
DEEP LEARNING APPROACHES TO

LOW-LEVEL VISION PROBLEMS



DEEP LEARNING APPROACHES TO LOW-LEVEL VISION

PROBLEMS

BY

HUAN LIU, B.Eng.,

a thesis

submitted to the department of Electrical & Computer Engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

© Copyright by Huan Liu, April 2022

All Rights Reserved



Doctor of Philosophy (2022) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: Deep Learning Approaches to Low-Level Vision Problems

AUTHOR: Huan Liu

B.Eng., (Communication Engineering)

University of Electronic Science and Technology of China,

Chengdu, China

SUPERVISOR: Dr. Jun Chen

NUMBER OF PAGES: xx, 182

ii



Abstract

Recent years have witnessed tremendous success in using deep learning approaches to

handle low-level vision problems. Most of the deep learning based methods address

the low-level vision problem by training a neural network to approximate the mapping

from the inputs to the desired ground truths. However, directly learning this mapping

is usually difficult and cannot achieve ideal performance. Besides, under the setting

of unsupervised learning, the general deep learning approach cannot be used. In

this thesis, we investigate and address several problems in low-level vision using the

proposed approaches.

To learn a better mapping using the existing data, an indirect domain shift

mechanism is proposed to add explicit constraints inside the neural network for

single image dehazing. This allows the neural network to be optimized across several

identified neighbours, resulting in a better performance.

Despite the success of the proposed approaches in learning an improved mapping

from the inputs to the targets, three problems of unsupervised learning is also investi-

gated. For unsupervised monocular depth estimation, a teacher-student network is

introduced to strategically integrate both supervised and unsupervised learning bene-

fits. The teacher network is formed by learning under the binocular depth estimation

setting, and the student network is constructed as the primary network for monocular
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depth estimation. In observing that the performance of the teacher network is far

better than that of the student network, a knowledge distillation approach is proposed

to help improve the mapping learned by the student. For single image dehazing, the

current network cannot handle different types of haze patterns as it is trained on a

particular dataset. The problem is formulated as a multi-domain dehazing problem.

To address this issue, a test-time training approach is proposed to leverage a helper

network in assisting the dehazing network adapting to a particular domain using

self-supervision.

In lossy compression systems, the target distribution can be different from that of

the source and ground truths are not available for reference. Thus, the objective is to

transform the source to target under a rate constraint, which generalizes the optimal

transport. To address this problem, theoretical analyses on the trade-off between

compression rate and minimal achievable distortion are studied under the cases with

and without common randomness. A deep learning approach is also developed using

our theoretical results for addressing super-resolution and denoising tasks.

Extensive experiments and analyses have been conducted to prove the effectiveness

of the proposed deep learning based methods in handling the problems in low-level

vision.
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division between sender and receiver is across an encoder C = f(X,U)

and decoder Y = g(C,U) performing entropy coding along pY |X,U . . . 95

xii



5.3 Binary case distortion-rate tradeoffs. (a) qX = qY = 0.3, where

Dncr(B(qX),B(qY ), R) andDncr(B(qX),B(qY ), R) coincide withDncr(B(qX),B(qY ), R);

(b) qX = 0.3, qY = 0.5, where Dncr(B(qX),B(qY ), R) is tight but

Dncr(B(qX),B(qY ), R) is loose; (b) qX = 0.3, qY = 0.6, where both

bounds are loose. Moreover, it can be seen from all these examples that

common randomness can indeed help improve the distortion-rate tradeoff. 97

5.4 Illustration of our experimental setup. (a) shows the end-to-end learning

system with common randomness, where the encoder and decoder have

access to the same randomness u. (b) presents the network setup for

verifying the architecture principle given in Theorem 1. . . . . . . . 100

5.5 (a)(b) The experimental results of 4 times image super-resolution.

(c)(d) The experimental results of image denoising. The noise pattern

is synthesized by additive Gaussian noise with standard deviation set

to 20. (a)(c) Rate-distortion trade-offs. Blue points are the MSE

distortion loss for a particular rate under the setting of using common

randomness, while orange points illustrate the same trade-off without

using common randomness. For both tasks, at any rate, the performance

of using common randomness is better than the case without common

randomness. (b)(d) Examples for outputs from several models with

different rates. As the rate increases, the outputs become clearer. . . 103

xiii



A.1 Illustration of the entropy-constrained optimal transport plan for the

binary case (assuming qX+qY ≤ 1), where pX̂(x̂) = pŶ (ŷ) = 1−H−1
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Chapter 1

Introduction

1.1 Deep Learning and Low-level Vision

Deep learning as a machine learning method has attracted tremendous attention in

recent years. Despite the fact that deep learning is a sub-field of machine learning, it

distinguishes itself in the way how learning is carried out. Machine learning usually

depends on human intervention to process data, while deep learning can automate

the feature process and approximates the desired mapping for a large-scaled dataset.

To be specific, deep learning is typically realized using convolutional neural networks

(CNNs) that have three or more convolutional layers. Each layer acts as a non-linear

mapping to transform the input data into a compact and composite representation.

The mapping is not formed by human experts but automatically discovered using

optimization techniques based on backpropagation. Deep learning algorithms can be

learned in three different ways, i.e., supervised learning, semi-supervised learning and

unsupervised learning. Supervised learning can be performed if the dataset is labeled

and can provide input-target pairs. Unsupervised learning can use unstructured
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data and automatically determine the desired features. Semi-supervised learning lies

between supervised and unsupervised learning. It requires both labeled and unlabeled

data for training. In this thesis, we provide several approaches, mainly in the context

of supervised and unsupervised learning.

Low-level vision as a sub-filed of computer vision has witnessed significant progress

because of the success use of deep learning. Generally, computer vision can be

categorized as low-level, mid-level, and high-level. The low-level vision includes image

restoration, depth estimation and edge detection. It usually concerns the extraction

of image properties; mid-level vision mainly focuses on how to integrate the image

properties into perceptual organizations, such as semantic segmentation and structure

of motion; high-level vision requires performing analysis on image properties and

perceptual organizations, such as image recognition, image captioning and visual

question answering. The problems to be addressed in this thesis all belong to the

low-level vision category.

1.2 Supervised Learning for Low-level Vision

Supervised learning aims at approximating a function from the inputs to the desired

outputs based on example pairs. The example pairs are built according to the tasks.

For example, in single image dehazing, one can form such pairs by collecting and

synthesizing hazy and haze-free images that respectively act as input and target. With

adequate examples, it is possible to train a neural network end-to-end to learn a

mapping from inputs to targets. The mapping is then fixed and can be used to process

newly collected data.

Such a learning strategy is especially desired in addressing low-level vision tasks.

2
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As is known, low-level vision tasks are usually highly ill-posed. Classic approaches

are usually designed using some analytical priors, such as edge prior [124] for image

super-resolution and dark channel prior [48] for image dehazing. Considering the fact

that these priors are designed under the observation of particular image properties,

they usually generalize poorly and cannot handle complex scenarios. In favor of the

remarkable ability of deep neural networks, most low-level vision problems have been

addressed using supervised learning in recent years. It eliminates the burden of finding

analytical priors for a specific task. In contrast, a better-performed approach can

be designed by the following three steps. First, one should construct datasets by

synthesizing realistic data pairs or collecting data pairs in the real world; second, one

should construct deep neural networks that can process on such data pairs; finally,

one can use the datasets to train the deep neural networks for achieving satisfactory

performance. Nowadays, many deep learning based approaches are designed in this

way. Their success indicates the effectiveness of learning task-specific mapping on

examples.

However, deep neural networks are trained using an optimization process that

requires loss functions to calculate the inference error. The selection of different

loss functions can significantly influence the model’s performance. The typical loss

functions used in low-level vision tasks are L1 loss, MSE and SSIM [136]. In observing

that using proper loss functions can boost the performance of the neural networks,

recently, many novel loss functions have been proposed. Knowledge distillation loss

[52] introduces a teacher-student scheme for boosting the performance of small-scaled

networks; contrastive loss [50, 51, 96] is proposed to ensure the output images are

closer to the targets and far away from the inputs; GAN loss [3, 99] is also widely

3
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used in low-level vision for achieving perceptually pleasing results. Using the above

loss functions in the training process of neural networks can further improve inference

accuracy.

In observing the fact that the current dehazing network cannot deliver satisfactory

results on single image dehazing, chapter 2 provides an indirect domain shift approach

to accurately estimate clear images under supervised learning. However, it can be very

costly and in some cases impossible to obtain pixel-wise ground truth annotations for

supervised training. This naturally leads to the topic of next subsection – unsupervised

learning.

1.3 Unsupervised Learning for Low-level Vision

Unsupervised learning aims to approximate a function that can map the input to the

desired form of output without explicitly set targets. In other words, unlike supervised

learning that usually requires ground truth in the training process, unsupervised

learning does not have access to the paired ground truth data. Usually, the construction

of a paired dataset is extremely costly and has become a major hurdle for developing

advanced approaches for low-level vision tasks. As a consequence, unsupervised

learning is attracting extensive attention.

Unsupervised approaches have shown their superb performance in high-level vision

tasks, such as representation learning [50]. However, achieving unsupervised learning

in low-level vision is extremely hard. Unlike high-level vision tasks that require a

neural network to extract representations as very low dimensional vectors, low-level

vision tasks require a global understanding of image content and local restoration of

fine texture details. Without the supervision from ground truths, it is hard to set a
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training objective that can guide the network to acquire the ability to produce desired

outputs. Surprisingly, despite the difficulty, many attempts have been made to use

unsupervised learning in handling low-level vision tasks.

In summary, unsupervised learning is usually adopted in low-level vision in three

ways. 1) Using strong physical prior to form supervision with additional information.

This kind of work usually requires a strong physical model that can learn to predict

desired output with auxiliary information, such as unsupervised monocular depth

estimation [19, 41, 42]. Although the unsupervised monocular depth estimation does

not need depth maps as supervision, it requires predicting the matching relations

(termed disparity map) of inputs with the other view of the scene. And the disparity

map can be transformed to scene depth given a few already known parameters, such as

the distance between two cameras and focal length. 2) using unsupervised learning as

a helper to boost the performance of a model that is learned in a supervised manner.

This line of research aims to exploit the possibility of improving the performance

of current supervised learning approaches, such as test-time training [23]. Usually,

a model trained under supervised learning should be fixed for inference during the

test time. It is not able to further adapt to a particular scene that has not been

exposed in training. Ideally, a network should utilize the internal information within

a specific image. Therefore, test-time training is proposed to enable the network

quickly adapt to a particular image with self-supervision. For example, reference [23]

constructs an auxiliary task, i.e., image reconstruction, during the supervised training

phase. Then the image reconstruction task can provide supervision in an unsupervised

manner during testing. The update of the network in test time can further boost

its performance to produce better deblurring results. 3) Pure unsupervised learning.

5



Ph.D. Thesis – H. Liu McMaster University – Electrical & Computer Engineering

This kind of work explores a pure unsupervised method for low-level vision tasks, such

as image denoising [65, 129]. Some of the methods assume to only have access to

degraded input images. [65] applies basic statistical reasoning to signal reconstruction.

[129] proposes to recover a clean image using the early stopping strategy as the authors

find that a convolutional image generator can capture most image statistics instead of

the learning process. The other works require an statistical likelihood model of the

corruption or target distribution, such as PULSE [82], and Cycle-GAN [160].

In this thesis, three different methods are proposed following the above three

unsupervised learning strategies and providing innovations in each category. Chapter

3 provides new insight into unsupervised monocular depth estimation. The proposed

method turns the unsupervised problem into a supervised counterpart with a teacher-

student structure. Chapter 4 presents a novel approach to handling multi-domain

learning problem using unsupervised test-time training for single image dehazing.

Finally, chapter 5 provides a solution to unsupervised image denoising and super-

resolution in a compression system using optimal transport.

1.4 Contributions and Thesis Organization

The thesis is in a sandwich thesis format following the terms and regulations of

McMaster University. It consists of four published/unpublished articles that address

low-level vision problems using deep learning approaches. The contributions to each

article are listed in the preface of Chapter 2, Chapter 3, Chapter 4 and Chapter 5.

Here is the reference information for the four articles:

• Huan Liu and Jun Chen. ”Indirect Domain Shift for Single Image Dehazing”.

6
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IEEE Access. 2021 Sep 3;9:122959-70.

• Huan Liu, Junsong Yun, Chen Wang, and Jun Chen. ”Pseudo Supervised

Monocular Depth Estimation with Teacher-Student Network”. arXiv preprint

arXiv:2110.11545. 2021 Oct 22.

• Huan Liu, Zijun Wu, Liangyan Li, Sadaf Salehkalaibar, Jun Chen, and Keyan

Wang. ”Towards Multi-domain Single Image Dehazing via Test-time Train-

ing”. Accepted by IEEE/CVF Conference on Computer Vision and Pattern

Recognition 2022.

• Huan Liu, George Zhang, Jun Chen, and Ashish Khisti. ”Lossy Compression

with Distribution Shift as Entropy Constrained Optimal Transport. Accepted

by International Conference on Learning Representations 2022.

The rest of the thesis is organized as follows:

• Chapter 2 provides the detailed indirect domain shift approach for handling

single image dehazing using supervised learning.

• Chapter 3 provides the detailed teacher-student scheme for boosting the

performance of the current unsupervised monocular depth estimation approach.

• Chapter 4 provides a multi-domain formulation of the current single image

dehazing task and gives a test-time training solution.

• Chapter 5 formulates an optimal transport problem under lossy compression

and addresses it using a pure unsupervised approach.
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• Chapter 6 provides the conclusion of this thesis and the discussion of future

works.
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Chapter 2

Indirect Domain Shift for Single

Image Dehazing

2.1 Abstract

Despite their remarkable expressibility, convolution neural networks (CNNs) still fall

short of delivering satisfactory results on single image dehazing, especially in terms of

faithful recovery of fine texture details. In this chapter, we argue that the inadequacy

of conventional CNN-based dehazing methods can be attributed to the fact that the

domain of hazy images is too far away from that of clear images, rendering it difficult

to train a CNN for learning direct domain shift through an end-to-end manner and

recovering texture details simultaneously. To address this issue, we propose to add

explicit constraints inside a deep CNN model to guide the restoration process. In

contrast to direct learning, the proposed mechanism shifts and narrows the candidate

region for the estimation output via multiple confident neighborhoods. Therefore, it

is capable of consolidating the expressibility of different architectures, resulting in
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a more accurate indirect domain shift (IDS) from the hazy images to that of clear

images. We also propose two different training schemes, including hard IDS and soft

IDS, which further reveal the effectiveness of the proposed method. Our extensive

experimental results indicate that the dehazing method based on this mechanism

dramatically outperforms the state-of-the-arts.

2.2 Introduction

Deep convolutional neural networks (CNNs) have been tremendously successful in

many high-level computer vision tasks, e.g. image recognition [49, 60] and object

detection [40, 106]. Although recent works have shown that it is also possible to learn

an end-to-end CNN model for low-level vision tasks, e.g. image dehazing [17, 56], the

resulting performance is still not completely satisfactory. For high-level vision tasks, it

suffices to extract specific features and simply express them as very low dimensional

vectors [60], which results in a relatively simple mapping. In contrast, low-level vision

tasks require both global understanding of image content and local inference of texture

details; as such, the associated mappings are more complicated.

One possible explanation for performance discrepancies on high-level and low-level

vision tasks is as follows. For high-level vision tasks such as image recognition, a slight

perturbation of the output tends to be inconsequential since the perturbed output is

likely to get converted to the same one-hot vector and consequently the classification

label remains unaffected. However, for low-level vision tasks such as image dehazing,

any perturbation can potentially manifest in the final result, jeopardizing the image

quality. From this point of view, despite the fact that a deep CNN can in principle

approximate any function, it is still difficult to train an accurate mapping that lifts
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the input to the target domain in one shot, since the loss function is typically very

close to zero in the neighborhood of the target image [73]. We argue that a different

mechanism for domain shift is needed for image dehazing, which requires both memory

and understanding of image contents.

To this end, we provide explicit guidance during model optimization to lead the

domain shift path across several identified confident neighborhoods , resulting in the

proposed framework shown in Figure 2.1. More specifically, instead of only imposing

the loss function on the model output, we introduce multi-scale estimation, multi-

branch diversity, and adversarial loss inside the model, thereby pulling the interim

outputs to specific regions then merging them in the target domain; this yields an

indirect but more accurate mapping. The contributions of this chapter include:

• By introducing loss functions inside a CNN model, we propose the framework

of indirect domain shift (IDS) for image dehazing, which aggregates powerful

expressibility of different architectures, i.e., multi-scale, multi-branch, and generator

for lifting degraded images to the target domain indirectly.

• We provide theoretic justifications for IDS and show that it provides valuable

guidance for network construction. (1) A multi-scale module takes the advantage

of coarse-fine network to maintain global-local consistency. (2) A multi-branch

architecture is adopted to enable precise inference of local details by providing

diverse confident neighborhoods. (3) A FusionNet further improves the perceptual

quality by informed ‘imagination’, rather than blindly pursuing a higher PSNR, as

the multi-scale multi-branch structure has shifted degraded images close enough to

the corresponding ground truth in terms of objective image quality metrics.

12
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• It is demonstrated that IDS leads to remarkable performance improvements com-

pared with the state-of-the-art algorithms.

2.3 Related Works

Image dehazing, which aims to recover a haze-free image from its hazy version, is a

highly ill-posed restoration problem. The haze effect is often approximated using the

atmospheric scattering model [89] given as follows:

I(x) = J(x)t(x) +A(1− t(x)), (2.3.1)

where I(x), J(x), and A are the observed hazy image, clear scene radiance, and global

atmospheric light, respectively. The scene transmission t(x) describes the portion of

light that is not scattered and reaches the camera. It can be expressed as t(x) = e−βd(x),

where β is the medium extinction coefficient and d(x) is the depth map of pixel x.

Based on this atmospheric scattering model [89], many strategies have been

proposed by taking advantage of various prior knowledge. For example, the dark

channel prior [48] assumes that in non-sky patches, at least one color channel has very

low intensity. The color attenuation prior [161] assumes that the image saturation

decreases sharply at hazy patches, so that the difference between brightness and

saturation can be utilized to estimate the haze concentration. To address the weakness

of DCP for the sky region, [111] proposes to separately deal with the non-sky region

and the sky region using dark channel prior and luminance stretching. In [112], the

authors come up with a new color channel method to remove atmospheric scattering for

single image dehazing. The overall algorithm consists of atmospheric light calculation,

13



Ph.D. Thesis – H. Liu McMaster University – Electrical & Computer Engineering

transmission map estimation, radiance estimation and post enhancement. Furthermore,

based on the assumption that a linear relationship exits in the minimum channel

between hazy and haze-free images, a fast linear-transformation-based dehazing

algorithm is introduced in [133].

Recently, data-driven approaches to image dehazing have received increasing

attention. [107] and [17] propose to use CNN for medium transmission estimation,

which is further leveraged to recover the haze-free image. In [107], a multi-scale

deep neural network is proposed to learn a mapping between hazy images and their

corresponding transmission maps. A densely connected pyramid network is proposed

in [149] to jointly estimate the transmission map, atmospheric light, and dehazed

images, while an effective iteration algorithm is developed in [77] to learn the haze-

relevant priors. [29] further embeds the atmospheric model into the designing of

CNN and proposes a feature dehazing unit to ensure end-to-end trainable. However,

it is known that the atmospheric scattering model (ASM) is not valid in certain

scenarios [72], which limits the applicability of the aforementioned dehazing methods.

Unlike those ASM-dependent methods, [27] integrates multiple models to perform

haze removal with attention, and [76] uses a GridNet-based network [35] to directly

predict dehazed images via an ASM-agnostic approach. To further improve the

performance in ASM-agnostic setting, [28] propose an multi-scale boosted dehazing

network (MSBDN) with boosting strategy and back-projection technique. [53] firstly

introduces knowledge distillation in solving dehazing problem. It allows dehazing

model learn to dehaze from both ground truths and teacher outputs.

Many methods that have been developed for other image restoration tasks, e.g.

deblurring, denoising, are also highly relevant. To remove blurring caused by the

14



Ph.D. Thesis – H. Liu McMaster University – Electrical & Computer Engineering

dynamic scenes, a multi-scale convolutional neural network is proposed in [87] to

restore sharp images in an end-to-end manner. In [44], the weighted nuclear norm

minimization (WNNM) problem is studied and applied to image denoising by exploiting

non-local self-similarity. This work is later extended to handle arbitrary degradation,

including blur and missing pixels [143]. To tackle the long-term dependency problem,

the MemNet [123] is proposed by introducing a memory block, consisting of a recursive

unit and a gate unit, to explicitly mine persistent memory through an adaptive

learning process. To make the deep networks implementable on limited resources, a

new activation unit is proposed [59], which enables the net to capture much more

complex features, thus requiring a significantly smaller number of layers in order

to reach the same performance. A super-resolution generative adversarial network

(SRGAN) is developed in [64] to recover high-frequency details and produce more

natural-looking images.

2.4 Formulation for Indirect Domain Shift

In this section, we provide a theoretical formulation of the image dehazing problem

and propose an indirect domain shift method as an effective approach to obtaining an

approximation solution.

Denote the prior distribution of clear images of size m× n by pX , which is defined

on a low dimensional manifold M in R3×m×n. The image degradation mechanism

can be modeled as a conditional distribution pX|Y , i.e., given the clear image x, a

distorted image y is generated according to pY |X . Note that pX and pY |X induce the

joint distribution pX,Y as well as the conditional distribution pX|Y ; in general, both pX

and pY |X need to be learned from the training data. Image dehazing can be formulated
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Figure 2.1: One example of the proposed IDS network. (a) and (b) are the
multi-scale estimation with MSE and SSIM loss, respectively. (d) is the FusionNet

with adversarial and content loss. (c) shows the legend.

as a maximum a posterior estimation problem:

x̂map = argmax
x̂∈M

pX|Y (x̂|y). (2.4.1)

In practice, one often considers the following alternative formulation:

x̂ℓ = min
x̂∈R3×m×n

E [ℓ(X, x̂)|Y = y]

= min
x̂∈R3×m×n

∫

M
pX|Y (x|y)ℓ(x, x̂)dx,

(2.4.2)

where ℓ is a loss function. In general it is expected that both x̂map and x̂ℓ are close to

the ground truth. However, there is no guarantee that x̂ℓ belongs toM.

We shall describe an IDS method, which leverages multi-scale estimation and
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multi-branch diversity to obtain an approximate solution of (2.4.2), then lifts it into

M using the adversarial loss to produce a candidate solution of (2.4.1). A network

that realizes the IDS method is shown in Figure 2.1.

2.4.1 Multi-scale Estimation

Note that (2.4.2) requires the knowledge of pX|Y , which needs to be estimated from

the training data, hence we solve the following approximated version of (2.4.2), i.e.,

x̂′ℓ = min
x̂∈R3×m×n

∫

M
p′X|Y (x|y)ℓ(x, x̂)dx, (2.4.3)

where p′X|Y is an approximation of pX|Y learned from the training data. To ensure that

x̂′ℓ ≈ x̂ℓ (and consequently close to the ground truth), we need p′X|Y (x|y) ≈ pX|Y (x|y)

for x ∈ M (at least for x in a neighborhood of y that contains the ground truth).

However, since the difference between the ground truth and the distorted version y is

not negligible, this neighborhood could be quite large, rendering a good approximation

of pX|Y (·|y) in this neighborhood difficult to obtain. Indeed, the number of parameters

need to specify pX|Y (·|y) in this neighborhood might be comparable or even larger

than the available training data, hence a direct approximation can be highly unreliable,

especially considering the fact that the approximation is in general done in a suboptimal

way. For this reason, it is sensible to first approximate pX̃|Y (with x̃ being a low-

resolution version of the ground truth), which itself is an approximation of pX|Y and

can be specified by a significantly smaller number of parameters (as compared to

pX|Y ). In this way, we can get a good approximation of pX̃|Y , denoted by p′
X̃|Y , and
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solve the following optimization problem instead:

x̃ℓ̃ = min
x̂∈R3×m×n

∫

M
p′
X̃|Y (x|y)ℓ̃(x, x̂)dx. (2.4.4)

Since p′
X̃|Y (x|y) is a good approximation of pX̃|Y (x|y), it is expected that x̃ℓ is close

to x̃ and consequently not very far away from the ground truth. Now with x̃ℓ at hand,

we can further convert (2.4.2) to the following problem:

x̂ℓ = min
x̂∈R3×m×n

∫

N (x̃ℓ)

pX|X̃ℓ,Y
(x|x̃ℓ, y)ℓ(x, x̂)dx, (2.4.5)

where N (x̃ℓ) is a neighborhood of x̃ℓ that is large enough to cover the ground truth. It

suffices to have a good approximation pX|X̃ℓ,Y
(·|x̃ℓ, y) over N (x̃ℓ). The above procedure

is repeated until the required neighborhood is small enough.

We assume that the smaller the neighborhood becomes, the fewer number of

parameters are needed to specify the distribution defined over this neighborhood and

consequently the approximation becomes easier. Multi-scale estimation is introduced

to mimic conventional coarse-to-fine optimization methods and has been widely applied

in many computer vision tasks [30, 31, 87, 107].

2.4.2 Multi-branch Diversity

The idea underlying multi-branch diversity is similar. Suppose we adopt two branches

with different loss functions, denoted by ℓ1 and ℓ2, respectively, then (2.4.5) becomes

x̂ℓ = min
x̂∈R3×m×n

∫

N (x̃ℓ1
)∩N (x̃ℓ2

)

pX|X̃ℓ1
,X̃ℓ2

,Y (x|x̃ℓ1 , x̃ℓ,2, y)ℓ(x, x̂)dx. (2.4.6)
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It should be clear that multi-branch diversity further narrows the region over which

the distribution needs to be estimated. In our experiments, we choose ℓ1 and ℓ2 to be

mean square error (MSE) and structural similarity index (SSIM) loss, respectively.

The reason we choose MSE and SSIM as loss functions is that MSE focuses on the

pixel-level difference while SSIM pays more attention to the perceptual quality. See

Figure 2.1 (a) and (b) for the architecture of two multi-scale estimation branches of

the proposed IDS network.

2.4.3 Adversarial Loss

The role of the adversarial loss ℓad is to lift x̂ℓ intoM. Specifically, consider a neural

network subject to the weighted loss ℓ+ λℓad, which can be interpreted as solve the

following problem:

x̂ℓ+λℓad = arg max
x̂∈N (x̂ℓ,λ)

pX(x̂), (2.4.7)

where N (x̂ℓ, λ) is a neighborhood of x̂ℓ. In general, this optimization problem tends

to give a reconstruction that falls intoM since pX is only positive onM. Note that

the size of N (x̂ℓ, λ) depends on λ. Specifically, N (x̂ℓ, λ) is large when λ is large. In

the extreme case of λ → ∞, we have x̂ℓ+λℓad → argmaxx̂∈M pX(x̂); while when λ

is very small, N (x̂ℓ, λ) may have no intersection with M, and in this case (2.4.7)

reduces to (2.4.2). In principle it is desirable to choose the smallest λ such that

N (x̂ℓ, λ) intersects withM. It is also worth noting that pX is in general unknown.

So one has to solve a modified version of (2.4.7) with pX replaced by p′X , which is an

approximation of pX learned from the training data.

The adversarial loss serves an important role of generating texture details in image
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Figure 2.2: The isolated training of one iteration in hard IDS.

restoration. One of the reasons for its success in our framework is that, by leveraging

multi-scale estimation and multi-branch diversity, one can already obtain an good

estimate x̂ℓ which is in a narrow neighboring region of M, and consequently the

generator does not need much “imagination” to produce a natural-looking image.

However, we observe the similar phenomenon reported in [64] that adversarial loss

is helpful for faithful reproduction, even though the final PSNR metric is slightly

lower. Nevertheless, we introduce the adversarial loss to obtain better perceptual

quality but not expect higher PSNR value. The relevant ablation study can be found

in Section 2.6.3.

2.5 Implementation

In this section, we provide a detailed implementation of the indirect domain shift

(IDS). We also propose two training schemes, i.e., the hard IDS and soft IDS.

20



Ph.D. Thesis – H. Liu McMaster University – Electrical & Computer Engineering

2.5.1 Network Architecture

The proposed IDS network is shown in Figure 2.1, which consists of three basic

components, i.e., the MSE branch, the MS-SSIM branch, and the FusionNet. The

MSE and SSIM branches are built with multi-scale structure to successively map hazy

images to their clear counterpart at different resolution levels (as in (2.4.5)); moreover,

they are supervised by non-identical loss functions to ensure differentiated outputs.

The FusionNet completes the domain shift process by merging the outputs from the

two branches together with the input hazy image into a single clear image (as in

(2.4.6)). We train the FusionNet (see Figure 2.1 (d)) using a content loss defined as

the weighted sum of MSE loss and perceptual loss [56]. The weight is carefully selected

by searching from 1.0, 10−1, 10−2, and 10−3. We find that our network achieves the

best performance when the weight is set to 10−2. An adversarial loss (see (2.4.7)) is

also imposed on the FusionNet to enhance the perceptual quality of the final result.

To be specific, inside each diversity branch, there are three sub-networks, each

performing domain shift at a different scale level. The input of the coarse-scale

sub-network is obtained from the original hazy image via bi-linear interpolation with a

down-sampling factor of 4. Its output is up-sampled with a factor of 2 via pixel shuffle

[118], then fed into the medium-scale sub-network, together with the down-sampled

hazy image representation by a factor of 2. The input of the fine-scale sub-network

is the concatenation of the original hazy image representation and the up-sampled

output of medium-scale sub-network.

It is known that residual networks (ResNets) can facilitate gradient flow while

dense networks (DenseNets) help maximize the use of feature layers via concatenation

and dense connection. To capitalize on their respective strengths, [153] proposes
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Figure 2.3: The performance of hard IDS with different parameters.

so-called residual dense networks (RDNs), which consist of contiguous memory blocks,

local residual learning blocks and global feature fusion blocks.

In this work, we use RDNs as the fundamental building components of the proposed

IDS network. See Table 2.1 for detailed specifications. Note that hard IDS and soft

IDS adopt the same network structure, but differ in terms of the number of trainable

parameters. Model depth will be detailed in Section 2.6.4.

2.5.2 Training Scheme

To handle the coexistence of multiple loss functions, we propose two back-propagation

strategies characterized by different effective ranges of the loss functions. Specifically,

we can separately update each module according to the associated loss function or

jointly update all modules according to a global loss that aggregates the local ones.

This results in the two IDS training schemes, i.e., hard IDS and soft IDS.
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#RDB/#Conv Shadow Medium Deep

Branch
Coarse 4/3 5/3 6/3

Finer 6/4 7/4 8/4

Finest 8/5 9/5 10/5

FusionNet 10/6 12/6 15/6

Table 2.1: The configuration of the shadow, medium, and deep Hard IDS
corresponding to Figure 2.3.

Hard IDS

We first present the isolated training strategy for hard IDS shown in Figure 2.2.

Specifically, each module is supervised independently by the associated loss functions

and deliver dehazed images to the next stage after updating their weights. Note that

in this case, the convergence of the entire network does not depend on the convergence

of all loss functions, which means that the network performance may become stable

before all loss functions are small enough. This is a consequence of direct mapping,

since for each mapping step it suffices to enter one of many (almost) equally good

confident neighborhoods, resulting in lower computational load. One advantage of

isolated updating is that the gradient vanishing problem can be alleviated. Recall

that this problem is caused by the emergence of small gradients in the earlier layers
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of very deep networks during back-propagation. As a comparison, isolated training

shortens the back-propagation path, but maintains the depth of forward inference,

at the expense of heterogeneous convergence rates of different loss functions. It is

also worth noting that the isolated training strategy closely follows our analytical

formulation which dictates how to shift from one domain to another. Therefore, the

success of hard IDS can be viewed as a good indication of the correctness of our

theoretical framework.

Soft IDS

In contrast to hard IDS, here a global loss function obtained by combining all local

module losses is used to update network parameters via end-to-end back-propagation.

Although the local losses are evaluated based on the images output by the respective

modules, only the feature map from the penultimate convolutional layer of each module

is delivered to the next module. This enables soft IDS to accomplish the desired task

largely in the feature space. The fact that each module no longer has to re-map the

previous module’s output images back to the feature space is helpful for reducing the

number of parameters and also making the indirect shifting path ‘smoother’. Another

advantage of soft IDS is that there is no need to be concerned with the convergence of

a specific module as in hard IDS, which facilitates the training process.

In summary, the differences between Hard and Soft IDS are in two main aspects:

(1) As in Figure 2.4, Hard IDS and Soft IDS deliver images and features to the next

stages, respectively. (2) The Hard IDS adopts isolated training (optimization over

modules independently), while Soft IDS computes the summation of all the local

module losses and optimizes the entire notwork in an iteration.
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Scale Branch Adversarial PSNR SSIM

✗ ✓ ✓ 31.13 0.983
✓ ✗ ✓ 29.80 0.982
✓ ✓ ✗ 31.32 0.986
✗ ✗ ✓ 30.55 0.975
✓ ✓ ✓ 32.17 0.986

Table 2.2: Ablation studies on the SSIM/PSNR performance of Hard IDS. The best
performance is shown in bold, while second best results are with underline.

Scale Branch Adversarial PSNR SSIM

✗ ✓ ✓ 34.12 0.985
✓ ✗ ✓ 32.75 0.984
✓ ✓ ✗ 34.74 0.986
✗ ✗ ✓ 33.92 0.981
✓ ✓ ✓ 34.74 0.987

Table 2.3: Ablation studies on the SSIM/PSNR performance of Soft IDS. The best
performance is shown in bold, while second best results are with underline.

2.6 Ablation Study

We conduct ablation studies to investigate the respective contributions of multi-scale

estimation, multi-branch diversity, and adversarial loss using RESIDE-standard indoor

dataset [68] that will be introduced in detail in Section 2.7.1. To eliminate the influence

of other factors, all training configurations are kept the same as that presented in

Section 2.7.2, including the total number of trainable parameters for each network.

More detailed analysis is shown in supplementary.

2.6.1 Multi-scale Estimation

As mentioned in Section 2.4.1, a direct mapping can be highly unreliable, since the

number of trainable parameters might be comparable or even larger than the available
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(i) source (ii) hazy

(iii) IDS (iv) w/o scale

(a) Source (b) Hazy

(c) IDS (d) w/o scale

(a)

(i) source (ii) hazy

(iii) IDS (iv) w/o div

(a) Source (b) Hazy

(c) IDS (d) w/o div

(b)

(i) source (ii) hazy

(iii) IDS (iv) w/o adv

(a) Source (b) Hazy

(c) IDS (d) w/o adv

(c)

Figure 2.5: Some output examples of Hard IDS (a) without multi-scale estimation
(w/o scale), (b) without multi-branch diversity (w/o div), (c) only with adversarial

loss (o/w adv), and without adversarial loss (w/o adv) in the ablation study,
respectively.

training data. To overcome this problem, a multi-scale network is applied in the first

stage of IDS. Another important property of such coarse-to-fine estimation is the

local-global consistency: the coarse-scale network first estimates the holistic structure

of the image scene, and then a fine-scale network performs refinement based on both

local information and the coarse global estimation. To further study the influence

of such coarse-to-fine structure, we test the performance of IDS framework without

multi-scale estimation (w/o scale).

Following the ablation principle, we remove the coarse-scale network and make

the fine-scale network deeper to have the same number of parameters. One output

example is presented in Figure 2.5(a) indicating that hard IDS w/o scale is able to

recover the image reasonably well, but with some local inconsistency: the haze at

the up-left corner is not removed faithfully. This verifies the above analysis that

multi-scale network is able to capture both local and global features. We present the

performance on PSNR and SSIM for both hard IDS and soft IDS in Table 2.2 and

Table 2.3, respectively. It can be seen that IDS w/o scale performs worse than IDS
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(especially in soft IDS), indicating that the local inconsistency has impact on both the

quantitative metrics and perceptual quality.

2.6.2 Multi-branch Diversity

Using multi-scale estimation with MSE loss, one can realize domain shift to a certain

extent. However, some important information may get lost along the way. To keep

the information diversity, we introduce one more multi-scale branch and employ SSIM

loss in this branch. This strategy enables a more precise inference of local details

by providing distinctive confident neighborhoods identified by different branches. To

further illustrate its effectiveness of this strategy, we test the performance of IDS

without multi-branch diversity (w/o div).

Similarly, we remove the second branch and make the first branch deeper. One

of the examples is presented in Figure 2.5(b), in which the IDS w/o div sometimes

delivers erroneous detail inference, since the “dark area” between the light and the

wall clearly should not exist. This is further verified by the overall validation shown

in the Table 4.2, in which there is a large performance gap between IDS and IDS w/o

div, indicating that it is well worth having two branches.

2.6.3 Adversarial Loss

The adversarial loss (together with the content loss) is employed at the last stage (i.e.,

the FusionNet) of the proposed IDS framework and is served to obtain high visual

quality. The FusionNet takes the estimates from the two branches, in conjunction with

the original hazy image, as the input and generates the final output with perceptually

satisfactory high-frequency details via proper fusion. Since the estimates produced by
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the two branches are already in the neighboring domains of the target, the generator

does not need to rely on pure “imagination” to create texture details; instead, it could,

to a great extent, maintain the perceptual reality rather than blindly pursue a higher

PSNR [64].

To prove this, we show that IDS without adversarial loss is able to produce a

high PSNR but NOT able to obtain better perceptual quality. Following the ablation

principle, we construct IDS IDS without adversarial loss (w/o adv) by simply removing

discriminator. As can be seen, IDS w/o adv produces a slightly higher PSNR in

Figure 2.5(c) (26.508), but obviously lower perceptual quality than IDS (26.094), as the

wall is printed “darker” partially to minimize the MSE distance. This demonstrates

the generalization capability of the generator and provides further justifications for

the IDS framework.

To further prove the necessity of adversarial loss, we compare with GridDehaze [76].

GridDehaze [76] is a pure CNN based dehazing method without adopting adversarial

loss to generate natural distributed outputs. From Figure 2.6, it shows that the

generated images from Soft IDS tend to be closer to the ground truth with less

inconsistent color gradients on the road, sky, and wall. This verifies the phenomenon

that the adversarial loss is introduced to obtain better perceptual quality but not

blindly pursue higher PSNR value.

2.6.4 Model Depth

This section is devoted to investigating the impact of model depth on the performance

of our hard IDS method. By adjusting the number of convolutional and dense

residual blocks, we construct shadow, medium, and deep models with 8 M, 10.5
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(a) Hazy (b) GridDehaze (c) Soft IDS (d) Clear

Figure 2.6: The output examples from SOTS outdoor testing set.

M, and 15 M trainable parameters, respectively. Detailed specifications is shown in

Table 2.1. As expected, the deep model achieves the best overall performance in terms

of both PSNR and SSIM. As illustrated in Figure 2.3, both PSNR and SSIM values

improve dramatically as the number of parameters increases, which further verifies

the effectiveness of the IDS framework. It is worth mentioning that albeit with fewer

trainable parameters (around 4.3 M), soft IDS still manages to outperform hard IDS

as shown in Table 2.4.
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Dataset Metrics DCP DehazeNet AOD-Net GFN GridDehaze PFD MSBDN Hard IDS Soft IDS RCAN IDS

Indoor
PSNR 16.62 21.14 19.06 22.30 32.16 32.68 33.79 32.17 34.74 35.34
SSIM 0.8179 0.8472 0.8504 0.880 0.9836 0.9760 0.9840 0.9860 0.9869 0.9901

Outdoor
PSNR 19.13 24.75 24.14 28.29 30.86 31.17 31.33 30.78 31.52 32.73
SSIM 0.8605 0.9269 0.9198 0.9621 0.9819 0.9825 0.9832 0.9815 0.9832 0.9873

Table 2.4: The SSIM/PSNR performance of different methods on SOTS-indoor, and
SOTS-outdoor. Our proposed methods and improved network with RCAN

outperform the others.

(i) Hazy (iii) DehazeNet(ii) DCP (iv) AOD-Net (v) GFN (vi) GridDehaze (vii) PFD (viii) MSBDN (ix) RCAN IDS (x) Clear(a) Hazy (b) DCP (c) DehazeNet (d) AOD-Net (e) GFN (f) GridDehaze (g) PFD (h) MSBDN (i) RCAN IDS (j) Clear

Figure 2.7: The output examples from SOTS indoor testing set of the SOTA methods.

2.7 Experiments

In this section, we further compare the proposed IDS network with several state-of-the-

art dehazing algorithms, including dark channel prior (DCP) [48], DehazeNet [17],

AOD-Net [67], gated fusion network (GFN) [108], GridDehazeNet (GridDehaze) [76],
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PFD [29] and MSBDN [28]. For a fair comparison, all these algorithms are evaluated

on both synthetic and realistic datasets in terms of visual effect and quantitative

accuracy. We adopt the peak signal to noise ratio (PSNR) [155] and the structural

similarity index (SSIM) [136] for evaluation.

2.7.1 Benchmark Dataset

For training and testing purposes, we use the RESIDE-standard dataset [68], which is

a benchmark for single image dehazing. The indoor training set (ITS) of RESIDE-

standard contains 13990 synthetic hazy indoor images (together with haze-free counter-

parts). These synthetic images are generated using NYU2 [91] and Middlebury stereo

[115] with the medium extinction coefficient β chosen uniformly from (0.6, 1.8) and

the global atmospheric light A chosen uniformly from (0.7, 1.0). The outdoor training

set (OTS) of RESIDE-standard contains 296695 hazy images generated from 8477

clear counterparts with β chosen uniformly from (0.04, 0.2) and A chosen uniformly

from (0.8, 1.0). The testing set (SOTS) of RESIDE-standard contains 500 synthetic

hazy indoor/outdoor images (together with haze-free counterparts). We also perform

comparisons using the real-world hazy image dataset in [33] to show the perceptual

difference.

2.7.2 Training Details

Our algorithm is implemented using the PyTorch library [97] and all tests are conducted

on the same GPU of Nvidia Titan Xp. We train the network with the following

configuration: the Adam optimizer [58] is applied with β1 = 0.9 and β2 = 0.999, where

a mini-batch size of 10, a patch size of 180× 180, an initial learning rate of 10−4 are
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(a)
Hazy

(b)
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(c)
Dehaze
Net

(d)
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Net

(e)
Grid
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(f)
PFD

(g)
MSBDN

(h)
RCAN
IDS

Figure 2.8: The output examples from real-world images in Fattal et.al. to compare
with SOTA DNN based methods.

adopted. For hard IDS, the learning rate decays with a multiplicative factor of 0.5

every 120 epochs for a total of 700 epochs, while soft IDS is trained for 100 epochs

with the learning rate reduced by half on the 60th, the 80th, and the 90th epochs.

Besides, horizontal/vertical random flipping is applied for data augmentation. It is
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DNN Based (GPU Running Time)

DehazeNet AOD-Net GFN GridDehaze PFD MSDBN Hard IDS Soft IDS RCAN IDS

0.190s 0.004s 0.011s 0.22s 0.103 0.088 0.048s 0.035s 0.041s

Table 2.5: Average per-image (620× 460) runtime (second) on SOTS-indoor.

worth mentioning that after random flipping of both input and target images, the

training data are still paired. Therefore, such an augmentation strategy is not harmful

to supervised training but help expand the size of training data.

2.7.3 RCAN as Substitute

The proposed IDS framework is generic in nature and admits many different concrete

implementations. In this work, we have focused on a particular implementation with

RDNs as fundamental building blocks. However, this is by no means the best possible

one. Indeed, the performance of our IDS network can be further improved by adopting

more powerful substitutes of RDNs. To demonstrate this, we replace RDNs in soft

IDS by residual channel attention networks (RCANs) [152] with the same number of

trainable parameters. We further illustrate the effectiveness of adopting RCANs as

substitute in the following experimental results.

2.7.4 Evaluation on Benchmark Dataset

We train our network from scratch on RESIDE-standard ITS, OTS and validate it

on the separated testing dataset SOTS. The quantitative results and the qualitative

results are shown in Table 2.4 and Figure 2.7, respectively. Here hard IDS corresponds

to the deep model in Table 2.1, while soft IDS is as described in Section 2.6.4. It can
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Hazy Ours Clear(a) Hazy (b) Ours (c) Clear

(a)

Hazy Ours Clear(a) Hazy (b) Ours (c) ClearHazy Ours Clear

(b)

Figure 2.9: Qualitative evaluation on Dense-Haze and NH-Haze dataset.

be seen from Table 2.4 that soft IDS outperforms the other methods under comparison

in terms of PSNR and SSIM. In particular, the PSNR achieved by soft IDS reaches

34.74 on SOTS indoor dataset. Moreover, with the boost from RCANs substitute,

RCAN IDS outperforms the others by a large margin.

As for visual quality, prior-based methods [48] overestimate the haze thickness,

which results in color distortion (e.g. the color of the wall turns purple in the fifth row

in Figure 2.7). Although some learning-based baseline methods [17, 67] avoid the

color distortion problem, they tend to deliver unsatisfactory haze removal results for

shaded regions. For example, in the seventh row of Figure 2.7, the area behind the arch

should be dark; however, the restoration results produced by most baseline methods

show light color instead. This is probably because of that the baseline methods fail

to correctly estimate the depth information and consequently mislead by the haze

effect. GFN generates decent results, and removes the haze in this area reasonably

well. A possible explanation is that GFN does not rely on depth estimation for haze

removal; it can also be attributed to the multi-scale approach adopted by GFN, which

is an important ingredient of the IDS framework as well. Exploiting the full strength
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O-HAZE Dense-Haze

Metrics PSNR SSIM Metrics PSNR SSIM

DCP 12.92 0.505 DCP 10.85 0.404
AOD-Net 17.69 0.616 AOD-Net 13.30 0.469
GridDehaze 22.76 0.721 GridDehaze 14.56 0.493
MSBDN 23.28 0.743 MSBDN 15.18 0.509
Ours 23.84 0.766 Ours 15.78 0.543

Table 2.6: The SSIM/PSNR performance of different methods on O-Haze and
Dense-Haze dataset. Our proposed methods outperform the others.

of IDS enables us to obtain better dehazing results. GridDehaze [76], PFD [29] and

MSBDN [28] are the methods that can produce dehazed images comparable to ours.

However, they still generates inconsistent color gradients on the venetian blinds in the

fourth row. On the other hand, it can be seen in Figure 2.7 that our dehazed images

can hardly be distinguished from the ground truth.

2.7.5 Evaluation on Real-world Photographs

We further show the dehazing results on real-world images in [33] to illustrate the

generalization ability of IDS. In Figure 2.8, Prior-based method [48] introduces color

distortion and over enhancement on images.

It is clear that DehazeNet[17], and AOD-Net [67] fail to remove haze completely,

especially in the last column where heavy haze can still be seen around the haystack.

Moreover, they also tend to over-enhance the images (e.g. the mountains in the fourth

column). Although GridDehaze [76] , PFD [29] and MSBDN [28] work well on the

synthetic dataset, its generalization performance on real images is unsatisfactory. The

red boxes in Figure 2.8 locate their unsatisfactory regions. Their weaknesses include
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color distortion, incomplete haze removal and over enhancement. We also notice that

the proposed IDS is able to not only remove haze successfully, regardless whether it is

dense or light, but also restore the texture details faithfully, which further proves the

effectiveness of our method.

2.7.6 Evaluation on Real-world Datasets

The evaluation is conducted on the O-Haze [7], and Dense-Haze [8] datasets. The

Two real-world datasets is challenging since they contain limited training images (45

and 55 respectively) and vivid haze patterns. Therefore, the performance on the two

dataset can be a good indication to the effectiveness of the proposed methods. The

training on the two datasets adopts same strategies as introduced in Section 2.7.2.

For fair comparison, we omit to use pre-trained weights or data augmentations that

are not introduced in Section 2.7.2. We demonstrate the evaluation quantitatively

and qualitatively in Table 2.6 and Figure 2.9.

Results on NTIRE2018 O-Haze. We evaluate our proposed IDS on O-Haze

dataset [7] following the data split in official NTIRE2018-Dehazing challenge [6]. It

can be observed in Table 2.6 that our IDS outperforms the other methods in terms

of PSNR and SSIM. Figure 2.9(a) shows that our approach reconstructs faithful and

sharp haze free images with good perceptual quality.

Results on NTIRE2019 Dense-Haze. In contrast to O-Haze that mostly

contains light haze, Dense-Haze [8] records images with denser and more homogeneous

haze layer. We follows NTIRE-2019 challenge [9] to conduct evaluation. Qualitative

results in Figure 2.9(b) demonstrate that even if the background scene is occluded by

thick haze, our IDS is still able to restore these region. In particular, since the second
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testing sample in Figure 2.9(b) is covered by severe haze, the background scene is

almost invisible to human eyes. Nevertheless, our IDS surprisingly removes dense haze

and reconstructs identifiable details. Quantitative comparisons in Table 2.6 illustrate

that our IDS is the top performing method.

2.7.7 Runtime

Table 2.5 shows runtime comparisons on the SOTS dataset. Our method is ranked the

third among DNN-based methods. It is worth mentioning that in our implementation

multi-scale estimation is performed branch by branch. A significant reduction in

runtime is possible via a parallel implementation of multi-scale estimation in two

branches.

2.8 Conclusion

In this chapter, it is shown that the traditional direct mapping methods cannot provide

accurate direct mapping for image dehazing. To solve this problem, an indirect domain

shift (IDS) method is proposed by adding explicit loss functions inside a deep CNN

model to guide the dehazing process. Multi-scale estimation, multi-branch diversity,

and adversarial loss play important roles in this method as shown by the ablation

studies. We also propose two training schemes, which have their respective advantages.

Specifically, hard IDS is less demanding in terms of computational resources and

alleviates the gradient vanishing problem. Besides, hard IDS is designed according to

our theoretical formulation and its success provides a strong empirical indication of

the correctness of our indirect domain shift mechanism. On the other hand, soft IDS
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is easier to implement and in general yields better performance. We show that IDS

achieves remarkable improvements compared with the state-of-the-art on five dehazing

datasets. Despite the success of our method, the visual performance of IDS is not

completely satisfactory on Dense-Haze dataset. Since the deep learning methods often

require large-scale datasets for training, we believe the performance of our method

on Dense-Haze dataset can be further improved by simply acquiring more training

samples. From another perspective, one interesting direction for our future work is to

enhance the IDS framework to enable good generalization with limited training data.
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Chapter 3

Pseudo Supervised Monocular

Depth Estimation with

Teacher-Student Network

3.1 Abstract

Despite recent improvement of supervised monocular depth estimation, the lack of

high quality pixel-wise ground truth annotations has become a major hurdle for further

progress. In this work, we propose a new unsupervised depth estimation method

based on pseudo supervision mechanism by training a teacher-student network with

knowledge distillation. It strategically integrates the advantages of supervised and

unsupervised monocular depth estimation, as well as unsupervised binocular depth

estimation. Specifically, the teacher network takes advantage of the effectiveness of

binocular depth estimation to produce accurate disparity maps, which are then used as

the pseudo ground truth to train the student network for monocular depth estimation.
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This effectively converts the problem of unsupervised learning to supervised learning.

Our extensive experimental results demonstrate that the proposed method outperforms

the state-of-the-art on the KITTI benchmark.

3.2 Introduction

Estimating depth from a single image is a challenging but valuable task in both

computer vision and robotics. Recently, we have witnessed the tremendous success of

monocular depth estimation in assisting complicated computer vision tasks such as 3D

scene reconstruction, visual optometry [125], and augmented reality [104]. This success

can be largely attributed to large-scale labeled datasets and deep convolutional neural

network (DCNN) models. However, it can be very costly and in some cases impossible

to obtain pixel-wise ground truth annotations for supervised training. As such, great

attention has been paid to unsupervised monocular depth estimation [19, 41, 100, 159]

in recent years. A common approach is to formulate unsupervised monocular depth

estimation as a self-supervised image reconstruction problem [38, 41].

Despite its innovativeness, this approach has two intrinsic weaknesses. 1) Compared

to the supervised monocular setting, they often use the photometric loss to indirectly

control the quality of disparity maps, which is less effective. 2) Compared to the

unsupervised binocular setting, using one image to generate the disparity map (with

the second image indirectly involved) is less effective than simultaneously exploiting

the stereo pairs. Intuitively, the two weakness are intimately related to the nature of

unsupervised and monocular approach and consequently inevitable. In this work, we

aim to train an unsupervised monocular depth estimation network that can partially

avoid these weaknesses by using a teacher-student based pseudo supervision for
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Figure 3.1: Example of the depth estimation results on KITTI 2015 stereo 200
training set by our proposed pseudo supervision mechanism. From the top to bottom
are respectively the input images, our results and sparse ground truth disparities.

monocular depth estimation.

To this end, we propose a novel pseudo supervision scheme, which is leveraged

to train the teacher-student network with distillation [52]. Specifically, the teacher

network takes advantage of the effectiveness of unsupervised binocular depth estima-

tion to produce accurate disparity maps. The disparity maps are then used as the

pseudo ground truth to train the student network for monocular depth estimation,

which converts the problem of unsupervised learning to supervised learning. This

pseudo supervision mechanism enables us to exploit the benefits of both supervised

learning and binocular processing for unsupervised monocular depth estimation. As a

consequence, the aforementioned two weakness can be tackled to a certain extent.

However, in view of that it is not always possible to achieve perfect performance

for the teacher network due to occlusion [157], in the distillation process the student

network is also provided with occlusion maps, which indicate the performance gap

between the teacher network’s prediction (pseudo ground truth for the student) and

the real ground truth. This occlusion indication allows the student to focus on dealing

with the un-occluded regions. Moreover, the depth predictions in occlusion region
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still need to be carefully handled. To address this problem, we train the teacher

network with semantic supervision to enhance the performance around the occlusion

boundaries, which was verified to be effective [19, 30, 61, 131].

The main contributions of this work can be summarized as follows. 1) By taking

advantages of both unsupervised binocular depth estimation and pseudo supervised

monocular depth estimation, we propose a novel mechanism for unsupervised monocu-

lar depth estimation. 2) We fuse both occlusion maps and semantic representations

wisely to handle the occlusion problem as well as boost the performance of student

network. 3) We demonstrate through extensive experiments that our method outper-

forms the state-of-the-arts both qualitatively and quantitatively on the benchmark

dataset[39].

3.3 Related Works

The existing monocular depth estimation methods can be roughly divided into two

categories.

3.3.1 Supervised / Semi-supervised Monocular Depth Esti-

mation

Supervised monocular depth estimation has been extensively studied in the past years.

In the deep-learning framework, the problem becomes designing a neural network

to learn the mapping from the RGB inputs to the depth maps. Eigen et al. [31]

proposed a two-scale structure for global depth estimation and local depth refinement.

Laina et al. [62] and Alhashim et al. [4] showed that better depth estimation results
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can be achieved with more powerful designs based on ResNet [49] and DenseNet [54].

There are also some works exploring the possibility of boosting the mapping ability of

neural networks using statistical learning techniques. For example, Roy et al. [110]

considered the combination of regression forests and neural networks; [66, 74, 141, 142]

used conditional random fields (CRFs) and CNNs to obtain sharper depth maps with

clear boundary.

Due to their alleviated reliance on large labeled real-world datasets, semi-supervised

methods have also received significant attention. Nevertheless, they still require some

additional information [20, 140, 163]. In particular, Guo et al. [46] proposed a

teacher-student network for depth estimation, where the teacher network is trained in

a supervised manner, albeit largely with synthetic depth data, and its knowledge is

then transferred to the student network via distillation. Our work is partly motivated

by the observation that the teacher network can actually be trained in a completely

unsupervised manner without relying on any ground truth depth information (not

even those associated with synthetic images).

3.3.2 Unsupervised Monocular Depth Estimation

In the unsupervised setting, only the RGB domain information, typically in the form

of stereo images or video sequences, is provided. Many training schemes and loss

functions have been proposed for unsupervised depth estimation to exploit photometric

warps. Garg et al. [38] constructed a novel differentiable inverse warping loss function.

Zhou et al. [158] proposed a windowed bundle adjustment framework with considering

constraints from consecutive frames with clip loss. Godard et al. [41] introduced the

notion of left-right consistency, which is imposed on both images and disparity maps.
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Figure 3.2: We show the architectures of (a) supervised/ (b) unsupervised monocular
depth estimation, (c) unsupervised binocular depth estimation, and (d) our pseudo

supervised mechanism.

Other consistency requirements, such as trinocular consistency [101] and bilateral

consistency [137], were also investigated. In addition, there have been various attempts

to take advantage of generative adversarial networks (GANs) [3, 99, 156], knowledge

distillation [100], synthetic datasets [12, 90, 156, 164], or semantic information

[19, 21, 55, 79, 154]. Among them, arguably most relevant to the present chapter is

[100], where Pilzer et al. proposed a distillation mechanism based on the concept of

cycle inconsistency. However, their adopted network structure is not very effective

in simultaneously exploring the stereo pair and suffers from a mismatching problem

[19]. In contrast, it will be seen that the proposed approach can take advantage

of the efficiency of binocular processing in the training phase. Many recent works

have recognized the benefit of exploiting semantic information for depth estimation

via multi-task learning. Common approaches [21, 55, 79, 154] to multi-task learning
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typically involve neural networks with sophisticated structures. In contrast, Chen et

al. [19] showed that it suffices to use a simple encoder-decoder network with a task

identity variable embedded in the middle. Inspired by [86], we propose an alternative

implementation with the task label stacked to the input images from the semantic

dataset and KITTI to guide the teacher network for multi-task learning.

3.4 Proposed Method

3.4.1 Pseudo Supervised Depth Estimation Formulation

In this section, we provide a systematic comparison of several existing depth estimation

formulations and show how the proposed pseudo supervision mechanism strategically

integrates the desirable characteristics of different formulations.

Supervised Monocular Depth Estimation

Let I and hgt denote the input RGB image and its ground truth depth map, respectively.

Supervised training for monocular depth estimation aims to find a mapping F that

solve the following optimization problem (Figure 3.2 (a)):

argmin
F

error(he, hgt),

s.t. he = F (I),

(3.4.1)

where he is the estimated depth map of I. Given a well-specified depth target, it is

possible to train a DCNN model F̂1, as an approximate solution to (3.4.1), that is

capable of lifting I into a close neighborhood of hgt. However, it can be very costly

to obtain enough pixel-wise ground-truth annotations needed to specify the depth
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domain.

Unsupervised Depth Estimation

The unsupervised depth estimation can be classified as monocular and binocular depth

estimation (stereo matching). Due to the unavailability of a directly accessible depth

map, the following formulations are often considered (Figure 3.2 (b) and (c)):

argmin
F

error(Iel, Il),

s.t. Iel = ⟨Ir⟩dl , dl = F (Il),

(3.4.2)

arg min
Fl,Fr

error(Iel, Il) + error(Ier, Ir),

s.t. Iel = ⟨Ir⟩dl , dl = Fl(Il, Ir),

Ier = ⟨Il⟩dr , dr = Fr(Il, Ir).

(3.4.3)

where (3.4.2) and (3.4.3) respectively refer to monocular and binocular estimation.

(Il, Ir) is a stereo pair, ⟨.⟩ is the warping operator, and dl(r) denotes the estimated left

(right) disparity map. Note that dl(r) can be easily translated to a depth estimate

given the focal length and the camera distance.

However, these solutions are in general not as good as F̂1 for the following reasons :

1) Using the warped image Iel(er) with respect to Il(r) to indirectly control the quality

of the depth estimate is less effective than comparing the depth estimate directly

with the ground truth as done in the supervised setting. 2) Il and Ir often exhibit

slightly different object occlusion, rendering perfect estimation of dl(r) impossible.

Nevertheless, F̂3 in principle performs better than F̂2 since monocular processing can

be viewed as a degenerate form of binocular processing. Of course, the necessity of
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using stereo pairs as inputs restricts the applicability of binocular depth estimation.

Pseudo Supervision Mechanism

To strategically integrate the desirable characteristics of supervised monocular depth

estimation, unsupervised monocular depth estimation, and unsupervised binocular

depth estimation, we propose a pseudo supervision mechanism (Figure 3.2 (d)) as

follows:

arg min
Fs,Ft

error(de, dg̃t),

s.t. de = Fs(Il), dg̃t = Ft(Il, Ir),

(3.4.4)

where Ft is a teacher network and Fs is a student network. The teacher network

trained with stereo pairs (Il, Ir) as in Figure 3.2 (c). Due to the advantage of binocular

processing, the teacher network can be trained efficiently in an unsupervised manner

and produce reasonably accurate disparity estimate. The pseudo ground truth disparity

maps dg̃t produced by the trained teacher network F̂t enable the student network

to take advantage of supervised learning; moreover, in contrast to F̂t, the trained

student network F̂s is capable of performing monocular depth estimation. In order

to ensure the pseudo ground truth produced by F̂t with higher quality, a non-depth

information (i.e. semantic maps) is integrated. The detailed implementation of the

pseudo supervision mechanism is described below.

3.4.2 Training the Teacher Network

The teacher network is designed to thoroughly exploit the training data and provide

the pseudo ground truth to the student network (see Figure 3.3). In addition, the

teacher network is trained to learn the semantic information as well.
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Figure 3.3: The pipeline of our proposed pseudo supervision mechanism. The teacher
network is trained with alternating task-specific inputs (0 for semantic segmentation
and 1 for depth estimation) while the student network is trained using the pseudo
ground truth. During inference, the student take a single image and produce its

disparity map accordingly.

Depth Estimation with Semantic Booster

Most depth estimation methods exploit semantic information by employing a two-

branch network where semantic segmentation and depth estimation are performed

separately. In contrast, inspired by [19] and [86], we design an encoder-decoder network

that can switch between the aforementioned two tasks according to a task label. Given

the input images I and the associated task labels c, the network outputs a task-specific

prediction Y = Ft(I, c). We set c = 0 when the network is trained for depth estimation

and set c = 1 when the network is trained for semantic segmentation.

For semantic segmentation, we train our network supervised with ground truth

semantic maps from an urban scene dataset. The loss function Lseg for this task is:

Lseg = CE(Ft(I, c = 0), gt), (3.4.5)
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where CE denotes cross-entropy loss and gt specifies the semantic ground truth label.

In contrast, for binocular depth estimation (i.e., when c = 1), we adopt unsuper-

vised training. Following [41], we formulate the problem as minimizing the photometric

reprojection error (see Figure 3.2(c) and (3.4.3)). Specifically, given two views Il

and Ir, the network predicts their corresponding disparity maps dl and dr, which are

used to warp the opposite views; the resulting Ĩl ≜ ⟨Ir⟩dl and Ĩr ≜ ⟨Il⟩dr serve as the

reconstructions of Il and Ir, respectively. The loss function is a combination of L1

loss and single scale SSIM [136] loss:

Lre(I, Ĩ) = θ
1− SSIM(I − Ĩ)

2
+ (1− θ)∥I − Ĩ∥1, (3.4.6)

where θ is set to 0.5, and SSIM uses a 3 × 3 filter. We also adopt the left-right

consistency loss Llr and the disparity smoothness loss Lsm introduced in [41]:

Llr(d, d̃) = ∥d− d̃∥1, (3.4.7)

Lsm(d, I) = |∂xd|e−∥∂xI∥ + |∂yd|e−∥∂yI∥, (3.4.8)

where d̃l = ⟨dr⟩dl , d̃r = ⟨dl⟩dr , and ∂ is the gradient operator. Therefore, the total loss

for unsupervised binocular depth estimation is Lbi:

Lbi(dl, dr, Il, Ir) = α1(Lre(Il, Ĩl) + Lre(Ir, Ĩr))

+ α2(Llr(dl, d̃l) + Llr(dr, d̃r))

+ α3(Lsm(dl, Il) + Lsm(dr, Ir)).

(3.4.9)

Following [19], after the training process for semantic segmentation converges,
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we use semantics-guided disparity smooth loss within each segmentation mask to

boost disparity smoothness especially on object boundaries. During training, we only

predict semantic segmentation on Il to reduce the computation load. Unlike [19], our

semantic-guided smooth loss Lsemantic is a simple variant of (3.4.8):

Lsemantic(dl, sl) = Lsm(dl, sl), (3.4.10)

where s denotes the predicted semantic map.

The overall loss function for the teacher network can be defined as follows:

Lteacher(dl, dr, Il, Ir, sl) = γ1Lbi(dl, dr, Il, Ir)

+ γ2Lsemantic(dl, sl).

(3.4.11)

3.4.3 Training the Student Network

Now we proceed to discuss the training strategy for the student network as shown in

Figure 3.3.

Supervised Training with Pseudo Disparity Ground Truth

The student network is trained under the supervision of the pseudo disparity ground

truth provided by the teacher network. The adopted pseudo supervised distillation

loss Lsup−mo is an adaptation of the reconstruction loss (3.4.6) to disparity maps:

Lsup−mo(ds, dt) = Lre(ds, dt), (3.4.12)

where ds and dt are respectively the disparity estimate by the student and the pseudo

disparity ground truth from the teacher.
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(a) Input Image (b) Semantic Map (c) Occlusion Map (d) Ours Student (e) Ours Teacher (F) Monodepth

Figure 3.4: Illustrations of the experiment results on KITTI 2012 Eigen split.
Monodepth denotes the results by Gordard et al..

Method Sup Aux
Error (lower, better) Accuracy (higher, better)

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [31] Y N 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Guo et al. [46] Y D 0.096 0.641 4.059 0.168 0.892 0.967 0.986
Fu et al. [36] Y N 0.072 0.307 2.727 0.120 0.932 0.984 0.994

Garg et al. [38] N N 0.152 1.226 5.849 0.246 0.784 0.921 0.967
Pilzer et al. [100] N N 0.142 1.231 5.785 0.239 0.795 0.924 0.968
Zhou et al. [158] N N 0.135 0.992 5.288 0.211 0.831 0.942 0.976

Gordard et al. (Monodepth) [41] N N 0.124 1.388 6.125 0.217 0.841 0.936 0.975
Gordard et al. (Monodepth2) [42] N N 0.115 0.903 4.863 0.193 0.877 0.959 0.981

Ours (Student) N N 0.099 0.901 4.783 0.178 0.908 0.970 0.984

Chen et al. [19] N S 0.108 0.875 4.873 0.204 0.865 0.956 0.981
Lu et al.[79] N S 0.115 1.202 5.828 0.203 0.850 0.944 0.980

Ours (Student) N S 0.090 0.853 4.671 0.167 0.912 0.972 0.988
Ours (Teacher) N S 0.059 0.777 3.868 0.137 0.959 0.983 0.991

Table 3.1: Quantitative comparison with state-of-the-art methods on the KITTI 2015
eigen split. Elements in the supervision (Sup) column are marked by yes (Y) or no
(N) to describe whether the methods adopt a supervision manner. In the Auxiliary
supervision (Aux) column, N represents ’no extra supervision’, D stands for ’Depth
supervision’ and S denotes ’semantic supervision’. Best results are in bold and the
second best are with underline. No matter if semantic information is used or not, our

proposed method outperforms all the others.

Unsupervised Training with Occlusion Maps

Since the binocular teacher network naturally fails to find a good reconstruction in

occlusion region [157], the less capable monocular student network has little chance
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to succeed in this region. For this reason, it is sensible to direct the attention of the

student network to other places where good reconstructions can be potentially found.

Motivated by this, we generate an occlusion map from teacher as:

Moc(d, d̃) = 1(|d− d̃| ⩽ 0.01),

which sets the region that admits a good reconstruction (i.e., the region where the

reconstructed d̃ is close to the original map d) to 1 and sets the remaining part to 0.

Based on occlusion map, we further define an un-occluded unsupervised loss Lun−mo

by masking out the difficult region:

Lun−mo(ds, Is, Ĩs) =MocLre(Is, Ĩs) (3.4.13)

where Lre and is the image reconstruction loss introduced in Section 3.4.2 (a); Is and

Ĩs are respectively the monocular input and its reconstruction.

The semantic information St from the teacher network is also used to guide the

training of the student network via loss (3.4.10) for handling occlusion boundaries.

The total loss function for the student network can be defined as follow:

Lstudent(Is, Ĩs, ds, dt) = γ3Lsup−mo(ds, dt)

+ γ4Lun−mo(ds, Is, Ĩs)

+ γ5Lsemantic(ds, St).

(3.4.14)

In the inference phase, the student network Fs takes an image Is and produces

a disparity ds = Fs(Is), from which the depth estimate Ds can be readily computed

according to the formula Ds = bf/ds, where b is the baseline distance between the
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cameras and f is the focal length of lenses.

3.5 Experiments

3.5.1 Implementation Details

Network Architecture

As shown in Figure 3.3, we shall refer to a specific encoder-decoder as Dense-Grid

since the encoder is built using DenseNet161 [54] (in view of its feature extraction

ability) without a linear layer while the decoder is built using GridNet [35] (in view of

its feature aggregation ability) with a shape of 6× 4. For the teacher network, the

output end of each scale of the decoder is attached with two 3× 3 convolutional layers.

Depending on the task label, the first convolutional layer predicts semantic maps or

left disparities (with the latter involving an extra global pooling step); the second

convolutional layer predicts right disparities only. The two low-resolution disparity

maps are up-sampled to full-scale to avoid texture-crop artifacts [42]. The structure

of the student network is the same as that of the teacher network with the layers that

predict segmentation and left disparities removed.

Regular Training Procedures and Parameters

Our method is implemented using Pytorch [97] and evaluations are conducted on the

Nvidia Titan XP GPU. Guided by alternating task labels, the teacher network is trained

on KITTI [39] and Cityscape [24] for depth estimation and semantic segmentation.

This training phase ends after 50 epochs when both tasks converge. The segmentation

map produced in the last epoch of this training phase is leveraged to train the depth
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estimation task under total objective loss (3.4.10). With the pseudo ground truth and

occlusion maps provided by the teacher network, the student network starts training

process, which takes 50 epochs.

During training, inputs are resized to 256× 512. Data augmentation is conducted

as in Gordard et al. [41]. We adopt the Adam optimizer with initial learning rate

λ = 104, β1 = 0.9, β2 = 0.999, and ϵ = 105. In the training of the student network the

learning rate reduced at 30 and 40 epochs by a factor of 10, as well as the training of

the teacher network. The weights of different loss components are set as following:

γ1, γ2, γ3, γ5, α1, α3 = 1.0, γ4 = 0.05 and α2 = 0.5

Over-training of Teacher Network

Over-training is usually considered undesirable since it tends to jeopardize the gener-

alization ability of a model. However, in our current context, it is actually desirable

to train overly. Indeed, with over-training, the pseudo ground truth provided by the

teacher network is likely to be very close to the actual ground truth of the training

data (see Table 3.2), which enables the student network to take advantage of pseudo

supervised learning. Moreover, the fact that teacher network overfits the training data

has no impact on the generalization ability of the student network because we train

our student regularly without over-training. (Note that the generalization ability of

the teacher is not a concern). To achieve this, we train our teacher network for depth

task with additional 20 epochs. Without specifying, the student network performances

reported in this chapter are along with the over-trained teacher.
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Method Abs Rel Sq Rel RMSE RMSE log

Teacher (over training) 0.061 0.407 2.635 0.132
Teacher (regular training) 0.074 0.545 3.021 0.172

Table 3.2: Experimental results on KITTI 2012 Eigen split training set. Over-trained
teacher can produce depth with lower error.

3.5.2 Performance on KITTI

Evaluations are conducted on KITTI 2012 and 2015 Eigen split [31]. Evaluation

metrics used in this work are the same as those in [41] for fair comparison.

Quantitative Results

Table 3.1 shows a quantitative comparison of several state-of-the-art depth estimation

methods and the proposed one on KITTI 2015. Due to its binocular nature, the

teacher network has a significant advantage over the monocular methods, which is

clearly reflected in performance evaluations (the evaluation results of the teacher

network reported in Table 3.1 are collected without over-training). Not surprisingly,

the student network is less competitive than the teacher network; nevertheless, it

still outperforms the other methods under comparison in terms of accuracy and error

metrics. We additionally compare the performance of our proposed method with Guo

et al. [46]. For fair comparison, the model in [46] is trained with auxiliary ground

truth depth and unsupervised fine-tuning on KITTI. Our student is trained with

semantic maps (without ground truth depth). From Table 3.3, we can observe that

without any supervision directly relevant to depth, our student still outperforms the

Guo et al. [46].
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Method δ < 1.25 δ < 1.252 δ < 1.253

Guo et al. [46] (with depth) 0.874 0.959 0.982
Ours student (with semantic) 0.912 0.972 0.988

Table 3.3: Comparing with Guo et al.. on KITTI 2015 eigen split.

Qualitative Results

To further illustrate the effectiveness of the pseudo supervision mechanism, we show

some qualitative results in Figure 3.4 on KITTI 2012. It can be seen that the disparity

maps produced by the student network are comparatively the best in terms of visual

quality and accuracy. For example, the edges of traffic signs and cars are clearer, and

objects are detected with lower failure rate. It is also interesting to note that the

disparity maps produced by the teacher network (which is over-trained) suffer from

several problems (e.g., failure to distinguish the traffic sign and the background in

the last row of Figure 3.4). That is to say, although the teacher network does not

have a good generalization ability on the test dataset due to over-training, it is able

to provide high-quality pseudo ground truth to train a student network.

3.5.3 Ablation Study

We perform ablation studies to demonstrate the effectiveness of each component in

our proposed framework. Special attention is paid to three aspects: a) the benefit of

incorporating semantic information in training the teacher, b) the advantage of joint

utilization of pseudo ground truth (PGT), occlusion maps, and semantic information

in training the student, c) inherent advantage of the proposed pseudo supervision

mechanism.
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Method
Improvement Error (lower, better)

PGT Occ Semantic Abs Rel Sq Rel RMSE RMSE log

Student

✗ ✗ ✗ 0.127 1.215 5.520 0.268
✓ ✗ ✗ 0.122 0.919 5.093 0.211
✓ ✓ ✗ 0.119 0.959 5.056 0.210
✓ ✗ ✓ 0.117 0.888 4.949 0.205
✓ ✓ ✓ 0.115 0.885 4.956 0.202

Teacher
✗ ✗ ✗ 0.089 0.973 4.423 0.190
✗ ✗ ✓ 0.077 0.672 3.950 0.174

Monodepth Res50 Original 0.133 1.142 5.533 0.230
Pseudo Supervised Monodepth 0.129 1.112 5.236 0.217

Table 3.4: Ablation studies on KITTI 2012 Eigen split.

Ablation Study for Training Teacher.

We compare the cases with and without semantic booster. It can be seen from Table 3.4

that the performance of the teacher network improves significantly with the inclusion

of semantic information.

Ablation Study for Training Student

We consider using different combinations of pseudo ground truth (PGT), occlusion

maps (Occ), and semantic information to train the student network. As shown by

Table 3.4, each element contributes positively to the performance of the student

network, and the full combination outperforms any partial ones.

Inherent Advantage

We re-implement our pseudo supervision mechanism using the ResNet-based structure

proposed by Gordard et al. [41] in lieu of our Dense-Grid structure. It can be seen

from Table 3.4 that this re-implementation yields better performance as compared to
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the Monodepth network et al. with exactly the same ResNet-based structure.

3.6 Conclusion

In this chapter, we propose a pseudo supervision mechanism to realize unsupervised

monocular depth estimation by strategically exploiting the benefits of supervised

monocular depth estimation and unsupervised binocular depth estimation. We have

also shown how to make effective use of performance-gap indicator, and semantic

booster in the implementation of the pseudo supervision mechanism. The experimental

results indicate that the proposed unsupervised monocular depth estimation method

performs competitively against the state-of-the-art. As to future work, apart from

refining the proposed depth estimation method, we also aim to further enrich and

strengthen the theoretical framework of pseudo supervision and explore its application

to other computer vision problems.
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Chapter 4

Towards Multi-domain Single Image

Dehazing via Test-time Training

4.1 Abstract

Recent years have witnessed significant progress in the area of single image dehazing,

thanks to the employment of deep neural networks and diverse datasets. Most of the

existing methods perform well when the training and testing are conducted on a single

dataset. However, they are not able to handle different types of hazy images using a

dehazing model trained on a particular dataset. One possible remedy is to perform

training on multiple datasets jointly. However, we observe that this training strategy

tends to compromise the model performance on individual datasets. Motivated by

this observation, we propose a test-time training method which leverages a helper

network to assist the dehazing model in better adapting to a domain of interest.

Specifically, during the test time, the helper network evaluates the quality of the

dehazing results, then directs the dehazing network to improve the quality by adjusting
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its parameters via self-supervision. Nevertheless, the inclusion of the helper network

does not automatically ensure the desired performance improvement. For this reason,

a meta-learning approach is employed to make the objectives of the dehazing and

helper networks consistent with each other. We demonstrate the effectiveness of the

proposed method by providing extensive supporting experiments.

4.2 Introduction

Single image dehazing is a classic but still active research topic in low-level computer

vision, which aims to restore clean images from the degraded hazy counterparts.

Recently, many deep learning approaches [17, 26, 37, 67, 75, 76, 102, 108, 138, 147,

149] have been proposed to address this problem by training a neural network to

approximate the mapping from hazy images to haze-free ground truths. As more

and more dehazing datasets have been released, such as RESIDE [68], O-Haze [7]

and NH-Haze [10], these methods are able to demonstrate their outstanding ability

in handling different haze patterns. However, one important issue is left behind for

consideration, i.e., handling different types of hazy images by a single network. To

be specific, current methods are usually trained on the training split of a particular

dataset and tested on the corresponding testing split. For example, the test accuracy

on RESIDE indoor test set [68] is obtained by validating a dehazing model trained

on the RESIDE indoor training set. Such an evaluation strategy allows the neural

network to focus on a specific domain but evades the important problem of learning a

general model across datasets. A seemingly simple remedy is to train a single dehazing

model on all available datasets jointly. Intuitively, with the increase of data, the

network can benefit from considering more kinds of haze patterns, leading to boosted
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Figure 4.1: Average PSNR values of GDN, MSBDN and DW-GAN across four
datasets. It can be observed that the dehazing methods perform better if the training

and validation are conducted on a single dataset.

performance on every single dataset [5].

Somewhat surprisingly, we find that this naive solution actually compromises the

dehazing performance on individual datasets. Indeed, it can be seen from Figure

4.1 that the dehazing models perform better when the training and testing are

conducted on a single dataset (as opposed to all datasets combined). This unusual

fact contradicts the common belief that the increase in data usually leads to improved

performance. One possible explanation is that each dataset has a specific distribution

which might be significantly different from that of another dataset (see Figure 4.2).

The representative examples from the four datasets under consideration are shown

in Figure 4.3, where one can observe that both the haze pattern and background

scene of the four datasets are significantly different from each other. In the RESIDE

indoor and outdoor datasets, the haze pattern is homogeneous but the background

scenes are vastly different (indoor vs. outdoor environments). In the O-Haze and

NH-Haze datasets, background scenes are consistent (outdoor environments) but the
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Figure 4.2: Visualization of image features using t-SNE. Image features are obtained
using a ResNet18 pretrained on ImageNet. The fact that the features are clustered
around four different centers shows clear discrepancies between the distributions of

these datasets.

haze patterns have remarkable distinctions. Against this backdrop, learning a general

dehazing model on multiple datasets can be categorized as a multi-domain learning

(MDL) problem.

In this chapter, we propose a method that can enable a single dehazing model

to cope with multiple domains. Here, each domain is formed by a dataset with a

distinctive haze pattern and scene. Our goal is to find a model that can minimize

the risk on the collection of domains for the dehazing task. Note that our problem

definition is significantly different from the related field of domain adaptation and

multi-task learning in the sense that the former aims to minimize the risk on a specific

target domain while the latter performs optimization on a collection of tasks paired

with a single domain. In principle, one can address the reformulated multi-domain

dehazing problem by following the common practice in MDL. However, this requires

designing sophisticated neural network structures with domain-specific modules, which

64



Ph.D. Thesis – H. Liu McMaster University – Electrical & Computer Engineering

is a highly non-trivial and cumbersome task in general.

To alleviate the design burden, we propose a novel MDL approach for single image

dehazing by helping a given dehazing network to adapt to a specific domain when it is

needed. To achieve this, we propose a method to adjust the dehazing network during

the testing phase. In this method, the parameters of the network are optimized using

a self-supervised loss function which is basically provided by another entity called the

helper network. This network is designed to learn diverse haze patterns using paired

hazy and haze-free images (across multiple domains) and output a reconstructed

version of the hazy image that is fed into it. At the test time, the helper network uses

its knowledge to assess the quality of the output of the dehazing network, which is

a dehazed image. In other words, this image together with its corresponding hazy

counterpart are given to the helper network as its inputs. If the output of the helper

network is close to the hazy image, then a small reconstruction loss is expected.

However, if the dehazed image is defective, then a large reconstruction loss may be

derived at the helper network. Considering the fact that the quality of dehazed image

can be represented by the reconstruction loss of the helper network, we update the

parameters of the dehazing network by minimizing this loss function.

Now a natural question arise: How to guarantee that the end-to-end performance

of the dehazing network is eventually optimized by minimizing the reconstruction loss

of the helper network. In order to ensure the consistency between the objectives of two

networks, we adopt the meta-learning approach [34]. Here, the goal of meta-learning is

to adjust the parameters of the dehazing network by minimizing the reconstruction loss

of the helper network so that the dehazing output based on the adjusted parameters

better matches the ground-truth haze-free image.
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NH-HAZEO-HAZE

RESIDE Indoor

Figure 4.3: Representative examples from RESIDE indoor/outdoor, O-Haze and
NH-Haze.

Our contributions can be summarized as follows. Firstly, we point out a largely

unnoticed phenomenon in single image dehazing, namely, a model trained on multiple

datasets exhibits compromised performance on individual datasets. This leads to the

formulation of designing a dehazing model for distribution-wise distinctive datasets as

a MDL problem. Secondly, we put forward a solution to this problem by introducing

a test-time training approach for better adapting the dehazing network to every single

observation. Finally, we provide extensive experiments to demonstrate the effectiveness

of our proposed method in addressing the multi-domain dehazing problem.
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4.3 Related Works

4.3.1 Single Image Dehazing

Most of the conventional single image dehazing methods [14, 33, 48, 161] are based

on the estimation of parameters in the atmospheric scattering model (ASM) using

statistical priors. However, they are not robust in dealing with complex real scenes.

Recently, there has been a significant progress in the single image dehazing by using

the deep learning approach. Although, [17, 67, 94, 107, 121, 145] still rely on the

ASM, they propose to adopt a neural network to first estimate the transmission and

then restore it. Due to the limitations of the ASM which make it not to be an effective

method in modeling complicated haze patterns, other works [18, 28, 53, 71, 76, 78,

102, 103, 108, 139, 150] are designed using the end-to-end deep neural networks to

directly learn the mapping from hazy images to haze-free counterparts. Another line

of works [22, 69, 117] mainly focus on enabling the deep learning system to deal with

natural hazy images. For example, in [117], a model is trained on multiple synthetic

domains and the performance is evaluated on a specific real dataset. Our work is

different from [117] in the sense that the performance of our proposed network is

verified over different domains.

4.3.2 Multi-domain Learning

Multi-domain learning (MDL) aims to enable a model with the ability to minimize the

risk across multiple domains. Usually, the model parameters can be divided into two

distinctive parts according to their functionalities. Specifically, while one part focuses

on learning the shared representations across different domains, the other part learns
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the domain-specific mapping relations [57, 88, 105, 116, 146]. Recent works consider

developing a general system without explicitly learning the cross-domain or domain-

specific representations. For example, [119] proposes a single model-based method

to address problems in medical imaging. It uses the meta-learning to dynamically

estimate hyperparameters in the loss functions. Notice the difference between the

meta objectives of [119] and ours, i.e., our meta objective is designed to learn the

consistency across losses. [135] introduces a universal object detector consisting of

a single network using domain attention modules. These modules can activate the

model parameters that are responsible for a particular domain. This approach still

relies on a precise network design. However, our proposed approach is model-agnostic

and can be used in a plug-and-play manner.

4.3.3 Meta-learning for Image Restoration

Meta-learning, also known as learning to learn, has attracted attention in the computer

vision community, recently. Especially, the model-agnostic meta-learning (MAML)

[34] is widely utilized in image restoration to improve the generalization ability of deep

neural networks. For example, [95, 120] adopt MAML for super-resolution. The meta

objective is to learn a model that can quickly adapt to novel scenes. [23] proposes

to use the meta-auxiliary learning [122] for the test-time dynamic scene deblurring.

Besides the obvious difference in the treated problems, our work offers two general

insights regarding test-time training not present in [23]. 1) test-time training can

be realized by building a helper network, detached from the main network (possibly

off-the-shelf), to provide self-supervision during the test time. This idea is broadly

applicable. It lifts the burden of jointly addressing the primary and auxiliary tasks
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in one framework and clears the way for wide adoption of test-time training. 2) The

helper network should be designed by considering the special characteristics of the

problem at hand (e.g., ASM is unique to dehazing) to maximize benefits of test-time

training.

4.4 Methodology

Assume that we have a collection of N dehazing domains {Di}Ni=1 with M paired

hazy and haze-free images {Ii, Ji}Mi=1. We aim to train a dehazing model fθd that is

able to perform well on all domains. However, as mentioned before, we find through

experiments that the model trained on a single domain can usually outperform the

model trained on multiple domains.

In this section, we present one possible solution to address this problem. Firstly,

we train the dehazing network fθd using all image pairs from N domains by minimizing

the following commonly used loss function:

Ldehaze(Ĵ , J) = Lsmooth(Ĵ , J) + γLPer(Ĵ , J), (4.4.1)

where Ĵ and J represent the dehazed and haze-free images, respectively, and Lsmooth

and LPer represent smooth L1 and perceptual losses [56], respectively. The parameter

γ is used to get a weighted combination of the two loss functions Note that, the

dehazing network can be any existing well-designed model.

Secondly, we will develop a helper network gθh to learn the haze patterns in the

following Section 4.4.1. This network gets a pair of hazy and haze-free images as its

input and generates a reconstructed version of the hazy image at the output. It is
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Figure 4.4: The helper network for learning the haze patterns. It consists of 3 stacked
residual channel attention groups adopted from RCAN.

basically employed to determine the quality of the dehazed image Ĵ which is generated

by the dehazing network. That is, if Ĵ is close to J , then a small reconstruction loss

is expected at the helper network. During the test time, the dehazing network can

update its parameters by minimizing the reconstruction loss of the helper network as

will be discussed in Section 4.4.2. Although, this method helps the dehazing network

to get an improved dehazing loss on the particular hazy inputs, however, an improved

performance is not generally guaranteed. To address this problem, we finally propose

a meta-learning approach in the following Section 4.4.3 to associate the dehazing

and reconstruction losses with each other. Once the meta-training is complete, our

setup is able to conduct the test time training which enables the dehazing network in

producing clearer dehazing results in a self-supervised manner.
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4.4.1 Learning the Haze Patterns

As discussed before, given a dehazed image Ĵ , our goal is to effectively determine its

quality and guide the dehazing network to produce a clearer counterpart. To achieve

this, we build a helper network to explicitly learn the haze patterns across multiple

domains and use this pre-learned knowledge to determine the quality of the dehazed

images. The network structure is shown in Figure 4.4, where it takes paired hazy and

haze-free images as the inputs and it outputs two key components of a haze pattern,

i.e., the transmission t(x) and global atmospheric light A. Then, we use the modified

atmospheric scattering model (ASM) to reconstruct the hazy image by the following:

Î(x) = J(x)t(x) + A(1− t(x)), (4.4.2)

where Î(x) and J(x) are the reconstructed hazy and haze-free images at pixel x,

respectively. Note that in the conventional ASM, t(x) is defined as t(x) = e−βd(x),

where d(x) denotes the scene depth and the parameter β is a constant which controls

the thickness of haze. However, in our proposed modification to this model, the

parameter β is no longer assumed to be a constant. As shown in Figure 4.4, the

transmission t(x) is derived through a neural network. Using this method, it is possible

to derive the transmission even when the haze is non-homogeneous. An illustration of

learned transmission is shown in Figure 4.5. It is also worth emphasizing that one

purpose of adopting the ASM model for the hazy image reconstruction is to avoid a

trivial solution that the neural network can directly paste the input hazy image to

the output side, without processing the hazy and haze-free images together.

Since the neural network and ASM model are fully differentiable, we can optimize

the network on the combined domain using the loss (see Figure 4.4):
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Hazy Clear Transmission

Figure 4.5: Illustrations of learned transmission map.

Lrec(Î , I) = Lsmooth(Î , I) + γLPerc(Î , I), (4.4.3)

where I and Î denote the hazy and reconstructed hazy images, respectively.

Once the helper network is trained to converge, it is able to reconstruct the hazy

image by jointly employing hazy and haze-free images.

4.4.2 Dehazing Using Haze Reconstruction

During the test time, the dehazing network outputs a dehazed image Ĵ which might

be different from the ground truth haze-free image J . So, feeding Ĵ and I (the hazy

image) to the helper network as the inputs, it outputs a haze pattern which can result

in a defective reconstructed hazy image I+. And therefore, the corresponding loss

Lrec(I
+, I) is larger than Lrec(Î , I) where Î is the output of the helper network when

I and J (the hazy and haze-free images) are fed into it.

Inspired by this, we perform test-time training on the dehazing network to minimize

Lrec(I
+, I). Specifically, we update the dehazing network in few steps using Lrec(I

+, I)

by the following:
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θ̂d ← θd − λ1∇θdLRec(fθh(fθd(I), I), I), (4.4.4)

where λ1 denotes the learning rate. Here, θ̂d is the updated weights of the dehazing

model according to the reconstruction loss. Note that, the test-time training of the

dehazing network is purely self-supervised by using the hazy image I, i.e., it does not

require any manual labeling. Ideally, by minimizing Lrec(I
+, I), it can be expected

that the image Ĵ produced by the updated dehazing network gets closer to the ground

truth J over time. Therefore, we can finally produce improved dehazed images using

the updated θ̂d.

Despite the idea of developing the helper network to determine if the output

dehazing results are clean counterparts of input hazy images, one might have a question

that “is it true that the dehazing network can always benefit from the supervision

of the reconstruction loss?” Unfortunately, we will show in our ablation studies

at Section 4.5.5 that minimizing Lrec(I
+, I) is not always equivalent to minimizing

Ldehaze(Ĵ , J), which means that even if sometimes the dehazing network’s produced

output Ĵ steps far away from the ground truth J , it may be adopted by the helper

network to reconstruct a hazy image Î which is closer to I. The problem might be that

the two losses are not consistent with each other and they lack explicit connections.

4.4.3 Learning Meta-objective

Inspired by the recent meta-learning approach [23, 122], where the test-time training

is conducted via an auxiliary loss, we are further motivated to propose a meta-learning

method across models. The goal of the meta-training is to learn the dehazing model

parameters so that the dehazing loss is spontaneously minimized by optimizing the
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parameters based on the reconstruction loss.

Before the meta-training, we pre-train the dehazing and helper networks (θd and

θh). They are independently trained by Eq. (4.4.1) and Eq. (4.4.3), respectively.

Given a paired training data (Ii, Ji), we update the dehazing network using the

reconstruction loss as follows:

θ̂d = θd − λ1∇θdLrec(fθh(fθd(Ii), Ii), Ii) (4.4.5)

Intuitively, this update enables the dehazing network to produce results that can

be adopted by the helper network to get an improved reconstructed hazy image.

Considering the fact that we intend to use θ̂d to minimize the dehazing loss, we update

the dehazing network by encouraging the performance of dehazing network to be

maximized if the helper network can employ the dehazed image to get an improved

reconstructed hazy image.

To that end, our meta objective can be formally defined as:

arg min
θd

Ldehaze(fθ̂d(Ii), Ji). (4.4.6)

Note that the dehazing loss is computed using the dehazed image fθ̂d(Ii) produced

by updated dehazing network fθ̂d , while the optimization is performed on θd. Eq.

(4.4.6) can be achieved using the gradient descent as follows:

θd ← θd − λ2∇θdLdehaze(fθ̂d(Ii), Ji)
(4.4.7)

where λ2 denotes the learning rate. The overall meta-learning procedure is summarized

in the Algorithm. 1.
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Algorithm 1: Meta Training

Require : Pre-trained networks: fθd , gθh
Require : Learning rates λ1 and λ2
Output :Meta-learned model parameter θd

while not converge do
Sample a batch of training data in {Ii, Ji}Mi=1;
for each Ii do

Compute updated parameters θ̂d:
θ̂d = θd − λ1∇θdLrec(gθh(fθd(Ii), Ii), Ii)

Update:
θd ← θd − λ2∇θdLdehaze(fθ̂d(Ii), Ji)

Methods Indoor Outdoor O-Haze NH-Haze # Params Runtime (s)

GDN [76]
Single-domain 27.79/0.953 28.93/0.972 23.23/0.808 19.14/0.710 3.84M 0.028
Multi-domain 26.67/0.951 27.18/0.962 23.13/0.747 18.93/0.716 0.96M 0.028

Ours 26.83/0.952 27.26/0.961 23.21/0.747 19.04/0.716 1.34M 1.043

MSBDN [28]
Single-domain 28.89/0.956 30.76/0.977 24.95/0.824 19.82/0.747 12.56M 0.153
Multi-domain 28.53/0.961 30.31/0.973 23.97/0.764 19.51/0.725 3.14M 0.153

Ours 28.68/0.961 30.42/0.974 24.14/0.766 19.62/0.726 3.52M 1.828

DW-GAN [37]
Single-domain 29.65/0.963 31.75/0.978 24.50/0.793 21.83/0.769 206.04M 0.076
Multi-domain 28.84/0.941 31.21/0.974 24.02/0.789 20.44/0.763 51.51M 0.076

Ours 28.95/0.942 31.39/0.974 24.13/0.789 20.53/0.762 51.89M 1.621

Table 4.1: Quantitative comparison of the dehazing results on multiple datasets using
different training schemes. The term “single-domain” denotes that the method is

trained on a single dataset and evaluated on the relative one; the term “multi-domain”
represents that the network is trained using the combined dataset; the term “ours”

denotes the results adopting the proposed test-time training. Accuracies are
presented in the form of PSNR/SSIM.

Finally, after the meta-training, the updated dehazing and helper networks are

ready to use. We can follow the procedure in Section 4.4.2 to conduct the test-time

training.
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4.5 Experimental Results

4.5.1 Datasets and Evaluation Metrics

Our experiments are conducted on widely used dehazing datasets, including O-Haze

[7], NH-Haze [10] and RESIDE indoor/outdoor [68]. O-haze contains 40 image pairs,

where the first 35 pairs are used for the training and the rest 5 pairs are adopted

for the testing. NH-Haze consists of two variants that are released in 2020 and 2021.

We form our NH-Haze dataset by combining both of them. For NH-Haze 2020, we

adopt the official train, test split. As the validation and test data of NH-Haze 2021 is

not released publicly, we take the first 22 pairs for the training and the other 3 pairs

for the testing. Finally, our NH-Haze has a total of 67 training pairs and 8 testing

pairs. RESIDE dataset is a benchmark for single image dehazing. We follow DADN

[117] to form the training set by selecting 3000 indoor pairs and 3000 outdoor pairs

and cropping them to the size of 256× 256. For the testing, we adopt the Synthetic

Objective Testing Set (SOTS) of RESIDE. The quantitative evaluation metrics used

in this chapter are PSNR and SSIM [136].

4.5.2 Implementation details

We first pre-train the selected dehazing networks and our helper network on the

combined dataset, which consists of the aforementioned O-Haze, NH-Haze and RESIDE

indoor/outdoor datasets. The initial learning rate is set to 10−4 for the training of all

networks except the GridDehazeNet[76], which is set to 10−3. During the meta-training,

the learning rates λ1 and λ2 in Eq. (4.4.5) and (4.4.7) are fixed to be 1.25 × 10−5

and 2.5 × 10−5, respectively. The Adam optimizer[58] is used in both pre-training
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and meta-training with the default values of β1 = 0.9 and β2 = 0.99. In the test-time

training phase, we perform 5 gradient updates on each hazy image and report the

final accuracy. All our experiments are conducted on Nvidia V100 GPUs.

4.5.3 Degradation from Multi-domain Learning

As we denoted, a neural network trained on multiple domains is usually suboptimal

when tested on each individual domain. Here, we provide quantitative results to

investigate this phenomenon in single image dehazing. Our experiments are conducted

using three popular learning-based methods, i.e., GDN [76], MSBDN [28] and DW-

GAN [37]. To be specific, we first implement the single-domain training and testing,

where a dehazing network is trained on a single dataset and tested on the relative

one. Then, we take the same network to conduct the multi-domain learning, where

the dehazing network is trained on the combined dataset that consists of all datasets

introduced in Section 4.5.1. The results of the single-domain learning and multi-domain

learning are shown in Table 4.1 denoted by “single-domain” and “multi-domain”. It

can be observed that both PSNR and SSIM of the multi-domain learned method

are smaller than that of the single-domain learned. This fact indicates that simply

collecting data for the dataset augmentation is not always useful.

4.5.4 Test-time Training on the State-of-the-art

To illustrate the effectiveness of our proposed method, we conduct quantitative and

qualitative experiments using GDN [76], MSBDN [28] and DW-GAN [37] as the

dehazing network. The experiments aim to show that our helper network can be

helpful in boosting the performance of the existing approaches. Note that, our method
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is employed for the dehazing networks trained on multiple domains.

Quantitative Improvements: Table 4.1 summarizes the PSNR and SSIM measures

on all four datasets. The performance of a dehazing network using our proposed test-

time training is reported under the term “ours”. Thanks to different structures of the

three networks, we can observe variations in the improvement of PSNR. For example,

in the indoor testing set, our method can improve the PSNR of multi-domain learned

GDN by 0.16dB, and improvements can be observed for MSBDN and DW-GAN,

where the PSNR is increased by 0.15dB and 0.11dB, respectively. It can be easily

checked throughout the table that our proposed test-time training can always improve

the performance of the network trained on multiple domains. This further indicates

the judicious model-agnostic property of our proposed test-time training method.

Qualitative Improvements: Figure 4.6 presents the dehazing results on O-HAZE

and NH-HAZE. Here, we unfold the test-training process to provide a better under-

standing of our method. There are multiple problems shown in the initial results that

can be fixed by conducting the proposed test-time training. In the first and second

rows of Figure 4.6, we can notice that severe artifacts are added to the sky region of

the dehazed images. Surprisingly, these artifacts can be removed gradually by few

gradient updates. In the third and last rows, the results before updates are still hazy.

However, our method is able to remove the haze from the initial results. Finally, other

instances of color distortion are shown in the fourth and fifth rows, where after 5

updates, the dehazing network can produce more elegant images.

Algorithm Efficiency: Here, we investigate the efficiency of the proposed method

in terms of the number of parameters. The last column of Table 4.1 reports the

number of parameters that is required to dehaze on four domains. Thanks to the
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Figure 4.6: Qualitative results on O-Haze and NH-Haze datasets. The image samples
of the first three rows are from O-Haze, and the others are from NH-Haze. After few
gradient updates, the proposed test-time training can improve the image quality.

lightweight design of our helper network, by integrating our method with the current

dehazing networks, the total number of parameters is still comparable to that of

a single dehazing network. Especially when our method uses DW-GAN, there is a

negligible increase in the number of parameters, however the PSNR is boosted by an

average of 0.12dB. Moreover, considering the fact that we have four domains, if a model

is separately trained on each domain, the deployment of four models is extremely

memory-consuming as four collections of parameters need to be stored; this fact can

be verified by observing the total number parameters for “signal-domain” in Table

4.1. However, we also find that using test-time training is slower than its one-shot
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Methods Indoor Outdoor O-Haze NH-Haze
GDN 26.67/0.951 27.18/0.962 23.13/0.747 18.93/0.716
(a) 26.69/0.950 27.16/0.961 22.89/0.743 18.65/0.712
(b) 26.71/0.951 27.19/0.962 22.94/0.745 18.71/0.713
(c) 26.83/0.952 27.26/0.961 23.21/0.747 19.04/0.716

Table 4.2: Ablation studies on our method. Numbers are presented in the form of
PSNR/SSIM. (a), (b) and (c) denote three different methods introduced in Section

4.5.5

inference counterpart. This issue can be alleviated via a more efficient implementation

of test-time training.

4.5.5 Ablation Studies

All our ablation studies are conducted using GDN [76] (baseline). In order to illustrate

the effectiveness of the meta-learning approach, we then introduce three experimental

setting to reveal this fact. They are presented as the following: (a) GDN+Helper:

where the helper network is directly used to provide the test-time supervision; (b)

GDN+Helper+joint-training: the training of GDN simultaneously employs both

Eq. (4.4.1) and Eq. (4.4.3) as the loss function, i.e., the GDN is optimized in

a manner such that both dehazing and hazy reconstruction losses are minimized;

(c) GDN+Helper+meta-learning: where we use our proposed method. The

quantitative results of the three methods are presented in Table 4.2. It can be

observed that without meta-training to associate the objectives of dehazing and helper

networks, the helper network cannot assist the dehazing network to further converge

on an unseen image.
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Figure 4.7: Comparison of the dehazing methods on real hazy images from fattal et.al.
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Figure 4.8: Breakdown of dehazing on a real hazy image.

4.5.6 Out-of-domain Validation on Real Scenes

For the above experiments, we assume that the hazy and haze-free images are from the

same domain, while ignoring the out-of-domain (OOD) problem. Here, we take the

real data as an example to validate the domain generalization ability of our proposed
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method. To conduct comparison, we choose four state-of-the-art single image dehazing

algorithms, i.e., DCP [48], DehazeNet [17], DADN [117] and AECR-NET[139]. Note

that, the training of these methods follows a common setting to use RESIDE indoor

and outdoor datasets. In addition, GDN [76] is trained using the combined dataset as

mentioned in Section 4.5.1.

There are two notes that should be mentioned, see Figure. 4.7. First, since GDN

is trained on the combined dataset (including O-HAZE and NH-Haze datasets), its

dehazed images are usually cleaner and visually pleasing. For example, the third row

shows a mountain covered by haze. Here, GDN completely removes the haze from

the mountain, while others cannot remove the haze effectively and suffer from color

distortion. Despite this success, GDN also generates severe artifacts in the sky region.

This reminds us that although multi-domain learning is beneficial in some places but it

still needs further research to be employed for removing haze from all kinds of scenes.

Second, comparing our outputs (GDN+Our) with those of vanilla GDN, it can be

easily observed that the artifacts are gone and our dehazed images look more natural.

Another example is in the last row, where GDN paints the mountains to be yellow,

while our result presents a more natural color. Besides, Figure 4.8 gives a breakdown

of dehazing on a real image that is presented in the second row of Figure 4.7. We

can observe that the reconstructed hazy image reveals the potential issues with the

dehazed image. By minimizing the hazy reconstruction loss at test time, the dehazed

results and hazy reconstructions are improved simultaneously.
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4.6 Conclusion

In this chapter, we reveal a critical problem that has not been considered in single

image dehazing, that is, a dehazing network trained on multiple domains can perform

worse than that trained only on a single domain. Based on this observation, we

formulate the problem into a multi-domain learning setup, where a single model

should be designed carefully to perform well on multiple domains. To address this

issue, we propose a helper network to provide self-supervision to the dehazing network

and improve its performance during the test time. A meta-learning approach has also

been introduced to handle the problem that the supervision signal from the helper

network cannot always help the dehazing network to gain an improved performance.

Extensive experiments and analyses strongly support both our observation and the

proposed method.
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Chapter 5

Lossy Compression with

Distribution Shift as Entropy

Constrained Optimal Transport

5.1 Abstract

We study an extension of lossy compression where the reconstruction distribution

is different from the source distribution in order to account for distributional shift

due to processing. We formulate this as a generalization of optimal transport with

an entropy bottleneck to account for the rate constraint due to compression. We

provide expressions for the tradeoff between compression rate and the achievable

distortion with and without shared common randomness between the encoder and

decoder. demonstrate We study the examples of binary, uniform and Gaussian sources

(in an asymptotic setting) in detail and demonstrate that shared randomness can
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strictly improve the tradeoff. For the case without common randomness and squared-

Euclidean distortion, we show that the optimal solution partially decouples into the

problem of optimal compression and transport and also characterize the penalty

associated with fully decoupling them. We provide experimental results by training

deep learning end-to-end compression systems for performing denoising on SVHN and

super-resolution on MNIST, and demonstrate consistency with our theoretical results.

5.2 Introduction

Using deep neural networks for lossy image compression has proven to be effective, with

rate-distortion performance capable of dominating general-purpose image codecs like

JPEG, WebP or BPG [1, 84, 109]. More recently, many of these works have included

generative aspects within the compression to synthesize realistic elements when the

rate is otherwise too low to represent fine-grained details [2, 85, 128]. Though this has

been found to deteriorate rate-distortion performance, it has generally resulted in more

perceptually-pleasing image reconstruction by reducing artifacts such as pixelation

and blur. Using a distributional constraint as a proxy for perceptual measure, several

works have subsequently formalized this in a mathematical framework known as the

rate-distortion-perception tradeoff [15, 16, 80, 81, 127, 144, 148]. As is conventional

in lossy compression, these works address the scenario in which both low distortion,

whereby each individual image reconstruction resembles the ground truth image, and

closeness in distribution in which it is not easy to discriminate between image samples

from the data-generating distribution and reconstruction distribution, are desirable.

The underlying ideal in conventional compression systems is to have perfect

reconstruction with respect to some ground truth input. However this is not the case
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in applications such as denoising, deblurring, or super-resolution (SR), which require

restoration from a degraded input image. In fact, in these cases a ground truth may

not even be available. In such applications naturally the reconstruction distribution

must match the original source rather than the degraded input distribution. A large

body of literature has been devoted to various image restoration tasks, including

several methods based on deep learning including both supervised (e.g., [15]) and

unsupervised learning methods (e.g., [134]). Although most of the literature exclusively

treats compression and restoration separately, in many application they can co-occur.

For example, the encoder which records a degraded image may not be co-located

with the decoder, but must transmit a compressed version of the image over a digital

network. In turn, the decoder must perform both decompression and restoration

simultaneously.

To that end, we study an extension of lossy compression in which the reconstruction

distribution is different than the source distribution to account for distributional shift

due to processing. The problem can be described as a transformation from some source

domain to a new target domain under a rate constraint, which generalizes optimal

transport. This readily extends other works which view image restoration under the

perception-distortion tradeoff [15] or under optimal transport [134]. It also provides a

generalization of the rate-distortion-perception problem [16] where the reconstruction

distribution must be close to the input distribution. Following [126, 127], we also

utilize common randomness as a tool for compression in our setting. Our results are

summarized as follows:

• We provide a formulation of lossy compression with distribution shift as a general-

ization of optimal transport with an entropy constraint and identify the tradeoff
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between the compression rate and minimum achievable distortion both with and

without common randomness at the encoder and decoder. We identify conditions

under which the structure of the optimal solution partially decouples the problems

of compression and transport, and discuss their architectural implications. We study

the examples of binary, uniform and Gaussian sources (in asymptotic regime) in

detail and demonstrate the utility of our theoretical bounds.

• We train deep learning end-to-end compression systems for performing super-

resolution on MNIST and denoising on SVHN. Our setup is unsupervised and to the

best of our knowledge the first to integrate both compression and restoration at once

using deep learning. We first demonstrate that by having common randomness at

the encoder and decoder the achievable distortion-rate tradeoffs are lower than when

such randomness is not present. Furthermore, we provide experimental validation

of the architectural principle suggested by our theoretical analysis.

5.3 Theoretical Formulation

We consider a setting where an input X ∼ pX is observed at the encoder, which is a

degraded (e.g., noisy, lower resolution, etc) version of the original source. It must be

restored to an output Y ∼ pY at the decoder, where pY denotes the target distribution

of interest. For example, if X denotes a noise-corrupted image and Y denotes the

associated clear reconstruction, then pY can be selected to match the distribution

of the original source. We will assume pX and pY are probability distributions over

X ,Y ⊆ Rn and require X and Y to be close with respect to some fidelity metric,

which will be measured using a non-negative cost function d(x, y) over X × Y. We

will refer to d(·, ·) as the distortion measure and assume that it satisfies d(x, y) = 0
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if and only if x = y. We further assume that X cannot be directly revealed to the

decoder, but instead must be transmitted over a bit interface with an average rate

constraint. Such a scenario occurs naturally in many practical systems when the

encoder and decoder are not co-located such as communication systems or storage

systems. As one potential application, when aerial photographs are produced for

remote sensing purposes, blurs are introduced by atmospheric turbulence, aberrations

in the optical system and relative motion between camera and ground. In such

scenarios unsupervised restoration is preferred as it is often intractable to accurately

model such degradation processes and collection of paired training data can be time

consuming or require significant human intervention. Unsupervised image restoration

has been studied recently in [83, 93, 134, 151]. These works also fix the reconstruction

distribution Y ∼ pY and propose to minimize a distortion metric between the output

and the degraded input as in our present work, but do not consider compression.

5.3.1 Optimal Transport and Extensions

Definition 1 (Optimal Transport). Let Γ(pX , pY ) be the set of all joint distributions

pX,Y with marginals pX and pY . The classical optimal transport problem is defined as

D(pX , pY ) = inf
pX,Y ∈Γ(pX ,pY )

d(X, Y ), (5.3.1)

where we refer to each pX,Y ∈ Γ(pX , pY ) as a transport plan.

Operationally the optimal transport plan in (5.3.1) minimizes the average distortion

between the input and output while keeping the output distribution fixed to pY . This

may generate a transport plan with potentially unbounded entropy, which may not
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be amenable in a rate-constrained setting. We therefore suggest a generalization to

Definition 1 which constrains the entropy of the transport plan. It turns out that

having common randomness at the encoder and decoder can help in this setting, so

we will distinguish between when it is available and unavailable.

Definition 2 (Optimal Transport with Entropy Bottleneck — no Common Ran-

domness). Let Mncr(pX , pY ) denote the set of joint distributions pX,Z,Y compatible

with the given marginal distributions pX , pY satisfying pX,Z,Y = pXpZ|XpY |Z. The

optimal transport from pX to pY with an entropy bottleneck of R and without common

randomness is defined as

Dncr(pX , pY , R) ≜ inf
pX,Z,Y ∈Mncr(pX ,pY )

E[d(X, Y )]

s.t. H(Z) ≤ R,

(5.3.2)

where H(·) denotes the Shannon entropy of a random variable.

We note that when the rate constraint R is sufficiently large such that one can

select Z = X or Z = Y in (5.3.2), then Dncr(pX , pY , R) = D(pX , pY ) in (5.3.1).

More generally, D(pX , pY ) serves as a lower bound for Dncr(pX , pY , R) for any R > 0.

Definition 2 also has a natural operational interpretation in our setting. We can

view the encoder as implementing the conditional distribution pZ|X to output a

representation Z given the input X, and the decoder as implementing the conditional

distribution pY |Z to output the reconstruction Y given the representation Z. The

entropy constraint H(Z) ≤ R essentially guarantees that the representation Z can be

losslessly transmitted at a rate close to R1.

1The source coding theorem guarantees that any discrete random variable Z can be losslessly
compressed using a variable length code with average length of no more than H(Z) + 1 bits.
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X

X̂
      

Y

Ŷ       

Figure 5.1: Illustration of Theorem 1 (no common randomness). Given source
distribution pX , target reconstruction distribution pY and rate R, we can find

quantizations X̂ of X and Ŷ of Y and consider transport between them.

It turns out that when we specialize to the squared Euclidean distance, we can

without loss of optimality impose a more structured architecture for implementing the

encoder and the decoder. Let W 2
2 (·, ·) be the squared quadratic Wasserstein distance,

by setting d(X, Y ) = ||X − Y ||2 in Definition 1.

Theorem 1. Let

Dmse(pX , pY , R) ≜ inf
pX̂|X ,pŶ |Y

E[∥X − X̂∥2] + E[∥Y − Ŷ ∥2] +W 2
2 (pX̂ , pŶ )

s.t. E[X|X̂] = X̂, E[Y |Ŷ ] = Ŷ , H(X̂) ≤ R, H(Ŷ ) ≤ R,

(5.3.3)

and

Dmse(pX , R) ≜ inf
pX̂|X

E[∥X − X̂∥2]

s.t. H(X̂) ≤ R.

(5.3.4)
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Moreover, let

Dncr(pX , pY , R) ≜ Dmse(pX , R) +Dmse(pY , R) +W 2
2 (pX̂∗ , pŶ ∗), (5.3.5)

Dncr(pX , pY , R) ≜ Dmse(pX , R) +Dmse(pY , R), (5.3.6)

where pX̂∗ and pŶ ∗ are the marginal distributions induced by the minimizers pX̂∗|X and

pŶ ∗|Y that attain Dmse(pX , R) and Dmse(pY , R), respectively (assuming the existence

of such minimizers). Then under the squared Eucledian distortion measure,

Dncr(pX , pY , R) = Dmse(pX , pY , R). (5.3.7)

In addition, we have

Dncr(pX , pY , R) ≥ Dncr(pX , pY , R) ≥ Dncr(pX , pY , R), (5.3.8)

and both inequalities are tight when pX = pY .

Theorem 1 deconstructs Z into the quantizations X̂ of X and Ŷ of Y , and

decomposes the overall distortion in (5.3.2) in terms of the losses due to quantization,

transport, and dequantization in (5.3.3). It also suggests a natural architecture that

partially decouples compression and transport without loss of optimality. First, the

sender uses the distribution pX̂|X to produce the compressed representation X̂ from

X. This is then passed through a “converter” pŶ |X̂ to transform X̂ to an optimal

representation Ŷ of Y . Finally, the receiver maps Ŷ back to Y using the conditional

distribution pY |Ŷ . This is illustrated in Figure 5.1. The entropy constraint H(X̂) ≤ R

in (5.3.2) essentially guarantees that X̂ can be losslessly transmitted to the decoder
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where the converter can be applied to map X̂ to Ŷ before outputting Y . Alternately

the constraint H(Ŷ ) ≤ R guarantees that the converter could also be implemented at

the encoder and then Ŷ can be compressed and transmitted to the decoder. Finally

note that our proposed architecture is symmetric2 with respect to the encoder and

the decoder and in particular the procedure to transport Y to X would simply be the

inverse of transporting X to Y , and indeed the distortion incurred by dequantizing

pY |Ŷ is the same as the distortion incurred by quantizing pŶ |Y .

For the special case of same source and target distribution, we haveDmse(pX , pX , R) =

2Dmse(pX , R), implying that the rate required to achieve distortion D under no output

distribution constraint (and with the output alphabet relaxed to Rn) achieves distor-

tion 2D under the constraint that Y equals X in distribution. This recovers the result

of Theorem 2 in [144] for the one-shot setting. More generally, (5.3.8) shows that

we may lower bound Dmse(pX , pY , R) by the distortion incurred when compressing

X and Y individually, each at rate R, through ignoring the cost of transport. On

the other hand, the upper bound corresponds to choosing the optimal rate-distortion

representations X̂∗, Ŷ ∗ for X, Y , then considering transport between them. The ad-

vantage of this approach is that knowledge of the other respective distribution is not

necessary for design. Although not optimal in general, we will, in fact, provide an

example where this is optimal in Section 5.3.2.

Finally, the following result implies that under mild regularity conditions, the

optimal converter pŶ |X̂ can be realized as a (deterministic) bijection, and in the scalar

case it can basically only take the form as illustrated in Figure 5.1.

2We say that the problem is symmetric if it is invariant under reversing pX , pY with a new
distortion measure defined by reversing the arguments of d(·, ·).
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Theorem 2. Assume that Dncr(pX , pY , R) is a strictly decreasing function in a neigh-

borhood of R = R∗ and Dncr(pX , pY , R
∗) is attained by pX,Z,Y . Let X̂ ≜ E[X|Z] and

Ŷ ≜ E[Y |Z]. Then

H(X̂) = H(Ŷ ) = R∗, (5.3.9)

E[∥X̂ − Ŷ ∥2] = W 2
2 (pX̂ , pŶ ), (5.3.10)

and there is a bijection between X̂ and Ŷ .

We remark that in general computing the optimal transport map is not straight-

forward. For the case of binary sources we can compute an exact characterization

for Dncr as discussed in Section 5.3.2. Furthermore as discussed in Appendix A.1.6,

W 2
2 (pX̂ , pŶ ) can be computed in closed form when X̂ and Ŷ are scalar valued, which

can be used to obtain upper bounds on Dncr. In our experimental results in Section 5.4

we use deep learning based methods to learn approximately optimal mappings.

So far we have focused on the setting when there is no shared common randomness

between the encoder and the decoder. We will now consider the setting when a

shared random variable denoted by U is present at the encoder and decoder. We

assume that the variable U is independent of the input X so that the decoder has

no apriori information of the input. In practice the sender and receiver can agree on

a pseudo-random number generator ahead of time and some kind of seed could be

transmitted, after which both sides can generate the same U . We further discuss how

shared randomness is used in practice in the experimental section.

Definition 3 (Optimal Transport with Entropy Bottleneck — with Common Random-

ness). Let Mcr(pX , pY ) denote the set of joint distributions pU,X,Z,Y compatible with
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X pZ|X Z pY |Z Y

pŶ |X̂X̂
pX̂|XX Ŷ

pY |Ŷ Y

X pZ|X,U Z pY |Z,U Y

U

pY |X,UX Y

U

No common randomness With common randomness

Figure 5.2: Architectures. Top left: Definition 2. Bottom left: Theorem 1. Top right:
Definition 3. Bottom right: Theorem 3. Entropy coding of intermediate

representations Z, X̂, Ŷ is not shown. For Theorem 3, the division between sender
and receiver is across an encoder C = f(X,U) and decoder Y = g(C,U) performing

entropy coding along pY |X,U .

the given marginal distributions pX , pY and satisfying pU,X,Z,Y = pUpXpZ|X,UpY |Z,U ,

where pU represents the distribution of shared randomness. The optimal transport

from pX to pY with entropy bottleneck R and common randomness is defined as

Dcr(pX , pY , R) ≜ inf
pU,X,Z,Y ∈Mcr(pX ,pY )

E[d(X, Y )]

s.t. H(Z|U) ≤ R.

(5.3.11)

Note that we optimize over pU (the distribution associated with shared random-

ness), in addition to pZ|X,U and pY |Z,U in (5.3.11). Furthermore, Dcr(pX , pY , R) ≤

Dncr(pX , pY , R) in general, as we do not have access to shared randomness in Defini-

tion 2. Also from the same argument that was made following Definition 2, we have

that Dcr(pX , pY , R) ≥ D(pX , pY ) in Definition 1. As with Definition 2, we can also

provide a natural operational interpretation. In particular, given the input X and

common randomness U the encoder can output a compressed representation Z using

the conditional distribution pZ|X,U . The representation Z can be losslessly compressed

approximately to an average rate of R again by exploiting the shared randomness

U . Finally the decoder, given Z and U can output the reconstruction Y using the
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conditional distribution pY |Z,U . An interesting difference with Definition 2 is that the

setup is no longer symmetric between encoder and decoder, as X is independent of

U but Y is not. The following result provides a simplification to the architecture in

Definition 3.

Theorem 3. Let Qcr(pX , pY ) denote the set of joint distributions pU,X,Y compatible with

the given marginals pX , pY satisfying pU,X,Y = pUpXpY |U,X as well as H(Y |U,X) = 0.

Then

Dcr(pX , pY , R) = inf
pU,X,Y ∈Qcr(pX ,pY )

E[d(X, Y )]

s.t. H(Y |U) ≤ R.

(5.3.12)

Before discussing the implications of Theorem 3 we remark on a technical point.

Because the Shannon entropy is defined only for discrete random variables, U must

be chosen in a way such that Y |U = u is discrete for each u, even for continuous

(X, Y ). This is known to be possible, e.g., [70] have provided a general construction

for a U with this property, with additional quantitative guarantees to ensure that

U is informative of Y . In the finite alphabet case we show in Appendix A.1.3 that

optimization of U can be formulated as a linear program.

We next discuss the implication of Theorem 3. First note that the problem can

be modelled with only pY |U,X producing a reconstruction Y without the need for

the intermediate representation Z, much like the conventional optimal transport in

Definition 1. The condition H(Y |U,X) = 0 also implies that the transport plan

is deterministic when conditioned on the shared randomness, which plays the role

of stochasticity. Furthermore in this architecture the encoder should compute the

representation Y given the source X and the shared random-variable U (which

corresponds to the transport problem) and then compress it losslessly at a rate close
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(a) (b)

(c)

Figure 5.3: Binary case distortion-rate tradeoffs. (a) qX = qY = 0.3, where
Dncr(B(qX),B(qY ), R) and Dncr(B(qX),B(qY ), R) coincide with

Dncr(B(qX),B(qY ), R); (b) qX = 0.3, qY = 0.5, where Dncr(B(qX),B(qY ), R) is tight
but Dncr(B(qX),B(qY ), R) is loose; (b) qX = 0.3, qY = 0.6, where both bounds are

loose. Moreover, it can be seen from all these examples that common randomness can
indeed help improve the distortion-rate tradeoff.

to H(Y |U) (which corresponds to the compression problem). The receiver only needs

to decompress and reconstruct Y . This is in contrast to the case without common

randomness in Theorem 1 where the reconstruction Y must be generated at the

decoder.
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5.3.2 Numerical Examples

We present how the results in Theorem 1 & 3 can be evaluated for some specific

source models. We first consider the example of Binary sources. Let X ∼ B(qX) and

Y ∼ B(qY ) be two Bernoulli random variables with qX , qY ∈ (0, 1), and let d(·, ·) be

the Hamming distortion measure dH(·, ·) (i.e., dH(x, y) = 0 if x = y and dH(x, y) = 1

otherwise), which coincides with the squared error distortion in Theorem 1 for binary

variables. The explicit expressions of Dcr(B(qX),B(qY ), R), Dncr(B(qX),B(qY ), R) as

well as Dncr(B(qX),B(qY ), R) and Dncr(B(qX),B(qY ), R) are provided by Theorem 4

in Appendix A.1.4, from which the following observations can be made. In general, we

have Dncr(B(qX),B(qY ), R) > Dcr(B(qX),B(qY ), R), i.e., common randomness strictly

improves the distortion-rate tradeoff (except at some extreme point(s)). Moreover, as

long as B(qX) and B(qY ) are biased toward the same symbol (namely, qX , qY ≤ 1/2

or qX , qY ≥ 1/2), the upper bound Dncr(B(qX),B(qY ), R) is tight, which implies that

blindly using optimal quantizer and dequantizer in the conventional rate-distortion

sense incurs no penalty, and the cross-domain knowledge is only needed for optimal

transport from the quantizer output and the dequantizer input. Some illustrative

examples are shown in Figure 5.3.

In Appendix A.1.6 we consider the case when X and Y are continuous valued

sources from a uniform distribution and establish an upper bound on Dncr(·) that is

shown to be tight as the rate R→∞. For Gaussian distributions in the asymptotic

optimal transport setting (see Appendix A.1.7 for relevant definitions and results) we

present results qualitatively similar to the binary case in Appendix A.1.8.
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5.4 Experimental Results

We use two sets of results to illustrate that the principles derived from our theoretical

results are applicable to practical compression with deep learning. Importantly, we

assume an unsupervised setting in which we have only unpaired noisy and clean images

available to us, as in [134]. Our first experiment is, to the best of our knowledge, the

first in which restoration and compression are performed jointly using deep learning.

We will furthermore demonstrate the utility of common randomness in this setting.

Stochasticity was necessary in our theoretical results both with and without common

randomness. In practice, we will use generative models to induce domain shift, and

stochasticity is necessary to train an effective (rate-constrained) generative model

at low rates to produce variety in the reconstructions. The first set of experiments

compare the rate-distortion tradeoffs achieved by quantization schemes with and

without common randomness using a rate constrained architecture designed for image

denoising and super resolution tasks.

The second set of experiments are designed on the principle of Theorem 1. In

addition to the generator trained from our first experiment, we will construct a helper

network to allow us to estimate the decomposition (5.3.3). This is then compared with

the direct loss between the noisy image and rate-constrained denoising reconstruction.

If the losses are close, this would suggest that the decomposition is not only without

loss of optimality but also effective in practice.
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Figure 5.4: Illustration of our experimental setup. (a) shows the end-to-end learning
system with common randomness, where the encoder and decoder have access to the
same randomness u. (b) presents the network setup for verifying the architecture

principle given in Theorem 1.

5.4.1 Rate-Distortion Comparison with Common Random-

ness

Let pX be a degraded source distribution that we wish to restore and pY be the

target distribution. Our goal is to compress X so that the reconstruction semantically

resembles X within target distribution pY . For our application, we will use MSE loss

as a fidelity criterion. Let f be an encoder, Q a quantizer, and g a decoder. For a

given rate R with common randomness U available, we have a problem of the form

min
f,g,Q

∥X − g(Q(f(X,U)))∥22

s.t. pg(Q(f(X,U))) = pY , H(Q(f(X,U))|U) ≤ R,

which uses parameterized neural networks to implement (5.3.11). We also fix Q such

that a hard constraint on the rate is satisfied and assume f and g are sufficiently
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expressive to map to these fixed quantization points. Let Ỹ
∆
= g(Q(f(X,U)), U). We

will use a penalty on the Wasserstein-1 distance between pỸ and pY in accordance

with the Wasserstein GAN [11] framework, so that our system is a stochastic rate-

constrained autoencoder with GAN regularization. Specifically, we follow the network

shown in Figure 5.4(a) which in addition to f , Q, and g contains critic h.

For the realization of common randomness in Definition 3, we adopt the universal

quantization scheme of [126, 162]. Given trained f and g and degraded image X, we

generate restored image Ỹ through

Ỹ = g(Q(f(X) + U)− U), (5.4.1)

where U is the stochastic noise shared by the sender and receiver. Details about the

quantization are provided in Appendix A.2.2. To find an appropriate f and g, we use

the relaxed objective

L1 = E[∥X − Ỹ ∥2] + λW1(pY , pỸ ), (5.4.2)

which is the sum of the MSE and Wasserstein-1 losses weighted by λ. By optimizing our

network using this objective, we see two favorable properties. First, the Wasserstein-1

loss ensures the distribution of output is close to that of target images, i.e. pỸ ≈ pY

for sufficiently large λ. Moreover, the MSE loss that pushes the output Ỹ to input X

ensures that the output structurally resembles X. Consequently, the training objective

allows the output Ỹ to be clear and preserves content from input.

To generate a rate-distortion trade-off curve, we modify the encoder to produce a

different number of symbols ranging from low bit rate to high bit rate and record the
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MSE distortion loss between noisy inputs and denoised outputs. Figure 5.5(a) and

Figure 5.5(c) show the curves for image super-resolution and image denoising. We

also show some qualitative results in Figure 5.5(b) and 5.5(d). As the rate increases,

the generated high-quality images are clearer.

As exemplified by the numerical results in Section 5.3.2, common randomness

can help reduce the rate that is needed for reconstruction given a specific distortion.

Equivalently, given a fixed rate, a system with common randomness can perform

better than one without common randomness. To demonstrate this in practice, we

conduct the following experiment. We remove the common randomness setup from the

framework in Section 5.4.1 and alternatively add two independent noises U1 and U2

to the encoder and decoder sides. Concretely, under the new setting, (5.4.1) becomes

Ỹ = g(Q(f(X) + U1)− U2) (5.4.3)

Then we conduct training using the objective (5.4.2) as in the common randomness.

The tradeoff curve without common randomness for both tasks are shown in Figure

5.5(a) and 5.5(c) with orange dots. Performance of the framework is better when

there is common randomness.

5.4.2 Architectural Principle

In the case without common randomness, Theorem 1 implies that (under the rate

constraint) the overall distortion E[∥X − Y ∥2] can be decomposed to the summation

of the three distortion terms

E[∥X − Y ∥2] = E[∥X − X̂∥2] + E[∥Y − Ŷ ∥2] +W 2
2 (pX̂ , pŶ ), (5.4.4)
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(a)

Low-Res

GT

R = 4 R = 8 R = 12

R = 16 R = 20 R = 24

(b)

(c)

Noisy

Clear

R = 6 R = 24 R = 42

R = 60 R = 78 R = 96

(d)

Figure 5.5: (a)(b) The experimental results of 4 times image super-resolution. (c)(d)
The experimental results of image denoising. The noise pattern is synthesized by
additive Gaussian noise with standard deviation set to 20. (a)(c) Rate-distortion
trade-offs. Blue points are the MSE distortion loss for a particular rate under the

setting of using common randomness, while orange points illustrate the same trade-off
without using common randomness. For both tasks, at any rate, the performance of
using common randomness is better than the case without common randomness.
(b)(d) Examples for outputs from several models with different rates. As the rate

increases, the outputs become clearer.

where X̂ and Ŷ are some representations ofX and Y under MSE distortion. The chosen

rate-distortion representations X̂ for X and Ŷ for Y must not only be representative

of X and Y , but also enjoy low cost of transport between one another. We now seek
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to estimate the overhead of this decomposition in practice.

However, due to the nature of the deep learning framework, the distortion measure

between images and compressed representations cannot be explicitly measured. Thus,

we alternatively develop a two-branch network to compare the summation of the

three distortion components (5.4.4) to the overall distortion. First, we take trained f

and g from the previous experiment and freeze their weights. Given noisy input X,

we encode it through f , then decoder g1 is trained to minimize the distortion with

X, and decoder g2 is trained to minimize the distortion with Ỹ = f(g(X)) which

distributionally approximates a clean restoration (we use Ỹ instead of ground truth

because we assume an unsupervised setting). Let

Ỹ1 = g1(f(X)), Ỹ2 = g2(f(X)).

The idea here is that Ỹ1 is a rate-constrained reconstruction of X and Ỹ2 is a rate-

constrained reconstruction of Ỹ , both of which are produced from compressing X

using f . We assume this is reasonable as in light of Theorem 2, there is no loss

of optimality in doing so given sufficiently expressive neural networks. The overall

decomposed loss is then given by

L2 = E[∥X − Ỹ1∥2]︸ ︷︷ ︸
(a)

+E[∥Ỹ − Ỹ2∥2]︸ ︷︷ ︸
(b)

+E[∥Ỹ1 − Ỹ2∥2]︸ ︷︷ ︸
(c)

, (5.4.5)

in which Ỹ1 approximates X̂ and Ỹ2 approximates Ŷ . Training is performed jointly

over g1 and g2.

One additional point is that g1 and g2 can also be trained separately, although in

this case we can no longer assume that f can be reused without loss of optimality,
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Table 5.1: Results of architecture principle in Theorem 1. The end-to-end loss and
decomposed loss are very close for different rates.

Super-resolution Denoising

Rate 4 10 20 30 12 30 60 90
End-to-end Loss 0.0558 0.0435 0.0351 0.0308 0.0230 0.0175 0.0140 0.0123
Decomposed Loss 0.0586 0.0453 0.0349 0.0309 0.0243 0.0192 0.0158 0.0139

as this objective would not be equivalent to minimizing (5.4.5) (there is no control

over (c)). We develop an additional experiment in which we optimize encoder-decoder

pairs f1, g1 to minimize (a) and f2, g2 to minimize (b), where now Ỹ1 is produced using

f1, g1 and Ỹ2 using f2, g2. In this setting, we aim to approximate the rate-distortion

optimal X̃∗ and Ỹ ∗ corresponding to Dncr(pX , pY , ·) from Theorem 1 using Ỹ1 and Ỹ2,

and in doing this separate optimization it is clear that we will drive down (a) and (b)

but increase (c). As it turns out, the resultant values (a) and (b) obtained during

joint optimization are not much worse than the values from separate optimization.

This provides evidence that in practice, the optimal rate-distortion representations

(i.e. under objective (5.3.4)) can be leveraged for the general objective (5.4.5) without

much loss of optimality, which further suggests that the encoder f1 can be potentially

trained without knowledge of pY without much performance loss. These can be viewed

in Table 5.2.

5.5 Related Works

Sinkhorn distances [25] are a formulation of optimal transport with a penalty term

corresponding to the mutual information between the source and target distributions.

This has been studied in information theory literature (e.g. [13, 132]). For source

coding in particular, [113, 114] consider common randomness with constrained output
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Table 5.2: Comparison of separate vs. joint training for (5.4.5). See the above
paragraph for explanation.

Super-resolution

Rate 4 10 20 30

Method Joint Separate Joint Separate Joint Separate Joint Separate

E[∥X − Ỹ1∥2] 0.0355 0.0356 0.0223 0.0214 0.0136 0.0113 0.0092 0.0083

E[∥Ỹ − Ỹ2∥2] 0.0227 0.0216 0.0222 0.0206 0.0191 0.0191 0.0172 0.0155

Denoising

Rate 12 30 60 90

Method Joint Separate Joint Separate Joint Separate Joint Separate

E[∥X − Ỹ1∥2] 0.0191 0.0190 0.0146 0.0145 0.0117 0.0123 0.0104 0.0107

E[∥Ỹ − Ỹ2∥2] 0.0050 0.0046 0.0044 0.0040 0.0038 0.0035 0.0032 0.0030

distribution. [15] evaluated a number of deep image restoration techniques and

somewhat counter-intuitively demonstrated a tradeoff between optimizing for distortion

and “perceptual quality”, i.e. realism. This is explained by the fact that the output

of the conventional rate-distortion objective can differ significantly from the source

distribution. [134] model the shift in distribution due to degradation as an optimal

transport problem. However this work does not consider compression and their

results are qualitatively different from ours. Meanwhile, output-constrained lossy

compression has also been shown to improve perceptual quality [128], leading to the

rate-distortion-perception framework [16].

5.6 Conclusion

We consider the setting of lossy compression in which we compress across different

source and target distributions. We formulate this as an entropy-constrained optimal

transport problem and provide expressions for characterizing the tradeoff between

compression rate and the minimum achievable distortion with and without shared
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common randomness. We also develop a number of architectural principles through

our theoretical results and provide experimental validations by training deep learning

models for super-resolution and denoising tasks over compressed representations. On

the theory side it will be interesting to consider the case where there are either rate

constraints on the amount of shared common randomness between the encoder and

decoder or consider the case when the shared randomness is correlated with the source

input, which can arise in many practical applications. On the practical side it will be

interesting to experimentally study the a broader set of cross-domain tasks where our

theory could be applicable.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Four deep learning based approaches have been researched in this thesis for addressing

several low-level vision problems, such as image dehazing, depth estimation and

cross-domain lossy compression.

The first work proposes a new network structure and a training method based

on the introduced indirect domain shift mechanism. In contrast to the widely used

end-to-end training method, the first work shows that end-to-end training cannot

establish accurate mapping on the paired dataset and proposes an indirect domain

shift method. The indirect domain shift method consists of two parts. The first part

is based on the idea of using a multi-scale and two-branch structure to build a neural

network for achieving successful image dehazing. The second part is motivated by the

observation that supervision should be placed inside the network, and two branches

should have different loss functions for diversity. Adversarial loss is also included

to guarantee that the network’s outputs have the same distribution as that of clean
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images. Extensive ablation studies show that the proposed indirect domain shift is

practical, and each part of this method plays an important role. The comparison

with the several competitive methods further proves the effectiveness of our indirect

domain shift methods.

The second work suggests that the problem of current unsupervised depth esti-

mation methods lies in the failure to take full advantage of stereo data. To solve the

problem and maintain the monocular setting, a pseudo supervision mechanism is pro-

posed by integrating both unsupervised monocular depth estimation and unsupervised

binocular depth estimation. Besides, a semantic booster and occlusion estimation

are further introduced to improve depth estimation accuracy. Extensive experiments

including ablation studies show the mechanism’s effectiveness and illustrate that

the proposed framework achieves unprecedented improvements compared with the

state-of-the-art methods.

In the third work, a critical problem in single image dehazing is disclosed, that is,

a dehazing network trained on multiple domains performs worse than that trained

on a single domain. Based on this observation, a multi-domain dehazing problem

is formulated. To address this problem, a test-time training method is proposed

alongside a helper network to assist the dehazing model in further adapting to a

specific scene. Concretely, the helper network is developed to evaluate the quality

of dehazing results and provide effective self-supervision to the dehazing network

during test time. Afterwards, the dehazing model can benefit from the feedback of

the helper and update itself towards better dehazing results. In order to ensure the

supervision from the helper network is always helpful for training the dehazing network

in test time, a meta-learning approach is introduced to address the issue. Extensive

109



Ph.D. Thesis – H. Liu McMaster University – Electrical & Computer Engineering

experiments demonstrate the effectiveness of the proposed method.

The last work considers the novel task of cross-domain lossy compression, in which

compression and decompression are conducted on different distributions. This task

is formulated as an entropy-constrained optimal transport problem. The theoretical

results provide an architectural principle when common randomness is unavailable

and further suggest that common randomness can help reduce the compression rate.

The experimental results also demonstrate the utility of common randomness and

indicate that the architectural decomposition in the case of no common randomness

allows us to use rate-distortion optimal encoders (which do not require knowledge of

the target distribution) without much penalty.

6.2 Future Work

There is still space for further improving the proposed approaches in handling low-level

vision tasks. Firstly, the methods in chapter 2 and chapter 3 are developed aiming to

achieve successful image dehazing on the paired dataset. However, collecting paired

hazy and haze-free images is extremely hard and even impossible. Interesting future

work can be considered to dehaze real-world hazy images using pure unsupervised

learning. Secondly, the depth estimation method proposed in chapter 3 simply masks

the occlusion region between stereo images, which can result in inaccurate depth

estimation in these regions. It is preferred if future work can be conducted to explore

deep into the occlusion region. Thirdly, due to the resource constraint, the current

experiments are conducted using four representative datasets and three popular

dehazing networks. It is preferable to have a more comprehensive evaluation of our

method by considering a larger collection of datasets and dehazing networks. Finally,
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the experiments shown in chapter 3 are based on two simple datasets, i.e., MNIST and

SVHN. For future work, applying the algorithm to large-scaled datasets is necessary

for further algorithm validation.
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Appendix A

Appendix - Lossy Compression with

Distribution Shift as Entropy

Constrained Optimal Transport

A.1 Theoretical Results

A.1.1 Distortion-Rate vs Rate-Distortion Formulation

In addition to Definitions 2 and 3, we can equivalently define

Rncr(pX , pY , D) ≜ inf
pX,Z,Y ∈Mncr(pX ,pY )

H(Z)

s.t. E[d(X, Y )] ≤ D,

(A.1.1)

Rcr(pX , pY , D) ≜ inf
pU,X,Z,Y ∈Mcr(pX ,pY )

H(Z|U)

s.t. E[d(X, Y )] ≤ D.

(A.1.2)
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Dncr/cr(pX , pY , R) and Rncr/cr(pX , pY , D) are monotonically decreasing in R and D,

respectively, so they are the inverse of each other. Sometimes it is more convenient to

work with this rate-distortion formulation.

A.1.2 Proofs of Theoretical Results

Proof of Theorem 1. For any pX,Z,Y ∈Mncr(pX , pY ) with H(Z) ≤ R,

E[∥X − Y ∥2] = E[∥X − E[X|Z]∥2] + E[∥Y − E[Y |Z]∥2] + E[∥E[X|Z]− E[Y |Z]∥2]

≥ Dmse(pX , pY , R),

where the last inequality follows from the definition of Dmse(pX , pY , R) and the fact

that

max{H(E[X|Z]), H(E[Y |Z]} ≤ H(Z) ≤ R.

As a consequence, we must haveDncr(pX , pY , R) ≥ Dmse(pX , pY , R). On the other hand,

for any pX̂|X , pŶ |Y with E[X|X̂] = X̂, E[Y |Ŷ ] = Ŷ , H(X̂) ≤ R, and H(Ŷ ) ≤ R, we

can construct a joint distribution pX,X̂,Ŷ ,Y such that X ↔ X̂ ↔ Ŷ ↔ Y form a Markov

chain, pX,X̂ = pXpX̂|X , pY,Ŷ = pY pŶ |Y , and pX̂,Ŷ satisfying E[∥X̂− Ŷ ∥2] = W 2
2 (pX̂ , pŶ ).

Note that

E[∥X − Y ∥2] = E[∥X − X̂∥2] + E[∥Y − Ŷ ∥2] + E[∥X̂ − Ŷ ∥2]

= E[∥X − X̂∥2] + E[∥Y − Ŷ ∥2] +W 2
2 (pX̂ , pŶ ). (A.1.3)
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Let Z ≜ X̂. It can be verified that pX,Z,Y ∈ Mncr(pX , pY ) and H(Z) = H(X̂) ≤

R, which, together with (A.1.3), implies Dncr(pX , pY , R) ≤ Dmse(pX , pY , R). This

completes the proof of (5.3.7).

Dropping the term W 2
2 (pX̂ , pŶ ) in (5.3.3) yields

Dncr(pX , pY , R) ≥ D̃mse(pX , R) + D̃mse(pY , R),

where

D̃mse(pX , R) ≜ inf
pX̂|X

E[∥X − X̂∥2]

s.t. E[X|X̂] = X̂, H(X̂) ≤ R.

and D̃mse(pY , R) is definely analogously. On the other hand, choosing pX̂|X = pX̂′|X

and pŶ |Y = pŶ ′|Y in (5.3.3) gives

Dncr(pX , pY , R) ≤ D̃mse(pX , R) + D̃mse(pY , R) +W 2
2 (pX̂′ , pŶ ′),

where pX̂′|X and pŶ ′|Y are the minimizers that attain D̃mse(pX , R) and D̃mse(pY , R)

respectively while pX̂′ and pŶ ′ are their induced marginal distributions. It is clear

that pX̂′|X and pŶ ′|Y coincide with pX̂∗|X and pŶ ∗|Y respectively as the constraints

E[X|X̂] = X̂ and E[Y |Ŷ ] = Ŷ are automatically satisfied by pX̂∗|X and pŶ ∗|Y . This

proves (5.3.8). For the special case pX = pY , we have pX̂∗|X = pŶ ∗|Y and consequently

the upper bound and the lower bound in (5.3.8) coincide.

Note that due to the involvement of conditional expectation, X̂ is not necessarily

defined over X if X is a strict subset of Rn (for the same reason, Ŷ is not necessarily
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defined over Y). In other words, the output of the quantizer is not consrained to

the input alphabet and needs to be relaxed to Rn. As such, Dmse(pX , R) should be

interpreted as the one-shot distortion-rate function with the reconstruction alphabet

being Rn, which is in general strictly below its counterpart with the reconstruction

alphabet being X (also known as the distortion-rate-perception function with an

inactive perception constraint) if X is a strictly subset of Rn. This subtle issue, which

is often overlooked in the literature, arises when one deals with discrete X and Y (see

the binary example in Section 5.3.2 and Appendix A.1.4).

Proof of Theorem 2. We have that max{H(X̂), H(Ŷ )} ≤ R∗. If one of them, say

H(Y ), is less than R∗, this will lead to a contradiction by the following argument.

Note that

D∗ = E[∥X − Y ∥2] = E[∥X − X̂∥2] + E[∥Y − Ŷ ∥2] + E[∥X̂ − Ŷ ∥2],

which depends on pX,X̂,Ŷ ,Y only through pX,X̂ , pX̂,Ŷ , and pY,Ŷ . We can construct a

new joint distribution pX,X̂′,Ŷ ′,Y such that pX,X̂′ = pX,X̂ , pX̂′,Ŷ ′ = pX̂,Ŷ , pY,Ŷ ′ = pY,Ŷ ,

and X ↔ X̂ ′ ↔ Ŷ ′ ↔ Y form a Markov chain. Denote X̂ ′ by Z ′. It is clear that

the induced pX,Z′,Y belongs to Mncr(pX , pY ), preserves E[∥X − Y ∥2], and H(Z ′) < R∗,

which is contradictory with the fact that Dncr(pX , pX̂ , R) is a strictly decreasing

function in a neighborhood of R = R∗ since R can be set slightly below R∗ without

violating the constraint H(Z ′) ≤ R. This proves (5.3.9), which futher implies the

existence of a bijection between X̂ and Ŷ .

It remains to prove (5.3.10). If (5.3.10) does not hold, then we can find some pX̂′′,Ŷ ′′

with pX̂′′ = pX̂ and pŶ ′′ = pŶ such that E[∥X̂ ′′ − Ŷ ′′∥2] < E[∥X̂ − Ŷ ∥2]. Leverage
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this pX̂′′,Ŷ ′′ to construct a new joint distribution pX,X̂′′,Ŷ ′′,Y such that pX,X̂′′ = pX,X̂ ,

pY,Ŷ ′′ = pY,Ŷ , and X ↔ X̂ ′′ ↔ Ŷ ′′ ↔ Y form a Markov chain. Denote X̂ ′′ by Z ′′. It is

clear that the induced pX,Z′′,Y belongs to Mncr(pX , pY ), H(Z ′′) = R∗, and

E[∥X − Y ∥2] = E[∥X − X̂ ′′∥2] + E[∥Y − Ŷ ′′∥2] + E[∥X̂ ′′ − Ŷ ′′∥2]

< E[∥X − X̂∥2] + E[∥Y − Ŷ ∥2] + E[∥X̂ − Ŷ ∥2]

= D∗,

which is contradictory with the fact that Rncr(pX , pY , D) is a strictly decreasing

function in a neighborhood of D = D∗ ≜ Dncr(pX , pX̂ , R
∗) since D can be set slightly

below D∗ without violating the constraint E[∥X − Y ∥2] ≤ D. So in conclusion, the

converter is a one-to-one mapping, which induces an optimal coupling that attains

W 2
2 (pX̂ , pŶ ).

Proof of Theorem 3. Choosing pU,X,Y from W 2
2 (pX , pY ) and setting Z = Y shows that

Dcr(pX , pY , R) ≤ inf
pU,X,Y ∈W (pX ,pY )

E[d(X, Y )]

s.t. H(Y |U) ≤ R.

So it remains to prove that this upper bound is tight. In the light of the functional

representation lemma, for any (U,X,Z, Y ) with pU,X,Z,Y ∈ Mcr(pX , pY ), there exist

V1, independent of (U,X), and V2, independent of (U,X, V1), as well as determintic

mappings ϕ1 and ϕ2 such that Z = ϕ2(U,X, V1) and Y = ϕ2(Z, V2). Let U ′ ≜
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(U, V1, V2). Clearly, pU ′,X,Y = pU ′pXpY |U ′,X and H(Y |U ′, X) = 0. Moreover, we have

H(Z|U) ≥ H(Z|U ′)

≥ H(Y |U ′),

where the last inequality is due to the fact that Y is determined by (Z,U ′). Therefore,

Dcr(pX , pY , R) ≥ inf
pU′,X,Y ∈W (pX ,pY )

E[d(X, Y )]

s.t. H(Y |U ′) ≤ R.

This completes the proof of (5.3.12).

Note that each realization of U is associated with a deterministic function from

X to Y. As a consequence, the problem boils down to optimizing the probablity

distribution defined over this collection of functions. For the finite alphabet case, there

are totally |Y||X | such functions. In fact, a simple application of the support lemma

shows that only |Y|+ 1 functions need to be assigned with a positive probability.

A.1.3 Linear Program Formulation for Common Randomness

In the finite alphabet case, we can formulate Theorem 3 as follows:

Dcr(pX , pY , R) = min
pU

∑

u∈U

pU(u)E[d(X, fu(X))]

s.t.
∑

u∈U

pU(u)H(fu(X)) ≤ R,

∑

u∈U

pU(u)P(fu(X) = y) = pY (y), y ∈ Y ,
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where pU is defined over U ≜ {1, 2, · · · , |Y||X |}, and {fu : u ∈ U} is the set of all

distinct functions from X to Y . By the support lemma (Appendix C on page 631 of

[32]), only |Y|+ 1 functions need to be assigned with a positive probability.

A.1.4 Binary Case

Let D
(B)
min ≜ |qX − qY | and D

(B)
max ≜ qX + qY − 2qXqY . Note that D

(B)
min is the total

variation distance between B(qX) and B(qY ), which is the minimum E[dH(X, Y )]

achievable by coupling X and Y . On the other hand, we have E[dH(X, Y )] = D
(B)
max

for X, Y independent. It is clear that D
(B)
min and D

(B)
max are the infimum and supremum

of Dncr(B(qX),B(qY ), R) (as well as Dcr(B(qX),B(qY ), R)), respectively.

Theorem 4. Assume Hamming distortion measure. Under no common randomness,

we have

Dncr(B(qX),B(qY ), R) =





−2(1−qX)(1−qY )

1−H−1
b (R)

+ 2− qX − qY , qX + qY ≤ 1,

− 2qXqY
1−H−1

b (R)
+ qX + qY , qX + qY > 1,

(A.1.4)
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for R ∈ [0,min{Hb(qX), Hb(qY )}], and = D
(B)
min for R > min{Hb(qX), Hb(qY )}. More-

over,

Dncr(B(qX),B(qY ), R)

=





−2(1−qX)(1−qY )

1−H−1
b (R)

+ 2− qX − qY , qX , qY ≤ 1
2
,

− 2qXqY
1−H−1

b (R)
+ qX + qY , qX , qY ≥ 1

2
,

− (1−qX)2+q2Y −(qY −qX+H−1
b (R))2

1−H−1
b (R)

+H−1
b (R)− 2qY (1−qX)H−1

b (R)

(1−H−1
b (R))2

, qX < 1
2
, qY > 1

2
,

− q2X+(1−qY )2−(qX−qY +H−1
b (R))2

1−H−1
b (R)

+H−1
b (R)− 2qX(1−qY )H−1

b (R)

(1−H−1
b (R))2

, qX > 1
2
, qY < 1

2
,

(A.1.5)

for R ∈ [0,min{Hb(qX), Hb(qY )}], and

Dncr(B(qX),B(qY ), R) =





− (1−qX)2+(1−qY )2

1−H−1
b (R)

+ 2− qX − qY , qX , qY ≤ 1
2
,

− q2X+q2Y
1−H−1

b (R)
+ qX + qY , qX , qY ≥ 1

2
,

− (1−qX)2+q2Y
1−H−1

b (R)
+ 1− qX + qY , qX < 1

2
, qY > 1

2
,

− q2X+(1−qY )2

1−H−1
b (R)

+ 1 + qX − qY , qX > 1
2
, qY < 1

2
,

(A.1.6)

for R ∈ [0,min{Hb(qX), Hb(qY )}]. Here, H−1
b (R) denotes the inverse of the binary

entropy function on [0, 1/2]. With common randomness,

Dcr(B(qX),B(qY ), R) = −
2(1− qX)qXR

Hb(qX)
+D(B)

max (A.1.7)

for R ∈ [0, ρHb(qX)], and = D
(B)
min for R > ρHb(qX). Here, ρ ≜ min{qY /qX , (1 −
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qY )/(1− qX)}.

Proof of (A.1.7). There are totally 4 distinct functions from {0, 1} to {0, 1}:

f1(x) = x, f2(x) = 1− x, f3(x) = 0, f4(x) = 1, x ∈ {0, 1}.

Therefore, we have

∑

u∈U

pU(u)H(fu(X)) = Hb(qX)(pU(1) + pU(2)),

∑

u∈U

pU(u)E[dH(X, fu(X))] = pU(2) + qXpU(3) + (1− qX)pU(4),

∑

u∈U

pU(u)P(fu(X) = 1) = pU(1)qX + (1− qX)pU(2) + pU(4).

In light of Theorem 3,

Rcr(B(qX),B(qY ), D) = min
pU (1),··· ,pU (4)

Hb(qX)(pU(1) + pU(2))

s.t. pU(2) + qXpU(3) + (1− qX)pU(4) ≤ D, (A.1.8)

qXpU(1) + (1− qX)pU(2) + pU(4) = qY , (A.1.9)

pU(1) + pU(2) + pU(3) + pU(4) = 1, (A.1.10)

pU(1), pU(2), pU(3), pU(4) ≥ 0. (A.1.11)
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Note that

pU(2) + qXpU(3) + (1− qX)pU(4)

= pU(2) + qXpU(3) + (1− qX)(1− pU(1)− pU(2)− pU(3)) (A.1.12)

= −(1− qX)pU(1) + qXpU(2) + (2qX − 1)pU(3) + 1− qX , (A.1.13)

where (A.1.12) is due to (A.1.10). Moreover, it follows by (A.1.9) and (A.1.10) that

pU(3) = −(1− qX)pU(1)− qXpU(2) + 1− qY . (A.1.14)

Substituting (A.1.14) into (A.1.13) and invoking the fact that pU(2) ≥ 0 gives

pU(2) + qXpU(3) + (1− qX)pU(4)

= −2(1− qX)qX(pU(1) + pU(2)) + 4(1− qX)qXpU(2) +D(B)
max

≥ −2(1− qX)qX(pU(1) + pU(2)) +D(B)
max,

which, together with (A.1.8), implies

pU(1) + pU(2) ≥
1

2(1− qX)qX
(D(B)

max −D).

As a consequence, we must have

Rcr(B(qX),B(qY ), D) ≥ Hb(qX)

2(1− qX)qX
(D(B)

max −D).
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One can readily verify that this lower bound is tight as it is attained by p∗U with

p∗U(1) =
1

2(1− qX)qX
(D(B)

max −D),

p∗U(2) = 0,

p∗U(3) = −
1

2qX
(D(B)

max −D) + 1− qY ,

p∗U(4) = −
1

2(1− qX)
(D(B)

max −D) + qY ,

which satisfies (A.1.8)–(A.1.11) forD ∈ [D
(B)
min, D

(B)
max]. The expression ofDcr(B(qX),B(qY ), R)

can be obtained by taking the inverse of Rcr(B(qX),B(qY ), D).

Proof of (A.1.4). We will rely on some results which will come after this proof.

Note that Hamming distortion coincides with squared error distortion when X =

Y = {0, 1}. So Theorem 1, Lemma 1, and Lemma 2 are applicable here. In particular,

in light of Lemmas 1 and 2, for any R ≥ 0 and ϵ > 0, there exists a joint distribution

pXX̂Ŷ Y compatible with the given marginal distributions pX and pY such that X̂ and Ŷ

are deterministically related finite-support random variables with H(X̂) = H(Ŷ ) ≤ R

and X ↔ X̂ ↔ Ŷ ↔ Y form a Markov chain; moreover, X̂ = E[X|X̂], Ŷ = E[Y |Ŷ ],

and

E[∥X − X̂∥2] + E[∥Y − Ŷ ∥] + E[∥X̂ − Ŷ ∥2] ≤ Dncr(B(qX),B(qY ), R) + ϵ. (A.1.15)

Without loss of generality, we assume X̂ and Ŷ take value from {x̂i}Ni=1 and {ŷi}Ni=1,

respectively, and Ŷ = ψ(X̂), where ψ is a bijection from {x̂i}Ni=1 to {ŷi}Ni=1 with

ŷi = ψ(x̂i), i = 1, · · · , N . Let θi ≜ pX̂(x̂i), or equivalently, θi ≜ pŶ (ŷi), i =
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1, · · · , N . Note that X̂ = E[X|X̂] and Ŷ = E[Y |Ŷ ] if and only if pX|X̂(1|x̂i) = x̂i and

pY |Ŷ (1|ŷi) = ŷi for θi > 0, i = 1, · · · , N . So the constraints
∑N

i=1 pX̂(x̂i)pX|X̂(1|x̂i) =

qX and
∑N

i=1 pŶ (ŷi)pY |Ŷ (1|ŷi) = qY can be written equivalently as
∑N

i=1 θix̂i = qX and
∑N

i=1 θiŷi = qY . Moreover, it is easy to verify that

E[∥X − X̂∥2] + E[∥Y − Ŷ ∥2] + E[∥X̂ − Ŷ ∥2]

=
N∑

i=1

θi(1− x̂i)x̂i +
N∑

i=1

θi(1− ŷi)ŷi +
n∑

i=1

θi(x̂i − ŷi)2

=
N∑

i=1

θi(x̂i + ŷi − 2x̂iŷi).

In light of Theorem 1 and (A.1.15), the following optimization problem (P) yields an

upper bound on Dncr(pX , pY , R) with a gap at most ϵ:

min
(θi,x̂i,ŷi,)Ni=1

N∑

i=1

θi(x̂i + ŷi − 2x̂iŷi) (P)

s.t.
N∑

i=1

θi log
1

θi
≤ R,

N∑

i=1

θi = 1,
N∑

i=1

θix̂i = qX ,
N∑

i=1

θiŷi = qY ,

θi ≥ 0, x̂i ∈ [0, 1], ŷi ∈ [0, 1], i = 1, · · · , N.

Given (θi, ŷi)
N
i , (P) degenerates to a linear programming problem with respect

(x̂i)
N
i=1 over hyperrectangle [0, 1]N subject to the constraint

∑N
i=1 θix̂i = qX , for which

the minimum is attained at a point on an edge of [0, 1]N . Therefore, it suffices

to consider (x̂i)
N
i=1 with at most one element different from 0 and 1. By a similar

argument, it can be shown that there is no loss of optimality in assuming that at most

one of ŷi, i = 1, · · · , N , takes value other than 0 or 1. Due to the merge of different

elements, the one-to-one relationship might not be preserved. Nevertheless, by Lemma
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2, we just need to consider deterministically related X̂ and Ŷ with support size at

most 3. Applying the linear programming argument to (P) with N = 3 shows that, at

the cost of potentially compromising the one-to-one relationship, at most one element

in the support of X̂ as well as the support of Ŷ need to take value different from 0

and 1. In the case that the bijection is lost, X̂ or Ŷ must have a reduced support size.

One can restore the bijection by invoking Lemma 2, then use the linear programming

argument to assign extreme values to all but at most one element in the support.

Following this line of reasoning, we can conclude that the attention can be restricted

to deterministically related X̂ and Ŷ with support size at most 3 and at most one

element in the support different from 0 and 1. Moreover, the following configurations

can be excluded.

1. Support size = 3 and the existence of pairs (x̂, ŷ) and (x̂′, ŷ′) for some x̂ > x̂′

and ŷ < ŷ′ ((x̂, ŷ) is said to be a pair if X̂ = x̂⇔ Ŷ = ŷ): Since

(x̂− ŷ)2 + (x̂′ − ŷ′)2 − (x̂− ŷ′)2 − (x̂′ − ŷ)2

= −2x̂ŷ − 2x̂′ŷ′ + 2x̂ŷ′ + 2x̂′ŷ

= 2(x̂− x̂′)(ŷ′ − ŷ)

> 0,

it follows that E[∥X̂ − Ŷ ∥2] can be strictly reduced by moving the same amount

of probability from {X̂ = x̂, Ŷ = ŷ} to {X̂ = x̂, Ŷ = ŷ′} and from {X̂ = x̂′, Ŷ =

ŷ′} to {X̂ = x̂′, Ŷ = ŷ}. This modification does not affect pX̂ and pŶ , and

consequently H(X̂), H(Ŷ ), E[∥X − X̂∥2], E[∥Y − Ŷ ∥2] remain the same. So the

distortion-rate performance of this configuration is strictly suboptimal.
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2. Support size = 2 and the existence of pairs (x̂, ŷ) and (x̂′, ŷ′) for some x̂ > x̂′

and ŷ < ŷ′: Same as configuration 1).

3. Support size = 2 and existence of pairs (x̂, 1) and (0, ŷ) for some x̂ ∈ (0, 1) and

ŷ ∈ (0, 1): It follows by E[X|X̂] = X̂ and E[Y |Ŷ ] = Ŷ that

pX̂,Ŷ (x̂, 1) =
qX
x̂
,

pX̂,Ŷ (0, ŷ) = 1− qX
x̂
,

ŷ = 1− 1− qY
1− qX

x̂

.

Clearly, H(X̂) = H(Ŷ ) = Hb(
qX
x̂
). Since x̂ ∈ (0, 1) and ŷ ∈ (0, 1), we must

have qX < qX
x̂

< qY , which implies H(X̂) = H(Ŷ ) > min{H(X), H(Y )}.

Furthermore, it can be verified that

E[∥X − X̂∥2] + E[∥Y − Ŷ ∥2] + E[∥X̂ − Ŷ ∥2]

=
qX
x̂
x̂(1− x̂) +

(
1− qX

x̂

)
ŷ(1− ŷ) + qX

x̂
(1− x̂)2 +

(
1− qX

x̂

)
ŷ2

= qY − qX .

However, this end-to-end distortion is obviously achievable whenR = min{H(X), H(Y )}.

So the rate-distortion performance of this configuration is strictly suboptimal.

4. Support size = 2 and the existence of pairs (x̂, 0) and (1, ŷ) for some x̂ ∈ (0, 1)

and ŷ ∈ (0, 1): Same as configuration 3).

In view of the excluded configurations, we are left with the case where pX̂Ŷ assigns

all probabilities to {X̂ = 0, Ŷ = 0}, {X̂ = 1, Ŷ = 1}, and {X̂ = x̂, Ŷ = ŷ} for
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some x̂ ∈ [0, 1] and ŷ ∈ [0, 1]. So it suffices to consider the N = 3 version of (P)

with x̂1 = ŷ1 = 0, x̂3 = ŷ3 = 1, x̂2 = x̂, and ŷ2 = ŷ. The constraints
∑3

i=1 θi = 1,
∑3

i=1 θix̂i = qX , and
∑3

i=1 θiŷi = qY imply

θ1 = 1− qX − (1− x̂)θ,

θ3 = qX − x̂θ,

ŷ =
qY − qX

θ
+ x̂.

In this way, we get a simplified optimization problem (P’):

min
θ,x̂

2x̂(1− x̂)θ + (1− 2x̂)(qY − qX) (P’)

s.t. (1− qX − (1− x̂)θ) log 1

1− qX − (1− x̂)θ
+ θ log

1

θ
+ (qX − x̂θ) log

1

qX − x̂θ
≤ R,

x̂ ∈ [0, 1], θ ∈ [0, 1], (1− x̂)θ ∈ [qY − qX , 1− qX ], x̂θ ∈ [qX − qY , qX ].

Note that (P’) does not depend on ϵ and consequently yields the exact characterization

of Dncr(B(qX),B(qY ), R). Therefore, Rncr(B(qX),B(qY ), D) is characterized by the

following optimization problem (P”):

min
θ,x̂

(1− qX − (1− x̂)θ) log 1

1− qX − (1− x̂)θ
+ θ log

1

θ
+ (qX − x̂θ) log

1

qX − x̂θ
(P”)

s.t. 2x̂(1− x̂)θ + (1− 2x̂)(qY − qX) ≤ D,

x̂ ∈ [0, 1], θ ∈ [0, 1], (1− x̂)θ ∈ [qY − qX , 1− qX ], x̂θ ∈ [qX − qY , qX ].

Given x̂, the objective function of (P”) is concave in θ and consequently its minimum
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is attained at an endpoint of [θ, θ], where

θ ≜ max

{
0,
qY − qX
1− x̂

,
qX − qY

x̂

}
,

θ ≜ min

{
1,

1− qX
1− x̂

,
qX
x̂
,
D − (1− 2x̂)(qY − qX)

2x̂(1− x̂)

}
.

Without loss of generality, we assume qY ≥ qX and qX + qY ≤ 1. The following

statements can be easily verified.

1. For x̂ ∈ [0, D+qX−qY
2(1−qY )

],

θ =
qY − qX
1− x̂

,

θ =
1− qX
1− x̂

.

2. For x̂ ∈ (D+qX−qY
2(1−qY )

, qX+qY −D
2qY

],

θ =
qY − qX
1− x̂

,

θ =
D − (1− 2x̂)(qY − qX)

2x̂(1− x̂)
.

3. For x̂ ∈ ( qX+qY −D
2qY

, qX
qY
],

θ =
qY − qX
1− x̂

,

θ =
qX
x̂
.

4. For x̂ > qX
qY
, [θ, θ] is empty.
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Note that when x̂ ∈ [0, qX
qY
] and θ = θ,

(1− qX − (1− x̂)θ) log 1

1− qX − (1− x̂)θ
+ θ log

1

θ
+ (qX − x̂θ) log

1

qX − x̂θ

= (1− qY ) log
1

1− qY
+ θ log

1

θ
+ (qX − x̂θ) log

1

qX − x̂θ

≥ Hb(qY )

= H(Y ).

So it suffices to consider the case x̂ ∈ [0, qX
qY
] and θ = θ, for which (P”) is reduced to

the following form:

min
x̂∈[0, qX

qY
]
η(x̂),

where

η(x̂) ≜





1−qX
1−x̂

log 1−x̂
1−qX

+ qX−x̂
1−x̂

log 1−x̂
qX−x̂

, x̂ ∈ [0, D+qX−qY
2(1−qY )

],

2x̂−qX+(1−2x̂)qY −D
2x̂

log 2x̂
2x̂−qX+(1−2x̂)qY −D

+D−(1−2x̂)(qY −qX)
2x̂(1−x̂)

log 2x̂(1−x̂)
D−(1−2x̂)(qY −qX)

+ qX+(1−2x̂)qY −D
2(1−x̂)

log 2(1−x̂)
qX+(1−2x̂)qY −D

, x̂ ∈ (D+qX−qY
2(1−qY )

, qX+qY −D
2qY

],

x̂−qX
x̂

log x̂
x̂−qX

+ qX
x̂
log x̂

qX
, x̂ ∈ ( qX+qY −D

2qY
, qX
qY
].

Note that η(x̂) is a continuous function over [0, qX
qY
]. Moreover, η(x̂) decreases mono-

tonically from Hb(qX) to Hb(
D

(B)
max−D

2−qX−qY −D
) as x̂ varies from 0 to D+qX−qY

2(1−qY )
. Since η(x̂) is
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a concave function of qX
x̂

for x̂ ∈ [ qX+qY −D
2qY

, qX
qY
], it follows that

min
x̂∈[ qX+qY −D

2qY
,
qX
qY

]

η(x̂) = min

{
η(
qX + qY −D

2qY
), η(

qX
qY

)

}
= min

{
Hb(

2qXqY
qX + qY −D

), Hb(qY )

}
.

So we have

min
x̂∈[0,D+qX−qY

2(1−qY )
]∪[ qX+qY −D

2qY
,
qX
qY

]

η(x̂)

= min

{
Hb(

D
(B)
max −D

2− qX − qY −D
), Hb(

2qXqY
qX + qY −D

), Hb(qY )

}

= min

{
Hb(

D
(B)
max −D

2− qX − qY −D
), Hb(

2qXqY
qX + qY −D

)

}
(A.1.16)

= min

{
η(
D + qX − qY
2(1− qY )

), η(
qX + qY −D

2qY
)

}

≥ min
x̂∈[D+qX−qY

2(1−qY )
,
qX+qY −D

2qY
]

η(x̂),

where (A.1.16) is due to the fact that Hb(qY ) ≥ Hb(qX) ≥ Hb(
D

(B)
max−D

2−qX−qY −D
) (with the

first inequality being a consequence of qX ≤ qY and qX + qY ≤ 1). So the problem

boils down to solving

min
x̂∈[D+qX−qY

2(1−qY )
,
qX+qY −D

2qY
]

η(x̂).

It can be verified that the minimum is attained at x̂ = D+qX−qY
2(1−qY )

. This completes the

proof of (A.1.4). A graphical illustration of the entropy-constrained optimal transport

plan for the binary case can be found in Figure A.1.
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Proof of (A.1.5). Note that

Dmse(B(qX), R) =
1

2
Dncr(B(qX),B(qX), R)

=





− (1−qX)2

1−H−1
b (R)

+ 1− qX , qX ≤ 1
2
,

− q2X
1−H−1

b (R)
+ qX , qX > 1

2
,

R ∈ [0, Hb(qX)],

Dmse(B(qY ), R) =
1

2
Dncr(B(qY ),B(qY ), R)

=





− (1−qY )2

1−H−1
b (R)

+ 1− qY , qY ≤ 1
2
,

− q2Y
1−H−1

b (R)
+ qY , qY > 1

2
,

R ∈ [0, Hb(qY )].

Moreover, we have





pX̂∗(
qX−H−1

b (R)

1−H−1
b (R)

) = 1−H−1
b (R),

pX̂∗(1) = H−1
b (R),

R ∈ [0, Hb(qX)], qX ≤
1

2
,





pX̂∗(0) = H−1
b (R),

pX̂∗(
qX

1−H−1
b (R)

) = 1−H−1
b (R),

R ∈ [0, Hb(qX)], qX ≥
1

2
,





pŶ ∗(
qY −H−1

b (R)

1−H−1
b (R)

) = 1−H−1
b (R),

pŶ ∗(1) = H−1
b (R),

R ∈ [0, Hb(qY )], qY ≤
1

2
,





pŶ ∗(0) = H−1
b (R),

pŶ ∗(
qY

1−H−1
b (R)

) = 1−H−1
b (R),

R ∈ [0, Hb(qY )], qY ≥
1

2
.
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So

W 2
2 (pX̂∗ , pŶ ∗)

=





(qX−qY )2

1−H−1
b (R)

, qX , qY ≤ 1
2
or qX , qY ≥ 1

2
,

(qY −qX+H−1
b (R))2

1−H−1
b (R)

+H−1
b (R)− 2qY (1−qX)H−1

b (R)

(1−H−1
b (R))2

, qX < 1
2
, qY > 1

2
,

(qX−qY +H−1
b (R))2

1−H−1
b (R)

+H−1
b (R)− 2qX(1−qY )H−1

b (R)

(1−H−1
b (R))2

, qX > 1
2
, qY < 1

2
.

Based on the above expressions, one can easily verify (A.1.5) and (A.1.6). In particular,

it is worth noting that when qX , qY ≤ 1
2
or qX , qY ≥ 1

2
,

Dncr(B(qX),B(qY ), R) = Dncr(B(qX),B(qY ), R), R ∈ [0,min{Hb(qX), Hb(qY )}],

i.e., there is no penalty for using optimal quantizer and dequantizer in the conventional

rate-distortion sense.

Remark: It is easy to verify that

Dcr(B(qX), R) ≜ min
qY ∈[0,1]

Dcr(B(qX),B(qY ), R)

=





qX

(
1− R

Hb(qX)

)
, R ∈ [0, Hb(qX)], qX ≤ 1

2
,

(1− qX)
(
1− R

Hb(qX)

)
, R ∈ [0, Hb(qX)], qX > 1

2
,

Dncr(B(qX), R) ≜ min
qY ∈[0,1]

Dncr(B(qX),B(qY ), R)

=





qX −H−1
b (R), R ∈ [0, Hb(qX)], qX ≤ 1

2
,

1− qX −H−1
b (R), R ∈ [0, Hb(qX)], qX > 1

2
,
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which are respectively the conventional one-shot distortion-distortion function (or equiv-

alently, one-shot distortion-rate-perception function with an inactive perception con-

straint) for B(qX) with and without common randomness. In general, Dncr(B(qX), R)

is different from Dmse(B(qX), R) (the former is strictly above the latter). The reason

is as follows: even though the output distribution constraint is removed in the defi-

nition of Dncr(B(qX), R), the output alphabet remains to be {0, 1}; in contrast, for

Dmse(B(qX), R), the output alphabet is relaxed to R.

A.1.5 Auxiliary Results

Lemma 1 (Finite Support Approximation). For any R ≥ 0 and ϵ > 0, there exists a

joint distribution pX,X̂,Ŷ ,Y compatible with the given marginal distributions pX and pY

such that X ↔ X̂ ↔ Ŷ ↔ Y form a Markov chain and X̂ is a finite-support random

variable with H(X̂) ≤ R (or Ŷ is a finite-support random variable with H(Ŷ ) ≤ R);

moreover, E[X|X̂] = X̂, E[Y |Ŷ ] = Ŷ , and

E[∥X − X̂∥2] + E[∥Y − Ŷ ∥] + E[∥X̂ − Ŷ ∥2] ≤ Dncr(pX , pY , R) + ϵ.

Proof. In light of Theorem 1, we can find pX,X̂,Ŷ ,Y such that X ↔ X̂ ↔ Ŷ ↔ Y form

a Markov chain, H(X̂) ≤ R, E[X|X̂] = X̂, E[Y |Ŷ ], and

E[∥X − X̂∥2] + E[∥Y − Ŷ ∥] + E[∥X̂ − Ŷ ∥2] ≤ Dncr(pX , pY , R) +
ϵ

2
. (A.1.17)

The proof is complete if X̂ is a finite-support random variable. So it suffices to

consider the case where X̂ takes value from some countably infinite set {x̂i}∞i=1. Since

E[∥X∥2] <∞ and E[∥Y ∥2] <∞, it follows that there exists a positive integer N such
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that

P{X̂ ∈ {x̂i}∞i=N}E[∥X∥2 + ∥Y ∥2|X̂ ∈ {x̂i}∞i=N ] ≤
ϵ

4
.

Let X̂ ′ ≜ X̂ if X̂ ∈ {x̂i}N−1
i=1 and X̂ ′ ≜ E[X|X̂ ∈ {x̂i}∞i=N ] if X̂ ∈ {x̂i}∞i=N . Note that

E[∥X − X̂ ′∥2] + E[∥X̂ ′ − Ŷ ∥2]

= P{X̂ ∈ {x̂i}N−1
i=1 }E[∥X − X̂ ′∥2 + ∥X̂ ′ − Ŷ ∥2|X̂ ∈ {x̂i}N−1

i=1 ]

+ P{X̂ ∈ {x̂i}∞i=N}E[∥X − X̂ ′∥2 + ∥X̂ ′ − Ŷ ∥2|X̂ ∈ {x̂i}∞i=N ]

= P{X̂ ∈ {x̂i}N−1
i=1 }E[∥X − X̂∥2 + ∥X̂ − Ŷ ∥2|X̂ ∈ {x̂i}N−1

i=1 ]

+ P{X̂ ∈ {x̂i}∞i=N}E[∥X − X̂ ′∥2 + ∥X̂ ′ − Ŷ ∥2|X̂ ∈ {x̂i}∞i=N ]

≤ P{X̂ ∈ {x̂i}N−1
i=1 }E[∥X − X̂∥2 + ∥X̂ − Ŷ ∥2|X̂ ∈ {x̂i}N−1

i=1 ]

+ P{X̂ ∈ {x̂i}∞i=N}E[∥X − X̂ ′∥2 + 2∥X̂ ′∥2 + 2∥Ŷ ∥2|X̂ ∈ {x̂i}∞i=N ]

≤ P{X̂ ∈ {x̂i}N−1
i=1 }E[∥X − X̂∥2 + ∥X̂ − Ŷ ∥2|X̂ ∈ {x̂i}N−1

i=1 ]

+ P{X̂ ∈ {x̂i}∞i=N}E[∥X∥2 + ∥X̂ ′∥2 + 2∥Ŷ ∥2|X̂ ∈ {x̂i}∞i=N ]

≤ E[∥X − X̂∥2 + ∥X̂ − Ŷ ∥2] + 2P{X̂ ∈ {x̂i}∞i=N}E[∥X∥2 + ∥Y ∥2|X̂ ∈ {x̂i}∞i=N ]

≤ E[∥X − X̂∥2] + E[∥X̂ − Ŷ ∥2] + ϵ

2
. (A.1.18)

Now define a new joint distribution pX,X̂′′,Ŷ ′′,Y such that pX,X̂′′ = pX,X̂′ , pX̂′′,Ŷ ′′ = pX̂′,Ŷ ,

pY,Ŷ ′′ = pY,Ŷ , and X ↔ X̂ ′′ ↔ Ŷ ′′ ↔ Y form a Markov chain. It is clear that X̂ ′′ is a

finite-support random variable with H(X̂ ′′) = H(X̂ ′) ≤ H(X̂) ≤ R, E[X|X̂ ′′] = X̂ ′′,
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E[Y |Ŷ ′′] = Ŷ ′′, and

E[∥X − X̂ ′′∥2] + E[∥Y − Ŷ ′′∥] + E[∥X̂ ′′ − Ŷ ′′∥2]

≤ E[∥X − X̂ ′∥2] + E[∥Y − Ŷ ∥] + E[∥X̂ ′ − Ŷ ∥2]

≤ E[∥X − X̂∥2] + E[∥Y − Ŷ ∥] + E[∥X̂ − Ŷ ∥2] + ϵ

2
(A.1.19)

≤ Dncr(pX , pY , R) + ϵ, (A.1.20)

where (A.1.19) and (A.1.20) are due to (A.1.17) and (A.1.18), respectively. This

completes the proof of Lemma 1.

Lemma 2 (Deterministic on Finite Support). Let X ↔ X̂ ↔ Ŷ ↔ Y be a Markov

chain with E[X|X̂] = X̂, E[Y |Ŷ ] = Ŷ , and assume that X̂ (or Ŷ ) is a finite-support

random variable. There exist deterministically related random variables X̂ ′ and Ŷ ′,

with the support size no greater than that of X̂ and H(X̂ ′) = H(Ŷ ′) ≤ H(X̂) (or

H(X̂ ′) = H(Ŷ ′) ≤ H(Ŷ )), such that X ↔ X̂ ′ ↔ Ŷ ′ ↔ Y form a Markov chain,

E[X|X̂ ′] = X̂ ′, E[Y |Ŷ ′] = Ŷ ′, and

E[∥X − X̂ ′∥2] + E[∥Y − Ŷ ′∥] + E[∥X̂ ′ − Ŷ ′∥2]

= E[∥X − X̂∥2] + E[∥Y − Ŷ ∥] + E[∥X̂ − Ŷ ∥2].

Proof. Let Ỹ ≜ E[Y |X̂]. Since Ỹ ↔ Ŷ ↔ Y form a Markov chain and E[Y |Ŷ ] = Ŷ , we

have Ỹ = E[Ŷ |X̂]. Construct a new joint distribution pX,X̂′,Ŷ ′,Y such that pX,X̂′ = pX,X̂ ,

pX̂′,Ŷ ′ = pX̂,Ỹ , pY,Ŷ ′ = pY,Ỹ , and X ↔ X̂ ′ ↔ Ŷ ′ ↔ Y form a Markov chain. It is clear
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that E[X|X̂ ′] = X̂ ′, E[Y |Ŷ ′] = Ŷ ′, and

E[∥X − X̂ ′∥2] + E[∥Y − Ŷ ′∥2] + E[∥X̂ ′ − Ŷ ′∥2]

= E[∥X − X̂∥2] + E[∥Y − Ỹ ∥2] + E[∥X̂ − Ỹ ∥2]

= E[∥X − X̂∥2] + E[∥Y − Ŷ ∥2] + E[∥Ŷ − Ỹ ∥2] + E[∥X̂ − Ỹ ∥2]

= E[∥X − X̂∥2] + E[∥Y − Ŷ ∥2] + E[∥X̂ − Ŷ ∥2],

where the last equality is due to Ỹ = E[Ŷ |X̂]. If the function that maps X̂ ′ to Ŷ ′ (or

equivalently, maps X̂ to Ỹ ) is invertible, then X̂, X̂ ′, Ŷ ′ have the same support size

and H(X̂) = H(X ′) = H(Y ′), which completes the proof. Otherwise, the support size

of Ŷ ′ must be strictly smaller than that of X̂ ′ (which is the same as that of X̂) and

H(Ŷ ′) < H(X̂ ′) = H(X̂). We can alternately reduce the support sizes of X̂ ′ and Ŷ ′

using this argument until they are deterministically related (and consequently have

the same support size and the same entropy). This can be accomplished in a finite

number of steps because the reduction in support size cannot continue forever.

A.1.6 Uniform Distribution

Let X ∼ Unif[0, a] and Y ∼ Unif[0, b] be uniformly distributed random variables,

where a, b > 0. Note that the density functions are given as: pX(x) =
1
a
, 0 ≤ x ≤ a

and pY (y) =
1
b
, 0 ≤ y ≤ b and pX(x) and pY (y) are zero outside these intervals. The
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Figure A.1: Illustration of the entropy-constrained optimal transport plan for the
binary case (assuming qX + qY ≤ 1), where pX̂(x̂) = pŶ (ŷ) = 1−H−1

b (R) with

x̂ =
qX−H−1

b (R)

1−H−1
b (R)

and ŷ =
qY −H−1

b (R)

1−H−1
b (R)

. It is interesting to note that the quantizer pX̂|X

does not depend on pY while the dequantizer pY |Ŷ does not depend on pX . So they
are decoupled in a certain sense. Moreover, pX̂|X and pY |Ŷ coincide respectively with
optimal quantizer pX̂∗|X and dequantizer pY |Ŷ ∗ in the conventional rate-distortion

sense when qX , qY ≤ 1/2.

cumulative density functions of X and Y are given as follows:

CX(x) =





0, x ≤ 0,

x
a
, 0 ≤ x ≤ a,

1, x ≥ a,

CY (y) =





0, y ≤ 0,

y
b
, 0 ≤ y ≤ b,

1, y ≥ b.

Following Peyré and Cuturi [98, Remark 2.30] we have that the optimal transport

(without rate constraint) is given by:

W 2
2 (pX , pY ) =

∫ 1

0

(C−1
X (r)− C−1

Y (r))2dr =
(b− a)2

3
, (A.1.21)

where C−1
X (·) and C−1

Y (·) are the pseudo-inverse of the CDF functions for X and Y as

defined in Peyré and Cuturi [98, Remark 2.30].

We will next develop an upper bound on Dncr(pX , pY , R) using Theorem 1 when the
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rate is of the form R = log2(N) for any N ∈ {1, 2, . . .}, by considering the following

choice for X̂ and Ŷ :

X̂ ∈ X̂ =

{
a

2N
,
3a

2N
,
5a

2N
, . . . ,

(2N − 1)a

2N

}
, (A.1.22)

Ŷ ∈ Ŷ =

{
b

2N
,
3b

2N
,
5b

2N
, . . . ,

(2N − 1)b

2N

}
. (A.1.23)

To compute the upper bound we select pX̂|X to correspond to scalar quantization

of X i.e., given X we select X̂ as a point in X̂ closest to X. The distribution pŶ |Y is

defined in an analogous manner1 . Our upper bound can be computed as:

D+
ncr(pX , pY , R) = E(X − X̂)2 + E(Y − Ŷ )2 +W 2

2 (pX̂ , pŶ ). (A.1.24)

Note that with ∆ = 1
N

we have that E(X − X̂)2 = a2∆2

12
and E(Y − Ŷ )2 = b2∆2

12
.

Thus we only need to compute the third term. Following Peyré and Cuturi [98, Remark

2.28] we have that:

W 2
2 (pX̂ , pŶ ) =

(b− a)2∆2

4N

N∑

i=1

(2i− 1)2 =
(b− a)2

3

(
1− ∆2

4

)
. (A.1.25)

Thus using ∆2 = 2−2R, we have that

D+
ncr(pX , pY , R) =

(b− a)2

3
+
a · b
6

2−2R. (A.1.26)

1Please note that we do not claim that the proposed choice is optimal with respect to Dmse

in (5.3.4) although it is known to be optimal solution for a related problem - the entropy constrained
scalar quantization ([47]). As a result we cannot claim to compute the upper bound D̄ncr stated
Theorem 1 but provide another upper bound.
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Note that the upper bound approaches the lower bound in (A.1.21) as R→∞, with

exponential rate of convergence.

For the case of general R, we let N = ⌈2R⌉ and following Gyorgy and Linder [47,

Theorem 1], we select

X̂ ∈ X̂ =





ac

2︸︷︷︸
x̂1

, a

(
c+

c′

2

)

︸ ︷︷ ︸
x̂2

, a

(
c+ 3

c′

2

)

︸ ︷︷ ︸
x̂3

, . . . , a

(
c+ (2N − 3)

c′

2

)

︸ ︷︷ ︸
x̂N




,

Ŷ ∈ Ŷ =





bc

2︸︷︷︸
ŷ1

, b

(
c+

c′

2

)

︸ ︷︷ ︸
ŷ2

, b

(
c+ 3

c′

2

)

︸ ︷︷ ︸
ŷ3

, . . . , b

(
c+ (2N − 3)

c′

2

)

︸ ︷︷ ︸
ŷN




,

(A.1.27)

where c is the unique solution in the interval (0, 1/N ] to the equation:

−c log c− (1− c) log (1− c)
N − 1

= R,

and c′ = (1−c)
N−1

holds. Note that the length of the first interval is c and the length

of all other intervals is c′. In the special case where R = log2N we will have that

c = c′ = 1
N

and our construction for X̂ and Ŷ is consistent with the previous case.

As before we use pX̂|X and pŶ |Y to be the distributions associated with scalar

quantization. Thus we have that:

E(X − X̂)2 = c
a2c2

12
+ (1− c)a

2c′2

12
, (A.1.28)

E(Y − Ŷ )2 = c
b2c2

12
+ (1− c)b

2c′2

12
. (A.1.29)

Furthermore using the result stated in Peyré and Cuturi [98, Remark 2.30] we have
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D +

ncr(pX, pY, R)
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Figure A.2: Example of uniform sources with a = 2 and b = 5. The left plot shows
the lower bound W 2

2 (pX , pY ) in (A.1.21) and the upper bound D+
ncr(pX , pY , R) which

is the sum of of the right hand side in (A.1.28), (A.1.29) and (A.1.32). For
comparison we also show the value of W 2

2 (pX̂ , pŶ ). The right plot shows the
distortions associated with the quantization and dequantization steps.

that

W 2
2 (pX̂ , pŶ ) = c(x̂1 − ŷ1)2 + c′

N∑

j=2

(x̂j − ŷj)2 (A.1.30)

= (b− a)2 c
3

4
+ (b− a)2c′

N−1∑

j=1

(
c+

2j − 1

2
c′
)2

(A.1.31)

= (b− a)2
(
c3

4
+ c2c′(N − 1) + cc′2(N − 1)2 +

1

12
c′3(2N − 1)(2N − 3)(N − 1)

)
.

(A.1.32)

Finally, the upper bound D+
ncr(pX , pY , R) can be obtained by summing the right hand

side of (A.1.28), (A.1.29) and (A.1.32). We provide a numerical evaluation of this

upper bound in Fig. A.2.
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A.1.7 Asymptotic Optimal Transport

Let X1, X2, · · · and Y1, Y2, · · · be i.i.d. processes with marginal distributions pX and

pY , respectively.

Definition 4 (Asymptotic Optimal Transport with Entropy Bottleneck — no com-

mon randomness). The asymptotic optimal transport from pX to pY with an entropy

bottleneck of R and without common randomness is defined as

D(∞)
ncr (pX , pY , R) ≜ inf

n≥1
D(n)

ncr(pX , pY , R),

where

D(n)
ncr(pX , pY , R) ≜ inf

pXn,Z,Y n∈Mncr(⊗n
i=1pX ,⊗n

i=1pY )

1

n

n∑

i=1

E[d(Xi, Yi)]

s.t.
1

n
H(Z) ≤ R.

Remark: It is clear that D
(1)
ncr(pX , pY , R) = Dncr(pX , pY , R). Moreover, one can

readily show that {nD(n)
ncr(pX , pY , R)}∞n=1 is a subadditive sequence and consequently

D
(∞)
ncr (pX , pY , R) = limn→∞D

(n)
ncr(pX , pY , R).

Theorem 5. We have

D(∞)
ncr (pX , pY , R) = inf

pX,Z,Y ∈Mncr(pX ,pY )
E[d(X, Y )]

s.t. max{I(X;Z), I(Y ;Z)} ≤ R.

Proof. This result can be specialized from Theorem 1 in [113].

The following result is the counterpart of Theorem 1 in the asymptotic setting.
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Theorem 6. Let

D(∞)
mse (pX , pY , R) ≜ inf

pX̂|X ,pŶ |Y
E[∥X − X̂∥2] + E[∥Y − Ŷ ∥2] +W 2

2 (pX̂ , pŶ )

s.t. E[X|X̂] = X̂, E[Y |Ŷ ] = Ŷ , I(X; X̂) ≤ R, I(Y ; Ŷ ) ≤ R,

(A.1.33)

and

Dmse(pX , R) ≜ inf
pX̂|X

E[∥X − X̂∥2]

s.t. I(X; X̂) ≤ R.

(A.1.34)

Moreover, let

D
(∞)

ncr (pX , pY , R) ≜ D(∞)
mse (pX , R) +D(∞)

mse (pY , R) +W 2
2 (pX̂∗ , pŶ ∗), (A.1.35)

D(∞)
ncr (pX , pY , R) ≜ D(∞)

mse (pX , R) +D(∞)
mse (pY , R), (A.1.36)

where pX̂∗ and pŶ ∗ are the marginal distributions induced by the minimizers pX̂∗|X and

pŶ ∗|Y that attain D
(∞)
mse (pX , R) and D

(∞)
mse (pY , R), respectively (assuming the existence

and uniqueness of such minimizers). Then under the squared Eucledian distortion

measure,

D(∞)
ncr (pX , pY , R) = D(∞)

mse (pX , pY , R). (A.1.37)

In addition, we have

D
(∞)

ncr (pX , pY , R) ≥ D(∞)
ncr (pX , pY , R) ≥ D(∞)

ncr (pX , pY , R), (A.1.38)

and both inequalities are tight when pX = pY .
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Proof. For any pX,Z,Y ∈Mncr(pX , pY ) with max{I(X;Z), I(Y ;Z)} ≤ R,

E[∥X − Y ∥2] = E[∥X − E[X|Z]∥2] + E[∥Y − E[Y |Z]∥2] + E[∥E[X|Z]− E[Y |Z]∥2]

≥ D(∞)
mse (pX , pY , R),

where the last inequality follows from the definition of D
(∞)
mse (pX , pY , R) and the fact

that

max{I(X;E[X|Z]), I(Y ;E[Y |Z]} ≤ max{I(X;Z), I(Y ;Z)} ≤ R.

In view of Theorem 5, we must have D
(∞)
ncr (pX , pY , R) ≥ D

(∞)
mse (pX , pY , R). On the

other hand, for any pX̂|X , pŶ |Y with E[X|X̂] = X̂, E[Y |Ŷ ] = Ŷ , I(X; X̂) ≤ R, and

I(Y ; Ŷ ) ≤ R, we can construct a joint distribution pX,X̂,Ŷ ,Y such that X ↔ X̂ ↔

Ŷ ↔ Y form a Markov chain, pX,X̂ = pXpX̂|X , pY,Ŷ = pY pŶ |Y , and pX̂,Ŷ satisfying

E[∥X̂ − Ŷ ∥2] = W 2
2 (pX̂ , pŶ ). Note that

E[∥X − Y ∥2] = E[∥X − X̂∥2] + E[∥Y − Ŷ ∥2] + E[∥X̂ − Ŷ ∥2]

= E[∥X − X̂∥2] + E[∥Y − Ŷ ∥2] +W 2
2 (pX̂ , pŶ ). (A.1.39)

Let Z ≜ X̂. It can be verified that pX,Z,Y ∈Mncr(pX , pY ) and max{I(X;Z), I(Y ;Z)} =

max{I(X; X̂), I(Y ; X̂)} ≤ max{I(X; X̂), I(Y ; Ŷ )} ≤ R, which, together with (A.1.39),

implies D
(∞)
ncr (pX , pY , R) ≤ D

(∞)
mse (pX , pY , R). This completes the proof of (A.1.37).

Dropping the term W 2
2 (pX̂ , pŶ ) in (A.1.33) yields

D(∞)
ncr (pX , pY , R) ≥ D̃(∞)

mse (pX , R) + D̃(∞)
mse (pY , R),
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where

D̃(∞)
mse (pX , R) ≜ inf

pX̂|X
E[∥X − X̂∥2]

s.t. E[X|X̂] = X̂, I(X; X̂) ≤ R.

and D̃mse(pY , R) is definely analogously. On the other hand, choosing pX̂|X = pX̂′|X

and pŶ |Y = pŶ ′|Y in (A.1.33) gives

D(∞)
ncr (pX , pY , R) ≤ D̃(∞)

mse (pX , R) + D̃(∞)
mse (pY , R) +W 2

2 (pX̂′ , pŶ ′),

where pX̂′|X and pŶ ′|Y are the minimizers that attain D̃
(∞)
mse (pX , R) and D̃

(∞)
mse (pY , R)

respectively while pX̂′ and pŶ ′ are their induced marginal distributions. It is clear

that pX̂′|X and pŶ ′|Y coincide with pX̂∗|X and pŶ ∗|Y respectively as the constraints

E[X|X̂] = X̂ and E[Y |Ŷ ] = Ŷ are automatically satisfied by pX̂∗|X and pŶ ∗|Y . This

proves (A.1.38). For the special case pX = pY , we have pX̂∗|X = pŶ ∗|Y and consequently

the upper bound and the lower bound in (A.1.38) coincide.

Definition 5 (Asymptotic Optimal Transport with Entropy Bottleneck — with

Common Randomness). The asymptotic optimal transport from pX to pY with entropy

bottleneck R and common randomness is defined as

D(∞)
cr (pX , pY , R) ≜ inf

n≥1
D(n)

cr (pX , pY , R),
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where

D(n)
cr (pX , pY , R) ≜ inf

pU,Xn,Z,Y n∈Mcr(⊗n
i=1pX ,⊗n

i=1pY )

1

n

n∑

i=1

E[d(Xi, Yi)]

s.t.
1

n
H(Z|U) ≤ R.

Remark: It is clear that D
(1)
cr (pX , pY , R) = Dcr(pX , pY , R). Moreover, one can

readily show that {nD(n)
cr (pX , pY , R)}∞n=1 is a subadditive sequence and consequently

D
(∞)
cr (pX , pY , R) = limn→∞D

(n)
ncr(pX , pY , R).

Theorem 7. We have

D(∞)
cr (pX , pY , R) = inf

pX,Y ∈Γ(pX ,pY )
E[d(X, Y )]

s.t. I(X;Y ) ≤ R.

Proof. This result is known (see Theorem 7 in [114]). It is possible to give a simpler

proof of the achievability part by leveraging Theorem 3 and the strong data processing

inequality Li and El Gamal [70]. The converse is based on standard information-

theoretic arguments.

A.1.8 Gaussian Case

Let X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ) be two Gaussian random variables, and

let d(·, ·) be the squared distortion measure (i.e., d(x, y) = (x − y)2). Let D
(G)
min ≜

(µX − µY )
2 + (σX − σY )

2 and D
(G)
max ≜ (µX − µY )

2 + σ2
X + σ2

Y . Note that D
(G)
min is

the squared Wasserstein-2 distance between N (µX , σ
2
X) and N (µY , σY ), which is

the minimum E[(X − Y )2] achievable by coupling X and Y . On the other hand,
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we have E[(X − Y )2] = D
(G)
max for X, Y independent. It is clear that D

(G)
min and

D
(G)
max are the infimum and supremum of D

(∞)
ncr (N (µX , σ

2
X),N (µY , σ

2
Y ), R) (as well as

D
(∞)
cr (N (µX , σ

2
X),N (µY , σ

2
Y ), R)), respectively.

Theorem 8. Assume squared distortion measure. Under no common randomness, we

have

D(∞)
ncr (N (µX , σ

2
X),N (µY , σ

2
Y ), R) = D

(G)
min + 2σXσY 2

−2R, R ∈ [0,∞). (A.1.40)

Moreover,

D
(∞)

ncr (N (µX , σ
2
X),N (µY , σ

2
Y ), R) = D(∞)

ncr (N (µX , σ
2
X),N (µY , σ

2
Y ), R), R ∈ [0,∞),

(A.1.41)

D(∞)
ncr (N (µX , σ

2
X),N (µY , σ

2
Y ), R) = (σ2

X + σ2
Y )2

−2R, R ∈ [0,∞). (A.1.42)

With common randomness,

D(∞)
cr (N (µX , σ

2
X),N (µY , σ

2
Y ), R) = D(G)

max − 2σXσY
√

1− 2−2R, R ∈ [0,∞).

(A.1.43)

Proof. Consider pX̂|X and pŶ |Y such that E[X|X̂], E[Y |Ŷ ], I(X; X̂) ≤ R, and

I(Y ; Ŷ ) ≤ R. Denote the mean and the variance of X̂ by µX̂ and σ2
X̂
, respec-

tively. Similarly, denote the mean and the variance of Ŷ by µŶ and σ2
Ŷ
, respectively.

Clearly, µX̂ = µX , µŶ = µY , σ
2
X̂
= σ2

X − E[(X − X̂)2], and σ2
Ŷ
= σ2

Y − E[(Y − Ŷ )2].
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Moreover,

W 2
2 (pX̂ , pŶ ) ≥ W 2

2 (N (µX̂ , σ
2
X̂
),N (µŶ , σ

2
Ŷ
))

= (µX̂ − µŶ )
2 + (σX̂ − σŶ )

2

= (µX − µY )
2 + (σX̂ − σŶ )

2.

So we have

E[(X − X̂)2] + E[∥Y − Ŷ ∥2] +W 2
2 (pX̂ , pŶ )

≥ σ2
X − σ2

X̂
+ σ2

Y − σ2
Ŷ
+ (µX − µY )

2 + (σX̂ − σŶ )
2

= D(G)
max − 2σX̂σŶ . (A.1.44)

It can be verified that

R ≥ I(X; X̂)

=
1

2
log(2πeσ2

X)− h(X|X̂)

≥ 1

2
log(2πeσ2

X)− h(X − X̂)

≥ 1

2
log(2πeσ2

X)−
1

2
log(2πeE[(X − X̂)2])

=
1

2
log

σ2
X

σ2
X − σ2

X̂

,

which implies

σX̂ ≤ σX
√
1− 2−2R. (A.1.45)
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Similarly,

σŶ ≤ σY
√

1− 2−2R. (A.1.46)

Substituting (A.1.45) and (A.1.46) into (A.1.44) and invoking (A.1.37) in Theorem 6

shows

D(∞)
ncr (N (µX , σ

2
X),N (µY , σ

2
Y ), R) ≥ D

(G)
min + 2σXσY 2

−2R.

To see that this lower bound is tight, we can let

X = X̂ +N, (A.1.47)

Y = Ŷ + N̂ , (A.1.48)

where X̂ ∼ N (µX , σ
2
X(1 − 2−2R)) is independent of N ∼ N (0, σ2

X2
−2R) while Ŷ ∼

N (µY , σ
2
Y (1− 2−2R)) is independent of N̂ ∼ N (0, σ2

Y 2
−2R). This completes the proof

of (A.1.40).

To prove (A.1.41) and (A.1.42), it suffices to note the well-known fact that

pX̂|X and pŶ |Y associated with (A.1.47) and (A.1.48) attain D
(∞)
mse (N (µX , σ

2
X), R)

and D
(∞)
mse (N (µY , σ

2
Y ), R), respectively.

Now we proceed to prove (A.1.43). Consider pX,Y ∈ Γ(N (µX , σ
2
X),N (µY , σ

2
Y ))

with I(X;Y ) ≤ R. Let ξ ≜ E[(X − µX)(Y − µY )]. We have

E[(X − Y )2] = D(G)
max − 2ξ. (A.1.49)
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Moreover,

R ≥ I(X;Y )

=
1

2
log(2πeσ2

X) +
1

2
log(2πeσ2

Y )− h(X, Y )

≥ 1

2
log(2πeσ2

X) +
1

2
log(2πeσ2

Y )−
1

2
log((2πe)2(σ2

Xσ
2
Y − ξ))

=
1

2
log

σ2
Xσ

2
Y

σ2
Xσ

2
Y − ξ2

,

which implies

ξ ≤ σXσY
√

1− 2−2R. (A.1.50)

Substituting (A.1.50) into (A.1.49) and invoking Theorem 7 shows

D(∞)
cr (N (µX , σ

2
X),N (µY , σ

2
Y ), R) ≥ D(G)

max − 2σXσY
√

1− 2−2R.

To see that this lower bound is tight, we can let X and Y be jointly Gaussian with

ξ = σXσY
√
1− 2−2R. This completes the proof of Theorem 8. We acknowledge that

the expression of D
(∞)
cr (N (µX , σ

2
X),N (µY , σ

2
Y ), R) was established in [113, Section

IV-B] for the special case when the Gaussian distributions have zero mean. However,

to the best of our understanding, they only provided an upper bound for the case of

no common randomness .

In Figure A.3, We plotD
(∞)
ncr (N (µX , σ

2
X),N (µY , σ

2
Y ), R),D

(∞)

ncr (N (µX , σ
2
X),N (µY , σ

2
Y ), R),

D(∞)
ncr (N (µX , σ

2
X),N (µY , σ

2
Y ), R), and D

(∞)
cr (N (µX , σ

2
X),N (µY , σ

2
Y ), R) for two illus-

trative examples.
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(a) (b)

Figure A.3: Gaussian case distortion-rate tradeoffs. (a) µX = µY = 0, σX = σY = 1,

where D
(∞)

ncr (N (µX , σ
2
X),N (µY , σ

2
Y ), R) and D

(∞)
ncr (N (µX , σ

2
X),N (µY , σ

2
Y ), R) coincide

with D
(∞)
ncr (N (µX , σ

2
X),N (µY , σ

2
Y ), R); (b) µX = 0, σX = 1, µY = 1, σY = 2, where

D
(∞)

ncr (N (µX , σ
2
X),N (µY , σ

2
Y ), R) is tight but D

(∞)
ncr (N (µX , σ

2
X),N (µY , σ

2
Y ), R) is loose.

Moreover, it can be seen from both examples that common randomness can indeed
help improve the distortion-rate tradeoff.

A.2 Experimental Results

A.2.1 Dataset

Image super-resolution is conducted on MNIST [63]. For synthesizing low-resolution

images, we perform bilinear downsampling on the original image from 28 × 28 to

7× 7. The samples in Figure 5.5(b) show that the low resolution digits are blurry and

some of them are hard to recognize. Image denoising is conducted on SVHN [92]. In

our experiments, we synthesize the noisy image with additive Gaussian noise. The

standard deviation is set to 20.
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A.2.2 Universal Quantization

Let C be our codebook for quantization. Recall that the encoder uses a tanh activation

so its output lies in (−1, 1)d. Given dimension d and L quantization levels per

dimension as parameters, C will consist of L uniformly spaced intervals across all d

dimensions. The upper bound of model rate is given by d log(L). With this codebook,

universal quantization [43, 126, 162] is implemented as follows. We assume the sender

and receiver have access to the same u ∼ U [−1/(L − 1),+1/(L − 1)]d. The sender

computes

z = argmin
c∈C

∥f(x) + u− c∥

and sends z to the receiver. The receiver decodes the image by passing z − u through

the decoder. This is also known as a subtractive dither in literature [43]. For super-

resolution and image denoising, the interval L is respectively fixed at 4 and 8.

A.2.3 Training Details

To induce distributional shift, we use the Wasserstein GAN for our experiments. We

alternate between training the encoder/decoder f, g, and the critic h. By Kantorovich-

Rubinstein duality [130], the critic is used to approximate

W1(pY , pỸ ) = sup
∥∇h∥≤1

Eh(Y )− Eh(Ỹ ), (A.2.1)

where Ỹ = g(Q(f(X) +U)−U) for U as in Appendix A.2.2. The Lipschitz constraint

is implemented with a gradient penalty [45] in practice.

Super-resolution. The training for end-to-end network lasts for 50 epochs. λ in

(5.4.2) is fixed at 1e− 3 across all rates. The learning rate initialized to be 0.0001 and

150



Ph.D. Thesis – H. Liu McMaster University – Electrical & Computer Engineering

is decayed by a factor of 5 after 30 epochs. The Adam [58] optimizer is used. Table

A.1 illustrates the detailed training setting. For the helper two-branch network at a

specific rate constraint, we load the pre-trained encoder weight of the corresponding

end-to-end network, as well as two randomly initialized decoders g1, g2. Note that

only theese two decoders are trainable. During training, we use the Adam optimizer

with the learning rate initialized at 0.0001. There are a total of 100 epochs until the

convergence of the two decoders. The learning rate is decayed once at 50 epochs by a

factor of 5. Detailed training settings are shown in Table A.2.

Image Denoising. The experiments for image denoising share many settings

with image super-resolution. Tables A.1 and A.2 can be reused to reproduce the

experiments on image denoising. Here, we list the difference between them. For

denoising, the end-to-end model is trained for 100 epochs with λ fixed at 3e− 3 across

all rates. The learning rate is decayed by a factor of 5 after 40 epochs. The two-branch

model is trained for total 200 epochs and we decay the learning rate at 100 epochs by

a factor of 5.

Table A.1: Hyperparameters used for training end-to-end model in Fig. 5.4(a). α is
the learning rate, (β1, β2) are the parameters for Adam, and λGP is the gradient

penalty coefficient.

α β1 β2 λGP

Encoder 10−4 0.5 0.999 -
Decoder 10−4 0.5 0.999 -
Critic 10−4 0.5 0.999 10

A.2.4 Detailed Results in Figure. 5.5

In Fig. 5.5(a)(c), we have provided a comparison between the case with or without

common randomness in the form of a scatter chart. Here, we present detailed
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Table A.2: Hyperparameters used for training two-branch model in Fig. 5.4(b). α is
the learning rate, (β1, β2) are the parameters for Adam, and λGP is the gradient

penalty coefficient.

α β1 β2 λGP

Encoder 0 - - -
Decoder-1 10−4 0.5 0.999 -
Decoder-2 10−4 0.5 0.999 -
Critic 10−4 0.5 0.999 10

quantities of each point in Fig. 5.5(a)(c). Table A.3 shows the number of each dot for

super-resolution experiments, and Table A.4 present the value of each dot for image

denoising. From the two tables, we can further see the utility of common randomness

quantitatively.

Table A.3: The detailed number of MSE distortion loss in Fig. 5.5(a).

Super-resolution with Common Randomness

Rate 4 6 8 10 12 14 16 18
MSE 0.0515 0.0457 0.0420 0.0394 0.0372 0.0353 0.0339 0.0324

Rate 20 22 24 26 28 30 32 -
MSE 0.0313 0.0300 0.0297 0.0285 0.0280 0.0277 0.0269 -

Super-resolution without Common Randomness

Rate 4 6 8 10 12 14 16 18
MSE 0.0558 0.0506 0.0463 0.0435 0.0415 0.0396 0.0383 0.0367

Rate 20 22 24 26 28 30 32 -
MSE 0.0351 0.0337 0.0331 0.0328 0.0315 0.0308 0.0300 -

A.2.5 Comparison with Baseline

To illustrate the effectiveness of our system, we compare with a baseline method

that separately deal with the tasks of image restoration and compression. For the
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Table A.4: The detailed number of MSE distortion loss in Fig. 5.5(c).

Image Denoising with Common Randomness

Rate 12 18 24 30 36 42 48 54 60
MSE 0.0219 0.0195 0.0175 0.01634 0.0154 0.0147 0.0138 0.0135 0.0129

Rate 66 72 78 84 90 96 102 108 114
MSE 0.0126 0.0123 0.0118 0.0117 0.0115 0.0112 0.0109 0.0107 0.0106

Image Denoising without Common Randomness

Rate 12 18 24 30 36 42 48 54 60
MSE 0.0230 0.0208 0.0189 0.0175 0.0165 0.0157 0.0151 0.0145 0.014

Rate 66 72 78 84 90 96 102 108 114
MSE 0.0137 0.0133 0.0130 0.0127 0.0123 0.0120 0.0118 0.0116 0.0114

restoration (image super-resolution and denoising), we respectively build two U-Nets

with skip connections and train them in the unsupervised manner by adopting the

Eq. 5.4.2 as objective i.e.,

L1 = E[∥X − Ỹ ∥2] + λ1W1(pY , pỸ ). (A.2.2)

After the restoration networks are trained to converge, we fix their weights and

use them to produce restored images Ỹ given degraded one X. Afterwards, we adopt

our end-to-end network as compression network by minimizing the following loss at

different rates:

L1 = E[∥Ỹ − Y +∥2] + λW1(pY , pY +), (A.2.3)

where Y + is the outputs of compression network. Note that, to guarantee the

distribution of reconstructed Y + is close to that of target images, we implement a
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penalty on the Wasserstein-1 distance in (A.2.2) and (A.2.3). For the image super-

resolution, we experimentally selected λ1 = 0.05 and λ2 = 0.01. For the image

denoising, we experimentally selected λ1 = 0.03 and λ2 = 0.005. Once the compression

network is converged, we report the final MSE distortion between Y + and X using

E[∥X − Y +∥2].

The detailed results for entropy-constrained image super-resolution and denoising

are respectively shown in Table A.5 and Table A.6. It can easily check throughout

the tables that our end-to-end systems outperform the baselines.

Table A.5: Comparison between our end-to-end system with the baseline method for
image super-resolution. Numbers are the MSE distortion loss for a particular rate.

Best results are in bold.

Super-resolution with Common Randomness

Rate 4 6 8 10 12 14 16 18
Baseline 0.0603 0.0568 0.0544 0.0530 0.0523 0.0511 0.0503 0.0498
Ours 0.0515 0.0457 0.0420 0.0394 0.0372 0.0353 0.0339 0.0342

Rate 20 22 24 26 28 30 32 -
Baseline 0.0489 0.0485 0.0484 0.0482 0.0478 0.0476 0.0471 -
Ours 0.0313 0.0300 0.0297 0.0285 0.0280 0.0277 0.0269 -

Super-resolution without Common Randomness

Rate 4 6 8 10 12 14 16 18
Baseline 0.0620 0.0585 0.0573 0.0555 0.0543 0.0535 0.0532 0.0520
Ours 0.0558 0.0506 0.0463 0.0435 0.0415 0.0396 0.0383 0.0367

Rate 20 22 24 26 28 30 32 -
Baseline 0.0517 0.0512 0.0506 0.0505 0.0497 0.0495 0.0490 -
Ours 0.0351 0.0337 0.0331 0.0328 0.0315 0.0308 0.0300 -
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Table A.6: Comparison between our end-to-end system with the baseline method for
image denoising. Numbers are the MSE distortion loss for a particular rate. Best

results are in bold.

Image Denoising with Common Randomness

Rate 12 18 24 30 36 42 48 54 60
Baseline 0.0242 0.0213 0.0189 0.0173 0.0162 0.0154 0.0148 0.0142 0.0136
Ours 0.0219 0.0195 0.0175 0.0163 0.0154 0.0147 0.0138 0.0135 0.0129

Rate 66 72 78 84 90 96 102 108 114
Baseline 0.0134 0.0130 0.0127 0.0124 0.0120 0.0118 0.0116 0.0111 0.0110
Ours 0.0126 0.0123 0.0118 0.0117 0.0115 0.0112 0.0109 0.0107 0.0106

Image Denoising without Common Randomness

Rate 12 18 24 30 36 42 48 54 60
Baseline 0.0252 0.0216 0.0202 0.0185 0.0178 0.0164 0.0158 0.0154 0.0149
Ours 0.0230 0.0208 0.0189 0.0175 0.0165 0.0157 0.0151 0.0145 0.014

Rate 66 72 78 84 90 96 102 108 114
Baseline 0.0147 0.0144 0.0140 0.0135 0.0133 0.0129 0.0126 0.0120 0.0117
Ours 0.0137 0.0133 0.0130 0.0127 0.0123 0.0120 0.0118 0.0116 0.0114

A.2.6 Comparison with Ground Truth

In order to illustrate the rate-distortion trade-offs, we report the MSE distortion that

is measured between degraded input images and decoder outputs in Figure 5.5. Since

the input and output distributions are different, we do not expect MSE → 0 as the

rate increases. The MSE distortion between degraded input and restored output is

still able to reveal how much content information of the input is preserved in output

(lower is better).

We now additionally show the MSE distortion between ground truth and decoder

outputs in Tables A.7 and A.8. Concretely, we measure MSE distortion E[∥Y − Ỹ ∥2],

where Y is ground truth and Ỹ is the network output. Note that for training, the

ground truth is only used in an unsupervised fashion with unpaired noisy images,

and here the ground truth-noisy image pairs are only used for test time evaluation.
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Note also that the MSE distortion is correspondingly lower if common randomness is

adopted.

Table A.7: Illustration of MSE distortion between network outputs and ground truth
for super-resolution.

Super-resolution with Common Randomness

Rate 4 8 12 16 20 24 28 32
MSE 0.0582 0.0464 0.0408 0.0380 0.0360 0.0353 0.0348 0.0343

Super-resolution without Common Randomness

Rate 4 8 12 16 20 24 28 32
MSE 0.0646 0.0492 0.0426 0.0390 0.0375 0.0362 0.0353 0.0345

Table A.8: Illustration of MSE distortion between network outputs and ground truth
for image denoising.

Image Denoising with Common Randomness

Rate 12 24 36 48 60 72 84 96 108
MSE 0.0157 0.0114 0.0092 0.0077 0.0069 0.0062 0.0056 0.0052 0.0047

Image Denoising without Common Randomness

Rate 12 24 36 48 60 72 84 96 108
MSE 0.0169 0.0128 0.0104 0.0090 0.0080 0.0072 0.0066 0.0060 0.0057

A.2.7 Breakdown of the Table 5.1

It is worth reminding that the each number in Table 5.1 is the total distortion 5.4.5.

Here, we provide a breakdown of total distortion in each of the three term for joint

training, i.e, E[∥X − Ỹ1∥2], E[∥Ỹ − Ỹ2∥2] and E[∥Ỹ1 − Ỹ2∥2].
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A.2.8 Network Architecture

Super-resolution. The detailed network structure for end-to-end model and two-

branch model are respectively presented in Table A.10 and Table A.11. The last linear

layer of the encoder controls the number of output symbols.

Denoising. The detailed network structure for end-to-end model and two-branch

model are respectively presented in Table A.12 and Table A.13. The last linear layer

of the encoder controls the number of output symbols.

Table A.9: Breakdown of the Table 5.1. At any rate, it can be observed that the total
losses of our approximation system (L2) are very close to that of end-to-end learning

system under the setting without common randomness (E[∥X − Ỹ ∥2]).

Image Super-resolution Using Joint Training

Rate E[∥X − Ỹ1∥2] E[∥Ỹ − Ỹ2∥2] E[∥Ỹ1 − Ỹ2∥2] L2 E[∥X − Ỹ ∥2]

4 0.0355 0.0227 0.0004 0.0586 0.0558
10 0.0223 0.0222 0.0008 0.0453 0.0435
20 0.0136 0.0191 0.00013 0.0349 0.0351
30 0.00122 0.0172 0.0015 0.0309 0.0308

Image Denoising Using Joint Training

Rate E[∥X − Ỹ1∥2] E[∥Ỹ − Ỹ2∥2] E[∥Ỹ1 − Ỹ2∥2] L2 E[∥X − Ỹ ∥2]

12 0.01911 0.00497 0.00020 0.02428 0.02302
30 0.01458 0.00435 0.00026 0.01919 0.01746
60 0.01168 0.00378 0.00032 0.01578 0.01401
90 0.01035 0.00323 0.00028 0.01386 0.01229
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Table A.10: Model architectures of end-to-end network used in super-resolution.

Encoder
Input

Conv2D, l-ReLU
Conv2D, l-ReLU

Flatten
Linear, l-ReLU
Linear, l-ReLU
Linear, Tanh
Quantizer

Decoder
Input

Linear, BatchNorm1D, l-ReLU
Linear, BatchNorm1D, l-ReLU

Unflatten
ConvT2D, BatchNorm2D, l-ReLU
ConvT2D, BatchNorm2D, l-ReLU
ConvT2D, BatchNorm2D, Sigmoid

Critic
Input

Conv2D, l-ReLU
Conv2D, l-ReLU
Conv2D, l-ReLU

Linear

Table A.11: Model architectures of two-branch network used in super-resolution.

Encoder
Input

Conv2D, l-ReLU
Conv2D, l-ReLU

Flatten
Linear, l-ReLU
Linear, l-ReLU
Linear, Tanh
Quantizer

Decoder1 and 2
Input

Linear, BatchNorm1D, l-ReLU
Linear, BatchNorm1D, l-ReLU

Unflatten
ConvT2D, BatchNorm2D, l-ReLU
ConvT2D, BatchNorm2D, l-ReLU

ConvT2D, Sigmoid

Table A.12: Model architectures of end-to-end network used in image denoising.

Encoder
Input

Conv2D, l-ReLU
Conv2D, l-ReLU
Conv2D, l-ReLU

Flatten
Linear, Tanh
Quantizer

Decoder
Input

Linear, BatchNorm1D, l-ReLU
Linear, BatchNorm1D, l-ReLU

Unflatten
ConvT2D, BatchNorm2D, l-ReLU
ConvT2D, BatchNorm2D, l-ReLU
ConvT2D, BatchNorm2D, l-ReLU
ConvT2D, BatchNorm2D, Sigmoid

Critic
Input

Conv2D, l-ReLU
Conv2D, l-ReLU
Conv2D, l-ReLU

Linear
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Table A.13: Model architectures of two-branch network used in image denoising.
ResBlock is formed using two Conv2D and skip connection.

Encoder
Input

Conv2D, l-ReLU
Conv2D, l-ReLU
Conv2D, l-ReLU

Flatten
Linear, Tanh
Quantizer

Decoder1 and 2
Input

Linear, BatchNorm1D, l-ReLU
Linear, BatchNorm1D, l-ReLU

Unflatten
ConvT2D, l-ReLU

ResBlock, ConvT2D, l-ReLU
ResBlock, ConvT2D, l-ReLU
ResBlock, ConvT2D, Sigmoid
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