampled from a normal distribution N (µ(1.5), σ(0.001)) to introduce differences

among batches.

A moving average (MA) filter is used in order to mitigate the effect of measurement

noise on the process outputs before using the data for feedback calculations. The

window size of the filter is kept as 5. All the batches are run for a duration of

30 minutes, and the measurements are recorded at a sampling interval of dt. The

parameter values and additional information needed for the simulation are provided

in Tables 4.4, 4.6 and 4.7. Figure 4.2 shows the process variable trajectories of the

outputs and inputs for all the historical batches to be used in training. It also presents

the terminal crystal size distribution of those training batches.

The quality described by the CSD is measured only at batch end. The specific quality

107



PhD Thesis - Debanjan Ghosh; McMaster University - Chemical Engineering

(a) (b)

(c) (d)

Figure 4.2: Figures present some of the variable profiles generated using the PDE model
for all 50 training batches. Figure (a) presents the CSD at batch termination; (b), (c), and

(d) show the solution concentration, temperature and jacket temperature trajectories
respectively

problem that the present manuscript focuses on is the estimation of the terminal CSD

by using continuous process measurements (such as temperature and concentration)

for the entire batch.

4.2.2 Multiway Partial Least Squares

Evolution of the key process variables with time in each batch along with the final

quality measurement is generally recorded and stored for future analysis. Batch data

is typically organized in a 3-D array where the batches (i = 1, 2, · · · I) run in rows,
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the measured variables (j = 1, 2, · · · J) are positioned in columns and time (k =

1, 2, · · ·K) runs across the third dimension of the block. This input block denoted by

X has the dimension of I × J ×K and defines the array of input/predictor variables.

The quality variables (m = 1, 2, · · ·M) pertaining to each batch are stored in the rows

of the Y block. These variables are typically measured at the end of each batch, and

the block Y has a dimension of I × M . MPLS is a technique to handle such block

arrangement of batch data and aptly converts the 3-D input array to a 2-D array

which can then be readily used to identify the parameters. There are multiple ways of

unfolding the array, however, the most meaningful way of embedding the time varying

nature of the process variables is to unfold it batch wise as shown in Figure 4.3. The

3-D array is first sliced up in K parts along the time dimension, each slice having a

dimension of I × J . These slices are then concatenated horizontally (to reflect the

time evolution of the variables) to form a 2-D matrix having the dimension of I×JK.

                   X

Y

     Variables

X

Batches

1

I

K

Tim
e

J

1 M

I

1

I

J 2J KJ

(a)

Figure 4.3: Batchwise Unfolding approach

The regular PLS algorithm is then applied on the input (unfolded X) and output (Y)

data matrices following mean centering and scaling of the variables. Mean centering
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is done with respect to the average variable trajectories of the batches considered in

the training data set and thus, the entries in the input block reflect the variation of

the variables (at each sampling instant) about their respective mean trajectories. The

variables are also scaled to unit variance to remove the effect of units which resolves

improper assignation of weights to certain variables. This approach of unfolding

data to build PLS models results in a model with time indexed parameters which

appropriately captures the time varying nature of the process variables, and makes

use of the variation in the process measurements till the end of the batch in the X

space to predict the variation of the quality variables about their mean values in the

Y space. Considering A components are used to fit the model, X and Y data matrices

can be written down in terms of model estimates (X̂ and Ŷ) and residual matrices

(E and F) as :

X = X̂+ E = TPT + E

Y = Ŷ + F = TQT + F
(4.9)

where the matrix T (I ×A) is the matrix of scores, P (JK ×A) and Q (M ×A) are

the loading matrices.

4.2.3 Subspace Identification

Subspace identification methods [27, 26, 22, 36], also commonly referred as SIMs, are

system identification techniques which make rigorous use of concepts of linear algebra

to identify a discrete linear time invariant (LTI) state-space model from historical

input-output (I/O) measurement data, and is written down in the form given by

Equation (4.10). In this study, the approach used in [22] is implemented where the

states are first identified during the identification stage, and the state space system

matrices are then evaluated using linear regression. Subspace algorithms are numeri-

cally robust and well suited for handling large data set. The identified LTI model is
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written down as follows:

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] +Du[k]
(4.10)

The subspace states at any time instant k are denoted by x[k] ∈ Rn×1 ( where n

is the identified order of the model). The outputs and inputs are represented by

y[k] ∈ Rl×1 and u[k] ∈ Rm×1 (l and m being the number of measured outputs and

inputs respectively). The time invariant system matrices identified by the algorithm

are denoted by A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m.

The subspace based identification procedure being a dynamic model identification

method, predicts the time evolution of the outputs and as such does not provide the

estimation of the final batch end quality (a variable not involved in the identification).

The notion of state variables dictates that the quality variables can only be a function

of the process states and to estimate such variables, subspace based quality models

have been built [6] where the quality at batch end is modeled as a linear function of

the terminal subspace states. Any regression approach having the following form is

used to determine the coefficients.

Q = P ∗ x[tk] +G (4.11)

where Q is the chosen quality variable, P are the coefficients identified from regression,

x[tk] are the terminal subspace states and G is the residual not captured by the model.

Any state estimator can be employed to generate the states of the training batches us-

ing the identified system matrices (A,B,C,D) and the known process measurements

(y,u). For a validation batch ’b’, the state estimator can be run online and the states

can be generated as process measurements become available. Once the terminal state

xb[tk] of that bth batch is determined, the final quality values can be obtained using

111



PhD Thesis - Debanjan Ghosh; McMaster University - Chemical Engineering

Equation (4.11).

Remark 17. In a recent application [14], the use of subspace models to correct the

biases of a mechanistic model has been addressed. The subspace model is used to model

the residuals (error between the real measurements and the first principles model’s

prediction) and used in conjunction with a mechanistic model (in a parallel fashion)

to create hybrid models with better predictive ability. This approach builds a dynamic

model which can be initialized to predict in the future and finds application in model

predictive control schemes. In this work, the case of estimating the final quality with

all the measurements up to the end of batch is considered and as such, the applicability

of the proposed model as a soft sensor is demonstrated. The utility of the approach as

a predictive tool will be explored in future studies.

4.3 Proposed hybrid modeling approach

A mechanistic model is considered to be available along with recorded measurements

of variable trajectories of multiple historical batches. In this section, a modifica-

tion applied to the first principles model is first presented followed by the proposed

model structure describing the steps of identifying the linear model. The validation

procedure on new batch data is discussed in the final subsection.

4.3.1 Modified first principles model

The available mechanistic model is modified so that the simulated trajectories are

reflective of the true process occurrences and evolve with the right trends. The mea-

sured variables in batches are often the states of the first principles model and as

such this knowledge from historical batches can be incorporated to generate variable

trajectories of the unmeasured states. Considering the discrete time measurement
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of the states xj, · · · ,xn is known to us from historical batch data, the trajectories

of the unmeasured ones for those batches can be simulated using these states as

additional inputs given by Equation (4.12). The number of states of the modified

first principles is xfp−mod = [x1,x2, · · · ,xj−1]
T and the new input vector is given by

ufp−mod = [u1,u2 · · ·um,xj, · · · ,xn]
T . p, q represent a subset of the vector functions

f , g in Equation (4.6), and some states now act as known inputs in the these functions.

The general equation of the modified first principles is given by Equation (4.12).

ẋfp−mod = p([x1,x2 · · ·xj−1], [u1,u2 · · ·um,xj, · · · ,xn])

= p(xfp−mod,ufp−mod)

Yfp−mod = q(xfp−mod,ufp−mod)

(4.12)

4.3.2 Model identification

Traditionally, MPLS models are built with measurements coming from real process

plants and are often limited by the number of sensors being used. Availability of a

first principles model allows us to generate data of other important variables which

provides additional information that can be leveraged for a variety of purposes. This

proposed approach utilises that extra information in one particular fashion to build

better and more efficient MPLS models.

The schematic of the proposed hybrid approach is presented in Figure 4.4. The initial

conditions (Z) of historical batches along the time series data of different measured

process variables (Yp,U) are assumed to be known to us. U’s denote the process

(manipulated) inputs which are used to steer the batch towards a desired quality, and

Yp’s are the output variable trajectories measured at certain sampling intervals over

the course of the batch. The initial condition of the unmeasured states (over batch

duration) of the first principles are also assumed to be known. In order to generate
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output data (Yfp−mod) of the modified first principles model, it is initialized with the

vector (Z) which comprises of the initial condition of the process variables. The inputs

to the model are considered to be both Yp and U such that at each sampling point we

have information of the process states of modified first principles model. For one such

batch, this additional information of inputs help guide the simulated outputs to evolve

in the direction of that batch. This simulated data generated by the first principles

model is then stored and appended with the recorded measurements to create the

augmented batch database. A MPLS model is then built with this augmented X

Process

Batch Database

Store measured 
Input-Output 

Data

First Principles 
Model

Store simulated 
Output Data

Initial conditions (Z)
Inputs (U)

Outputs (Yp)

Fp Outputs

(Yfp-mod)

(a)

Figure 4.4: Schematic showing the methodology followed to generate simulated outputs
to augment the database of historical batches

block, Xaug =
[
Yp U Yfp−mod

]
and the Y block containing the batch end quality

data Y =
[
Q
]
.

The model identification for this augmented case is done the same as a standard

MPLS which uses only measurement data. A schematic of the unfolded X block of

the Augmented/Hybrid PLS method is presented in Figure 4.5. A cross-validation

methodology is adopted to fit the best number of components.
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Obs ID Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 8 Var 9 

1         

2         

⋮         

N         

Measured 

process variable 

Variables from 

first principles 

model 

model model 

(a)

Figure 4.5: X block of Augmented/Hybrid PLS

4.3.3 Model validation

In this work, the problem of estimating the batch end quality is considered where

all the measurements and generated outputs up to batch termination are considered

to be available. When implementing the method online for a new batch, the first

principles model is run in real-time having the same conditions as the process, and

the measured variables are fed as inputs to the model to generate simulated outputs

at each time instant. Therein lies the utility of using simple reduced order mechanistic

models which reduce the computational burden, and the model calculations can be

performed easily within the sampling interval. Once the entire observation row is

obtained, the quality variable is estimated using the coefficients identified during the

model building stage.

Remark 18. This methodology can very well be used to generate information of vari-

ables in real time for process monitoring purposes. In such an application, at any time

instant, a new row of observation contains information of the measured and simulated
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variables up to that instant in the batch, and the future values of the variables can be

predicted using missing data algorithms. These algorithms make use of the correlation

structure of the historical batches to predict the missing values. Once these values are

predicted the final quality can also be monitored in real time.

4.4 Application to the batch crystallizer case study

This section presents the application of the proposed approach to the seeded batch

crystallization process. The development of the augmented batch database for the

Hybrid PLS is first explained in Section 4.4.1 followed by the simulation results on

validation batches in Section 4.4.2 where it is compared with a standard PLS and

subspace based quality model.

4.4.1 Augmented PLS modeling of the seeded batch crystal-

lizer

The ODE moments model described in Section 4.2.1 is considered as the first principles

for this study. The hybrid modeling strategy proposed in this work is unique in its

way of utilizing the first principles model to aid a data model as compared to the

traditional grey box models. The objective here is to build better MPLS models

by providing it with additional information of process variable trajectories during the

model building stage, which otherwise is not known. In order to achieve that, the ODE

model is fed with real process measurements as inputs, ufp−mod =
[
C T Tj

]
at every

time instant k to generate the value of model states xfp−mod =
[
µn
0 µs

0 µn
i µs

i

]T
,

i = 1, 2, 3 at the next sampling instant. Values of some additional variables Cs, Cm

are also generated during this process and are utilized later during the data model

building stage. In this case study, the function p, stated in Equation (4.12), is a
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vector comprising of functions that describe the evolution of these states and is given

by the algebraic equations and ODEs in Equations (4.13) to (4.15). The outputs are

described by the function q, given by q(xfp−mod, ufp−mod) =
[
xfp−mod Cs Cm

]
. It

is important to note that in this modified first principles, the solution concentration

(C) and reaction temperature (T ) are not model states anymore, and are introduced

as known inputs available from historical batch trajectory data.

Cs(T ) = 6.29 ∗ 10−2 + 2.46 ∗ 10−3T − 7.14 ∗ 10−6T 2

Cm(T ) = 7.76 ∗ 10−2 + 2.46 ∗ 10−3T − 8.10 ∗ 10−6T 2
(4.13)

B(t) = kbe
−Eb/RT (

C − Cs(T )

Cs(T )
)bµ3

G(t) = kge
−Eg/RT (

C − Cs(T )

Cs(T )
)g

(4.14)

dµn
0

dt
= B(t)

dµn
i

dt
= iG(t)µn

i−1(t) i = 1, 2, 3

µs
0 = k4

dµs
i

dt
= iG(t)µs

i−1(t) i = 1, 2, 3

(4.15)

The database previously containing the measurement data of NT = 50 training

batches is supplemented with data simulated from the first principles model. The

batch trajectories of two such variables are presented in Figure 4.6. A Hybrid/Aug-

mented MPLS model is then built with the information provided below :

1. Initial conditions (Z) :

• T0, initial reaction temperature

• C0, initial solute concentration

• µn
0,0, µ

s
0,0, µ

n
i,0, µ

s
i,0, i = 1, 2, 3, the initial value of moments
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(a) (b)

Figure 4.6: Figures present the trajectories of some variables generated by the modified
first principles model for the 50 training batches. Figure (a) presents the 3rd moment due

to nucleation; and (b) 3rd moment due to seeding respectively

2. Trajectory data measured during the process :

•
[
Yp U

]
=

[
T C Tj

]
3. Trajectory data from the first principles model given Z,Yp,U :

•
[
Yfp−mod

]
=

[
µn
0 µn

i µs
0 µs

i Cs Cm
]
, i = 1, 2, 3

4. Augmented X block :

• Xaug =
[
Yp U Yfp−mod

]
5. Crystallization quality data :

• Crystal size distribution at batch end, Y =
[
n
]
.

Remark 19. The case study in this manuscript considers and represents cases where

the states of the first principles model, while not available through measurement for the

duration of the batch, are readily available initially, or known by virtue of initialization.

Thus, in the present case, the seed distribution is known through measurement, and it

is also known that the moments of the newly nucleated crystals are zero, and this can be

utilized to initialize the first principles model. Note that online measurement of these
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moments over the batch duration is considered unavailable. The situation where there

are errors in the measured initial conditions is already incorporated into the hybrid

PLS model since the model is based on historical data that has these measurement

errors in the data. The only effect of increased errors in the initial conditions will

be to make both the hybrid model somewhat less predictive. If many of the initial

conditions are unknown then this approach may not be appropriate and instead some

form of state and initial condition estimator approach may be required. However,

those state estimation approaches are much more complex than the simple approach

presented here. Certain practical issues such as missing data will also be addressed in

the application of the proposed framework.

4.4.2 Simulation results and analysis

Two simulation case studies are performed to illustrate the key observations.

• Case - 1: Measurement data from 50 historical batches is used to build both

the standard and the Augmented PLS (referred as AUG-PLS-modfp). The trajec-

tory data of additional variables Yfp−mod, as mentioned in Section 4.4.1, generated

from the modified first principles model are also introduced into the X-block of the

Hybrid PLS. This X block of the Augmented/Hybrid PLS model is presented in

Figure 4.11. 3 and 7 components are used, respectively, to fit the standard PLS and

the Augmented PLS model using the auto-fit option in Aspen ProMV. The auto-fit

option uses the cross-validation metric Q2 for this purpose. In order to evaluate

the efficacy of the models, they are validated on 10 new batches to predict the

final CSD. Another hybrid PLS model is built using measurement data along with

additional trajectory data generated from the standard first principles (initialized

with the initial conditions from the process, the unmeasured states, and without

the addition of measured variable information as inputs). It is referred to as to
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as AUG-PLS-stdfp. 4 components are used to build the model using the auto-fit

option and then validated on the same 10 fresh batches.

(a) (b)

(c) (d)

Figure 4.7: Figures (a), (b), (c) and (d) respectively, present the R2 and Q2 metrics for
the Y-space using the Pure-PLS, Aug-PLS-modfp, Aug-PLS-stdfp and Sub-PLS-Kalman

strategies

The predictions are further compared with a subspace based quality model ex-

plained in Section 5.2.4. A model order of 3 is chosen for the subspace model. The

terminal subspace states of the 50 training batches are generated by employing a

kalman filter, following which the PLS models were built relating those states with

the final CSD. The PLS model is referred to as Sub-PLS-Kalman. The kalman

tuning parameters are provided in Table 4.8. 2 components are used to fit the

model and validated on the 10 fresh batches. The R2 and Q2 value for all the
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methodologies used are shown in Figure 4.7. The root mean square (RMSE) values

using the different modeling techniques are presented in Table 4.1. The predicted

values of Aug-PLS-modfp and Aug-PLS-stdfp are compared with the true process

values, and the CSD for two such candidate batches is shown in Figure 4.8. The

Sub-PLS-Kalman estimation of CSD is not shown due to higher RMSE with re-

spect to Pure-PLS, and to avoid clutter in the plots. It can be seen from the results

that the AUG-PLS-modfp outperforms the general PLS approach and the other

methodologies considered in this study.

Model Cumulative RMSE (10 batches)
AUG-PLS-modfp 0.21081
AUG-PLS-stdfp 0.28006

Pure-PLS 0.39247
Sub-PLS-Kalman 0.64174

Table 4.1: The RMSE values of 10 validation batches using different modeling techniques
for Case-1

However, while the the augmenting of the X-block with additional trajectory data

is valuable, the augmentation need not always be (Yfp−mod) generated using the

modified first principles model and another simulation study is done is to illustrate

this point.

• Case - 2: In this study, the same measurement data is considered as the last time.

However, data generated from the first principles model data is different as another

set of mismatch is considered in the parameter values of the first principles model.

The mismatch in parameters are reported in Table 4.5. 7 and 8 components are

used to fit AUG-PLS-modfp and AUG-PLS-stdfp, respectively, using the auto-fit

option in ASPEN ProMV. The two models are compared for this case and the

RMSE values are reported in Table 4.2.

This analysis shows that there can be cases where the PLS model built using mea-

surement data along with additional data from the standard first principles can
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(a)

(b)

Figure 4.8: Figures (a),(b), respectively, present the CSD at batch termination of two
candidate batches. The Process/measured CSD is given by the − line, prediction of

Pure-PLS by −− and the prediction of Augmented PLS by −. line

Model Cumulative RMSE (10 batches)
Aug-PLS-modfp 0.20979
Aug-PLS-stdfp 0.11343

Table 4.2: The RMSE values of 10 validation batches using different modeling techniques
for Case-2

outperform the addition from modified first principles model.
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In order to understand the disparity in results of the two hybrid PLS models in the

two cases, the PDE process data is plotted with the data from the standard first

principles and the modified first principles. It should be noted that this analysis is

possible only because the PDE model (considered as process) provides us the addi-

tional information of first principle states along with those considered as measured

outputs. This additional information of true states for all practical cases won’t be

available as the historical data is based on sensor readings and not simulations.

It can be observed from Figure 4.9 that in Case-1, the addition of measured variables

as input to the ODE model (termed as modified first principles) shows a great im-

provement in its predictions over the standard ODE model, as this modified strategy

drives the state trajectories closer to the true process states. This improvement is

also reflected in the RMSE value (Table 4.1) of the PLS model built with the state

trajectories of the modified first principles model. However, in Case-2, with a different

set of parameter mismatch values, the trend appears to be different and is shown in

Figure 4.10. The standard first principle predictions are closer to the process than

the modified one and the RMSE values (Table 4.2) of the PLS models built with such

data attests to that fact.

In practice, although, the knowledge of the true process states may not be available,

an offline analysis involving building the two hybrid PLS models and validating them

on historical batch data can easily be done. This will reveal the best choice of the

hybrid model to be used for predicting the CSD of fresh batches.
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(a) (b)

Figure 4.9: Figures compares the third moment due to nucleation (a) and due to seeding
(b) predicted by the PDE model (−), Modified first principles model (−.) and the standard

first principles model (−−) for Case-1

(a) (b)

Figure 4.10: Figures compares the third moment due to nucleation (a) and due to
seeding (b) predicted by the PDE model (−), Modified first principles model (−.) and the

standard first principles model (−−) for Case-2

4.5 Conclusions

A novel strategy of incorporating measurement data into first principles models to

generate state trajectory information has been proposed. This additional information

is incorporated to improve the predictive ability of MPLS models and the proposed

scheme is validated using simulation case studies for the estimation of final quality
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of a batch crystallization process. This simple yet effective Augmented PLS strategy

has been shown to perform better than the standard PLS and subspace based quality

models. Two approaches to generate the augmented data are shown and case studies

that illustrate the suitability of one particular approach versus the other are presented.

Supporting Information

Seeded batch crystallizer parameters; Parameter values of the batch crystallizer and

simulation settings; Percentage error in the parameters of the first principles model;

Batch initial conditions and noise parameters; PI controller settings used in the iden-

tification and validation batches; Tuning parameters of Kalman filter used in the

estimation of terminal subspace states; X block of Augmented/Hybrid PLS for the

crystallizer case study. This information is available free of charge via the Internet at

http://pubs.acs.org/.
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4.7 Supporting Information for Publication

Table 4.3: Seeded batch crystallizer parameters

Parameter nomenclature
C: Solute concentration T : Reaction temperature
Cm: Metastable concentration Cs: Saturation concentration
µi: ith moment of the particle size distribution Tjk: Jacket temperature
µn
i : ith moment corresponding to nucleation ρ : Density of crystals

µs
i : ith moment corresponding to seed/desired kv: Volumetric shape factor

U : Overall heat transfer co-efficient A: Total heat transfer surface area
M : Mass of solvent in crystallizer Cp: Heat capacity of solution
∆H: Heat of reaction Eb: Nucleation activation energy
Eg: Growth activation energy
b: exponent relating nucleation rate to supersaturation
g: exponent relating growth rate to supersaturation
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Table 4.4: Parameter values of the batch crystallizer and simulation settings

Parameters Nominal Values
b 1.45
g 1.5
kb 285 s−1µm−3

kg 1.44e8 µm/s
ρ 2.66e-12 g/m3

UA 0.8 KJ s K
kv 1.5
Cp 3.8 KJ/(Kg K)
∆H 44.5 KJ/Kg
Eb/R 7517 K
Eg/R 4859 K
M 27
dt 6.01 seconds
T (0) 50◦C
C(0) 0.1742 g/g

Table 4.5: Percentage error in the parameters of the first principles model (original values
of these parameters are listed in Table 4.4).

Parameter % Mismatch

Case-1 Case-2
Eb/R 0.8 0.8
Eg/R 0.8 0.8
g −1 1
b −1 1
kb 5 5
kg 5 5
kv −30 −10
∆H −30 −10

Table 4.6: Batch initial conditions and noise parameters

Variable σbatchwise σnoise

n 0.2 0.05
C 0.0028 0.008
T 0.52 0.003

µn
i , µ

s
i (i = 1, 2, 3) - 0.001
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Table 4.7: PI controller settings used in the identification and validation batches

Input policy Number of Batches
PI trajectory tracking (KC = 0.85, TI = 38) 50

Table 4.8: Tuning parameters of Kalman filter used in the estimation of terminal
subspace states

Model Process noise (σ2) Measurement noise (σ2)
Subspace 0.001 0.0004 0.0004
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Figure 4.11: X block of Augmented/Hybrid PLS for the crystallizer case study
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Application of data-driven modeling
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Abstract

Hydroprocessing units in petroleum refineries comprise of several complex

interconnected network of unit operations, and perform the function of remov-

ing impurities from the crude, and cracking it to lighter products for subsequent

operations. Modeling these units play a pivotal role in predicting future values

of important variables, improving the control and optimization of the plant for

efficient operation among several other applications. This paper presents the

development and implementation of data-based models in estimating product

qualities and other key monitoring variables in the hydroprocessing unit of an

industrial refinery. Real industrial data from two different units was used and

appropriate data-driven modeling strategies were formulated in order to address

this problem. In one instance, the usefulness of Dynamic-Partial Least Squares

(DPLS) over Partial Least Squares (PLS) in the estimation of important vari-

ables of the unit is demonstrated. In the other instance, subspace identification

methodology is found to yield a superior model. The methods used in this study

can also elegantly handle the missing data problem associated with real data

sets, and thus demonstrate the ability, and the importance of using the right

data driven technique for specific problems in the context of Hydroprocessing

refinery.

5.1 Introduction

Hydroprocessing is an indispensable unit in petroleum refining and it’s efficient op-

eration is vital to regulate environmental standards and qualities of final product.

Catalyst activity in several downstream units following the hydroprocessing unit is

sensitive to the incoming feed, and thus it is imperative to maintain the products

processed in the hydroprocessing unit at specification. The unit comprises two major

operations: a) hydrotreating, where the feed is treated with hydrogen to remove im-
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purities like sulfur, nitrogen, metallic compounds etc., and b) hydrocracking, where

the heavier feed is cracked to form lighter products by catalytic cracking and hydro-

genation.

In today’s highly competitive environment, extensive study and modeling of such

units are gaining importance more than ever. Models play a critical role in effectively

optimizing and controlling such large scale processes to achieve production targets,

increase profits, reduce accidents and faults, train manpower, amongst many other

applications. Development of fundamental or first principles models [3, 13, 17, 16, 21,

34] for such intricate processes is a highly arduous task and needs in-depth knowledge

and expertise in this field. These physics based models are often written down as

linear/ non-linear ordinary and partial differential equations, algebraic equations, etc.

which describe the evolution of different process variables over a period of time. In

the past, researchers have modelled the individual units involved in the process, and

they typically involve a series of kinetic and correlation equations of high complexity.

Estimating and calibrating the parameters of such models also involves a highly non-

convex optimization which adds an additional layer of difficulty, and is undoubtedly

one of the hardest steps to solve. While the utility of a good first principles model

is undeniable, the online implementation of such models for monitoring and control

purposes remains limited due to their intricate nature leading to long computation

times and occasional failure to convergence, and more importantly, due to the difficulty

in maintaining such models.

With the large amount of data being recorded in recent times and the rise in compu-

tation power of machines, purely data based models have gained a lot of attention of

process modellers. Unlike the first principles models, they only make use of historical

data to build relationships between the predictor and response variables. Many such

approaches exist in literature where a pre-defined model structure is first assumed,

and the parameters are then estimated using the database of recorded measurements.
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They are fairly simple to build compared to mechanistic models but are only valid in

the region of their training. Support Vector Machines (SVM) [33, 32], Artificial neu-

ral networks (ANN) [4, 12, 36], Sparse Identification of Non-linear Dynamics (SINDy)

[7, 18] are some of the non-linear techniques, and have been used in the past to model

highly non-linear processes. A SVM based soft sensor was presented in [32] to detect

the sulfur content in the product of a Hydrodesulfurization (HDS) unit. [4] used differ-

ent ANN architectures to predict the sulfur content in a similar unit. [12, 36] showed

the usefulness of feed-forward neural (FNN) networks and convolutional neural net-

works (CNN) in predicting the outputs of a hydrocracking process. These methods

however face overfitting issues when available data is noisy and limited, and strategies

to avoid such problems are being actively researched.

On the same spectrum of purely data-driven techniques, linear approaches of model

building like Principal Component Analysis (PCA) [28, 5], Partial Least Squares

(PLS) [19, 31], Subspace identification methods (SIM) [25, 10], Koopman Operator

approaches [26] etc. have been well researched, and these methods have demonstrated

their suitability in modelling various continuous and batch processes. PCA, PLS are

dimensionality reduction techniques and can handle correlated variables (a common

occurrence in industrial processes) quite elegantly. They are inherently static models

and are appropriately adapted to model batch processes. SIMs on the other hand,

build Linear Time Invariant (LTI) dynamic state-space models making use of con-

cepts of linear algebra, and are excellent for control oriented applications. They can

be appropriately used for monitoring and soft sensing purposes by casting them in

any state estimator. Both of these methods can handle the problem of over-fitting ef-

ficiently by suitably specifying the number of a single tuning parameter: components

(PCA/PLS) and states (SIM). Practical concerns of missing data [27, 30] are also

appropriately dealt with during the model building stage, and their computationally

friendly structure makes them well suited for real-time implementations.
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Dynamic Principal Component Analysis (DPCA) and Dynamic Partial Least Squares

(DPLS) are extensions of PCA and PLS strategies, and make use of lagged time

measurements to incorporate dynamic features in the model. DPCA [20] has been

successfully implemented for monitoring purposes in both continuous [8] and batch

processes [9]. Other methodologies of building a dynamic PCA and PLS exist in liter-

ature which focus on building dynamic inner relationships [22, 24] between the input

and output scores. A Dynamic Inner Partial Least Squares (DIPLS) [11] was recently

proposed which builds an outer model (between true variables and scores) derived

from a dynamic inner model (between input and output scores), and its superiority

over static PLS models in modeling dynamic systems was shown.

This study addresses the problem of modeling two hydroprocessing units and demon-

strates the need to utilize the right tools for the process and data availability in

question. The models are built with data collected over a period of time from real

industrial units. The data sets for the two units have different sampling frequencies

and appropriate models are chosen for the cases. Two linear models, namely, DPLS

and Subspace identification are considered to model the dynamic input-output (I/O)

relationship, both equipped to efficiently handle the problem missing data problem

related with real data sets. In this study, the problem of building and implementing

subspace models in the presence of missing data is further generalized to handle the

missing data in inputs. The manuscript is structured as follows: Section 5.2 describes

the hydrorprocessing unit in detail, followed by a brief introduction to PLS, DPLS,

and Subspace based estimation models. In Section 5.3, the application of these models

to the hydroprocessing unit is presented. The training and validation methodology

of these different data based models including the proposed approach of adapting the

subspace model to handle missing data in inputs are first presented and the results

comparing the different methodologies are later shown. The conclusion and future

work are presented in Section 5.4.
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5.2 Preliminaries

This section first presents a brief overview of the hydroprocessing process, the associ-

ated units and the important variables that are either measured or estimated. Next,

a summary of the data driven methods used in this study namely: PLS, DPLS and

Subspace identification based estimation method are presented.

5.2.1 Hydroprocessing Unit

Crude oil has a lot of contaminants which can have detrimental effects in catalysts

(poisoning, deactivation) and equipment (corrosion, fouling). Finished products com-

ing out from the refinery’s gates need to be cleaned so that they meet environmental

regulations imposed by the government to avoid polluting the environment. For ex-

ample, sulfur, if not removed from gasoline and diesel, can lead to acid rain [23].

Any refining stream containing C6 and heavier hydrocarbons are very likely to contain

sulfur and nitrogen hidden in various organic compounds, even if these molecules come

from sweet crudes. Removal of these contaminants needs to be performed chemically

as they are embedded within the hydrocarbon molecules. Hydrotreating is a catalytic

process mainly used to reduce undesirable contaminants from various hydrocarbon

streams. This process is achieved by selectively reacting the contaminant species

with hydrogen in a reactor at elevated temperatures and moderate to high pressure

[1]. Hydrotreating catalysts are in general high surface area materials consisting of

an active site and a promoter, which are uniformly dispersed on a support. The

active component is a dispersed metal, including molybdenum sulfide with cobalt

(CoMo) and nickel (NiMo) as promoters. The role of the promoter is to substantially

increase the activity of the metal site. The catalyst support is normally a gamma

alumina (γ-Al2O3). There are a lot of commercially available hydrotreating catalysts,
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with various metal and promoter content, depending on any particular application.

However, most catalysts contain up to 25 wt % promoter and up to 25 wt % active

components as oxides. If a catalyst contains an acid function, zeolite for example, this

catalyst will contain cracking properties as well. The process of breaking down bonds

in the presence of hydrogen and a catalyst is referred to as hydrocracking. NiMo

catalysts are mostly used in the hydro-desulfurization of diesel fuels to produce ultra-

low sulfur diesel (ULSD with < 10 wppm sulfur). Hydrotreating units are amongst

the most recurrent units in a refinery. These units are not only used to get fuels, such

as gasoline, Jet and diesel, to meet environmental regulations, but they are also used

to clean up most of the intermediate streams used to make other products, such as

solvents, alkenes, alcohols, aromatics, etc.

In a refinery, hydroprocessing units are typically optimized and operated with models

derived from fundamental governing laws. These models, however, tend to be time

consuming to develop and maintain and difficult to handle in an optimization problem.

Note also that the run-length cycle of a typical hydroprocessing unit varies from 1 to

4 years. Every new cycle requires updating the fundamental models, which becomes

a time consuming and challenging exercise for process engineers that operate these

units. In addition, given that the historical operation is recorded in the refinery

data base (or in a cloud for more modern ones), it is worth exploring if data driven

models can also be utilized. The idea is to quickly leverage historical process data

from hydroprocessing units and build data driven models. With time, there will be

more operational data available to refine the data driven models. Modeling with data

driven approaches allows for re-tuning model parameters once more operating data

becomes available. It is desirable then to develop these models in such a way that

model updates are done automatically.

In this work, data driven modeling using DPLS and Subspace Identification is ex-

plored for two hydroprocessing units, Unit 1 and 2 in Figures 5.1 and 5.2, respectively.
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Unit-1 is a conventional diesel hydrotreating unit that uses three types of feeds, one

virgin and two cracked ones. The objective of this unit is to maximize diesel pro-

duction and minimize hydrogen utilization while ensuring the catalyst is protected

from deactivation. This unit is comprised of the Feed, Furnace, and Reaction and

Separation sections, as described in Figure 5.1. Models are developed for prediction

purposes, the output variables selected for modeling are chosen based on economic

incentive, with product Diesel, product qualities, and hydrogen consumption being

the main ones. For Unit-1, the input variables were selected according to fundamen-

tal understanding of the process. The intent is to capture the unit operation with as

many process variables as possible while minimizing the number of inputs to avoid

the risk of overfitting. Unit-2 presented in Figure 5.2, is a Diesel/Jet unit that is

based on both hydrotreating and hydrocracking. This unit processes a total of five

different feeds, three of them have boiling points in the Diesel and Jet range while

two of them are too heavy and thus need cracking. The reaction section in Unit-2 is

a combination of both hydrotreating and hydrocracking catalysts. The hydrotreating

portion ensures contaminant removal (sulfur and nitrogen) while the hydrocracking

one converts the heavy molecules into lighter ones that are in the Diesel and Jet range.

Mode of operation depends on market conditions, with reactor temperatures and feed

distributions being the main operational parameters used to define what product is

maximized. Similar to Unit-1, input variables in Unit-2 were selected based on eco-

nomic incentives. More details about these two units are not provided for proprietary

and contractual reasons.

5.2.2 Partial Least Squares

PLS builds a predictive model involving a predictor data matrix X and a response

variable matrix Y using a historical database. It is very well suited for multivariate

analysis and possesses several advantages over Multiple Linear Regression (MLR),
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which typically faces a rank deficiency problem due to collinearity of variables among

many other practical issues. Unlike MLR, it also builds an input space error model

which helps in quantifying deviations from nominal behaviour, and thus, explains

the suitability of an observation in the input domain to be used for prediction. The

modelling objective of PLS is 3 fold : a) best explain input or X-space b) best explain

the output or Y-space c) maximize the correlation between the input and output

spaces. Higher dimensional data in the original variable space is converted to latent

or hidden variables (scores) having a much lower dimension, which enables much

easier visualization and, at the same time, computations are less intensive. Non-linear

Iterative Partial Least Squares (NIPALS) [15] is one of the algorithms that builds

PLS models in a very computationally efficient manner, and is capable of handling

the missing data problem. Components or the loading vectors are the link between

the higher and lower dimensional space, and are fit judiciously using a cross-validation

technique (on the basis of a Q2 metric) to avoid possibilities of overfitting.

Considering the two data matrices X (N ×K) and Y (N ×M), the variables are first

mean centered and scaled (typically to unit variance). A components are assumed

to fit the model using the NIPALS algorithm. The model estimates (X̂ and Ŷ) and

residual matrices (E and F) together comprise the original data matrices X and Y and

are given by Equation (5.1). A pictorial representation of the different components in

a PLS model is shown in Figure 5.3.

X = X̂+ E = TPT + E

Y = Ŷ + F = TCT + F
(5.1)

where the matrix of scores of the X and Y space are, respectively, denoted by T

(N × A) and U (N × A); the associated weight matrices are denoted by W (K × A)

and C (M × A), respectively. The loading matrix used for deflation is given by P

(K × A).
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Figure 5.3: PLS model components

5.2.3 Dynamic Partial Least Squares

Standard PLS builds a static relationship between the inputs and outputs and does

not explicitly account for the dynamic behaviour of the data. While dealing with

dynamic data, this may lead to several inaccuracies and may not be the right tool for

estimation, prediction and monitoring purposes as pointed out in [20, 9]. Auto Re-

gressive Exogenous (ARX) models are dynamic time series models where time lagged

measurements are introduced to model the autocorrelation among variables. A sim-

ple technique of incorporating the logic of ARX models into latent variable modeling

to build Dynamic PCA models was proposed in [20], and later both DPCA, DPLS

were implemented on batch processes in [9]. Some other techniques of incorporating

dynamic information into PCA and PLS exist, however, in this study, the simple

yet powerful approach of introducing lagged variables in the predictor data matrix

X is implemented. Considering input variables x1, x2, · · · , xK and output variables

y1, y2, · · · , yM with N observations, a typical PLS X and Y block is given by

X =


x1,1 x1,2 · · · x1,K

x2,1 x2,2 · · · x2,K

...
... · · · ...

xN,1 xN,2 · · · xN,K

 ,Y =


y1,1 y1,2 · · · y1,M

y2,1 y2,2 · · · y2,M

...
... · · · ...

yN,1 yN,2 · · · yN,M


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X(i), Y(i) are chosen to be an entire row of observation at any ith instant in time and

given by X(i) =
[
xi,1 xi,2 · · · xi,K

]
, Y(i) =

[
yi,1 yi,2 · · · yi,M

]
. The entries in

the matrices X, Y have two subscripts where the first one represents the observation

number and the second one is the variable number. Considering Θ lags or past

measurements of both input and output variables are to be used in building the

predictor data matrix of the DPLS model, an ith observation of such a matrix is

represented by the vector XDPLS(i) and given as follows :

XDPLS(i) =
[
X(i) X(i− 1) · · · X(i−Θ) Y(i− 1) Y(i− 2) · · · Y(i−Θ)

]
Note that the above vector does not contain Y(i), and the reason being the output

information at the ith time instant won’t be available while implementing this model.

The input and output data matrix for the DPLS is given by:

XDPLS =


XDPLS(Θ+ 1)

XDPLS(Θ+ 2)
...

XDPLS(N)

 ,YDPLS =


Y(Θ+ 1)

Y(Θ+ 2)
...

Y(N)



Once the two matrices are created, the same NIPALS algorithm is used and all the

computations follow the same principle like the standard PLS.

5.2.4 Subspace Identification

Subspace identification [25, 29, 37] is a system identification method which uses past

process input-output measurement data to identify a discrete linear time invariant

(LTI) state-space model. It typically distinguishes the manipulated inputs from the

controlled variables and it’s structure is very well suited for handling and controlling

Multi-Input Multi-Output (MIMO) systems. Unlike another class of system iden-
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tification technique called Prediction Error Minimization (PEM), SIMs avoid any

non-convex optimization problems to estimate the parameters. It invokes concepts of

linear algebra and makes rigorous use of computationally efficient and robust matrix

computations to identify the parameters. The identified state-space structure is given

by the form presented in Equations (5.2) and (5.3).

z[i+ 1] = Az[i] +BuSIM[i] (5.2)

ySIM[i] = Cz[i] +DuSIM[i] (5.3)

where z[i] ∈ Rn×1 denotes the vector of subspace states at the ith instant, and n

represents the number of states which is also the identified order of the model. The

inputs to the model are represented by the vector uSIM[i] ∈ RK×1, whereas the out-

puts are given by ySIM[i] ∈ RM×1. The number of measured inputs and outputs

are, respectively, given by K and M. The dimensions of the identified system matri-

ces are as follows: A ∈ Rn×n, B ∈ Rn×K, C ∈ RM×n, D ∈ RM×K. Note that in the

present description of subspace modeling, standard notations are not used to main-

tain consistency and avoiding overlap with notations/variable names with the DPLS

model.

An excellent approach [25] makes use of Singular Value Decomposition (SVD) of Han-

kel matrices (appropriately constructed using input and output data) to evaluate the

parameters of model. In that approach, the training process first involves identifying

the subspace state trajectory for the training data set, and the state-space system

matrices are then determined using a least square error minimization computation.

An adaptation of this technique [30] is, however, implemented in the present applica-

tion as it is robust to missing data which makes it well suited for handling industrial

data sets. It follows the same sequence of steps as the original approach [25], but the

computations are carried out in the latent variable domain which provides an ideal
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platform to counter issues involving missing data. For the sake of brevity, details

regarding the approach are not included in the present manuscript, and the readers

are referred to the original sources [25, 30].

Identification involves first finding a valid state sequence from the I/O Hankel matrices

using linear algebra based projection algorithms and algebraic manipulations. The

algorithm to find the state sequence is succinctly described below, for details on the

algorithm and the construction of the Hankel matrices, please see [25, 30].

The first part of the algorithm involves a PCA step using the NIPALS algorithm on

the future input Hankel matrix followed by a deflation step which removes all the

variance in the past inputs, outputs and future outputs that can be explained by

the future inputs. This results in a form where the future outputs is influenced by

the current states without the influence of inputs. Note that in traditional subspace

identification, the above step is accomplished by projecting the future outputs onto a

space perpendicular to the future inputs. Presence of missing data in the outputs lim-

its the implementation in the conventional way whereas NIPALS can handle this step

quite elegantly. The next crucial step involves identifying the relationship between the

past inputs, outputs and future outputs which paves the way for finding a valid state

sequence. A NIPALS PLS is used in this algorithm to relate the past inputs, outputs

with the future outputs. The loadings and weights obtained from the PLS step is used

to obtain an expression which is the product of the extended observability matrix and

a state trajectory matrix. This expression is further decomposed by a NIPALS PCA

step to determine a valid realization of the state trajectory. Again, in conventional

subspace identification, a SVD is typically employed to perform this decomposition,

however, missing data in the outputs renders it unimplementable. Once the state tra-

jectory has been obtained, the final step is to determine the system matrices A,B,C

and D, typically computed using linear regression.
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The generic I/O state-space relationship can be represented by Equation (5.4) as :

Z̄r+1

Ȳr

 =

A B

C D

Z̄r

Ūr

 (5.4)

where Z̄r =
[
z[r] z[r + 1] · · · z[r + j − 2]

]
is the state trajectory matrix obtained

from an earlier step in the identification procedure, Z̄r+1 =
[
z[r + 1] z[r + 2] · · · z[r + j − 1]

]
is the one-step shifted state trajectory matrix. Ȳr =

[
ySIM[r] ySIM[r + 1] · · · ySIM[r + j − 2]

]
and Ūi =

[
uSIM[r] uSIM[r + 1] · · · uSIM[r + j − 2]

]
are, respectively, the output

and input trajectory matrix. r and j, respectively, denote the number of rows and

columns of the Hankel matrices [25, 30] and are user defined parameters. The regressor

matrix

Z̄r

Ūr

 and the regressand matrix

Z̄r+1

Ȳr

 in eq. (5.4) are both known quan-

tities, and the coefficient matrix

A B

C D

 can be easily identified using least-squares

regression.

SIM models are very well suited for control and optimization problems where the in-

puts are typically manipulated inputs, and the values are either computed or known

in advance to the practitioner. One important condition in performing the regression

using Equation (5.4) is that the regressor matrix should be devoid of any correlated

inputs and missing values. For applications (inluding the ones in the present man-

sucript) where there exists correlation and missing data in the inputs, the linear

regression step has to be appropriately modified to be able to handle such bottle-

necks. The present manuscript addresses this problem by resorting to PLS using the

NIPALS algorithm [15]. The ability of PLS modeling strategy using the well estab-

lished NIPALS algorithm to effectively compute the coefficients in the presence of

correlation and missing data makes it a great choice for such situations.

In order to use these SIM models for soft-sensing and one step head prediction pur-
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poses, the subspace identified system matrices can be appropriately embedded in any

state estimator routine to generate the estimated outputs. In this work, a Kalman fil-

ter [35] is chosen for estimating the states, but any other standard state estimator can

be readily used for this purpose as well. Process, measurement noise variances and an

initial estimate of the state co-variance matrix is needed to initialize the algorithm.

The mechanism follows the set of equations provided in Equations (5.5) to (5.7) to

predict the one step ahead states, outputs and state co-variance matrix. The Kalman

gain is calculated using Equation (5.8). Equation (5.9) is used to correct the states

once the output measurements are available. The state co-variance matrix is updated

using Equation (5.10).

ẑpred[i+ 1] = Aẑcorr[i] +BuSIM[i] (5.5)

ŷSIM[i+ 1] = Cẑpred[i+ 1] +DuSIM[i+ 1] (5.6)

Gpred[i+ 1] = AGcorr[i]AT + I (5.7)

L[i+ 1] = Gpred[i+ 1]CTAT .(CGpred[i+ 1]CT + J)−1 (5.8)

ẑcorr[i+ 1] = ẑpred[i+ 1] + L[i+ 1](ySIM[i+ 1]− ŷSIM[i+ 1]) (5.9)

Gcorr[i+ 1] = Gpred[i+ 1]− L[i+ 1]CGpred[i+ 1] (5.10)

where ẑpred[i + 1] , ŷSIM[i + 1] and Gpred[i + 1] are the one step ahead estimated

states, outputs and the state co-variance matrix. ẑcorr[i + 1] refer to the corrected

states, Gcorr[i+1] is the updated state co-variance matrix, and L[i+1] is the Kalman

gain. They are calculated using the information of system matrices and the variances

of the process and measurement uncertainties (user defined parameters). I and J are

diagonal matrices, respectively, having the process and measurement noise variances

along the diagonal elements.
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5.3 Application to hydroprocessing unit

The data sets pertaining to both the units contain measured data values of variables

gathered from different equipment and locations in the unit. These variables are dis-

tinguished as inputs and outputs typically based on their role in the units, ease of

availability and their future use in control and optimization schemes. There were

a total of 18 input variables and 11 output variables for Unit-1, and 30 input vari-

ables and 18 output variables for Unit-2. They broadly constitute the characteristics

and operating profiles in the feed, reaction and product section. Var 1 (mentioned

in Table 5.2) of Unit-1 is a desirable product, and Var 7, Var 8, Var 9 are some of

the product qualities. In Unit-2, Var 8 and Var 9 (mentioned in Table 5.3) are our

desirable fuels, Var 11 refers to the volume increase, and Var 12 is the hydrogen re-

quirement. Unit-1 data set has variable data recorded daily whereas Unit-2 has an

hourly measurement frequency. In the following subsections, the training and valida-

tion methodology of the different data-driven techniques employed are explained and

the simulation results are alongside presented. ASPEN ProMV and Matlab R2020a

were used to perform all the simulations and other calculations. Some representative

input and output variable profiles (mean centered and scaled) of Unit-1 are shown in

Figure 5.4.

5.3.1 Data preprocessing

The data sets were first preprocessed to remove dubious observations. Certain variable

values which could easily be identified as outliers were removed by looking at the

variable time series data. In the case when most of the variables have arbitrary values

at any time instant, entire rows pertaining to that instant were completely removed.

It should, however, be highlighted that in an ideal case when relevant information

regarding the happenings during that period can be gathered (information from plant
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(a) (b)

(c) (d)

Figure 5.4: Figures (a),(b) represent time series profiles of two candidate outputs of
Unit-1. (c),(d) similarly represent two such input profiles of Unit-1

operators or other sources), proper judgement calls can be made to either include or

omit such observations. A PLS model is first built using this trimmed data set. The

Hoteling T 2, Squared Prediction Error (SPE) statistic and contribution plots in PLS

models were also used to further remove outliers. The final data set for Unit-1 to

be used for modeling has missing variable values at certain instances due to either

unavailable sensor readings or trimming of outliers. Unit-2 does not contain any

missing variables.
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5.3.2 Model Identification

Unit-1: The cleaned data set was used for model building. A PLS model initially

built with the input and output data did not yield good results, and hence, is not

presented for the sake of brevity. The reason can be attributed to the fact that,

although measurement frequency of the variables in this data set is not frequent, the

dynamics do not seem to die down and can be modelled with lagged information.

Another way to interpret this is that there is a presence of time lags in the system

such that inputs take some time to impact the process outputs.

To enable accounting for the effect of past values of the variables on the present

output, a DPLS modeling strategy was then considered and trained with the same

cleaned data set. Different models were built with each having a distinct number of

lags for all the variables. A DPLS model of lag 1 was finally chosen on the basis

of two reasons: 1) lower RMSE values from the validation data set 2) parsimony

in the number of predictor variables (an important consideration for end use of the

models by practitioners). The various identification aspects related to DPLS with lag

1 (referred to as DPLS1 from here onward) is presented in Table 5.1.

The DPLS1 model considered in this study has the form :

Response matrix = Predictor matrix ∗ Co-efficient matrix

Y(2)

Y(3)
...

Y(i)
...

Y(N)


=



XDPLS(2)

XDPLS(3)
...

XDPLS(i)
...

XDPLS(N)


∗ β, where * refers to matrix multiplication
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Identification Specifications: Unit-1
Number of Input variables (K) 18
Number of Output variables (M) 11
Number of Observations (N) for training 2561
Number of chosen lags (Θ) 1

Number of Predictor variables
47 ( 18 Input variables

+ 18 Input variables with lag 1
+ 11 Output variables with lag 1)

Number of Response variables 11
Identification Specifications: Unit-2

Number of Input variables (K) 30
Number of Output variables (M) 18
Number of Observations (N) for training 11876
Number of chosen lags (Θ) 1

Number of Predictor variables
78 ( 30 Input variables

+ 30 Input variables with lag 1
+ 18 Output variables with lag 1)

Number of Response variables 18

Table 5.1: Variable information used in modeling DPLS1 for Unit-1 and Unit-2

The Response matrix, Predictor matrix, and the Co-efficient matrix has, respectively,

dimensions of N×M, N× (K+ΘK+ΘM), (K+ΘK+ΘM)×M. A particular

row in the Predictor (XDPLS(i)) and Response (Y(i)) data matrices is given by

XDPLS(i) =
[
X(i) X(i− 1) Y(i− 1)

]
, where X(i) =

[
xi,1 xi,2 · · · xi,K

]
Y(i) =

[
yi,1 yi,2 · · · yi,M

]

β, the matrix of co-efficients is given by

β =


B1

X B2
X · · · Bj

X · · · BM
Xlag

B1
Xlag B2

Xlag · · · Bj
Xlag · · · BM

Xlag

B1
Ylag B2

Ylag · · · Bj
Ylag · · · BM

Ylag


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where Bj
X =

[
bj
x,1 bj

x,2 · · · bj
x,K

]T
, Bj

Xlag =
[
bj
xlag,1 bj

xlag,2 · · · bj
xlag,K

]T
and Bj

Ylag =
[
bj
ylag,1 bj

ylag,2 · · · bj
ylag,M

]T

A total of 6 components is used to fit the model using the Autofit option (based

on cross-validation) in ASPEN ProMV and the β matrix is identified. In general,

the R2 value corresponding to the ath component for the Y-space is calculated using

Equation (5.11).

R2
a = 1− Variance(Outputs - Model Predicted Outputs)

Variance(Original output data matrix)
(5.11)

Q2 is a metric similar to R2 which is evaluated during the cross-validation stage. It is

an indicator of the predictive ability of each component and is considered a metric to

choose the best number of components. The training data is divided into G number of

groups during cross validation, and F1, F2, · · ·FG, respectively, represent the residuals

(difference between the output values considered and the predicted ones) correspond-

ing to each of the testing groups used in this procedure. For the ath component, it is

calculated by Equation (5.12).

Q2
a = 1− PRESS

Variance(Original output data matrix)
(5.12)

where the Prediction Error Sum of Squares (PRESS) is given by

PRESS = sum of square(F1) + sum of square(F2) + · · · + sum of square(FG)

The R2 and Q2 values of the output space for the DPLS1 model is shown in Figure 5.5.

The Q2 value increases with addition of components till the 6th one, and the Autofit

option in ASPEN ProMV renders this value as the best number of latent variables to

fit the model.

Subspace identification is the second method that was considered to capture the dy-
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Figure 5.5: The R2 and Q2 metrics for the Y-space of Unit-1 using the DPLS1 model

namics of the process. The model was built with the same trimmed training data set

as used in the DPLS1 model. The input and output variables were also considered

the same. Note that the inputs here are the original variables and not the predictor

variables used in the DPLS1 model. A total of 6 states were chosen to build the

model using the methodology proposed in [30] and the modification proposed in Sec-

tion 5.2.4. A PLS regression using the NIPALS algorithm with 6 components was

used to identify the system matrices (A,B,C,D) due to the presence of missing data

in the input profiles.

Unit-2: The data set for Unit-2 contains hourly measured variable data with 30 input

variables and 18 output variables. The data set was pre-processed in a similar fashion

as Unit-1. A DPLS lag1 was built for this case as well and some information related

to variables used for identification is presented in Table 5.1. A DPLS lag1 model

having 9 components was fit using the Autofit option in ASPEN ProMV.

Subspace identification is also considered to model Unit-2, and is expected to perform

well owing to the fact that the measurements are recorded with a high frequency.

The same pre-processed training data set used in the DPLS1 model was used in the

identification of the model matrices (A,B,C,D), and a total of 8 states were chosen

to build them. Unlike the Unit-1 data set, Unit-2 data set was devoid of any missing
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values and hence, the PLS step proposed in Section 5.2.4 was not necessary. The

traditional way of using MLR to generate the matrices was used in this step.

5.3.3 Model validation results

In this study, the problem of estimating the outputs is considered when the input

data is readily available. The models identified for both the units were validated on

their respective testing data sets. The validation approaches are described and the

modeling results for each of the units are presented below.

Unit-1: DPLS1 model of Unit-1 is validated on 606 observations. A check for X-

space data for outlier detection is also done using the Hoteling T 2 and SPE statistic.

At any time instant, the entire row of observation pertaining to X-space predictors is

considered to be available and the identified coefficients from training stage were used

to generate the outputs. The validation results of some important variables, from

the fractionation product and reaction region, are presented in Figure 5.6. All the

outputs are mean centered and scaled prior to plotting. The Root Mean Square Error

(RMSE) values for all the outputs are presented in Table 5.2. In general, the trend of

the predicted outputs by the DPLS model in Figure 5.6 suggests that the model was

able to capture the dynamics relatively well. There are mismatch at certain times with

the observed values and this could be ascribed to the low measurement frequency of

variables, highly non-linear behaviour or unavailability of certain predictor variables.

The subspace model is validated on the same observations as the DPLS1 model. The

missing data in the input measurements for the validation data set, however, needs to

be tackled first prior to using these values for prediction of outputs using the state-

space model. This problem was not addressed in [30], which assumed that the data

for validation did not include missing input values.
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(a) (b)

(c) (d)

Figure 5.6: The validation results for 4 outputs of Unit-1 are presented in figures (a), (b),
(c) and (d), respectively. The Process/observed values are given by the Red − line and the

model prediction of DPLS1 by Blue −. line

The problem of model validation in the presence of missing input values is addressed

in the present manuscript as follows: A PCA step using the NIPALS [15] algorithm

is first performed on the training input data matrix to get the loading matrix. The

generic step is presented in Equation (5.13).

Xtrain = X̂PCA + EPCA = TPCAP
T
PCA + EPCA (5.13)

Xtrain represents the mean centered and scaled input training data matrix; X̂PCA
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represents the PCA model estimate of the same where TPCA and PPCA are the

associated scores and loading matrices; EPCA represents the residual not explained

by the model.

The main aim of resorting to PCA is to generate an estimate of the validation ob-

servations. A new validation observation is first mean centered and scaled using the

values used in the training step of the PCA model. For any ith observation or row

of the validation data matrix Xvalid, the score tivalid using the first loading vector

is calculated by the Equation (5.14) using the Single Component Projection (SCP)

algorithm [27].

tivalid = (X̃i
validp̃1)/p̃1

T p̃1 (5.14)

X̃i
valid is the ith observation without the missing values and p̃1 is the first loading

vector from the matrix PPCA having the elements corresponding to the non-missing

values of the observation.

The observation is then deflated to remove any variance explained by the first compo-

nent, and the next element in the score vector of the ith new observation is calculated

using the second loading vector from PPCA in a similar fashion. Once the entire score

matrix Tvalid for all the observations is generated, the estimate of the validation input

matrix is constructed using the Equation (5.15).

X̂Valid = TvalidP
T
PCA

(5.15)

The estimated input data matrix X̂Valid from the PCA step is used in the state-space

model equations to determine the outputs. The number of components for the PCA

step in the present implementation were chosen to be 2 using trial and error as it

provided the lowest RMSE values when used in the subspace model for validation. In
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this case, the estimated values of only the missing values were retained, and rest of

the values were kept the same as the original variables. One can, however, depending

on the problem at hand, use this PCA step efficiently to reduce noise in the input

data matrix and use the estimated values for the non-missing inputs as well. Other

efficient ways of handling the problem of missing data in the inputs of state-space

models while validating remains the subject of future work.

A Kalman filter was chosen in this study and the identified model was cast into the

Kalman framework to estimate the outputs. The algorithm is initialized with the aid

of the following information :

• Identified model matrices (A,B,C,D)

• An initial estimated state vector guess : ẑinit is considered to be a vector of

zeros of size n×1, where n=6 is the identified model order. ẑcorr[1] = ẑinit at

initialization

• Entire row of initial value of the inputs comprising of original variables and the

estimated values from the PCA step in case of any missing data

• An identity matrix of size (n × n) is chosen as the initial estimate of the state

co-variance matrix

• Kalman tuning parameters chosen as follows: Process noise (σ2) = 0.006 ×

ones(n × 1); Measurement noise (σ2) = 0.001 × ones(M × 1). The values were

chosen by trial and error with the objective of reducing the estimation error,

time needed for convergence while avoiding large initial jumps in the state values

The states at for any instant i are predicted using the corrected states (ẑcorr[i − 1])

and inputs (uSIM[i− 1]) by the following relation

ẑpred[i] = Aẑcorr[i− 1] +BuSIM[i− 1] (5.16)
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Once the inputs at the instant i are available, the estimated outputs during the

validation run are computed as follows

ŷSIM[i] = Cẑpred[i] +DuSIM[i] (5.17)

where uSIM[i] =
[
xi,1 xi,2 · · · xi,K

]T
is the vector of inputs comprising of original

and estimated values (computed using the PCA in case of any missing data) at the

ith instant. The states are updated when the new output measurements (y[i]) are

registered and given by

ẑcorr[i] = ẑpred[i] + L(ySIM[i]− ŷSIM[i]) (5.18)

where ySIM[i] =
[
yi,1 yi,2 · · · yi,M

]T
is the vector of measured outputs. The role

of the output measurements is just to correct the states, which then can be used

to predict the states at the next instant. The equations involving the calculation of

the Kalman gain matrix along with the propagation state co-variance matrix for the

case considered is not shown for the sake of brevity. The outputs estimated by the

algorithm (ŷ[i]) are compared with the true values (y[i]), and profiles of some of the

outputs are shown in Figure 5.7. It should be highlighted that for cases, when there

is missing data in the output measurements, only the state prediction step (shown

in Equation (5.16)) is used to compute the estimated outputs and the update step

(shown in Equation (5.18)) is skipped. The RMSE values of all the outputs for the

entire validation test data is presented in Table 5.2. Similar to the DPLS model, the

Subspace estimation was also able to predict the trends in the output variables, most

of the time, with a relatively good accuracy.

Unit-2: The models chosen for Unit-2 are validated on 793 observations. The DPLS1

model is validated in a similar fashion as the one in Unit-1. The validation results for

some outputs are presented in Figure 5.8.
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(a) (b)

(c) (d)

Figure 5.7: The validation results for 4 outputs of Unit-1 are presented in figures (a), (b),
(c) and (d), respectively. The Process/observed values are given by the Red − line and the

model prediction of Subspace estimation by Blue −. line

The same pre-processed validation data set used for the DPLS1 model was also chosen

for the Subspace identification based estimation method. The filter is initiated in a

similar fashion as in Unit-1. The initial value of the state vector, the state-covariance

matrix are also kept the same as in Unit-1. The dimensions of these vectors and

matrices are, however, different and in accordance to the information provided in

identification section and Table 5.1 for Unit-2. The Kalman tuning parameter values

for the process noise and measurement noise variances are, respectively, Process noise

(σ2) = 0.00022 × ones(n × 1); Measurement noise (σ2) = 0.001 × ones(M × 1).
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Output DPLS1 Subspace estimation

Fractionation region



Var 1 0.02105 0.02164
Var 2 0.01705 0.01649
Var 3 0.00287 0.00331
Var 4 0.00042 0.00052
Var 5 0.00077 0.00096
Var 6 0.00266 0.00323
Var 7 0.00515 0.00595
Var 8 0.54562 0.56415
Var 9 1.74497 2.09491

Reaction region
{

Var 10 23.81970 23.35889
Var 11 11.09420 11.96253

Table 5.2: RMSEP values of different outputs of Unit-1

The profiles of some of the estimated and true outputs are shown in Figure 5.9, and

the RMSE values computed for the two modeling strategies are presented in Table 5.3.

Both the DPLS1 and subspace identification methodology were able to estimate the

outputs with good accuracy in both the units. The initial PLS models built did not

perform well (results not shown in the interest of conciseness), and encourages the

use of Dynamic PLS models when handling dynamic data. The Subspace estimation

method for unit-2 showed exceptional results and outperformed the DPLS1 model

estimation for most of the outputs by a good margin. It can be attributed to the

frequent sampling of variables in Unit-2, the inherent nature of Subspace models to

capture transients, and the efficient Kalman based algorithm used for estimation.

Remark 20. An ARX model built with I/O data with a chosen number of lags for

inputs and outputs can be transformed into an equivalent Subspace model with a state-

space structure. However, such a model is quite different from a model built with

Subspace Identification based techniques, and most of the time will have a different

set of parameters. Unlike SIMs, ARX models do not have the fundamental notion
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(a) (b)

(c) (d)

Figure 5.8: The validation results for 4 outputs of Unit-2 are presented in figures (a), (b),
(c) and (d), respectively. The Process/observed values are given by the Red − line and the

model prediction of DPLS1 by Blue −. line

of states, and depend on an appropriate guess/estimation of the number of lags to

be used. The model parameters are then identified from data using regression tech-

niques. DPLS models also have a structure similar to ARX models which involve a

predetermined guess of lags, however, the parameters are identified in a different way.

In essence, although ARX and DPLS can be converted to have a state-space structure

through appropriate transformations, they differ fundamentally from SIMs in the way

the parameters are identified.

Remark 21. One of the important factors in the efficient and smooth operation of a
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(a) (b)

(c) (d)

Figure 5.9: The validation results for 4 outputs of Unit-2 are presented in figures (a), (b),
(c) and (d), respectively. The Process/observed values are given by the Red − line and the

model prediction of Subspace based estimation by Blue −. line

plant in any production unit can be attributed to proper monitoring of process variables

for early detection of faults [19, 6, 14]. Preventive maintenance based on such analysis

leads to equipment safety, averts accidents, and minimizes major losses in production

targets. Both DPLS [9] and Subspace methods [2] have demonstrated excellent ability

in detection and diagnosis of faults, and, as such, can be implemented in a straight-

forward manner in hydroprocessing units as well. Studies involving these models for

their potential use in a monitoring framework for such units will be explored in the

future.
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Output DPLS1 Subspace estimation

Fractionation region



Var 1 1.75446 1.26901
Var 2 1.02073 1.08716
Var 3 1.33204 1.39715
Var 4 1.91197 2.20649
Var 5 1.42332 1.73676
Var 6 6.67260 7.48992
Var 7 14.0420 4.56650
Var 8 28.74670 8.11911
Var 9 20.32090 5.46378

Reaction region



Var 10 15.6023 10.80576
Var 11 1.18183 1.44064
Var 12 0.06769 0.05318
Var 13 1.38402 1.27661
Var 14 3.36404 0.52568
Var 15 3.09445 1.13913
Var 16 4.66547 2.68285
Var 17 4.24697 1.56998
Var 18 1.80654 0.79695

Table 5.3: RMSEP values of different outputs of Unit-2

Remark 22. The statistical modeling techniques adopted in this work also find po-

tential uses in many control and optimization oriented applications. The state-space

structure of Subspace methods are excellent for model based control schemes like Model

Predictive Control (MPC), and have been widely used in a variety of problems. Latent

variable MPC’s also have shown their potential capability in many batch and contin-

uous processes. The calculated input moves generated by inverting such models in

an MPC scheme can be used to serve several control objectives in a hydroprocessing

unit, and is a subject of future study. It is important to note that one can as well try

non-linear modeling approaches like ANN’s for such purposes. However, the recurrent

issue of overfitting limits usage of these models for control strategies, and motivates
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the use of the presented linear modeling strategies, where these problems can be readily

addressed.

Remark 23. It should be emphasized that the methodologies opted in this study have

presented results which are a significant improvement over the current modeling tech-

niques used in the industry where these units are operated. The main intent and

contribution of this study was not to necessarily propose new modeling strategies in

the hydroprocessing section, but to suggest to practitioners the usefulness and poten-

tial application of these models. The linear models used in this work are simple,

readily implementable, and provide convenient statistical measures for visualization,

data exploration, analysing irregularities, among various other uses. They are, thus,

attractive modeling schemes for a variety of purposes in hydroprocessing units, and a

valuable tool for practitioners.

5.4 Conclusions

In this study, data-driven approaches for modeling two different hydroprocessing units

of an industrial refinery is studied. Real historical data from plant operation is put

to use to create tractable models which can estimate important variables with good

accuracy. The usefulness of linear models like DPLS and Subspace based estimation

algorithms for such units is shown. DPLS is considered as a good choice for the unit

when measurement frequency is low, while the Subspace based estimation method

is ideal for the unit where process variables are recorded at a faster rate. In the

future, the utility of these linear models along with other non-linear schemes in an

optimization framework for offline and online optimization purposes will be explored.
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The main focus of research in my thesis has been modeling and application of different

hybrid and data-driven methodologies. This chapter summarizes the main contribu-

tions and key findings of this thesis and proposes direction for future research.

6.1 Conclusions

In Chapter 2, a step by step strategy of building and validating a parallel hybrid

modeling framework is presented. A subspace identification based residual model was

chosen as the data-driven component which predicts the residuals and tries to correct

the biases present in the mechanistic model. The parameters of the subspace model

was identified using residual data from different historical batches in a meaningful

way. A systematic way of identifying the model order was proposed using a cross

validation technique. The framework also provides an easier alternative of updating

the model by re-identifying the data-driven model with recent data. This job is much

easier in contrast to updating the parameters of the mechanistic model. The efficacy

of the proposed approach was demonstrated through simulation studies by predicting

the dynamic evolution of three important variables for a batch polymerization PMMA

process and compared against the predictions of a mechanistic model and a purely

data-based subspace model.

In Chapter 3, the problem of implementing a MPC scheme embedding the parallel

hybrid methodology was considered for a batch crystallization problem. A subspace

based residual model in conjunction with the mechanistic model was first built and

tested to establish the efficacy of the hybrid framework. The non-linear mechanistic

component in this framework renders the MPC optimization as a non-convex problem.

A central idea in this paper was to maintain the linearity of the MPC to make it

tractable for real time computations and in that direction, a linear equivalent of

the non-linear parallel model was first built, tested, and then implemented in the
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MPC scheme. The goal of the control scheme was to reduce the volume of fines

generated due to nucleation during the crystallization process. The hybrid model

based MPC was able to not only reduce the volume of fines better for higher quality

targets compared to an only data (subspace identification) model based MPC but also

limited the spread of the final quality to ensure tighter product specifications.

In Chapter 4, a novel way of augmenting the X block of PLS models with informa-

tion from mechanistic model to improve the predictive ability of PLS models was

presented. Historical data from multiple batches were introduced in the mechanistic

model to generate trajectories of unmeasured variables for each of those batches. This

additional information was added to the X-block of PLS models to build models with

better estimation capability. Measuring the crystal size distribution (CSD) in a crys-

tallization process is a time and cost intensive process that is very often done offline.

A motivating example of estimating the final crystal size distribution for a seeded

batch crystallization example was considered. The hybrid or augmented PLS model

was used as a soft/inferential sensor to estimate the quality or final CSD of the pro-

cess to obviate the need for experimental testing, and its efficacy was demonstrated

by comparing it with a traditional historical data-based PLS model.

In Chapter 5, the problem of building and validating linear dynamic models like DPLS

and subspace identification to estimate important variables for two different hydropro-

cessing units was presented. A data-based approach to modeling was considered in

the absence of readily available data from a first principles simulator (thereby limiting

the avenues for building hybrid models). Real industrial data was used in building

and validating these models. The subspace based identification algorithm was made

more general to handle missing data in both inputs and outputs, a common occur-

rence in industrial data-sets. Simulation results show the efficacy of both the modeling

strategies, and the presented results were a substantial improvement over the current

methodologies used in the industry, where the real units are operated.
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6.2 Future work

In this section, directions for future work are outlined for each of the chapters.

• The proof of concept studies in chapters 2 and 3 demonstrated the usefulness

of the parallel hybrid methodology in prediction and control. It will be worth

exploring/demonstrating the usefulness of such frameworks using real data or

in pilot/industrial studies for a variety of processes. The most effective parallel

hybrid model developed was the one where the non-linear mechanistic model

was working in synergy with the subspace based data-driven model. Given its

ability to predict dynamics so well, it is highly desirable to use a non-linear

MPC for best control performance. With the rapid innovations in the field of

optimization, it is worth to invest time and energy towards building a tractable

strategy suitable for real-time computations for MPC embedding the non-linear

hybrid model to compute optimal/near optimal solutions. In another direction,

to adapt the model to process drifts, an algorithm to trigger re-identification

for the hybrid model can be formulated. The parameters of the data-driven

component of the architecture can be recursively updated using recent data to

compensate for the bias in the predictions.

• The augmented/hybrid PLS methodology was shown to have better estimation

ability compared to an only historical data based PLS. While the role of such

a methodology as a static soft-sensor has been explored, its use as a dynamic

model for k-step ahead prediction, and subsequent utilization in a MPC scheme

is yet to be demonstrated. Missing data algorithms for PLS can be employed in

that case which make use of previous correlation structure in the data to fill up

the missing values for dynamic prediction. The crystallization case study can

very well be extended to predict the moments of the crystal size distribution

at each time step for a certain prediction horizon. This information can be
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exploited in a predictive control strategy to achieve quality objectives like on-

spec crystals, reducing the volume of fines during the process etc.

• In chapter 5, historical data from actual operation of hydroprocessing units were

used to build data-based models. The mechanistic simulator currently used in

that concerned industry for making predictions and estimations often fails to

converge, and that precluded the implementation of a hybrid model for this case

study. A reduced order/surrogate model for such a high fidelity simulator would

be a great way to make the knowledge useful. This will also enable real-time

implementation of such complex models. Once that is accomplished, traditional

grey box strategies can be employed to make those models even more efficient.

The linear dynamic tools used in the study did an impressive job of estimating

important variables in the unit, and in the future these models will be used

in monitoring, optimization and predictive control strategy based studies for a

variety of systems.
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