Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27462
Title: Lateral Torsional Buckling Strength of Sinusoidal Corrugated Web Plate Girders
Authors: Reinders, Philip
Advisor: Balomenos, Georgios
Department: Civil Engineering
Keywords: Corrugated Web Plate Girders;Sinusoidally Corrugated Web Profile;Lateral Torsional Buckling;Experimental Analysis
Publication Date: 2022
Abstract: Corrugated web plate girders (CWPGs) have become an increasingly popular structural member in Canada in recent years. This is because of their economic efficiency over standard wide flange members. Although the flexural performance of such has been increasingly studied in recent years there is still advancements that can be made in their design. No research has been completed in Canada on the subject of lateral torsional buckling (LTB) strength and very minimal research has been published on sinusoidal CWPGs. In order to examine the LTB strength of a CWPG with a sinusoidally shaped web, nine specimens were loaded and failed in simply supported arrangement that favours lateral torsional buckling. Specimens were chosen to observe the difference in strength due to web thickness, web depth and variation in identical beams. All of the specimens recorded strengths that exceeded the theoretical design strengths confirming that the current design procedure is conservative. A trend of ultimate capacity increasing was observed with the increase of web thickness. The depth of the web had no significant effect on the torsional strength besides what is gained from the increased flange distance. An equivalent web thickness equation was formulated based on the results for the purpose of calculating LTB strength. To test the proposed equation a numerical analysis was run on a wider range of beams and compared with the testing results. It was determined the physical testing results can be effectively captured by the proposed equation among more than just the tested beams. Two additional analyses were prepared to lay the foundation for further investigation of the proposed equation. The first was a Monte Carlo simulation to test the risk of using the proposed equation which requires additional data. Secondly, a preliminary finite element analysis (FEA) model was developed and presented for future use to expand this research.
URI: http://hdl.handle.net/11375/27462
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Reinders_Philip_A_April2022_MASC.pdf
Access is allowed from: 2023-04-18
4.24 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue