Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

EXPLORING THE ROLE OF THE SYNTHETIC FOOD COLOURANT ALLURA RED AC IN THE DEVELOPMENT OF COLITIS

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Environmental factors such as diet contribute to the pathogenesis of inflammatory bowel disease (IBD). Epidemiological evidence suggests a robust linkage between IBD and the Western diet, which is often characterized by a high intake of food additives. These additives, including synthetic colourants, are widely used, leading to significant human exposure. Allura Red AC (AR) is one of the most popular synthetic colourants, yet little is known about its impact on human health and the role of AR in the pathogenesis of colitis remains elusive. Serotonin (5-hydroxytryptamine; 5-HT), which regulates various gut physiological processes, has been shown to modulate the gut microbiota and enhance susceptibility to colitis. In this thesis, it was discovered that chronic exposure to AR, at a dose found in commonly consumed dietary products, exacerbated dextran sulfate sodium (DSS)-induced colitis and triggered early onset of disease in the CD4+CD45RBhigh T cell-induced colitis model. AR also induced low grade colonic inflammation in naïve C57BL/6 mice. Exposure to AR was associated with increased colonic 5-HT levels and impaired intestinal barrier function via activation of the myosin light chain kinase (MLCK) pathway. However, AR did not promote colitis in mice lacking tryptophan hydroxylase 1 (Tph1), the rate-limiting enzyme responsible for colonic 5-HT synthesis. Further, AR increased colonic 5-HT levels in germ-free (GF) mice and perturbed the gut microbiota composition in specific pathogen-free (SPF) mice. Transfer of this altered microbiota from the dye-exposed SPF mice to GF mice conferred enhanced susceptibility to DSS-induced colitis. Mechanistically, AR induced reactive oxygen species (ROS) generation and promoted 5-HT secretion via the NF-κB pathway in BON cells. Data in this thesis indicate that the widely used synthetic colourant, AR, promotes colitis via colonic 5-HT in microbiota-dependent and -independent pathways. Collectively, these findings provide important information on enhancing public awareness of its detrimental effects on human health.

Description

Citation

Endorsement

Review

Supplemented By

Referenced By