Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27574
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorChen, Jun-
dc.contributor.authorLiu, Huan-
dc.date.accessioned2022-05-25T18:58:41Z-
dc.date.available2022-05-25T18:58:41Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/11375/27574-
dc.description.abstractRecent years have witnessed tremendous success in using deep learning approaches to handle low-level vision problems. Most of the deep learning based methods address the low-level vision problem by training a neural network to approximate the mapping from the inputs to the desired ground truths. However, directly learning this mapping is usually difficult and cannot achieve ideal performance. Besides, under the setting of unsupervised learning, the general deep learning approach cannot be used. In this thesis, we investigate and address several problems in low-level vision using the proposed approaches. To learn a better mapping using the existing data, an indirect domain shift mechanism is proposed to add explicit constraints inside the neural network for single image dehazing. This allows the neural network to be optimized across several identified neighbours, resulting in a better performance. Despite the success of the proposed approaches in learning an improved mapping from the inputs to the targets, three problems of unsupervised learning is also investigated. For unsupervised monocular depth estimation, a teacher-student network is introduced to strategically integrate both supervised and unsupervised learning benefits. The teacher network is formed by learning under the binocular depth estimation setting, and the student network is constructed as the primary network for monocular depth estimation. In observing that the performance of the teacher network is far better than that of the student network, a knowledge distillation approach is proposed to help improve the mapping learned by the student. For single image dehazing, the current network cannot handle different types of haze patterns as it is trained on a particular dataset. The problem is formulated as a multi-domain dehazing problem. To address this issue, a test-time training approach is proposed to leverage a helper network in assisting the dehazing network adapting to a particular domain using self-supervision. In lossy compression system, the target distribution can be different from that of the source and ground truths are not available for reference. Thus, the objective is to transform the source to target under a rate constraint, which generalizes the optimal transport. To address this problem, theoretical analyses on the trade-off between compression rate and minimal achievable distortion are studied under the cases with and without common randomness. A deep learning approach is also developed using our theoretical results for addressing super-resolution and denoising tasks. Extensive experiments and analyses have been conducted to prove the effectiveness of the proposed deep learning based methods in handling the problems in low-level vision.en_US
dc.language.isoenen_US
dc.subjectLow-level Visionen_US
dc.subjectComputer Visionen_US
dc.subjectImage Restorationen_US
dc.subjectImage Dehazingen_US
dc.subjectImage Denoisingen_US
dc.subjectImage Super-resolutionen_US
dc.subjectTest-time Adaptationen_US
dc.subjectMeta-Learningen_US
dc.subjectStereo Matchingen_US
dc.subjectDepth Estimationen_US
dc.subjectOptimal Transporten_US
dc.titleDeep Learning Approaches to Low-level Vision Problemsen_US
dc.typeThesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Liu_Huan_202205_PhD.pdf
Open Access
106.43 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue