Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27321
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorEmadi, Ali-
dc.contributor.authorKhanum, Fauzia-
dc.date.accessioned2022-01-27T19:22:38Z-
dc.date.available2022-01-27T19:22:38Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/11375/27321-
dc.description.abstractSwitching from fossil-fuel-powered vehicles to electric vehicles has become an international focus in the pursuit of combatting climate change. Regardless, the adoption of electric vehicles has been slow, in part, due to range anxiety. One solution to mitigating range anxiety is to provide a more accurate state of charge (SOC) and range estimation. SOC estimation of lithium-ion batteries for electric vehicle application is a well-researched topic, yet minimal tools and code exist online for researchers and students alike. To that end, a publicly available Kalman filter-based SOC estimation function is presented. The MATLAB function utilizes a second-order resistor-capacitor equivalent circuit model. It requires the SOC-OCV (open circuit voltage) curve, internal resistance, and equivalent circuit model battery parameters. Users can use an extended Kalman filter (EKF) or adaptive extended Kalman filter (AEKF) algorithm and temperature-dependent battery data. A practical example is illustrated using the LA92 driving cycle of a Turnigy battery at multiple temperatures ranging from -10C to 40C. Current range estimation methods suffer from inaccuracy as factors including temperature, wind, driver behaviour, battery voltage, current, SOC, route/terrain, and much more make it difficult to model accurately. One of the most critical factors in range estimation is the battery. However, most models thus far are represented using equivalent circuit models as they are more widely researched. Another limitation is that any machine learning-based range estimation is typically based on historical driving data that require odometer readings for training. A range estimation algorithm using a machine learning-based voltage estimation model is presented. Specifically, the long short-term memory cell in a recurrent neural network is used for the battery model. The model is trained with two datasets, classic and whole, from the experimental data of four Tesla/Panasonic 2170 battery cells. All network training is completed on SHARCNET, a resource provided by Canada Compute to researchers. The classically trained network achieved an average root mean squared error (RMSE) of 44 mV compared to 34 mV achieved by the network trained on the whole dataset. Based on the whole dataset, all test cases achieve an end range estimation of less than 5 km with an average of 0.29 km.en_US
dc.language.isoenen_US
dc.subjectState of Chargeen_US
dc.subjectRange Estimationen_US
dc.subjectLithium-ion batteryen_US
dc.subjectElectric Vehiclesen_US
dc.subjectBattery Modellingen_US
dc.subjectVoltage Estimationen_US
dc.subjectRecurrent Neural Networksen_US
dc.subjectLSTMen_US
dc.subjectSHARCNETen_US
dc.subjectExtended Kalman Filteren_US
dc.subjectEquivalent Circuit Modelen_US
dc.titleState of Charge and Range Estimation of Lithium-ion Batteries in Electric Vehiclesen_US
dc.typeThesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Khanum_Fauzia_2021Dec_MASc.pdf
Access is allowed from: 2022-12-18
State of Charge and Range Estimation of Lithium-ion Batteries in Electric Vehicles52.84 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue