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Abstract
Switching from fossil-fuel-powered vehicles to electric vehicles has become an inter-

national focus in the pursuit of combatting climate change. Regardless, the adoption

of electric vehicles has been slow, in part, due to range anxiety. One solution to mit-

igating range anxiety is to provide a more accurate state of charge (SOC) and range

estimation. SOC estimation of lithium-ion batteries for electric vehicle application is a

well-researched topic, yet minimal tools and code exist online for researchers and students

alike. To that end, a publicly available Kalman filter-based SOC estimation function is

presented. The MATLAB function utilizes a second-order resistor-capacitor equivalent

circuit model. It requires the SOC-OCV (open circuit voltage) curve, internal resistance,

and equivalent circuit model battery parameters. Users can use an extended Kalman

filter (EKF) or adaptive extended Kalman filter (AEKF) algorithm and temperature-

dependent battery data. A practical example is illustrated using the LA92 driving cycle

of a Turnigy battery at multiple temperatures ranging from -10°C to 40℃.

Current range estimation methods suffer from inaccuracy as factors including temper-

ature, wind, driver behaviour, battery voltage, current, SOC, route/terrain, and much

more make it difficult to model accurately. One of the most critical factors in range

estimation is the battery. However, most models thus far are represented using equiva-

lent circuit models as they are more widely researched. Another limitation is that any

machine learning-based range estimation is typically based on historical driving data

that require odometer readings for training.

A range estimation algorithm using a machine learning-based voltage estimation

model is presented. Specifically, the long short-term memory cell in a recurrent neu-

ral network is used for the battery model. The model is trained with two datasets,

classic and whole, from the experimental data of four Tesla/Panasonic 2170 battery

cells. All network training is completed on SHARCNET, a resource provided by Canada
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Compute to researchers. The classically trained network achieved an average root mean

squared error (RMSE) of 44 mV compared to 34 mV achieved by the network trained

on the whole dataset. Based on the whole dataset, all test cases achieve an end range

estimation of less than 5 km with an average of 0.29 km.
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Chapter 1

Introduction

1.1 Background and Motivation

Climate change can no longer be denied. The increase in adverse effects, both in-

tensity and number, can be directly linked to the increase in greenhouse gas (GHG)

emissions, of which fossil fuels are the main source. The transportation industry is the

second most prominent user of fossil fuels [1]. As part of an effort to drastically reduce

CO2 emission and curb climate change, the European Union is proposing to stop sales

of solely internal combustion engine vehicles (ICEVs) by 2035 [2].

Canada does not have a reliance on fossil fuel for power generation [3], indicating that

an increase in electric vehicle (EVs) adoption can drastically reduce the country’s emis-

sions. Despite the current climate crisis and the usage of personal vehicles, Canadians

are slow to adopt EVs. The new motor vehicle registration data from Statistics Canada

show that EVs, which include BEVs, hybrid electric vehicles (HEVs), and plug-in hybrid

electric vehicles (PHEVs), only made up 7% of 2020 registrations as shown in Fig. 1.1.

According to a survey done by J.D. Power [4], the most critical factor in both pur-

chasing and driving an EV is the battery and driving range. 20% of the owners’ overall
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Figure 1.1: New motor vehicles registration by vehicle fuel type from
2011 to 2020 in Canada.

satisfaction is based on the accuracy of the stated range versus the experienced range in

both premium and mass markets [4].

Contrary to popular belief, range anxiety is one of the biggest hindrances to purchas-

ing BEVs rather than the actual range a BEV can provide. Range anxiety is the fear

that one’s EV battery will run out of charge before their next destination or charging

station. In order to increase the use of BEVs, range anxiety mitigation solutions must

be explored. One method to reduce range anxiety is to provide a more transparent and

accurate estimate of the remaining distance a BEV can drive at any moment, other-

wise known as remaining driving range or range estimation. Traditionally, for fossil-fuel

powered vehicles, drivers look to the fuel gauge to decide how much further they can

drive until they need to refuel. In BEVs, the equivalent of the ICEVs fuel gauge is the

state of charge (SOC). The SOC provides information on how much charge remains in

the BEV battery compared to its total capacity. Unlike ICEV’s, there is no convenient

sensor to measure SOC; instead, it must be estimated based on other measured data

such as current and voltage. The accuracy of SOC estimation is dependent on various
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factors such as temperature, battery chemistry, sensor error, etc. There are numerous

SOC estimation methods, with the most prominent method being the Kalman filter

(KF). Despite its popularity and commonality, there is a lack of publicly available tools

available for learning and research purposes.

Pevec et. al. [5] found that people preferred the remaining driving range in kilometres

or miles over SOC to decide where to charge. Having a SOC level of 30% or less is enough

to make people uncomfortable, leading to the onset of range anxiety. While SOC is a

good gauge on the current battery status, range estimation takes it a step further by

providing distance either in miles or kilometers that the vehicle can safely drive [6].

There is no standard in current BEVs in the market on how to calculate range estima-

tion. For example, in the Tesla Model 3, the range is estimated based on the remaining

energy in the battery and the vehicle’s energy consumption rating. The consumption

rating for BEVs is typically given in Wh/km or Wh/mile. Simple methods such as this

do not consider the weather (temperature, wind, etc.), route, recent driving history, etc.,

and therefore do not provide an accurate estimation. Other models that consider mul-

tiple factors and provide a more dynamic range estimation often utilize an equivalent

circuit battery model. No machine learning-based battery model has been utilized for

range estimation to the author’s knowledge. Inaccuracies in battery modelling or battery

data can lead to misleading range estimation.

The following thesis will explore two topics related to BEV’s. First, a KF-based SOC

estimation tool is developed in MATLAB for public use. The goal of this work is to

provide students and researchers with a means to quickly learn SOC estimation through

a standard method and a basis for further exploration. Second, a solution to create a

driving range estimation focused on the battery is proposed. An overview for the driving

range estimation algorithm is provided in Fig. 1.2. Creating a machine learning-based

battery model is a necessary step in reporting an accurate and straightforward range
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Figure 1.2: Overview of the proposed range estimation algorithm usage
in a BEV.

estimation. The range estimation will consider factors such as temperature, payload

mass, and HVAC (heating, ventilation, and air conditioning) usage, assuming that the

driving route and destination are known.

A real world example of the proposed range estimation exists within the Nissan Leaf.

Fig. 1.3 is a picture of a Nissan Leaf infotainment system displaying the possible range

it could travel given its current location at McMaster University in Hamilton, ON and

the charge in the battery pack. The white region represents the distance the vehicle

could travel with current charge in the battery pack. The gray region is outside the

driving range. However, this range estimation can be unreliable due to changing factors

un HVAC usage, weather, and driving route.
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Figure 1.3: Nissan Leaf infotainment screen, driving range estimation
shown in the white region.

1.2 Thesis Contributions

This thesis provides two main contributions to the research of BEVs. The first contri-

bution of this research project is the development of a SOC estimation tool for public use.

The tool is an extended Kalman filter-based SOC estimator using a second-order equiva-

lent circuit model function in MATLAB. The objective is to provide a starting point for
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researchers, students, and industry learning and testing purposes. The second contribu-

tion of this research project is developing a BEV driving range estimation method based

on a recurrent neural network battery model. To the author’s knowledge, this is the

first range estimation model centered around a machine learning battery model. This

research aims to provide the first steps in developing a more accurate range estimation

method easily implementable by BEV manufacturers. This model comes with a couple

of assumptions:

• The purpose is not to improve the vehicle powertrain or software, merely to use it

as a testbed for algorithm development.

• The driving route from point A to B is given or known.

This work aims to achieve accuracy within 5 km at the end of the drive.

Secondary contributions of this thesis include:

• creating a battery dataset varying in temperatures, payload mass, and HVAC

options in battery cell testing,

• a recurrent neural network (RNN) cell-based voltage estimation model with power

instead of current as input,

• utilizing SHARCNET (Shared Hierarchical Academic Research Computing Net-

work) for faster offline battery model training.

• and, a comparison of a battery model trained with only temperature varying data

versus one trained with data varying in temperature, payload mass, HVAC, grade,

and aggressiveness.
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1.3 Thesis Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides a

state-of-the-art review on lithium-ion battery models, state of charge estimation meth-

ods, and driving range estimation in BEVs. In chapter 3, a Kalman filter-based battery

state of charge estimation MATLAB function is given. The function uses a second-order

equivalent circuit model with an extended Kalman filter. A simulation example is shown

using publicly available Turnigy battery data.

Next, in chapter 4, four Tesla/Panasonic lithium-ion cells are tested using the Arbin

cell cycler and data generated from a Tesla Model 3 model. The data represents drive

cycles varying in temperature, payload mass, HVAC, grade, and aggressiveness. In

Chapter 5, a range estimation method for electric vehicles is provided using a RNN-

based battery model. A comparison of training on a standard computer CPU versus

SHARCNET is provided, and a comparison of voltage estimation from two datasets.

Lastly, chapter 6 will conclude this dissertation and provide some options for future

work.
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Chapter 2

State-of-the-Art Review on

Lithium-Ion Batteries in Electric

Vehicles

2.1 Introduction

Batteries and the battery management system (BMS) are a major area of interest

within battery electric vehicles (BEVs). BEV battery packs consist of individual battery

cells in various series-parallel configurations. Often battery testing is completed at the

cell level and then stepped up based on pack configuration. The BMS is responsible for

data monitoring, battery modelling, state estimation such as state of charge (SOC), range

estimation, and more [7]. Data monitoring includes taking current and temperature

sensor data and using the information as part of battery models, state estimations, fault

diagnosis, and so on. Battery models, in turn, are then used for other state estimations

such as SOC and state-of-health (SOH). Battery models can be divided into equivalent

circuit models, electrochemical models, and data-driven models. SOC, one of the more

essential battery states, is the ratio of a battery’s capacity over its total capacity [8].
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SOC is comparable to a fuel gauge in a conventional gas-powered vehicle. SOC is a

critical parameter in computing range estimation, in order to provide the user with a pre-

diction of how much further the BEV can drive before the battery is completely depleted.

This metric is much more challenging to estimate and is not directly measurable.

The following sections give an overview of battery models, SOC estimation, and range

estimation found in the current literature. Section 2 provides an overview of battery

basics and standard battery models. Section 3 outlines the state of charge estimation

techniques. Range estimation factors, estimation methods, and common problems are

reviewed in section 4. Finally, a summary of the chapter is provided in section 5.

2.2 Lithium-ion Battery Basics and Models

A battery is a device that converts stored chemical energy to electrical energy through

an oxidation-reduction reaction. There are three types of batteries: primary, standby,

and secondary. Primary batteries are disposable and have an irreversible chemical re-

action meaning they cannot be charged. In a standby battery, the active chemical is

isolated to minimize self-discharge and are typically utilized in emergencies. Secondary

batteries can be recharged and will be the focus of this thesis. The base form of a battery

is called a cell and is available in many shapes such as cylindrical, coin, prismatic, and

pouch (thin and flat) and chemistries including lead-acid, nickel-metal-hydride (NiMH),

lithium-ion (li-ion), and sodium nickel chloride (Na-Ni-Cl) [8][9]. Battery cells are con-

nected in a series and parallel configuration and contained within a case to create a

module. Combining a group of battery modules in a series/parallel configuration creates

the final battery pack seen in commercial BEVs. In this chapter, a battery cell will be

referred to as a battery.

9



M.A.Sc Thesis
Fauzia Khanum

McMaster University
Electrical and Computer Engineering

2.2.1 Battery Basics

There are many voltage terms used to describe a battery. A battery’s voltage will

vary from fully charged (maximum voltage) to discharged (cut-off voltage). The nom-

inal voltage is the average of this curve and is usually the battery’s rated voltage [9].

Alternatively, the open-circuit voltage (OCV) describes the voltage between the battery

terminals with no load applied, while the terminal voltage is the voltage with load applied

[9]. All batteries have an internal resistance dependent on their chemistry, charging/dis-

charging, temperature, SOC, and SOH [9] [10]. The standard requirements of li-ion

batteries can be seen in Table 2.1.

Table 2.1: Basic technical requirements of a li-ion cell in a BEV from
[11].

Specification Unit BEV Requirements

Nominal cell voltage V ∼3.75
Cycle life cycles 1500 – 3000
Specific power (10 s, 50% SOC, 25°C) W/kg 1000 – 3000
Power density (10 s, 50% SOC, 25°C) W/L 2000 – 4000
Specific energy (1C rate at 25°C) Wh/kg 150 – 230
Energy density (1C rate at 25°C) Wh/L 250 – 550
Self-discharge rate (50% SOC, at 25°C) <3%/month

2.2.2 Battery Capacity

The battery capacity is the total amount of electrical charge a cell can hold, usually

measured in ampere-hour (Ah) [8]. The capacity is dependent on the chemistry, temper-

ature, and current rate [10]. The current rate or C-rate is the rate at which the battery

is charged or discharged. For example, a battery with a 1C rate means that the battery

will fully discharge in 1-hour [9]. SOC is the ratio of a battery’s capacity over its total

capacity and is comparable to a fuel gauge in a conventional gas-powered vehicle. It

is a unitless number between 0 and 1, with 1 representing 100% or fully charged. 0%

SOC differs between electrochemical and reported SOC. Electrochemical SOC refers to
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when the battery has reached the cut-off voltage, or minimum allowable voltage [9]. At

this point, any more charge extracted from the battery can lead to irreversible damage

and ageing. However, in a BEV, the reported 0% SOC does not align with the electro-

chemical SOC. BEV manufacturers reserve some battery capacity to conceal the battery

ageing from the consumer. SOC estimation methods are reviewed in section 3 [12].

2.2.3 Battery Power and Energy

The watt-hour (Wh), which represents the battery energy, can be calculated by mul-

tiplying the capacity by the nominal voltage [12]. A battery has multiple power and

energy terms that are used to judge the battery. Specific power, in W/kg, is the maxi-

mum available power per unit mass and is based on the chemistry and packaging. Power

density in W/L is the maximum available power per unit volume. Specific power and

power density determine the battery weight and size required to achieve a particular

performance target such as acceleration. Specific energy in Wh/kg is the nominal en-

ergy per unit mass. Energy density in Wh/L is the nominal energy per unit volume.

The specific energy and energy density determine the battery weight and size required

to achieve a particular driving range [9]. A related metric is the state of power or SOP,

which refers to the ratio of peak power to nominal power for a specific time, usually a

few seconds [13]. In BEVs, SOP can determine if there is enough power for starting,

accelerating, or climbing (driving uphill) [14].

2.2.4 Battery Life

Batteries degrade over time due to current rates, temperature, number of charge/dis-

charge cycles and storage conditions. A fresh battery has 100% capacity usage is at the

beginning of life (BOL), while the end of life (EOL) is when it reaches a certain per-

centage of BOL, typically 70% - 80%, depending on the manufacturer[10]. The metric

used to evaluate battery life and ageing is the state of health (SOH). Batteries aging can
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be caused by capacity fade or power fade. Like SOC, SOH cannot be directly measured

and therefore needs to be estimated through other means [15].

2.3 Modelling Batteries

Batteries have complex dynamics that vary with age, temperature, chemistry, and

current rate. However, determining the varying battery states (SOC, SOP, SOH) can

sometimes require a battery model. This section provides an overview of commonly used

battery models found in literature.

2.3.1 Equivalent Circuit Models

The most widely used battery model type in BEVs is the equivalent circuit model

(ECM). This model type uses electrical components such as resistors and capacitors to

describe the dynamics of the battery [12]. ECM’s can easily be implemented online

in real-time in a BMS since they are computationally efficient and straightforward to

implement [16]. However, ECMs only represent a subset of the total parameters affecting

battery dynamics. Further parameter identification and implementation to the model

can be computationally expensive [17]. Typical ECM’s include linear and non-linear

electric models, impedance-based models, and n-RC models, where n is the order of

resistor-capacitor pairings in the circuit. Commonly, first-, second- or third-order models

are used as parameter identification becomes more complex with higher order models.

For example, a first-order RC ECM is shown in Fig. 2.1. The output, terminal voltage

(Vt), is calculated using the battery’s current (i), OCV (VOC), internal resistance (R0),

estimated resistor and capacitor parameters R1 and C1. Model parameters are estimated

using battery test data, such as the hybrid pulse power characterization (HPPC) test.

The parameters can differ by various factors such as temperature, SOC, and current

rate. Due to this, ECMs are not interchangeable between different types of batteries.
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Due to variances in battery manufacturing, ECMs can sometimes differ among the same

batteries.

Figure 2.1: First order resistor capacitor equivalent circuit model of a
battery cell.

The terminal voltage is calculated as:

Vt(k) = VOC(k)− V1(k)− i(k)R0 (2.1)

where V1 is the voltage across the RC network and calculated as:

V1(k + 1) = exp
−∆t

R1C1 V1(k) +R1(1− exp
−∆t

R1C1 )i(k) (2.2)

The input to the model is the current i(k) at time step k. ∆t is the sample time in

seconds, R1 and C1 are the model parameters. VOC in (2.1) is calculated in (2.3) as a

function of SOC. The OCV can also be a function of temperature given sufficient data.

VOC = f(SOC) (2.3)
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Model parameters can be estimated either online or offline. Online refers to compu-

tation occurring on-board the vehicle BMS while offline refers to parameter estimation

on a separate computer before being implemented in a BMS. One example of an online

method is recursive least square (RLS). Offline methods typically consist of computa-

tionally heavy optimization algorithms such as genetic algorithm (GA).

2.3.2 Electrochemical Models

Electrochemical models are based on the physics of the battery, specifically, the elec-

trochemical processes through a set of partial differential equations. They model the

macroscopic properties of batteries such as current and voltage and microscopic prop-

erties such as diffusion or reaction kinetics [18]. Since electrochemical models can more

accurately estimate battery states, they are preferred over ECM. However, electrochem-

ical models are computationally expensive due to a large number of parameters [18].

Therefore, they cannot be implemented online in real-time.

Example models include the pseudo-two-dimensional (P2D) model, single-particle

(SP) model, extended SP model, full electrochemical model, and reduced-order electro-

chemical model (Fig. 2.2) [19]. While simplified, this model is still too complex for

online real-time estimation without further simplification [19].

A typical li-ion battery consists of a negative electrode (anode) made of carbon, a

positive electrode (cathode) made of a metal oxide, and a separator made of a lithium

salt electrolyte. The negative electrode reaction, positive electrode reaction, and overall

battery reaction chemical equations are given by (2.4), (2.5), and (2.6), respectively [19].

LixC6C6 + xLi+ + xe− (2.4)
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Figure 2.2: Reduced-Order electrochemical model from [19].

Liy−xMn2O4 + xLi+ + xe−LiyMn2O4 (2.5)

Liy−xMn2O4 + LixC6LiyMn2O4 + C6 (2.6)

2.3.3 Data Driven Models

Data-driven models are an abstract representation of the battery and hold no phys-

ical meaning. They require a large number of battery testing data to build and are

largely machine learning-based (ML) [20]. ML, a subsection of artificial intelligence, are

algorithms that learn and improve from data, and they comprise of supervised and un-

supervised algorithms [10]. Supervised learning requires a dataset with the relationship

between the input and output known; in other words, the output is fed into the system

for training. On the other hand, unsupervised learning requires finding structure in

the dataset without the output being given. ML algorithms require immense data and

computational time, and power for training. However, ML algorithms can provide more

accurate results than ECM models once properly trained [17].
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Artificial neural networks (ANN) are ML algorithms that are based on the human

brain. ANNs map inputs to outputs by approximating an unknown function between

the input x and output y. There are both supervised (classification) and unsupervised

(clustering) ANNs. Various ANN algorithms have been utilized for battery estimation,

such as voltage [21], SOC [22], and SOH [22]. Common supervised ML algorithms used

for estimation include [22]:

• Feedforward neural networks (FNN)

• Recurrent neural networks (RNN)

• Support vector machines (SVM)

• Radial basis function (RBF)

• Extreme learning machine (ELM)

• Hamming networks (HM)

• Bayesian networks (BN)

FNNs, sometimes referred to as multilayer perceptrons (MLPs) are made up of mul-

tiple perceptrons, also termed layers or neurons, as shown in Fig. 2.3a. The first or

leftmost layer is the input layer and the last or rightmost layer is the output layer as

shown in Fig. 2.3b. Any layer(s) in between are referred to as the hidden layers. In-

formation in an FNN flows in one direction from input to output and trains using back

propagation. An architecture whereby the output information is fed back as an input

for model improvement is termed RNN, and will be the focus of chapter 5.

The goal of an FNN is to approximate a function f(x) by mapping an input x to an

output y via learning parameters θ, where y = f(x; θ). Each neuron in each layer l after

the input uses an activation function such as the sigmoid function, the weights W l
(i,j),
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(a) (b)

Figure 2.3: (a) Perceptron. (b) FNN Architecture.

and biases b(i,j) to calculate the output, h(x)i. This process is referred to as the forward

pass. A gradient-based optimizer is used to minimize a cost function to ensure that small

changes in weights and biases create an improvement. The error between the calculated

output and actual output is used during a backward pass to update the weights and

biases of the network during training. The network training is deemed complete once

a threshold of error or when the maximum number of epochs (a full pass) has been

reached. After training, only the forward pass of the network is used, resulting in a

method that is implementable on-board a BMS.

In [17], the authors compared an ECM and an RNN model for battery voltage esti-

mation. They utilized a long short-term memory (LSTM), a type of RNN, with current,

temperature, and capacity in Ah as inputs. The LSTM model outperformed the ECM

model in 92% of the test cases. The authors in [21] utilize an RNN with a gated recurrent

unit (GRU) to estimate battery voltage. The same model was trained with two different

inputs: current and power. Both models can provide accurate predictions at various

temperatures. ML algorithms have also been used in conjunction with other estimation

methods to predict battery voltage. For example, [23] combined a single-layer FNN with

an ECM and thermal model. In [24], a particle filter was implemented to predict model

parameters for an RBF algorithm.
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The coverage and range of data-driven models are highly dependent on the data used

to train the model. The more parameters, such as temperature, are included in the

training, the more coverage the model will have [20].

In summary, ECM, electrochemical models, and data-drive models are a subset of

the vast amounts of methods used for battery modelling. A comparison of the three

methods is given in Table 2.2.

Table 2.2: Comparison of different types of battery modelling.

Battery Model Type Model Parameterization
(Computational) Complexity Accuracy

Equivalent Circuit Model Medium Low Medium
Electrochemical Model High High High
Data-Driven Models Medium Medium to High Medium

2.4 State-of-Charge Estimation Methods

State of charge is the ratio of a battery’s current capacity over its total capacity.

This section will cover SOC estimations found in literature including Coloumb counting,

SOC-OCV, model-based estimation, and data-driven estimation.

2.4.1 Coulomb Counting

Coulomb counting or ampere counting is a widely used method in small devices

that employ batteries such as medical equipment. This method works by utilizing the

measured battery current (i) with a known initial or previous SOC (SOC(k)), Coulombic

efficiency (η), and nominal capacity (Cn). The following equation can calculate the SOC

at time k:

SOC(k + 1) = SOC(k)− η∆t i(k)
Cn

(2.7)
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The advantage of this method is that it can be utilized online, meaning in a vehicle

or device; it is accurate and straightforward. The disadvantages of coulomb counting

is that it does not consider irregularities between different battery types, ageing, or

temperature, and inaccurate measurements of current can lead to large errors [20]. As

noted in the following sections, this method is best suited in combination with other

methods.

2.4.2 SOC-OCV

The SOC has a direct relationship with OCV, and this method is sometimes referred

to as a ’look-up table’ method. The SOC-OCV relationship is determined by bringing

the battery to a known state, such as fully charged, fully cycling the battery at very low

C-rates, and then letting the battery rest [20]. This relationship can vary depending on

the battery chemistry, temperature, age, and C-rate [25]. Fig. 2.4 provides an example

charging and discharging SOC-OCV curve of a 4.5 Ah Tesla Model 3 battery cell tested

at a rate of C/20. Due to hysteresis, the charging and discharging curves are not identical

and are usually averaged to obtain one curve.

Figure 2.4: SOC-OCV relationship of a 4.5Ah Panasonic/Telsa battery
cell.

This method cannot be implemented online in an BEV since it requires the battery
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to rest for long periods. It is prone to error in some batteries due to a linear trending

curve between 10% to 90% SOC [20].

2.4.3 Model-Based Methods

Model-based SOC estimation techniques utilize either ECM or electrochemical mod-

els. There are state observer methods such as proportional-integral (PI) observer, H∞

observer, Luenberger observer, sliding mode observer, and non-linear observer [20].

Filter-based methods include Kalman filter (KF) and variations, particle filter (PF),

and smooth variable structure filter (SVSF). They are accurate, have low complexity,

and are implementable in real-time and thus preferred over state observers [26].

Filter-based methods for SOC estimation follow the same steps: identify the battery

model, parameter identification, and finally, apply the filter algorithm. The parameter

identification portion can be complex, time-consuming, and computationally expensive.

It can be completed online via RLS variations or offline through optimization algorithms.

GA, particle swarm optimization (PSO) algorithm, simulated annealing (SA) algorithm

are just some of the example offline optimization algorithms [26]. An extended Kalman

filter (EKF) based SOC estimation using a second order resistor capacitor (2RC) model

is presented in chapter 3.

A variety of papers have been published with different Kalman filtering techniques,

battery testing conditions, and battery models. In [27], the KF was compared against

an unscented KF, while in [28] an extended KF (EKF) was compared to the central

difference KF. In [29], an EKF was used with a PNGV battery model using MAT-

LAB/Simulink. In [30], several battery parameter estimation methods are compared

using a Thevenin battery model and EKF. These are a handful of the hundreds of pub-

lished results on SOC estimation using KF. Despite these findings, very few publicly
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available tools, functions, or scripts are available for researchers. One example avail-

able online is [31]. It is a MATLAB/Simulink based SOC estimation using EKF and

unscented KF.

The disadvantage of model-based SOC estimation methods is that they require exten-

sive parameter identification based on temperature, SOH, and chemistry. The problem

of increasing accuracy of SOC while decreasing the number of parameters required can

be solved with machine learning methods.

2.4.4 Data Driven Methods

As mentioned in section 2.2.3, data-driven methods, especially machine learning al-

gorithms, have been used for various battery modelling and estimation, including SOC.

Data-driven approaches are typically represented as black-box models where a global

mathematical model of the controlled system is unknown. With proper training and

data, these models can solve non-linear problems with high accuracy [20].

Chemali et al. [32] utilized a deep feedforward neural network or DNN to estimate

SOC at five temperatures ranging from -20°C to 25°C. A traditional FNN has one to two

layers, and a DNN typically has three or more layers, including the input and output

layers. They achieved a mean absolute error (MAE) of 1.10% at 25°C while an an MAE

of 2.17% at -20°C.

An LSTM-RNN model was also utilized by Chemali et al. [33] without any battery

model or filters to estimate SOC at ambient/fixed temperatures and varying temper-

atures. LSTMs are best used for time-series-based applications due to their feedback

loop achieved through the various gates. The input to the model is measured battery

voltage, current, and temperature at the current time-step. The model was trained with

a Panasonic 18650 PF cell and achieved as low at 0.573% MAE in one testing scenario

but can be trained for other batteries without changing the architecture.
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Other ML algorithms utilized include random forest regression with a gaussian filter

[34], DNN [35], LSTM with transfer learning [36] [37], and SVMs [38][39] to estimate

SOC. Between RBF, FNN, and RNN, RNN has been found to have a lower root mean

squared error (RMSE) of 0.5% on average [22].

2.5 Range Estimation

Range estimation is a user-friendly report of the distance in either in miles or kilome-

tres that the vehicle can safely drive [6]. The authors in [5] found that people preferred

the remaining driving range over SOC to decide where to charge. Having a SOC level

of 30% or less is enough to make people uncomfortable, leading to the onset of range

anxiety. To put this into perspective, the 2019 Tesla Model 3 Standard EPA range is

220 miles or 354 km, and 30% of this range is 66 miles or 106 km [40]. However, some

studies suggest that a "range buffer" of 20 miles or 32 km was sufficient to reduce drivers’

range anxiety and boost confidence [6]. Range estimation is also referred to as remaining

driving range, range prediction, and distance to empty in BEVs.

The following section will review range estimation influencing factors, methods and

techniques, and finally, current problems.

2.5.1 Range Estimation Influencing Factors

To provide an accurate range estimation, the factors that influence range must be

reviewed. These factors can be divided into vehicle design and simulation, driver be-

haviour, and environmental factors. Each type depends on both direct and indirect

parameters as well as constant and variable parameters [41].
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2.5.1.1 Vehicle Design and Simulation

Range estimation is a problem based on the whole vehicle. It is dependent on the

overall vehicle design/characteristics (ex. auxiliary power requirements, vehicle mass,

speed, etc.), and the battery management system (ex. SOC, SOH, thermal management

etc.) [20]. The basis of range estimation is to calculate the power and energy required to

move the vehicle at specific speed(s) and then comparing to the energy remaining in the

battery. First, from the vehicle perspective, to calculate the power, all forces acting on

the vehicle must be considered. The net force (Fnet) acting on a moving vehicle include

the force at the wheel account for rolling resistance (Fwh), the gravitational force when

on an incline (Fg), and the aerodynamic drag force (Fdrag) as shown in Fig. 2.5, where

Fa is the accelerating force, CG is the center of gravity and θ is the angle of incline.

Figure 2.5: Forces acting on a vehicle.

Vehicle data can be generated using a model/simulation or gathered from real-world

driving. Models and simulations do not provide real world driving scenarios but are

flexible in testing. Historical data gathered from vehicles on the road, reflects real-world

driving scenarios but are limited to the vehicle manufacturer’s design. A quasi-static

vehicle model is used in [42] to determine the power demand with the assumption that
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the vehicle will follow the exact speed input. An advantage of this model type is that

it does not require complex differential equations. Historical or real vehicle data is used

in [43] and [44] as part of a hybrid ML and regression analysis range estimation model,

respectively.

Next, the energy remaining in the battery must be considered. As stated in the

previous sections, battery modelling and state estimation for BEVs is quite complex.

For information on battery modelling and SOC estimation, please see sections 2.3 and

2.4. SOC accounts for approximately 54% of the factors that influence range prediction

[41]. Since SOC is the primary value in current BEVs providing information on energy

remaining in the battery, the SOC influence can be extended to the battery management

system overall and its accuracy in predicting the battery states.

A combined battery model using the hydrodynamic model and 2RC ECM is used

in [42] to predict SOC and voltage, respectively. [45] uses the Thevenin ECM battery

model in MATLAB/Simulink to estimate energy consumption.

2.5.1.2 Driver Behaviour

Driving style and behaviour have a significant impact on the range of an EV [46].

According to [41], a driver’s behaviour accounts for 10% of the factors influencing range

prediction. Driving style is typically divided into three categories: aggressive, moder-

ate, and conservative [47]. Aggressive driving style is characterized by frequent short-

duration braking, rapid acceleration, and high speed [46], leading to decreased energy

efficiency [47]. However, driving style is not easily quantified. Studies have used veloc-

ity, acceleration, jerk, power, throttle position, and a combination of these metrics to

quantify driving styles [48]. For example, [48] estimates driver profile via periodogram

of jerk trace where anything >0.1 Hz is considered part of the driver’s behaviour and

the remainder is credited to traffic. This factor is then used as input into an ANN range
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estimation model. In reference [42], Markov chains with inputs speed and acceleration

for the first chain and slope for the second chain are utilized to predict a driving profile

for remaining driving range estimation.

2.5.1.3 Environmental Factors

Environmental factors that influence range estimation include the weather (temper-

ature, wind speed, wind direction, precipitation, etc.), the road (road type, segment

length, elevation, etc.), and traffic [47]. The weather captures several factors that influ-

ence range estimation. For example, in [49], the effects of thermal management consump-

tion on the remaining range estimation of BEVs were analyzed. The study found that

at -15°C, a PTC-heater will consume between 3.7kWh to 4.8kWh in energy. Assuming

an average energy consumption of 15kWh, this equates to 25km to 32km. Minimizing

auxiliary load, the vehicle range can still decrease by 20% at -7°C [10]. When accounting

for strong headwind, energy consumption estimation error reduced from 30% to a few

percent [50].

According to [46], route and traffic are estimated to have a combined 11% influencing

factor on range estimation. For example, a route with lots of hills will require more

power to overcome the incline, while urban routes and more traffic will lead to more

accelerating/braking cycles. These scenarios and actions will lead to the vehicle operat-

ing less efficiently. In [51], the driving distance, terrain, speed limit, and traffic are all

considered using Google Maps API for range estimation using a big-data framework. In

[48], mobile data provides traffic information while a decision tree is used to determine

the road type for range estimation in BEVs. The road network topology, road grade,

and road link travel speed are all considered in [52].
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2.5.2 Range Estimation Methods

With advances in data collection and computing power, data-driven techniques have

become a popular method for range estimation. In [51], a big-data framework is utilized

with a graphical user interface (GUI) in MATLAB to provide users with range estima-

tion. The users enter the origin and destination into the system and are presented with

the current SOC, range estimation, and weather. [52] uses a telematics system to provide

a two-tiered estimation, a rough range estimation and a precise range estimation based

on a preset battery level. Telematics is a data center used to track vehicles using GPS

and onboard diagnostics.

[51] and [52] provide feasible methods that range can be estimated but do not pro-

vide validation. However, the authors in [44] used regression analysis to provide an

online prediction of the remaining range with under 5km error. In [53], a hybrid ML

model consisting of regression trees and self-organizing maps estimated power consump-

tion which is then used to estimate range. The study achieved an RMSE of 1.5 kWh.

Another ML-based research [43] uses a blend of extreme gradient boosting regression

tree (XGBoost) and light gradient boosting regression tree (LightGBM) to estimate the

remaining driving range. Over 2000 trips from five BEVs from a cloud-based database

are utilized for training and testing the model. The model’s input includes a K-means

clustering algorithm to predict driving patterns. They are able to achieve an RMSE of

0.75 km.

Studies show non-data-driven techniques as well. For example, in [54], range estima-

tion is done via a KF. The KF, with speed and acceleration as inputs, estimates energy

consumed. The remaining energy is calculated and subsequently the remaining range

as:
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RemainingRange = remaining battery energy capacity

fuel efficiency
(2.8)

Another study [42] predicts range using a particle filter and Markov chains. The

Markov chains are used to predict a driving profile which is then used with the battery

state estimation to predict range. A summary of the range estimations methods found in

literature is provided in Table 2.1. Fig. 2.6 illustrates different range estimation method

types such as filters which would include the KF [54] and hybrid which would include

Kernel Principle Component, fuzzy C clustering, Markov chains, and back propagation

neural networks [57].

Method Data Source/Inputs Notable Points

Big Data [51]

Google API for map and route

information (distance, terrain,

location), Wunderground.com

for weather information (tem-

perature, wind), driver history

(speed), Tesla Roadster model

(vehicle parameters, battery

power, current)

Utilizes a MATLAB/Simulink ve-

hicle model to input power con-

sumption into a 2RC ECM bat-

tery model with internal resis-

tance based on temperature

Telematics [52] Unspecified

Includes minimum cost route

searching and zero-energy point

determination.
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Regression

Tree and Self-

Organizing

Maps [53]

ChargeCar project of the CRE-

ATE Lab at Carnegie Mellon Uni-

versity (421 EV trips). Inputs

include 12 features of time-series

and static data such as mean ac-

celeration and distance.

Predicts power consumption of

EV trip which will then be used

for range estimation. Does not

elaborate/extend to range in km

or miles.

XGBoost-

LightGBM

blend [43]

NDANEV 2000 trips from 5

EV’s. Inputs include speed,

motor and battery voltage and

current, SOC, cell temperature,

mileage from odometer.

Blended model includes the out-

put of XGBoost and LightGBM

(using the same features) into a

secondary XGBoost

Kalman Filter

[54]

Electric bus logged data. Inputs

include speed, acceleration, and

variations of the two.

KF estimates energy consump-

tion used to calculate the fuel ef-

ficiency and then estimates range

as a function of SOC.

Particle Filter

and Markov

Chains [42]

UDDS, Artemis rural, and

Artemis motorway drive cycles

for a Nissan Leaf vehicle with

the battery scaled down to 2.15

Ah Li-ion cell. Inputs include ve-

locity, acceleration, and slope of

road to calculate power demand.

Battery model input includes

current based on power demand.

Utilizes a combined kinetic (well-

based) and 2RC ECM to estimate

battery voltage. The particle fil-

ter is used to calculate the battery

states and the Markov chains are

used to estimate the driving pro-

file.
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Regression

Analysis [44]

2000 kms of a Tazzari EM1 with

max 12.288 kWh energy. Inputs

include energy consumption, ele-

vation, and speed profile.

Compares three regression mod-

els: conventional, linear, and

SVR. Battery energy, odometer,

and velocity data logged from

CAN network of vehicle.

Kernel Prin-

cipal Compo-

nent, fuzzy

C clustering,

Markov chains,

and back prop-

agation neural

networks [57]

Unnamed EV with a 78 Ah bat-

tery pack using various urban

driving routes (max speed of 32

km/h).

Validation using ECE 15 condi-

tion rotary drum test bench

Battery equiv-

alent circuit

model and

SOC estima-

tion [58]

2 unspecified vehicles with proto-

type device installed. Inputs in-

clude battery voltage, current, air

temperature

Lead acid battery using 2RC

ECM. Prototype device installed

onboard test vehicle.

Artificial Neu-

ral Network

[48]

Commercial EV with 35.06 kWh

battery (LiFePO4) with WLTC

drive cycle on a dynamometer.

Inputs include but are not limited

to SOC/SOH, temperature, traf-

fic, aggressiveness.

Periodogram used to calculate ag-

gressiveness, decision tree used

for road type. Output of ANN

is range compared to vehicle

odometer.

Table 2.3: Comparison of range estimation methods, data source, in-
puts, and notable point found in literature.
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Figure 2.6: Summary of range estimation types found in literature.

2.5.3 Current Problems with Range Estimation

Range estimation provides essential information to the end-user on the state of the

battery more than SOC. However, range estimation is a complex problem to solve. First,

increasing the number of factors considered in the range estimation also increases the

error [41]. A review in [47] found 56 different factors in literature. Furthermore, some

factors such as SOC require an independent estimation model, which comes with errors

that must be propagated to the range estimation error [41]. Studies have found more

accurate battery models in ML [17], but range estimation studies using battery models

still use less accurate ECMs [42],[45]. Recently, studies have shown that state of energy

(SOE) to be a more accurate indicator of residual energy in batteries than SOC [55].

SOE is the ratio of the remaining energy in a battery over it’s total energy [56]. Other

factors such as driving style and preferences (i.e., HVAC) are challenging to quantify,

standardize, and predict [47]. Finally, few studies have explored an online implementable

solution for BEV usage.
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2.6 Summary

This chapter reviewed published literature on batteries used in BEVs, specifically

modelling, state of charge estimation, and range or remaining driving range estimation.

Batteries have several crucial states, including state of charge, state of health, and

state of power. They can be modelled using equivalent circuit models, electrochemical

models, data-driven models. Equivalent circuit models are widely used for their low

complexity and ease of use in online real-time applications. Electrochemical models

provide more accuracy but require more complex computation and knowledge and are

unsuitable for online applications. Data-driven or, more specifically, machine learning

models are a good mix of the former. While they require immense computational power,

once trained, machine learning-based battery models are accurate, robust, and can be

utilized for online applications.

Four SOC estimation methods were reviewed: Coulomb counting, SOC-OCV, model-

based, and data-driven. Coulomb counting and SOC-OCV are simple but inaccurate

methods best suited for low-level applications such as cell phones. Model-based is the

primary method in real-world BEV application. However, with the advances in com-

puting power and machine learning techniques, data-driven strategies are becoming as

accurate, if not more, as model-based methods in SOC estimation.

Accurate range estimation can improve range anxiety and therefore increase the adop-

tion of BEVs into the current market. However, the complexity of range estimation due

to the influence of factors such as the driver vehicle model and design, the driver be-

haviour, and the environment, means improved methods must be developed to accurately

report range. Range estimation methods span from filters such as the KF and particle

filters to machine learning such as a hybrid XGBoost and LightGBM. As of yet, no

estimation approach is favoured.
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Chapter 3

A Kalman Filter Based Battery

State of Charge Estimation

3.1 Introduction

Electric vehicles require a complex battery management system to monitor the SOC,

SOH, and cell temperature [12]. Battery parameters cannot always be directly measured,

instead models are used as an indirect estimation of current battery state. The SOC is

commonly estimated through Coulomb counting, however this method is often inaccurate

due to errors in the current sensor and determination of initial SOC [60]. Combining

Coulomb counting and SOC-OCV mapping approaches with equivalent circuit models

(ECM) and Kalman filter (KF) can produce more accurate SOC estimations [61][62].

[27]-[30] are a handful of the hundreds of published results on SOC estimation using KF.

Despite these findings, very few publicly available tools, functions, or scripts are available

for researchers. One example available online is [31]. It is a MATLAB/Simulink based

SOC estimation using EKF and unscented KF.

Battery parameters are significantly impacted by temperature, in cold temperatures,

for example, the capacity decreases and resistance increases [10][63]. However, there are
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not many SOC estimation studies that consider this impact in more detail. For example,

in [64], the authors estimated the state of charge only at three different temperatures.

Although the temperatures covered a wide range of 36℃, the paper did not capture

the dynamics of the entire temperature range. More information on SOC estimation is

provided in chapter 2.

In this chapter, a MATLAB function with the objective to provide a public tool

that estimates the battery SOC and terminal voltage at different temperatures using a

second-order resistor-capacitor (2RC) ECM along with an extended Kalman filter (EKF)

is given. A flowchart of this work is given in Fig. 3.1. The goal of this work is to have

a MATLAB function to serve as a basis for other researchers to utilize.

Figure 3.1: State of charge estimation process using a second order
equivalent circuit model and extended Kalman filter.

This chapter is organized as follows: the state of charge estimation algorithm is

presented in section 3.2, while the required battery data and how to use the function are

explained in section 3.3. In section 3.4, an example use of the function is shown, and a

summary and future work are discussed in section 3.5.

3.2 State of Charge Estimation Algorithm

One of the most common battery models seen in literature is the 2RC ECM (Fig.

3.2). It consists of the battery OCV, internal resistance, and two parallel RC pairs. Once

these parameters have been optimized, the discrete-time state-space form of the battery
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model is used in the EKF algorithm. Given battery measurements (i.e. current, voltage,

temperature) over time, the EKF will estimate the unknown variables in a dynamic

system.

3.2.1 Battery Modelling

In Fig. 3.2, the OCV is represented by VOC , the output terminal voltage by Vt, and

the internal resistance of the battery by R0. The voltage across the first RC network

is V1 and V2 across the second network. (3.1) to (3.3) describe the ECM dynamics in

state-space [8].

Figure 3.2: Second order RC equivalent circuit battery model diagram.

SOC(k + 1) = SOC(k)− η∆t i(k)
Cn

(3.1)

Vt(k) = VOC(k)− V1(k)− V2(k)− i(k)R0 (3.2)
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V1(k + 1) = exp
−∆t

R1C1 V1(k) +R1(1− exp
−∆t

R1C1 )i(k)

V2(k + 1) = exp
−∆t

R2C2 V2(k) +R2(1− exp
−∆t

R2C2 )i(k)
(3.3)

The input to the model is the current i(k) at time step k. ∆t is the sample time in

seconds, R1, C1, R2 and C2 are the RC model parameters. VOC in (3.2) is calculated in

(3.4) as a function of SOC and battery surface temperature. Each SOC-OCV curve is

calculated using the HPPC test results obtained at 40℃, 25℃, 10℃, 0℃, and -10℃ [65].

VOC = f(SOC, Temperature) (3.4)

The state and measurement equations can be calculated in (3.5) and (3.6) as follows:

xk+1 = Akxk + Bkuk (3.5)

zk = Ckxk +Dkuk (3.6)

Where xk+1 is the system state vector at time k + 1, the state variables are x =

[SOC, V1, V2], system input is uk = ik, and system output is zk = Vt. The A, B, C,

and D matrices and variables are given by (3.7) to (3.10) using (3.1) to (3.3):

A =


1 0 0

0 exp
−∆t

R1C1 0

0 0 exp
−∆t

R2C2

 (3.7)
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B =


−∆t

Q η[k]

R1(1− exp
−∆t

R1C1 )

R2(1− exp
−∆t

R2C2 )

 (3.8)

C =
[
∂VOC
∂SOC

∂V
∂V1

∂V
∂V2

]
=
[
∂VOC
∂SOC −1 −1

]
(3.9)

D = −R0 (3.10)

3.2.2 Extended Kalman Filter

The EKF, a version of the regular KF, is used to estimate the states for a non-linear

system. EKF uses a two-step prediction-correction algorithm as described in (3.11) to

(3.15), adapted from [66], where k denotes a discrete point in time, K is the Kalman

gain, P is the covariance of the measurement error, Q is the covariance of the process,

and R is the covariance of the output. First, a prediction or time update is done and

then the correction or measurement update. This cycle repeats until the end of the

data. Note, the hat symbol, ,̂ represents an estimate of a variable, |k denotes predicted

or a-priori estimate, and |k + 1 denotes updated or a-posteriori estimate.

Prediction (Time Update)

1. Project the states ahead (a-priori):

x̂k+1|k = Ax̂k|k + Buk (3.11)

2. Project the error covariance ahead:
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P k+1|k = AP k|kA
T + Qk (3.12)

Correction (Measurement Update)

1. Compute the Kalman gain:

Kk+1 = P k+1|kC
T (CP k+1|kC

T +Rk+1)−1 (3.13)

2. Update the estimate with measurement zk (a-posteriori):

x̂k+1|k+1 = x̂k+1|k + Kk+1(zk+1 −Cx̂k+1|k) (3.14)

3. Update the error covariance:

P k+1|k+1 = (1−Kk+1C)P k+1|k (3.15)

Since the the KF assumes the data is in the form of a Gaussian distribution and the

functions applied on it linear, the states described in (3.7) to (3.10) need to be linearized

as well as utilizing the extended or EKF version for the algorithm to work properly.

Matrix C as seen in (3.9) is the only matrix that requires linearization as the battery’s

SOC-OCV relationship is non-linear.

A fourth optional step was added to the EKF equations based on [67] in which the

matrix Q is updated with each iteration using (3.16) resulting in an AEKF, allowing for

noise covariance to be updated online
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Qk = Kk ∗ Errork ∗Kt
k (3.16)

3.3 Extended Kalman Filter State-of-Charge Estimation

Function

This section will review the required battery data as well as the syntax and commands

in order to utilize the EKF SOC estimation function. One can find publicly available

battery test data at [65] [68] [69]. The MATLAB function, based on [66], as well as the

example illustrated below can be found at https://www.mathworks.com/matlabcent

ral/fileexchange/90381-state-of-charge-estimation-function-based-on-kalm

an-filter.

3.3.1 Battery Parameters

Before using the EKF_SOC_Estimation function, users will need the SOC-OCV curve,

R0, and the 2RC ECM battery parameters for the specific battery that the SOC is being

estimated for. This data is loaded within the function and are not passed in as function

parameters.

Appropriate battery testing should be done to obtain data for OCV as a function

of SOC for a desired range of battery temperatures (i.e., multiple datasets, each for

a different battery temperature as shown in Fig. 3.3). This testing typically involves

charging and discharging the battery at low currents (0.05C), however, the complete

details of this testing may vary. Once finalized datasets are obtained, it is important to

ensure that there are no repeated SOC points (especially if these points have differing

OCV values) as this will cause an interpolation error when the function is running. This

does not apply to repeated OCV values.
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Figure 3.3: OCV vs. SOC of a Turnigy Graphene 5000 mAh Li-ion
battery at different temperatures.

Typical 2RC ECM parameters are R0, R1, C1, R2 and C2, where R0 represents the

internal resistance of the cell, and the rest of the parameters represent non-physical

characteristics of the cell, which when grouped into RC branches, as shown in Fig. 3.4,

describe the cell’s dynamics. To obtain these parameters at different temperatures as

functions of SOC, a model-based parameter optimization approach within MATLAB

[71] was used. As described by [72], HPPC test data at different temperatures [65] was

evaluated within the optimization algorithm to ensure the ECM accurately described

the behaviour of the battery.

The function can be called using:

1 function [SOC_Estimated, Vt_Estimated, Vt_Error] = ...

EKF_SOC_Estimation(Current, Vt_Actual, Temperature)

The function takes a drive cycle current measured in amps (Current), Vt measured

in volts (Vt_Actual), and battery temperature measured in °C (Temperature), all as

vectors of type double as input. The length of all vectors must be the same. The function
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Figure 3.4: Discharge resistance vs SOC of a Turnigy graphene 5000
mAh Li-ion battery at different temperatures.

outputs a vector of the estimated SOC (SOC_Estimated), estimated Vt (Vt_Estimated),

and the error between Vt measured and Vt estimated (Vt_Error).

The function by default loads the provided 'BatteryModel.mat' and 'SOC-OCV.mat'

files which are labeled tables. The BatteryModel table contains the SOC, R0, R1, C1,

R2, C2, and T data in columns 1 to 7, respectively. The SOC ranges from 0% to 100%

by intervals of 10%, however, users can vary the intervals as needed. The SOC-OCV

table contains the SOC, OCV , and T data in columns 1 to 3, respectively.

1 load 'BatteryModel.mat'; % Load the battery parameters

2 load 'SOC-OCV.mat'; % Load the SOC-OCV curve

The initial SOC is set between 0 and 1 where 0 is 0% and 1 is 100%. This can

either be set to the initial SOC of the drive cycle or with a bias to test convergence and

robustness. DeltaT is the time difference in seconds between each value in the current

and X is the initial input and subsequently the system state vector from (3.5).
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1 SOC_Init = 1; % intial SOC

2 X = [SOC_Init; 0; 0]; % state space x parameter intializations

3 DeltaT = 1; % sample time in seconds

4 Qn_rated = 4.81 * 3600; % Ah to Amp-seconds

The KF has three tunable parameters: Rx, Px and Qx. These will need to be adjusted

for each battery either manually or through an optimization algorithm. The AEKF

algorithm requires substantially different tuning from the EKF, and may be unstable

when the same parameters are used.

1 R_x = 2.5e-5;

2 P_x = [0.025 0 0;

3 0 0.01 0;

4 0 0 0.01];

5 Q_x = [1.0e-6 0 0;

6 0 1.0e-5 0;

7 0 0 1.0e-5];

The function allows for temperature dependent data and by default utilizes five differ-

ent temperatures: 40℃, 25℃, 10℃, 0℃, and -10°. The function interpolates the battery

parameters between temperatures at each iteration of the cycle using the output function

from scatteredInterpolant.

1 F_R0 = scatteredInterpolant(param.T,...

2 param.SOC,param.R0);

1 R0 = F_R0(T,SOC);
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To use this feature, users will require internal resistance data, and battery parameters

for each temperature. If the datasets available to the user is not temperature depen-

dent or the temperature is unknown, the scatteredInterpolant function should be

replaced with pchip or interp1.

The SOC-OCV line is curve fitted using the polyfit function in a least squares

sense. Polynomial differentiation is then completed on the curve to be used to calculate

the matrix C. Both the regular curve SOCOCV and the differentiated one dSOCOCV are

then evaluated within the KF loop using polyval.

1 SOCOCV = polyfit(param.SOC,param.OCV,11); % calculate 11th order ...

polynomial for the SOC-OCV curve

2 dSOCOCV = polyder(SOCOCV); % derivative of SOc-OCV curve for matrix C

1 OCV = polyval(SOCOCV,SOC); % calculate the values of OCV at the given ...

SOC, using the polynomial SOCOCV

1 dOCV = polyval(dSOCOCV, SOC);

2 C_x = [dOCV -1 -1];

To use the function as an AEKF instead of an EKF, uncomment out the following

line in the code.

1 % Q_x = KalmanGain_x * Error_x * KalmanGain_x';
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3.4 Simulation Example

To illustrate the use of the function, it was evaluated at 40℃, 25℃, 10℃, 0℃, and

-10℃ using EKF and the battery data available at [65].

A new Turnigy Graphene 5000mAh 65C cell was tested extensively in a thermal

chamber by [65]. SOC-OCV mapping and HPPC tests were performed at 40℃, 25℃,

10℃, 0℃, and -10℃. The tests cover SOC range from 100% to 5% with four different

charging and discharging currents at 1, 2, 5 and 10 C-rates. After the characterization,

the battery was subjected to driving cycles UDDS, HWFET, LA92, US06 as well as

combinations of these cycles. The drive cycles were sampled every 0.1 seconds, and

other tests were sampled at a slower or variable rate. [65].

The SOC-OCV curve and battery model parameters were optimized for each tem-

perature and SOC level from 100% to 0% at 10% increments using [71]. The battery

data was then re-sampled on a per second rate. The convergence and estimation of the

SOC and Vt are highly dependent on the battery model parameters. The initial P , Q

and R values in the EKF were manually tuned so the average root mean squared error

(RMSE) of all temperatures SOC was less than 5% and Vt was less than 100mV. The

results of this tuning can be seen in Fig. 3.5 and Fig. 3.6. The RMSE at 40℃ was

1.78% for SOC and 1mV for Vt for the LA92 drive cycle. Fig. 3.7 illustrates the mea-

sured versus estimated Vt and SOC of the LA92 drive cycle at 40°C. Since there is only

one set of KF parameters for all the temperatures, the lower temperatures have higher

error. One solution to this is to tune different parameters for each temperature similar

to the battery parameters.
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Figure 3.5: RMS Error of SOC at different temperatures for LA92 drive
cycle.

Figure 3.6: RMS Error of Vt at different temperatures for LA92 drive
cycle.

44



M.A.Sc Thesis
Fauzia Khanum

McMaster University
Electrical and Computer Engineering

Figure 3.7: (a). Measured vs. Estimated V t at 40℃ for LA92 drive
cycle. (b). SOC Coloumb Counting vs. SOC EKF Estimation at 40℃ for
LA92 drive cycle.

To test the robustness of the function, the initial SOC was offset by 10%, and the

current was offset by +/-0.1A. Fig. 3.8 provides details of the SOC and Vt RMSE given

these conditions. The system proves to be robust at 40°C as the RMSE values do not

differ from each other drastically. With the 10% initial SOC offset, the system reaches

within 5% of the Coulomb counted SOC within 3 minutes (Fig. 3.9). A graph of the

+/-0.1A current offset can be seen in Fig. 3.10. The convergence rate and RMSE values

of error input can be improved upon with more accurate KF tuning values P , Q, and R.
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Figure 3.8: SOC RMS Error and Vt RMS Error with no error, initial
10% SOC offset, and +/- 0.1A current offset at 40℃ for the LA92 drive
cycle.

Figure 3.9: (a). Measured vs. Estimated V t with 10% initial SOC offset
at 40℃ for LA92 drive cycle. (b). SOC Coloumb Counting vs. SOC EKF
Estimation with 10% initial SOC offset at 40℃ for LA92 drive cycle.
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Figure 3.10: (a). Measured vs. Estimated V t with +/-0.1A current
offset at 40℃ for LA92 drive cycle. (b). SOC Coloumb Counting vs.
SOC EKF Estimation with +/-0.1A current offset at 40℃ for LA92 drive
cycle.

3.5 Summary

In this chapter a Kalman filter based SOC estimation MATLAB function was devel-

oped for public use. The function is based on a second-order ECM. It allows users to

load their specific battery data including the SOC-OCV curves, internal resistance, and

the battery model parameters. The function has the flexibility to be used as an EKF or

AEKF as well as using battery temperature based data. An example is illustrated with

publicly available Turnigy Graphene battery data where less than 2% average RMSE is

achieved across the various temperatures. The users of the function have the ability to

build on this function or integrate it into a more complex model.
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Chapter 4

Battery Cell Tests: Vehicle Model

and Design of Experiment

4.1 Introduction

Range estimation provides essential information to the end user on battery state, and

is more meaningful compared to reporting SOC alone. This chapter explores a battery

centered approach as the first of many steps towards a more accurate range estimation

model. A diagram of the range estimation process is given in Fig. 4.1.

A model based on the BEV that the battery cells are extracted from is utilized to

generate a power profile with various temperatures, payload mass, HVAC, and driving

cycles as input. The power profile is then used as input to test four battery cells in

the Arbin cell cycler. All drive cycles tests are run from fully charged or 100% SOC to

cut-off capacity. The cut-off capacity is calculated by using a 60 kW power cut-off based

on testing of a large PHEV and scaled down. The processed battery test data is then

used to train, test, and validate the RNN-based battery model in which the output is

used to estimate the distance achieved by the initial driving cycle. The range estimation

is taken at the cut-off capacity. The cut-off capacity is equivalent to 0% SOC based on
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Figure 4.1: Overall procedure taken to range estimation in this thesis.
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the electrochemical SOC and not the reported SOC to the user. The following chapter

will will be an in-depth study of the vehicle model, the setup of the battery tests, and

the overall experimental data collection and preparation.

4.2 Electric Vehicle Model

The electric vehicle model is based on the Tesla Model 3 Standard Range using a

backward looking BEV model type. The vehicle has a 50 kWh battery pack made up

of 2976 li-ion 2170 cells in s96p31 configuration. The EPA combined energy efficiency is

listed at 26 kWh/100mi and a range of 220 miles or 354 km [40]. It has a curb weight

of 1611 kg and a gross vehicle weight rating (GVWR) of 2060 kg. The GVWR is the

maximum operating weight of the vehicle including passengers and cargo [74].

A backward looking model assumes that the vehicle can always meet the drive cycle

input, however, does not provide an opportunity to optimize control strategies. The goal

of the vehicle model is to produce power profiles for the battery cell testing based on static

and dynamic parameters. Static parameters are those that are constant throughout the

testing such as the target coefficients and motor efficiencies. Dynamic parameters are

those that change per profile: temperature, payload mass, HVAC, and drive cycle. The

input to the model is a standard drive cycle given as speed over time.

4.2.1 Model of Tesla Model 3 Drive Train Power

The following section will review the forces acting on the vehicle, utilized by the

vehicle model, based on [75], to determine how a speed request calculates to the power

requested from the battery pack in a BEV. First, the net forces, Fnet, acting on a vehicle

is given by:

Fnet = Fwh − Fg − Fdrag (4.1)
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where Fwh is the force at the wheels, Fg is the force of gravity, and Fdrag is the drag

force. The total force, Facc, and power, Pacc, required to accelerate the vehicle using

an equivalent mass, mequiv, given in (4.4), of the vehicle taking into account linear and

rotational forces are (4.3) and (4.4).

mequiv = mpayload +mveh ∗ 1.02 (4.2)

Facc = mequiv ∗ aveh (4.3)

Pacc = mequiv ∗ aveh ∗ vveh (4.4)

where mpayload is the total mass of the cargo and passengers, mveh is the mass of

the vehicle, rwh is the radius of the wheel, aveh is the acceleration and vveh is the

velocity of the vehicle. Since no inertial information is available on the Tesla Model 3,

mequiv is calculated based on 2% of the total mass of the vehicle. The force required

to move the vehicle up an incline is the gravitational incline force given by (4.5) and

the subsequent gravitational power in terms of vehicle speed is (4.6), where g is the

gravitational constant.

Fg = mveh ∗ g ∗ sin θ (4.5)

Pg = mveh ∗ g ∗ sin θ ∗ vveh (4.6)
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The total drag force acting on a vehicle is a combination of aerodynamic drag, rolling

resistance, motor friction, and other small sources. The aerodynamic drag force, Faero,

acting on a vehicle can be calculated using (4.7) where A is the rectangular area covered

by the front in m2, ρ is the air density at 1.23 kg/m3, and Cd is the coefficient of drag.

The power required to overcome this force, Paero, is shown in (4.8).

Faero = 1
2ρ ∗ Cd ∗A ∗ v

2
veh (4.7)

Paero = 1
2ρ ∗ Cd ∗A ∗ v

3
veh (4.8)

However, to account for all the drag forces, (4.9) based on a third-order polynomial

is calculated using coast-down test. The parameters for various vehicles can be found

on the EPA website [76]. The parameters used for this model are given in Table 4.1.

Table 4.1: Target Coefficients.

Coefficient Value Value, metric

A 41.72 lbf 185.58 N (fully loaded)
B 0.05150 lbf/mph 0.51N/(m/s)
C 0.01498 lbf/mph2 0.35N/(m/s)2

The power required to overcome the total drag, Pdrag, is given by:

Pdrag = A ∗ vveh +B ∗ v2
veh + C ∗ v3

veh (4.9)

The total mechanical power, Pmech−tot, required by the vehicle motor is given by:
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Pmech−tot = Pacc + Pg + Pdrag (4.10)

Starting with a speed profile, the model will calculate the acceleration, the model

starts by calculating the acceleration (4.11), where ∆t is change in time.

aveh = ∆vveh
∆t (4.11)

In some tests, the grade of the road has also been taken into consideration. A grade

(grade) pattern, in percent, is created for every point in the speed profile and the

power loss or gain, Pgrade, from such conditions is calculated in (4.12), where mtotal =

mveh + mpass is the total mass of the vehicle with passenger and cargo (mpass). the

mechanical power Pmech is calculated using the gearbox efficiency, ηgearbox as (4.13).

Pgrade = mtotal ∗ g ∗ grade
(grade2 + 1) ∗ vveh

(4.12)

Pmech =


Pacc+Pdrag+Pgrade

ηgearbox
, (Pacc + Pdrag) > 0

(Pacc + Pdrag + Pgrade) ∗ ηgearbox, (Pacc + Pdrag) < 0

 (4.13)

The power required simply to move or drive the vehicle, Pdrive,input, taking into

account the inverter (ηinv) and motor efficiencies (ηmotor), is given by:

Pdrive,input =


Pmech

ηinv∗ηmotor
, Pmech > 0

Pmech ∗ ηinv ∗ ηmotor, Pmech < 0

 (4.14)
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The peripherals of a BEV include systems such as the lights, windshield wipers,

heating, ventilation, and air conditioning (HVAC), etc. The total power required by the

peripherals of the vehicle, Paccessory, is given by (4.15), where T is the temperature in

°C. A diagram of the electrical accessory power versus temeprature is given in Fig. 4.2.

Similar to the cut-off power, Paccessory is scaled down from a series of tests from large

PHEV with a resistive heater.

Paccessory = 250 +

 (20− T ) ∗ 80, T <= 20

(20− T )2 ∗ 1.4 + (20− T ) ∗ 5 + 700, T > 25

 (4.15)

Figure 4.2: Electrical accessory power (W) versus temperature (°C)
based on equation 4.15 and a heater power of 80 W/°C.

The total power required from the battery is then calculated as (4.16), per second,

and stepped down to the cellular level from the pack, where Ncells,series is the number

of cells in series, and Ncells,parallel is the number of cells in parallel in the battery pack.

Where Ncells,series = 96 and Ncells,parallel = 31. This is the power used to create the
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power profile used in the next phase.

Pbatt,cell = Pdrive,input + Paccessory
Ncells,parallel ∗Ncells,series

(4.16)

A sample driving schedule and subsequent power profile is shown in Table 4.2. More

details on the driving schedules are available in section 4.3.

Table 4.2: Sample speed and power profile scaled down to one cell from
the pack.

Time (s) Vehicle Speed (km/h) Power (W)

0 0 0.474
1 0 0.474
2 0 0.474
3 3.2 0.777
4 7.9 1.842
5 13.0 3.264
6 18.2 4.629
7 23.3 6.005
8 27.8 6.514
9 31.5 6.351
10 35.1 6.832
. . . . . . . . .

4.2.2 Energy Storage System

The following energy storage system model adapted from what was is presented in

[75]. The nominal voltage the battery pack (Vnom,pack) can provide is calculated using

the nominal voltage of one cell (Vnom,cell) in (4.17). The battery current, Ibatt, is given

in (4.18), where Rnom is the nominal resistance.

Vnom,pack = Ncells,series ∗ Vnom,cell (4.17)
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Ibatt =
Vnom,pack −

√
V 2
nom,pack − 4 ∗Rnom ∗ (Pdrive,input + Paccessory)

2 ∗Rnom
(4.18)

Equations (4.19) to (4.26) are the theoretical calculation of the driving range each

drive cycle will achieve based on the vehicle model outlined above. This model takes

into account the power loss at the battery, Pbatt,loss, due to Rnom given as:

Pbatt,loss = I2
batt ∗Rnom (4.19)

Therefore, the total power required by the battery is:

Pbatt = (Pdrive,input + Pbatt,loss + Paccessory) (4.20)

The total energy consumption of the drive cycle from 100% SOC to 0% SOC in kWh

is given by (4.21). (4.22) then provides the max distance, calculated at each point (per

second), as a cumulative number and (4.23) is the energy per kilometer (Euse,km), where

dt−1 is the previous time-step distance.

Etotal =
∑

(Pbatt)
3600 ∗∆t (4.21)

dmax = vveh∆t+ dt−1 (4.22)

Euse,km = Etotal
dmax

(4.23)
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Next, the max capacity, Cmax,pack, and nominal energy, Enom,pack, of the battery

pack are given by:

Cmax,pack = Ncells,parallel ∗ Cnom,cell (4.24)

Enom,pack = Vnom,pack ∗ Cmax,pack (4.25)

where Cnom,cell is the nominal capacity per cell. Finally, predicted range based on the

nominal pack energy, usable range of SOC (SOCusuable,range), and energy consumption

per km.

Range = Enom,pack ∗ SOCusuable,range
Euse,km

(4.26)

4.3 Experimental Measurement and Preparation of Data

The battery cells tested were four Tesla/Panasonic 2170, nickel cobalt aluminium

(NCA) chemistry li-ion batteries with a nominal capacity of 4.5 Ah (Fig. 4.3a and Fig.

4.3b) and other measured parameters listed in Table 4.3. Since there is no available

datasheet for the tested cells, all parameters available were taken from experimental

measurements. The tests were conducted in an Envirotronics SH16C thermal chamber

controlled by the Arbin Cycler battery tester, pictured in Fig. 4.5 along with a test

bench schematic in Fig. 4.4. The specifications for the thermal chamber are in Table

4.4 and the specifications for the battery tester are in Table 4.5 [77].
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(a)
(b)

Figure 4.3: (a) Tesla/Panasonic 2170 4.5 Ah cell in Arbin holder with T-
Type temperature sensor. (b) Four Tesla/Panasonic cells in Arbin holders
placed inside Envirotronics thermal chamber.

Table 4.3: Tesla/Panasonic 2170 4.5 Ah li-ion battery cell measured
parameters.

Manufacturer, Model Panasonic/Tesla 2170

Chemistry NCA
Size 21 mm x 70 mm
Measured Capacity 4.5 Ah
Min and Max Voltage 2.8 V & 4.2 V
Mass 60 g

Table 4.4: Envirotronics thermal chamber specifications utilized for bat-
tery testing.

Manufacturer/Model Envirotronics SH16C Thermal Chamber

Size 16 ft3
Temperature Range -30°C to 177°C
Includes Humidity Control Yes
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Figure 4.4: Test bench schematic of testing Tesla/Panasonic batteries.

Figure 4.5: Arbin cell cycles and Environtronics thermal chamber in
battery lab at the McMaster Automotive Resource Center.
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Table 4.5: Arbin cell cycler specifications utilized for battery testing.

Manufacturer/Model Arbin Cell Cycler,
LBT21084-0∼5V-60/5/0.5/0.02A-8CH-208V3P

Voltage 0V to 5V
Current 60A per channel
# of Channels 8
Parallel Operation 2 - 8 sequential channels can be operated in parallel
Input Impedance 50 mΩ
Current Range +/- 60A, 5A, 500mA, 20mA
Control Accuracy +/- 24mA, 2mA, 200µA, 8µA & +/- 2mV
Max Command Rate 5ms
Max System log rate 2000 samples per second
Temperature Sensing 16 channels, type T thermocouples
Control Software Arbin MITS 8.0

4.3.1 Cell Characterization

Each cell was subjected to characterization tests and drive cycles tests at four tem-

peratures: 40°C, 25°C, 10°C, and 0°C. To prevent rapid aging and provide accurate

characterization data, the tests were completed in order of highest temperature to low-

est and the characterization testing before the drive cycles.

The testing at each temperature was split into two categories: characterization and

drive cycles. Characterization tests consisted of a 40°C, C/20 discharge test at the be-

ginning of each temperature set to track ageing of the battery cells through the whole

testing life cycle. The remainder of the test included C/3 discharge, HPPC, C/20 dis-

charge and charge, C/2 discharge, 1C discharge, and 5C discharge. The HPPC tests

results are then used to determine the cut-off capacity used for the drive cycles at the

specific temperature.

Fig. 4.6 to 4.8 display notable characterization results for cell 1, while Fig. 4.6

illustrates the effects of temperature on the capacity of the battery. The change in

internal resistance of the battery can be seen Fig. 4.7. The internal resistance is typically
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high from 100% - 80% SOC and 20% to 0% SOC. The 50% SOC discharge resistance

changes from 20 mΩ at 40°C to 115 mΩ at -10°C. The capacity of the cell is also effected

by the C-rate as seen in Fig. 4.8. The higher the C-rate, the lower the capacity.

Figure 4.6: Open circuit voltage (OCV) vs. discharge capacity for
various temperatures and cell 1 (m80).
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Figure 4.7: Discharge resistance vs. SOC at various temperatures and
1/2C for cell 1 (m80).

Figure 4.8: Capacity vs. temperature at various C-rates for cell 1 (m80).
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4.3.2 Drive Cycles

Sixteen drive cycles are tested on each cell at differing payload mass and HVAC

parameters. The first four drive cycles are the standard Urban Dynamics Drive Cycle

(UDDS), Highway Fuel Economy Cycle (HWFET), California Light-Duty Unified Cycle

(LA92), and the Supplemental Federal Test Procedure (US06). The next eight are the

first four cycles split into segments where speed is 0 and the segments shuffled to create

Reordered 1 through 8. The last four cycles are HWCUST1, HWCUST2, HWGRADE1,

and HWGRADE2. These are custom drive cycles where the speed is randomized between

a minimum and maximum throughout the cycle. The HWGRADE cycles also increase

and decrease in grade and final cycles simulate driving through a mountain pass. Each

drive cycle is repeated until the cell reaches the cut-off capacity. A speed versus time

graph for the UDDS, HWFET, LA92, US06, HWCUST1, HWCUST2, HWGRADE1,

and HWGRADE2 as well as grade versus time for HWGRADE1, and HWGRADE2 is

presented in Fig. 4.9. Between each discharge test, the temperature is changed to 25°C

for charging to ensure the cells do not age rapidly.

A list of cell parameters and limits utilized in the vehicle model for power profile

generation from the drive cycles are listed in Table 4.6.

Table 4.6: Cell parameters and limits utilized in power profile genera-
tion.

Parameter Value/Limit

Energy 16 Wh
Minimum voltage (Vmin) 2.5 V
Maximum voltage (Vmax) 4.2 V
Discharge current limit 40 A
Charge current 40 A

Each batteries power profile is set with various payload mass and HVAC conditions

as given in Table (4.7) to generate four unique datasets. Each payload mass is the
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Figure 4.9: Speed and grade profiles of select drive cycles.
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additional amount to the curb mass of the vehicle. One person driving is represented by

80 kg, 448 kg for max GVWR, and 1000 kg for towing.

Table 4.7: Battery/Cell testing parameters and referenced names for
differentiation.

Cell Payload Mass (kg) HVAC Included Referenced Name

Cell 1 80 kg Yes m80
Cell 2 448 kg Yes m448
Cell 3 448 kg No m448-N
Cell 4 1000 kg Yes m1000

To illustrate the difference in power requirements for the four battery testing condi-

tions listed in Table 4.7, an overlay of the LA92 drive cycle for the first 150 seconds at

40°C for all four batteries is given in Fig. 4.10.

Figure 4.10: Power profile of LA92 drive cycle from 0 to 150 seconds at
40°C.

A sample of power profiles from 40°C and m80 is available in Fig. 4.11 used by the
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Arbin cell cycler as input. The standard four cycles (UDDS, HWFET, LA92, and US06),

HWCUST1, and HWGRADE1, pictured, are the full cycle repeated by the tester until

cut-off capacity, while Reordered 1 and 2, pictured, are a portion of the full cycle that

is repeated until cut-off capacity.

4.3.3 Cut-off Capacity Calculation

For each temperature, a cut-off capacity was calculated using the HPPC test data

and a discharge power cut-off of 60 kW based on [72]. The power cut-off simulates the

battery pack having insufficient power to continue powering the vehicle. The calculated

capacity is then used as the stopping point in each temperatures drive cycles test. Since

each cell ages slightly differently, the cut-off capacity is calculated separately for each

cell. The HPPC test is conducted at SOC 100%, 95%, 90% to 10% at 10% interval and

finally at 5% using discharge C-rates of 0.5C, 1C, 2C, and 3C. The Ah discharge (Adis),

OCV (VOC), discharge pulse voltage, discharge pulse resistance (Rdis) are calculated at

each SOC interval and used to calculate the cut-off capacity (Ahcut−off ).

A list of cell parameters and limits utilized in calculating the cut-off capacity are

listed in Table 4.8.

Table 4.8: Cell parameters and limits utilized in cut-off capacity calcu-
lations.

Parameter Value/Limit

Number of cells in pack 2976 (s96p31)
Minimum voltage (Vmin) 2.8 V
Maximum voltage (Vmax) 4.2 V
1C rate definition 4.45 A
Discharge power cut off 60 kW

First, the discharge power capability, Pdis,cell, is calculated
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Figure 4.11: Power profiles of select drive cycles for 40°C and m80.
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Pdis,cell(i) = VOC(i)− Vmin
min(Rdis(i))

∗ Vmin (4.27)

where Vmin is the minimum voltage, and i is the current SOC interval. Next using

the number of cells in a pack, Ncells,pack, given in (4.28), the power discharge is scaled

up to the pack level in (4.29), given by Pdis,pack.

Ncells,pack = Nparallel ∗Nseries (4.28)

Pdis,pack(i) = Pdis,cell(i) ∗Ncells,pack (4.29)

If Pdis,pack at the previous SOC interval, i−1, is greater than Pcut−off but the Pdis,pack

at the current SOC interval. i is less than Pcut−off , then Ahdis is calculated as follows:

Ahdis = (Pcut−off − Pdis,pack(i)) ∗ (Ahdis(i− 1)−Ahdis(i))
Pdis,pack(i− 1)− Pdis,pack(i)

+Ahdis(i) (4.30)

otherwise, it is 0. Finally the max Ahdis is the cut-off Ah.

Ahcut−off = max(Ahdis, 0) (4.31)

The pack discharge power capability for temperatures 40°C to 0°C is given in Fig.

4.12. The power capability shown is calculated from the m80 cell HPPC data at each

temperature and scaled up to the pack.
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Figure 4.12: Discharge power capability and discharge power cut-off
point for m80 cell and temperatures 40°C to 0°C.

The cut-off capacity can also be expressed in terms of the more well-known SOC (Fig.

4.13) using the C/20, 40°C, discharge ageing test at each temperature set.

Figure 4.13: Cut-off SOC of for all cells and temperature. The SOC is
calculated using the C/20, 40°C, discharge ageing test at each temperature
set.

4.3.4 Data Preparation

The exported data from the Arbin cell cycler went through two main steps in order

to train and test the network. The first step consisted of preparing the data for general
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use as part of a larger dataset by splitting the data into charge and discharge cycles per

channel and temperature. The second set was taking the drive cycle data and converting

it into training, testing, and validation data. All drive cycle data was normalized using

(4.32) as part of standard practice for ANNs to improve training speed and accuracy

[35], whereMin = [0,−65,−5, 2.5] andMax = [18, 55, 55, 4.5] for energy, power, battery

surface temperature, and voltage (Ψ = [Wh, P , T ], V ), respectively. The dataset used

for this chapter is part of a larger dataset ranging from 40°C to -20°C.

Normalized Data = Data−Min

Max−Min
(4.32)

The training data was then concatenated together into one file and divided into files

of equal lengths to avoid extra padding of data from MATLAB. The testing data was

divided by drive cycle for easy metric evaluation. The full details of each dataset are

in Tables 4.9 and Table 4.10. Standard practice for splitting of dataset is typically 2/3

training, 1/3 testing. The purpose of the classic dataset is to validate whether a large

dataset with multiple options in mass, HVAC, grade, and aggressive highway cycles are

necessary for a robust estimation.

Table 4.9: Size and division of drive cycles of whole dataset. Cells 1
through 4 refer to m80, m488, m448-N, and m1000, respectively.

Use Drive Cycles (Cells 1 - 4) Size (pts) Size(days)

Training REORDERED 1 - 8,
HWCUST1, HWGRADE1 3,753,078 43.4

Testing UDDS, HWFET, LA92, US06
HWCUST2, HWGRADE2 1,954,754 22.6

Validation REORDERED1 470,789 5.5
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Table 4.10: Size and division of drive cycles of classical dataset. Cell 1
refers to m80. A classical dataset contains various temperatures but not
mass, HVAC, aggressive drive cycles, or grade parameters.

Use Drive Cycles (Cells 1) Size (pts) Size (days)

Training REORDERED 1 - 8 899,388 10.4
Testing UDDDS, HWFET, LA92, US06 419,414 4.9
Validation REORDERED1 137,228 1.6

4.4 Summary

In this chapter, an electric vehicle model and battery experiment process for testing

four Tesla/Panasonic 2170, 4.5 Ah battery cells are provided. The backward-type vehicle

model, based on the Tesla Model 3 Standard Range, generates the power profile utilized

by the Arbin cell cycler for varying drive cycle tests. The battery cells are subjected to

7 standard characterizations, and 16 drive cycle tests are varying temperatures. Each

cell is tested with unique payload mass and HVAC parameters to create four different

datasets.
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Chapter 5

Range Estimation of Electric

Vehicles using a Recurrent Neural

Network-based Voltage

Estimation

5.1 Introduction

Battery modelling research has made several strides in the past few year. The ex-

ploration of machine learning, specifically ANNs, as a viable option for battery terminal

voltage estimation is now possible. Voltage estimation has several applications not only

in BEVs but drones, electric aircrafts, and more. One such application is estimating the

range at the end of a drive. ANNs require a high volume of data for training and typi-

cally have a high computational requirement. The following section will cover a voltage

estimation model using a recurrent neural network based on the script provided in [69].

A comparison of training on a large computing resource versus a personal computer (PC)

is provided along with a comparison of networks trained on single battery cell dataset
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versus a multi-battery cell dataset. Standard procedure at the Battery Lab in MARC

is to train and test ANNs on data from a single battery without the HWCUST/HW-

GRADE cycles and thus this dataset is referred to as the classic dataset. One novelty of

the work presented in chapter 4 is the outcome of a multi-battery dataset which will be

referred to as the whole dataset. The voltage estimation network will be the basis for

determining the range at the end of the drive, when the battery pack can no longer power

the vehicle at the requested speed. Results of end drive range estimation is provided

and compared with other range estimation methods in literature.

5.2 Recurrent Neural Network Voltage Estimation Model

Recurrent neural networks (RNNs) are a type of ANN appropriate for time-dependent

or sequential datasets applications. Prominent examples of RNNs include speech recog-

nition [78], language understanding [79], and acoustic modelling [80]. RNNs have a very

similar structure to FNNs except the loop or recurrence of data in the hidden layer as

shown by the orange arrow in Fig. 5.1.

Figure 5.1: Architecture of RNN (left) and architecture of RNN un-
folded in time (right).

RNNs compute an output vector yk (5.1) given an input vector Ψk through a hidden

vector sequence hk (5.2), where H is the hidden layer function and, W and b are the

weights and bias matrices for each gate (W hi is between the hidden-input gate) [82].
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hk = H(W ΨhΨk + W hhhk−1 + bh) (5.1)

yk = W hyhk + by (5.2)

However, RNNs are subject to the exploding and vanishing gradient problems. An

exploding gradient is an exponential growth of the long term components more than the

short ones and a vanishing gradient is the opposing [81]. These issues can be resolved with

specialized cells such as gated-recurrent unit (GRU), long short-term memory (LSTM),

and bi-directional long short-term memory (BiLSTM).

Figure 5.2: RNN network layers with LSTM cell. The network layers
consist an input layer taking sequence data, hidden layer (LSTM), an
output layer consisting of a fully connected layer, a clipped ReLU function,
and finally the output, voltage.
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LSTM is a type of ANN that is an RNN with an LSTM cell typically used for time-

series forecasting. The LSTM-RNN architecture show in Fig 5.2 consists of an input

layer, N hidden layers, and an output layer. When applying the LSTM model towards

battery voltage estimation, the input vector is given by Ψk = [Wh(k), P (k), T (k)] where

Wh(k) is the battery’s energy in watt-hour, P (k) is the power in watts, and T (k) is the

battery surface temperature in °C at training time-step k. For voltage estimation, the

output is given by V̂k = W hyhk + by. An LSTM unit consists of a cell (ck), an input

gate (ik), forget gate (fk), and output gate (ok) [82]. The hidden layer function in an

LSTM is given as:

ik = η(W ΨiΨk + W hihk−1 + bi) (5.3)

fk = η(W ΨfΨk + W hfhk−1 + bf ) (5.4)

ck = fkck−1 + ik tan h(W ΨcΨk + W hchk−1 + bc) (5.5)

ok = η(W ΨoΨk + W hohk−1 + bo) (5.6)

hk = okclippedReLu(ck) (5.7)

where η is the activation function which in this case is a sigmoid function [82]. The

non-linearity of the system is captured using the Clipped Rectified Linear Units (Clipped

ReLU), given by:
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f(x) =



0 x < 0

x 0 ≤ x < ceiling

ceiling x ≥ ceiling

(5.8)

At each time-step, the ideal voltage is compared to the estimated voltage and the

error signal is calculated by:

e(k) = Vk − V̂k (5.9)

where Vk is the ideal or measured voltage. This error is then used to compute the

loss function (5.10), where N is the length of the sequence, which provides a good

understanding of the network.

L =
N∑
k=0

1
2(e(k))2 (5.10)

This process of the training data fed into the network to the voltage estimation and

loss calculated at each time step is the forward pass. A full epoch, ε, consists of a forward

and backward pass for training. The backward pass consists of sending the overall loss

backward through the network to update the weights. An optimization method called

Adam [83] is used for this update based on the gradient of the loss function. The

learning rate, a parameter of the Adam optimizer, determines the step size of each

iteration. Training continues until a convergence criteria has been met and the loss

function minimized. During validation, only the forward pass is computed since the

weights and biases of the network have been learned.
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The size of the network is determined by the number of hidden layers and hidden

units. The number of learnable parameters in an LSTM-RNN can be calculated using

(5.11) given one layer.

LP = 4(i ∗HU +HU ∗HU +HU) +HU + o (5.11)

where i is the input, o is the output, and HU is the number of hidden units.

To evaluate the voltage estimation performance, a few different performance metrics

are calculated. These include the RMSE, mean absolute error (MAE), max error (MAX),

and standard deviation of errors (STDDEV).

5.3 Driving Range Estimation

After the voltage estimation network has been trained, it is used to predict the voltage

for an upcoming driving route. The current is estimated using the measured power and

estimated voltage in (5.12). The current is then integrated to calculate the estimated

Ah, Âhk, in (5.13).

Îk = Pk

V̂k
(5.12)

Âhk =
∫ N

0
Îk (5.13)

The estimated Ah is graphed against the distance of the drive cycle and compared

to the actual Ah. The end of the driving route is given by the Ahcut−off where the
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difference in distance is calculated. The drive cycle end range estimation is illustrated

in Fig. 5.3.

Figure 5.3: Range estimation method at end of drive cycle and cut-off
capacity.

5.4 LSMT-RNN Training on SHARCNET vs. Personal

Computer

All LSTM-RNN network training was completed on SHARCNET (Shared Hierarchi-

cal Academic Research Computing NETwork), a member of the Compute Canada net-

work. It is a network of 19 Ontario institutes providing advanced computing resources

and access to over 50,000 CPU cores and more than 200 GPUs to researchers. There

are several clusters available for use, however, the main ones used for this work were

Graham, Cedar, and Narval clusters. Listed are specifications for the main GPUs/C-

PUs used on each cluster as well as the authors personal computer (assigned MARC

computer, PC) used in testing/training.

• PC: Intel i7-8700 CPU @3.20 GHz, 32 GB RAM, and 6 cores.
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• Graham cluster: NVIDIA T4 Turing GPU with 16 GB of memory and Intel

Zeon Gold 6238 Cascade Lake @2.10 GHz, and 44 cores.

• Cedar cluster: NVIDIA V100 Volta with 32 G HBM2 memory, and Intel Silver

4216 Cascade Lake @2.1 GHz, and 32 cores.

• Narval cluster: AMD Rome 7432 @2.4 GHZ, and 64 cores.

SHARCNET allowed the training of multiple networks simultaneously while also

providing speed-up of the training with the use of GPUs. Fig. 5.4 provides a timeline of

the 10 trainings of the whole dataset. The orange bars indicate the starting and end of

each training. The blue bar indicates the time taken to run all 10 trainings on the PC

back to back. This number was calculated by estimating the time per epochs based on

a sample of 10 epochs run on the PC and multiplying it by the total number of epochs

run for all 10 trainings. If the 10 trainings were started on Oct 29th, the trainings would

not be completed till Dec 4th.
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Figure 5.4: Whole dataset voltage estimation training timeline of
SHARCNET Graham Cluster (GPU) vs. PC. 10 trainings were com-
pleted on SHARCNET between Oct. 29th and Nov. 5th. The equivalent
of this training on a regular PC would take until Dec. 4th.

5.5 Voltage Estimation Results

5.5.1 Learnable Parameters and Hyper-Parameters

As mentioned earlier, the inputs to the LSTM-RNN are Wh, P , and T , and V is the

output. After some testing, the network hyper-parameters of the LSTM-RNN listed in

Table 5.1 were chosen. The default values given by MATLAB were used for all other

hyper-parameters. Before training to find the best network, the network was tested at six

different learnable parameters (LP), given in Table 5.1, to see if there was a network size

that was better suited than others. Each network is trained until either the max number

of epochs, 100,000, is reached or the validation patience 4,000 is reached. The validation

patience is the number of epochs that the algorithm will run trying to improve the

performance of the network before the training is considered complete. The performance

of the network is based on the loss function previously outlined. The learning rate is not
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a static parameter, instead an initial learn rate is set that is then updated based on the

learn rate drop period and learn rate drop factor. The drop period specifies the number

of epochs passes before the learn rate is updated and the drop factor is the amount by

which the previous learn rate is multiplied. In Matlab, the size of the memory for the

LSTM is based on the number of hidden units value, which in this instance is 10.

Table 5.1: LSTM Parameters.

Hyper-parameters Values HU LP

Number of Features 3 1 22
Max Epochs 100,000 3 88
Patience 4,000 5 186
Initial Learn Rate 0.01 7 316
Learn Rate Drop Period 2,000 10 571
Learn Rate Drop Factor 0.85 25 2926

Each network training is initialized with random weights and biases. Due to this

randomization and the chance of falling into a local minima, multiple trainings are

required. Four trainings for each learnable parameter were run on SHARCNET using

the classic dataset for faster results due to its size. The classic dataset consists of only

m80 (cell 1) data at temperatures 40°C, 25°C, 10°C, and 0°C data. Drive cycles reordered

1 through 8 are used for training, drive cycles UDDS, HWFET, LA92, and US06 are

used for testing, and drive cycle reordered 1 for validation. As indicated in Fig. 5.5,

there was no network size that was more well suited than the others. LP #24 has the

highest RMSE of 30 mV, proving to be too small of a network size. The remainder LPs

are within 1-2 mV RMSE of each other. LP #571 or 10 HU was chosen for the remainder

of the testing as it is the largest size tested that can fit on a microcontroller in a BMS.

5.5.2 Whole vs. Classic Dataset Comparison

Ten trainings of the classic and whole datasets were run to find the best network for

voltage estimation. In comparison to the classic dataset, the whole dataset utilizes data
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Figure 5.5: Lowest RMSE of 4 trainings per learnable parameter. Each
RMSE is based on the average of UDDS, HWFET, LA92, and US06 drive
cycles for m80 kg.

from all four cells as well as HWCUST1 and HWGRADE1 for training. HWCUST2 and

HWGRADE2 drive cycles are also utilized for testing. Fig. 5.6 illustrates the average

RMSE for each training based on testing criteria for each dataset. Training 1 with an

average RMSE of 34 mV is the best trained network for the whole dataset while training

7 with an average RMSE of 26 mV is the best for the classic dataset. To ensure that

the HWCUST and HWGRADE cycles were not skewing the results, the average RMSE

without these drive cycles were calculated for the whole dataset and training 1 was still

found to be the best. Training 1 ran for a total of 37,437 epochs and took 37 hrs and

53 min. Training 7 ran for a total of 28,038 epochs and took 35 hrs and 42 min.

Based on Fig. 5.6, the networks trained on the classic dataset provide a lower RMSE

and therefore better voltage estimation. However, when the classically trained network

was tested with the 94 test cases (drive cycles that vary in mass, HVAC, highway, and

grade), the network based on the whole dataset provided better results in every category,

as can be seen in Fig. 5.7. The full testing criteria consists of the UDDS, HWFET, LA92,

US06, HWCUST2, HWGRADE2 drive cycles for each temperature (40°C, 25°C, 10°C,
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(a) Average RMSE of all test cases for and
trained on whole dataset.

(b) Average RMSE of all test cases for and
trained on classic dataset.

Figure 5.6: Average RMSE per training for each dataset. The orange
bar is the best trained network for each dataset.

0°C) and cell (m80, m448, m448-N, m1000); a total of 94 cases. At 25°C, m1000 there

is the largest difference of 48% between the networks while at 40°C, m1000, there is the

smallest difference of 11%. Only varying temperature in the training dataset does not

provide sufficient coverage of testing scenarios for BEV battery modelling.
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Figure 5.7: Voltage estimation, comparison of whole dataset and classic
dataset trained networks. The bar graphs represent the average RMSE
of test drive cycles UDDS, HWFET, LA92, US06, HWCUST2, and HW-
GRADE2 which is representative of testing on the whole dataset.

5.6 Range Estimation based on LSTM-RNN Battery model

The following sections will review the performance of the best trained network (train-

ing 1) based on the whole dataset.

5.6.1 Model Performance: Best vs. Worst Result for Standard Four

Drive Cycles

The drive cycle with the best voltage estimation is the LA92 at 40°C, m448-N with

an RMSE of 12 mV and MAX error of 130 mV and the worst drive cycle is from the

US06 at 0°C m1000 with an RMSE of 57 mV and MAX error of 275 mV. A comparison

of the two drive cycles is available in Fig. 5.8. Comparing the LA92 drive cycle in Fig.

5.8a with the US06 in Fig. 5.8c, the US06 has a much higher error at the start and

end of the cycle then the LA92. The combination of the lower temperature, higher mass

84



M.A.Sc Thesis
Fauzia Khanum

McMaster University
Electrical and Computer Engineering

(1000 kg or towing), as well as the challenging drive cycle of US06 leads to a voltage

estimation with higher error. Despite this, the network performs well when viewed on a

minute by minute basis. Fig. 5.8b and Fig. 5.8d provide a close-up of the first 5 minutes

of the LA92 and US06 drive cycles, respectively.

The range estimation for the respective best and worst case scenarios is provided in

Fig. 5.9. At a cut-off capacity of 4.514 Ah, the error between the observed distance and

estimated distance is -1 km, where negative is an underestimation, for the LA92 drive

cycle at 40°C and m448-N. At a cut-off capacity 3.627 Ah, the driving distance error is

1 km for the US06 drive cycle at 0°C and m1000. The error in voltage estimation is not

directly related to the error in range and a higher voltage prediction does not always

lead to a higher distance error.

5.6.2 Model Performance Over Temperature

One of the more important factors of battery voltage estimation is temperature. Fig.

5.10 compares the US06 drive cycle, m80, for temperatures 40°C, 25°C, 10°C, and 0°C.

From highest to lowest temperature the RMSE is 16 mV, 17 mV, 25 mV, and 34 mV

and MAX error of 77 mV, 86 mV, 140 mV, and 187 mV. The higher error at the lower

temperatures of 10°C and 0°C can be attributed to larger changes in voltage as well as

less training data. The same US06 drive cycle reaches cut-off capacity in less than 3

hours for 0°C while it takes just over 4 hours for 40°C. Overall, the trained LSTM-RNN

network performs well at varying temperatures.
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(a) LA92 Drive Cycle at 40°C and m448-N (b) LA92 Drive Cycle at 40°C from 0 - 5 min

(c) US06 Drive Cycle at 0°C and m1000 (d) US06 Drive Cycle at 0°C from 0 - 5 min

Figure 5.8: LSTM voltage prediction vs. observed (top) and error be-
tween predicted and observed (bottom). Close-up of the first 5 minutes
of the LA92 and US06 drive cycles.

(a) LA92 Drive Cycle at 40°C and m448-N (b) US06 Drive Cycle at 0°C and m1000

Figure 5.9: Range estimation vs. actual (top) and close-up at cut-off
capacity of 4.514 Ah for 40°C and 3.627 Ah for 0°C.
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(a) 40°C (b) 25°C

(c) 10°C (d) 0°C

Figure 5.10: LSTM voltage prediction vs. observed (top), error be-
tween predicted and observed (middle), and battery surface temperature
(bottom) for m80, US06 drive cycle, and all test temperatures.

5.6.3 Model Performance in Custom Cycles

The advantage of the dataset collected in this work are the aggressive HWCUST

and HWGRADE cycles. Fig. 5.11 illustrates the performance of the network during

aggressive highway driving using the HWCUST2 drive cycle at 0°C for m80 and m1000.

The RMSE is 37 mV and 38 mV, respectively. Overall, the network performs well,

leading to driving range estimation errors, at cut-off capacity, of 1.1 and 1.2 km for the

m80 and m1000 cases, respectively. The estimated capacity vs. distance for each case

can be seen in Fig. 5.12.
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Fig. 5.13 illustrates the performance of the network during an aggressive highway

and varying grade drive using the HWGRADE2 cycle at 0°C for m80 and m1000. For

the m80 case, the RMSE is 72 mV and a high MAX error of 294 mV, however the

range estimation at the cut-off capacity is only 0.7 km. For the m1000 case, the voltage

estimation RMSE is 69 mV, MAX error of 343 mV, and a range estimation error of -0.9

km at cut-off capacity.

(a) HWCUST2 m80 (b) HWCUST2 m80 from 0 - 12 min

(c) HWCUST2 m1000 (d) HWCUST2 m1000 from 0 - 12 min

Figure 5.11: LSTM voltage prediction vs. observed (top), error be-
tween predicted and observed (middle), and battery surface temperature
(botton) at 0°C for the full cycles (left). LSTM voltage prediction vs. ob-
served (top), and error between predicted and observed (botton) at 0°C
for the first 12 minutes (right).
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(a) HWCUST2 Drive Cycle at m80 0°C (b) HWCUST2 Drive Cycle at m1000 0°C

Figure 5.12: Range estimation vs. actual (top) and close-up at cut-off
capacity of 3.659 Ah for m80 and 3.627 for m1000 (bottom).

(a) HWGRADE2 m80 (b) HWGRADE2 m80 from 0 - 12 min

(c) HWGRADE2 m1000 (d) HWGRADE2 m1000 from 0 - 12 min

Figure 5.13: LSTM voltage prediction vs. observed (top), error be-
tween predicted and observed (middle), and battery surface temperature
(botton) at 0°C for the full cycles (left). LSTM voltage prediction vs. ob-
served (top), and error between predicted and observed (botton) at 0°C
for the first 12 minutes (right).
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(a) HWGRADE2 at m80, 0°C (b) HWGRADE2 at m1000, 0°C

Figure 5.14: Range estimation vs. actual (top) and close-up at cut-off
capacity of 3.659 Ah for m80 and 3.627 for m1000 (bottom).

5.6.4 Voltage Estimation Comparison to Literature

The RMSE of the drive cycles, UDDS, HWFET, LA92, US06, HWCUST2, HW-

GRADE2 for m80 at each temperature is provided in Fig. 5.15. The lowest RMSE is 16

mV for the US06 drive cycle at 40°C while the highest is 72 mV for the HWGRADE2 at

0°C. UDDS exhibits higher RMSE than expected of 47 mV, 45 mV, and 53 mV for 25°C

to 0°C, respectively. Even though the dataset takes into account aggressive highway

and grade driving, the amount of casual or urban driving is reduced and therefore not

estimated as expected. From this, it can be concluded that both urban and highway

driving cycles are important for a well rounded battery model.
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Figure 5.15: Voltage estimation RMSE for m80, all temperatures, and
all drive cycles.

The work presented here offers a competitive estimation performance when compared

to other work mentioned in literature which are shown in Table 5.2. The LSTM-RNN

voltage esitmation in this work achieved an average RMSE of 34 mV, MAE of 25 mV,

MAX error of 150 mV, and STDDEV of 30 mV for all drive cycles, all temperatures, and

all cell parameters. The LA92 drive cycle for the m448-N case had the lowest RMS errors

for each temperature, where the highest error was 27 mV. Compared to the LSTM-RNN

in [84], the LA92 drive cycle for m448-N for this work achieved and 82% less error.

Compared to the GRU-RNN, power input models of the Panasonic NCR18650PF and

Sony VTC6 batteries in [21], the LA92 drive cycle for m448-N for this work achieved

53% and 47% less error, respectively.
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5.7 Range Estimation Results

All standard drive cycles at all tested temperatures and cells achieved the goal of

range estimation within 5 km. Fig. 5.16 provides the absolute error in kilometers for the

m80 cell. The lowest absolute error is 0.05 km for the LA92 drive cycle at 0°C for the

m80 kg case. The highest absolute error is 4.78 km for the US06 drive cycle at 25°C for

the m1000 kg case. There is no obvious correlation between the range estimation and

the criteria used (drive cycles, temperature, mass, HVAC).

Figure 5.16: Absolute error between estimated range and actual range.
Estimated range is based on network trained on whole dataset for all drive
cycles, all temperatures, and m80 kg.

Using the C/2 discharge test, the energy in Wh is taken at the cut-off capacity and

scaled up to the pack level in kWh. The pack energy at cut-off capacity is then divided by

the consumption reading (Wh/km) from the vehicle model per temperature and cell to

calculate a simple range estimation. Fig. 5.17 compares the simple C/2 range estimation,
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the LSTM-RNN battery model range estimation, and the actual range for drive cycles

UDDS, LA92, and HWGRADE2 at each temperature for m448-N. The UDDS, LA92,

and HWGRADE2 drive cycles illustrate the effects of various driving routes from mild

to aggressive. As the drive cycles become more aggressive, the range is reduced and in

some cases, the C/2 range error increases. However, the proposed range estimation error

stays within 1-3 km. The same can be seen as temperature decreases, where the C/2

range error increases while the proposed model stays consistent.

At 25°C, the more aggressive HWCUST2 cycle range is 195 km shorter than the mild

UDDS. However, for the HWGRADE2 drive cycle, the C/2 estimation has an 18 km

or 11% range error while the LSTM-based estimation has a -2 km or -1% range error,

where the negative means underestimation. This translates to 18 km of range the C/2

or simple range estimation is not capturing. m448-N (cell 3) illustrates the effect of

temperature on range estimation.

The graph also includes the battery efficiency, calculated by comparing the energy

extracted from each drive cycle to the energy extracted in the C/20 test, both at the

cut-off capacity. This graph illustrates the battery model capturing energy loss at the

battery. The less intense UDDS and HWFET cycles have a higher efficiency than the

more aggressive HWCUST and HWGRADE cycles.
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Figure 5.17: Actual range vs. simple C/2 range estimation vs. LSTM-
based range estimation and efficiency for m448-N battery and select drive
cycles. SOCmin indicates the cut-off capacity in SOC at the respective
temperature.

When comparing the lowest error achieved in this research, the aggressive HW-

GRADE2 drive cycle for 25°C and m448, seen in Fig. 5.18, achieved a 0 km error

at a cut-off capacity of 4.259Ah or SOCmin = 5.5%. A range estimation based on an

LSTM-RNN battery model leads to a more accurate range estimation in comparison to

one based on a simple energy consumption calculation.
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Figure 5.18: Range estimation vs. actual (top) and close-up at cut-off
capacity of 4.259Ah at 25°C, for the HWGRADE2 drive cycle and m448.

5.7.1 Range Estimation Comparison to Literature

The range estimation results presented here offer competitive performance when com-

pared to other work in literature. The following Table 5.3 is an extension of the table

2.3 in chapter 2. The authors in [42] utilize a similar method to range estimation as the

one in this work. Instead of a machine learning based battery model, a 2RC ECM model

is used with the battery states estimated using a particle filter and the driving route is

estimated using Markov chains. The ECM method has a 91.71% prediction performance

at the end of the UDDS cycle. While in this work, the range estimation error compared

to the full driving distance at the end of the UDDS cycle ranges from 99.1% to 99.9%

even though the voltage estimation results were higher than expected.

The average range error for the whole dataset is 0.29 km and a max error of 4.78 km.

The average error is 93% better than the ECM based model in [58] and 90-94% better

than the KF model in [54]. While the MAX error is higher by 20% of the results in [58]

and in the margin of the results in [54]. These results are in favor of using a machine

learning based battery model for range estimation and are evidence of the importance
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of proper battery modelling for use in BEV.

Method Error

LSTM-RNN,

thesis results
Avg 0.3 km, MAX 4.78 km

Regression Tree,

Self-Organizing Maps [53]
1.51 kWh RMSE

XGBoost-LightGBM blend [43] 0.75 km RMSE

Kalman Filter [54] 3-5 km difference at trip end

Particle Filter and Markov Chains [42]
91.71% prediction performance

(UDDS last prediction)

Regression Analysis [44] 1.64 km MAE

Kernel Principal Component, fuzzy C

clustering, Markov chains, and

backpropagation neural networks [57]

5.45 km Max error

Battery equivalent circuit model

and SOC estimation [58]
4 km difference at trip end

Artificial Neural Network [48] 94.33% accuracy

Table 5.3: Comparison of Range Estimation Results from Literature
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Chapter 6

Conclusions and Future Work

6.1 Concluding Remarks

In summary, the objectives of this research were achieved. A Kalman filter-based SOC

estimation function in MATLAB was created and made available on Mathworks. Sample

SOC estimation results using publicly available Turnigy battery data was presented. At

the moment of writing this thesis, the work has been downloaded over 400 times and has

achieved a 5 star rating. This work will allow students and researchers an opportunity to

expand battery and state modelling for various application without the need to recreate

an SOC estimation algorithm.

An extensive battery dataset comprised of 7 characterization tests, 16 drive cycles, 4

temperatures, and 4 scenarios including a mix of payload mass and HVAC options has

been created based on the Tesla/Panasonic 2170 cells. Once available, this dataset will

allow other researchers an opportunity to further battery state and modelling estimation.

Accurate range estimation is critical to curb range anxiety and increase the adoption

of BEV’s. By enhancing the battery model, a more accurate range estimation can be

provided to the driver and increase utilizing of the vehicle. A range estimation method

was proposed that focused on an LSTM-RNN based battery model. A comparison of

98



M.A.Sc Thesis
Fauzia Khanum

McMaster University
Electrical and Computer Engineering

utilizing the extensive dataset versus a classic dataset to train the LSTM-RNN model

was provided. SHARCNET was utilized to speed up training of the machine learning

battery model from 36 days down to 7 days. 92% of the standard test cases achieved

an RMS error of less than 50 mV and all test cases achieved the goal of less than 5 km

range estimation error at cut-off capacity.

6.2 Future Work

This thesis includes a tool/function for SOC estimation based on an EKF. With

further tuning of the battery parameters and the KF parameters, the RMSE values

can be improved further. Furthermore, this function can be expanded upon to add a

temperature model for more accurate estimations of the battery temperature. It can

also be simplified to remove the temperature dependency as well as adaptive portion

by adjusting those respective lines. Currently, battery parameters must be estimated

both separately and offline. By adjusting the function to an RLS-EKF algorithm, the

parameter estimation can happen in conjunction and on-board a BMS. This will allow

the tool to expand from BEVs to other applications such as drones and electric aircraft.

Furthermore, the estimation of other battery parameter states such as a dual SOC/SOH

estimation option can be added. A dual or multi-state estimation algorithm reduces the

computational burden on the BMS by reducing the number of models that need to be

run. As the popularity of battery applications grow, so do the need for publicly available

battery modelling and battery state estimations tools and functions.

Regarding the range estimation of a BEV, this area of research is fairly new and has

many avenues for future projects. The author believe that there are three main areas

of future work that together with the research presented in this thesis will results in

a complete online range estimation solution. These include driving route estimation,

processor-in-the-loop (PIL) testing of algorithm, and integration into a BEV.
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A key component of predicting remaining driving range is being able to predict the

driving route based on the current location and destination. The driving route can be a

simple speed over time profiles generated based on APIs to replace the current driving

schedules. By incorporating the route prediction, range estimation can be made available

between any two points in the battery SOC.

One of the many challenges in battery algorithm development is being able to achieve

the same accuracy on a processor as one can on a normal PC. That is why PIL testing

is an important step in the development of the remaining drive estimation. Lastly, the

remaining driving range must be incorporated into the overall BMS and vehicle. One

such similar method exists in the Tesla Model X. Pictured in Fig. 6.1 is the Tesla Model

X infotainment screen with directions from Hamilton, ON to the CN Tower in Toronto,

ON. The left hand side provides an estimation of the remaining SOC once arrived at

destination and the remaining SOC for a round trip. One piece of information not

provided in this picture is the range in terms of miles or kilometers.

Other small avenues of work that can further the research of this thesis include:

• Adding -10°C and -20°C test data to the Tesla/Panasonic battery dataset

• Create and utilize a more sophisticated (forward-looking) vehicle model for future

battery testing

• Create a battery model with other machine learning methods such as GRU-RNN,

CNN, or even unsupervised learning methods

• Test range estimation from varying SOC levels

• Replicate the research with a different battery cell for a more direct comparison
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Figure 6.1: Tesla Model X infotainment screen: directions and range
estimation from Hamilton, ON to the CN Tower in Toronto, ON based
on the current SOC.

6.3 Publications

The following conference paper has resulted from this research:

• F. Khanum, E. Louback, F. Duperly, C. Jenkins, P. J. Kollmeyer and A. Emadi,

"A Kalman Filter Based Battery State of Charge Estimation MATLAB Function,"

2021 IEEE Transportation Electrification Conference & Expo (ITEC), 2021, pp.

484-489, doi: 10.1109/ITEC51675.2021.9490163.
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Appendix

State of Charge Estimation Function based on Extended Kalman Filter

main.mlx

1 clc; clear; close all;
2

3 load('06-03-19_09.46 825_LA92_0degC_Turnigy_Graphene.mat');
4 LiPoly.RecordingTime = meas.Time;
5 LiPoly.Measured_Voltage = meas.Voltage;
6 LiPoly.Measured_Current = meas.Current;
7 LiPoly.Measured_Temperature = meas.Battery_Temp_degC;
8 nominalCap = 4.81; % Battery capacity in Ah taken ...

from data.
9 LiPoly.Measured_SOC = (nominalCap + ...

meas.Ah).*100./nominalCap; % Calculate the SOC using Coloumb ...
Counting for comparison

10

11 % Resample input data
12 LiPoly.RecordingTime = LiPoly.RecordingTime(1:10:end);
13 LiPoly.Measured_Voltage = LiPoly.Measured_Voltage(1:10:end);
14 LiPoly.Measured_Current = LiPoly.Measured_Current(1:10:end);
15 LiPoly.Measured_Temperature = LiPoly.Measured_Temperature(1:10:end);
16 LiPoly.Measured_SOC = LiPoly.Measured_SOC(1:10:end);
17

18 % Current Definition: (+) Discharging, (-) Charging
19 LiPoly.Measured_Current_R = - LiPoly.Measured_Current;
20 % Converting seconds to hours
21 LiPoly.RecordingTime_Hours = LiPoly.RecordingTime/3600;
22

23 [SOC_Estimated, Vt_Estimated, Vt_Error] = ...
EKF_SOC_Estimation(LiPoly.Measured_Current_R, ...
LiPoly.Measured_Voltage, LiPoly.Measured_Temperature);

24

25 % Terminal Voltage Measured vs. Estimated
26 figure
27 plot(LiPoly.RecordingTime_Hours,LiPoly.Measured_Voltage);
28 hold on
29 plot(LiPoly.RecordingTime_Hours,Vt_Estimated);
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30 hold off;
31 legend('Measured','Estimated EKF');
32 ylabel('Terminal Voltage[V]');xlabel('Time[hr]');
33 title('Measured vs. Estimated Terminal Voltage (V) at 0 Deg C')
34 grid minor
35

36 % Terminal Voltage Error
37 figure
38 plot(LiPoly.RecordingTime_Hours,Vt_Error);
39 legend('Terminal Voltage Error');
40 ylabel('Terminal Voltage Error');
41 xlabel('Time[hr]');
42

43 % SOC Coulomb Counting vs. Estimated
44 figure
45 plot (LiPoly.RecordingTime_Hours,LiPoly.Measured_SOC);
46 hold on
47 plot (LiPoly.RecordingTime_Hours,SOC_Estimated*100);
48 hold off;
49 legend('Coulomb Counting','Estimated EKF');
50 ylabel('SOC[%]');xlabel('Time[hr]');
51 title('Coulomb Counting vs. SOC Estimated at 0 Deg C')
52 grid minor
53

54 % SOC Error
55 figure
56 plot(LiPoly.RecordingTime_Hours,(LiPoly.Measured_SOC - ...

SOC_Estimated*100));
57 legend('SOC Error');
58 ylabel('SOC Error [%]');
59 xlabel('Time[hr]');
60 grid minor
61

62 % Calculate RMSE and MAX of Vt and SOC
63 RMSE_Vt = sqrt((sum((LiPoly.Measured_Voltage - Vt_Estimated).^2)) ...

/(length(LiPoly.Measured_Voltage)))*1000 % mV
64 RMSE_SOC = sqrt((sum((LiPoly.Measured_SOC - SOC_Estimated*100).^2)) ...

/(length(LiPoly.Measured_SOC))) % (%)
65 Max_Vt = max(abs(LiPoly.Measured_Voltage - Vt_Estimated))*1000 % mV
66 Max_SOC = max(abs(LiPoly.Measured_SOC - SOC_Estimated*100)) % (%)

EKF_SOC_Estimation.mlx

1 function [SOC_Estimated, Vt_Estimated, Vt_Error] = ...
EKF_SOC_Estimation(Current, Vt_Actual, Temperature)

2

3 load 'BatteryModel.mat'; % Load the battery parameters
4 load 'SOC-OCV.mat'; % Load the SOC-OCV curve
5

6 SOC_Init = 1; % intial SOC
7 X = [SOC_Init; 0; 0]; % state space x parameter intializations
8 DeltaT = 1; % sample time in seconds
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9 Qn_rated = 4.81 * 3600; % Ah to Amp-seconds
10 % initialize scatteredInterpolant functions for battery parameters and ...

SOC-OCV curve
11 % this function also allows for extrapolation
12 F_R0 = scatteredInterpolant(param.T,param.SOC,param.R0);
13 F_R1 = scatteredInterpolant(param.T,param.SOC,param.R1);
14 F_R2 = scatteredInterpolant(param.T,param.SOC,param.R2);
15 F_C1 = scatteredInterpolant(param.T,param.SOC,param.C1);
16 F_C2 = scatteredInterpolant(param.T,param.SOC,param.C2);
17

18 SOCOCV = polyfit(SOC_OCV.SOC,SOC_OCV.OCV,11); % calculate 11th order ...
polynomial for the SOC-OCV curve

19 dSOCOCV = polyder(SOCOCV); % derivative of SOC-OCV curve for matrix C
20

21 n_x = size(X,1);
22 R_x = 2.5e-5;
23 P_x = [0.025 0 0;
24 0 0.01 0;
25 0 0 0.01];
26 Q_x = [1.0e-6 0 0;
27 0 1.0e-5 0;
28 0 0 1.0e-5];
29

30 SOC_Estimated = [];
31 Vt_Estimated = [];
32 Vt_Error = [];
33 ik = length(Current);
34 % Current = Current-0.1;
35

36 for k=1:1:ik
37 T = Temperature(k); % C
38 U = Current(k); % A
39 SOC = X(1);
40 V1 = X(2);
41 V2 = X(3);
42

43 % Evaluate the battery parameter scatteredInterpolant
44 % functions for the current temperature & SOC
45 R0 = F_R0(T,SOC);
46 R1 = F_R1(T,SOC);
47 R2 = F_R2(T,SOC);
48 C1 = F_C1(T,SOC);
49 C2 = F_C2(T,SOC);
50 % OCV = F_OCV(T,SOC);
51 % OCV = pchip(param.SOC,param.OCV,SOC); % pchip sample for ...

unknown or single temperature
52

53 OCV = polyval(SOCOCV,SOC); % calculate the values of OCV at the ...
given SOC, using the polynomial SOCOCV

54

55 Tau_1 = C1 * R1;
56 Tau_2 = C2 * R2;
57

58 a1 = exp(-DeltaT/Tau_1);
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59 a2 = exp(-DeltaT/Tau_2);
60

61 b1 = R1 * (1 - exp(-DeltaT/Tau_1));
62 b2 = R2 * (1 - exp(-DeltaT/Tau_2));
63

64 TerminalVoltage = OCV - R0*U - V1 - V2;
65

66 if U > 0
67 eta = 1; % eta for discharging
68 elseif U ≤ 0
69 eta = 1; % eta for charging
70 end
71

72 dOCV = polyval(dSOCOCV, SOC);
73 C_x = [dOCV -1 -1];
74

75 Error_x = Vt_Actual(k) - TerminalVoltage;
76

77 Vt_Estimated = [Vt_Estimated;TerminalVoltage];
78 SOC_Estimated = [SOC_Estimated;X(1)];
79 Vt_Error = [Vt_Error;Error_x];
80

81 A = [1 0 0;
82 0 a1 0;
83 0 0 a2];
84 B = [-(eta * DeltaT/Qn_rated); b1; b2];
85 X = (A * X) + (B * U);
86 P_x = (A * P_x * A') + Q_x;
87

88 KalmanGain_x = (P_x) * (C_x') * (inv((C_x * P_x * C_x') + (R_x)));
89 X = X + (KalmanGain_x * Error_x);
90 P_x = (eye(n_x,n_x) - (KalmanGain_x * C_x)) * P_x;
91

92 % Q_x = KalmanGain_x * Error_x * KalmanGain_x';
93

94 end

105



References

[1] IEA, “World Energy Balances: Overview”, IEA, Paris, 2021, [Online]. Available:

https://www.iea.org/reports/world-energy-balances-overview. [Accessed: 23-Aug-

2021].

[2] S. O’Kane, “EU proposes phasing out new internal combus-

tion cars by 2035,” The Verge, 14-Jul-2021. [Online]. Available:

https://www.theverge.com/2021/7/14/22576994/european-union-gas-vehicle-

ice-ban-2035-electric-cars. [Accessed: 23-Aug-2021].

[3] J. Woo, H. Choi, J. Ahn, "Well-to-wheel analysis of greenhouse gas emissions for

electric vehicles based on electricity generation mix: A global perspective", Trans-

portation Research Part D Transport and Environment, 2017, vol. 51, pp. 340-350,

doi: 10.1016/j.trd.2017.01.005.

[4] “2021 U.S. electric vehicle Experience (EVX) Ownership Study,” J.D.

Power, 21-Jan-2021. [Online]. Available: https://www.jdpower.com/business/press-

releases/2021-us-electric-vehicle-experience-evx-ownership-study. [Accessed: 23-

Aug-2021].

[5] D. Pevec, J. Babic, A. Carvalho, Y. Ghiassi-Farrokhfal, W. Ketter and V. Podob-

nik, "Electric Vehicle Range Anxiety: An Obstacle for the Personal Transportation

(R)evolution?," 2019 4th International Conference on Smart and Sustainable Tech-

nologies (SpliTech), 2019, pp. 1-8, doi: 10.23919/SpliTech.2019.8783178.

106



M.A.Sc Thesis
Fauzia Khanum

McMaster University
Electrical and Computer Engineering

[6] M. Nilsson, “Electric Vehicles The Phenomenon of

Range Anxiety”, Accessed: 2021, [Online]. Available:

http://e-mobility-nsr.eu/fileadmin/user_upload/downloads/info-

pool/the_phenomenon_of_range_anxiety_elvire.pdf.

[7] M. Naguib, P. Kollmeyer and A. Emadi, "Lithium-Ion Battery Pack Robust State

of Charge Estimation, Cell Inconsistency, and Balancing: Review," in IEEE Access,

vol. 9, pp. 50570-50582, 2021, doi: 10.1109/ACCESS.2021.3068776.

[8] G. Plett, “Battery Management Systems, Volume I: Battery Modeling”, Artech,

2015.

[9] MIT Electric Vehicle Team. “A Guide to Understanding Battery

Specifications”, December 2008, Accessed: 2021, [Online]. Available:

http://web.mit.edu/evt/summary_battery_specifications.pdf.

[10] C. Vidal, O. Gross, R. Gu, P. Kollmeyer and A. Emadi, "xEV Li-Ion Battery Low-

Temperature Effects—Review," in IEEE Transactions on Vehicular Technology, vol.

68, no. 5, pp. 4560-4572, May 2019, doi: 10.1109/TVT.2019.2906487.

[11] W. Liu, “Hybrid Electric Vehicle System Modelling and Control”, Wiley, 2017.

[12] A. Emadi, Advanced Electric Drive Vehicles, CRC Press, 2014.

[13] P. Lin, P. Jin, J. Hong, and Z. Wang, “Battery voltage and state of power prediction

based on an improved novel polarization voltage model,” Energy Reports, vol. 6,

pp. 2299–2308, 2020, doi: http://dx.doi.org/10.1016/j.egyr.2020.08.014.

[14] S. Xiang, G. Hu, R. Huang, F. Guo, and P. Zhou, “Lithium-Ion battery online

Rapid STATE-OF-POWER Estimation under multiple constraints,” Energies, vol.

11, no. 2, p. 283, 2018, doi: http://dx.doi.org/10.3390/en11020283.

107



M.A.Sc Thesis
Fauzia Khanum

McMaster University
Electrical and Computer Engineering

[15] M. Berecibar, I. Gandiaga, I. Villarreal, N. Omar, J. Van Mierlo, and P. Van den

Bossche, “Critical review of state of Health estimation methods of Li-ion batteries

for real applications,” Renewable and Sustainable Energy Reviews, vol. 56, pp.

572–587, 2016, doi: https://doi.org/10.1016/j.rser.2015.11.042.

[16] B. Pattipati, C. Sankavaram and K. Pattipati, "System Identification and Esti-

mation Framework for Pivotal Automotive Battery Management System Char-

acteristics," in IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews), vol. 41, no. 6, pp. 869-884, Nov. 2011, doi:

10.1109/TSMCC.2010.2089979.

[17] M. Naguib, C. Vidal, P. Kollmeyer, P. Malysz, O. Gross, and A. Emadi, “Compara-

tive study between equivalent circuit and recurrent neural network battery voltage

models,” SAE Technical Paper Series, 2021, doi: https://doi.org/10.4271/2021-01-

0759.

[18] W. He, M. Pecht, D. Flynn, and F. Dinmohammadi, “A physics-based electrochem-

ical model for lithium-ion battery state-of-charge estimation solved by an optimised

projection-based method and moving-window filtering,” Energies, vol. 11, no. 8, p.

2120, 2018, doi: https://doi.org/10.3390/en11082120.

[19] C. Zhang, K. Li, S. Mcloone, and Z. Yang, “Battery modelling methods for elec-

tric vehicles - a review,” 2014 European Control Conference (ECC), 2014, doi:

http://dx.doi.org/10.1115/1.4002475.

[20] R. Xiong, J. Cao, Q. Yu, H. He and F. Sun, "Critical Review on the Battery State

of Charge Estimation Methods for Electric Vehicles," in IEEE Access, vol. 6, pp.

1832-1843, 2018, doi: 10.1109/ACCESS.2017.2780258.

[21] R. Zhao, P. J. Kollmeyer, R. D. Lorenz and T. M. Jahns, "A Compact Methodology

108



M.A.Sc Thesis
Fauzia Khanum

McMaster University
Electrical and Computer Engineering

Via a Recurrent Neural Network for Accurate Equivalent Circuit Type Modeling

of Lithium-Ion Batteries," in IEEE Transactions on Industry Applications, vol. 55,

no. 2, pp. 1922-1931, March-April 2019, doi: 10.1109/TIA.2018.2874588.

[22] C. Vidal, P. Malysz, P. Kollmeyer and A. Emadi, "Machine Learning Applied

to Electrified Vehicle Battery State of Charge and State of Health Estimation:

State-of-the-Art," in IEEE Access, vol. 8, pp. 52796-52814, 2020, doi: 10.1109/AC-

CESS.2020.2980961.

[23] Q.-K. Wang, Y.-J. He, J.-N. Shen, Z.-F. Ma, and G.-B. Zhong, “A unified modeling

framework for lithium-ion batteries: An artificial neural network based thermal

coupled equivalent circuit model approach,” Energy, vol. 138, pp. 118–132, 2017,

doi:https://doi.org/10.1016/j.energy.2017.07.035.

[24] C. Sbarufatti, M. Corbetta, M. Giglio, and F. Cadini, “Adaptive prognosis of

lithium-ion batteries based on the combination of particle filters and radial basis

function neural networks,” Journal of Power Sources, vol. 344, pp. 128–140, 2017,

doi: https://doi.org/10.1016/j.jpowsour.2017.01.105.

[25] Q. Yu, R Xiong, L. Wang, C. Lin, “A Comparative Study on Open Circuit Voltage

Models for Lithium-ion Batteries”, Chinese Journal of Mechanical Engineering,vol

31, (2018), doi: https://doi.org/10.1186/s10033-018-0268-8

[26] D. Sun, X. Yu, C. Wang, C. Zhang, R. Huang, Q. Zhou, T. Amietszajew, and R.

Bhagat, “State of charge estimation for lithium-ion battery based on an intelligent

adaptive extended kalman filter with improved noise estimator,” Energy, vol. 214,

p. 119025, 2021 doi: https://doi.org/10.1016/j.energy.2020.119025.

109



M.A.Sc Thesis
Fauzia Khanum

McMaster University
Electrical and Computer Engineering

[27] I. Jokić, Ž. Zečević and B. Krstajić, "State-of-charge estimation of lithium-ion bat-

teries using extended Kalman filter and unscented Kalman filter," 2018 23rd Interna-

tional Scientific-Professional Conference on Information Technology (IT), Zabljak,

Montenegro, 2018, pp. 1-4, doi: 10.1109/SPIT.2018.8350462.

[28] V. Sangwan, R. Kumar and A. K. Rathore, "State-of-charge estimation for li-ion

battery using extended Kalman filter (EKF) and central difference Kalman filter

(CDKF)," 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati,

OH, USA, 2017, pp. 1-6, doi: 10.1109/IAS.2017.8101722.

[29] L. Haoran, L. Liangdong, Z. Xiaoyin and S. Mingxuan, "Lithium Battery SOC Es-

timation Based on Extended Kalman Filtering Algorithm," 2018 IEEE 4th Interna-

tional Conference on Control Science and Systems Engineering (ICCSSE), Wuhan,

China, 2018, pp. 231-235, doi: 10.1109/CCSSE.2018.8724766.

[30] D. Yang, G. Qi and X. Li, "State-of-charge estimation of LiFePO4/C battery

based on extended Kalman filter," 2013 IEEE PES Asia-Pacific Power and En-

ergy Engineering Conference (APPEEC), Hong Kong, China, 2013, pp. 1-5, doi:

10.1109/APPEEC.2013.6837188.

[31] Chirag (2021). Design and Test Lithium Ion Battery Management Algorithms. [On-

line]. Available: https://www.mathworks.com/matlabcentral/fileexchange/72865-

design-and-test-lithium-ion-battery-management-algorithms. [Accessed: 2021].

[32] E. Chemali, P. J. Kollmeyer, M. Preindl, and A. Emadi, “State-of-charge es-

timation of Li-ion batteries using deep neural networks: A machine learn-

ing approach,” Journal of Power Sources, vol. 400, pp. 242–255, 2018, doi:

https://doi.org/10.1016/j.jpowsour.2018.06.104

110



M.A.Sc Thesis
Fauzia Khanum

McMaster University
Electrical and Computer Engineering

[33] E. Chemali, P. J. Kollmeyer, M. Preindl, R. Ahmed and A. Emadi, "Long Short-

Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batter-

ies," in IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6730-6739,

Aug. 2018, doi: 10.1109/TIE.2017.2787586.

[34] M. S. Sidhu, D. Ronanki and S. Williamson, "State of Charge Estimation of Lithium-

Ion Batteries Using Hybrid Machine Learning Technique," IECON 2019 - 45th An-

nual Conference of the IEEE Industrial Electronics Society, 2019, pp. 2732-2737,

doi: 10.1109/IECON.2019.8927066.

[35] C. Vidal, P. Kollmeyer, M. Naguib, P. Malysz, O. Gross, and A. Emadi, “Robust

xEV Battery State-of-Charge Estimator Design using Deep Neural Networks,” in

Proc WCX SAE World Congress Experience, Detroit, MI, Apr 2020.

[36] Y. Liu, X. Shu, H. Yu, J. Shen, Y. Zhang, Y. Liu, and Z. Chen, “State of charge

prediction framework for lithium-ion batteries incorporating long short-term mem-

ory network and transfer learning,” Journal of Energy Storage, vol. 37, p. 102494,

2021, doi: 10.1016/j.est.2021.102494.

[37] C. Vidal, P. Kollmeyer, E. Chemali and A. Emadi, "Li-ion Battery State of Charge

Estimation Using Long Short-Term Memory Recurrent Neural Network with Trans-

fer Learning," 2019 IEEE Transportation Electrification Conference and Expo

(ITEC), Detroit, MI, USA, 2019, pp. 1-6.

[38] J. C. Álvarez Antón, P. J. García Nieto, C. Blanco Viejo and J. A. Vilán Vilán,

"Support Vector Machines Used to Estimate the Battery State of Charge," in IEEE

Transactions on Power Electronics, vol. 28, no. 12, pp. 5919-5926, Dec. 2013, doi:

10.1109/TPEL.2013.2243918.

111



M.A.Sc Thesis
Fauzia Khanum

McMaster University
Electrical and Computer Engineering

[39] I. A. Majid, R. F. Rahman, N. A. Setiawan and A. I. Cahyadi, "Electric ve-

hicle battery dynamics modelling using support vector machine," 2013 Joint In-

ternational Conference on Rural Information & Communication Technology and

Electric-Vehicle Technology (rICT & ICeV-T), 2013, pp. 1-3, doi: 10.1109/rICT-

ICeVT.2013.6741500.

[40] U.S Department of Energy, “2019 Telsa Model 3 Standard Range”,

https://www.fueleconomy.gov/feg/Find.do?action=sbs&id=41415, (Accessed

2021).

[41] B. Varga, A. Sagoian, and F. Mariasiu, “Prediction of electric vehicle range: A

comprehensive review of current issues and challenges,” Energies, vol. 12, no. 5, p.

946, 2019, https://doi.org/10.3390/en12050946.

[42] J. A. Oliva, C. Weihrauch and T. Bertram, "Model-based remaining driving range

prediction in electric vehicles by using particle filtering and Markov chains," 2013

World Electric Vehicle Symposium and Exhibition (EVS27), 2013, pp. 1-10, doi:

10.1109/EVS.2013.6914989.

[43] L. Zhao, W. Yao, Y. Wang and J. Hu, "Machine Learning-Based Method for Re-

maining Range Prediction of Electric Vehicles," in IEEE Access, vol. 8, pp. 212423-

212441, 2020, doi: 10.1109/ACCESS.2020.3039815.

[44] A. Bolovinou, I. Bakas, A. Amditis, F. Mastrandrea and W. Vinciotti, "Online

prediction of an electric vehicle remaining range based on regression analysis,"

2014 IEEE International Electric Vehicle Conference (IEVC), 2014, pp. 1-8, doi:

10.1109/IEVC.2014.7056167.

[45] I. Miri, A. Fotouhi, and N. Ewin, “Electric vehicle energy consumption modelling

and estimation—a case study,” International Journal of Energy Research, vol. 45,

112



M.A.Sc Thesis
Fauzia Khanum

McMaster University
Electrical and Computer Engineering

no. 1, pp. 501–520, 2020, https://doi.org/10.1002/er.5700

[46] M. Mruzek, I. Gajdáč, Ľ. Kučera, and D. Barta, “Analysis of parameters influenc-

ing electric vehicle range,” Procedia Engineering, vol. 134, pp. 165–174, 2016, doi:

https://doi.org/10.1016/j.proeng.2016.01.056.

[47] M. Smuts, B. Scholtz, and J. Wesson, “A critical review of factors influencing

the remaining driving range of electric vehicles,” 2017 1st International Con-

ference on Next Generation Computing Applications (NextComp), 2017, doi:

10.1109/NEXTCOMP.2017.8016198.

[48] H. A. Yavasoglu, Y. E. Tetik, and K. Gokce, “Implementation of ma-

chine learning based real time range estimation method without des-

tination knowledge for bevs,” Energy, vol. 172, pp. 1179–1186, 2019,

https://doi.org/10.1016/j.energy.2019.02.032.

[49] A. Enthaler, T. Weustenfeld, F. Gauterin and J. Koehler, "Thermal management

consumption and its effect on remaining range estimation of electric vehicles," 2014

International Conference on Connected Vehicles and Expo (ICCVE), 2014, pp. 170-

177, doi: 10.1109/ICCVE.2014.7297537.

[50] C. De Cauwer, W. Verbeke, T. Coosemans, S. Faid, and J. Van Mierlo, “A data-

driven method for energy consumption prediction and energy-efficient routing of

electric vehicles in real-world conditions,” Energies, vol. 10, no. 5, p. 608, 2017, doi:

https://doi.org/10.3390/en10050608

[51] H. Rahimi-Eichi and M. Chow, "Big-data framework for electric vehicle range esti-

mation," IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics

Society, 2014, pp. 5628-5634, doi: 10.1109/IECON.2014.7049362.

113



M.A.Sc Thesis
Fauzia Khanum

McMaster University
Electrical and Computer Engineering

[52] Y. Zhang, W. Wang, Y. Kobayashi and K. Shirai, "Remaining driving range estima-

tion of electric vehicle," 2012 IEEE International Electric Vehicle Conference, 2012,

pp. 1-7, doi: 10.1109/IEVC.2012.6183172.

[53] B. Zheng, P. He, L. Zhao and H. Li, "A Hybrid Machine Learning Model for Range

Estimation of Electric Vehicles," 2016 IEEE Global Communications Conference

(GLOBECOM), 2016, pp. 1-6, doi: 10.1109/GLOCOM.2016.7841506.

[54] S. S. Sonalikar and S. D. Shelke, "Estimation of Remaining Range of Electric

Vehicle Using Kalman Filter," 2018 International Conference on Inventive Re-

search in Computing Applications (ICIRCA), 2018, pp. 632-636, doi: 10.1109/I-

CIRCA.2018.8596767.

[55] X. Liu, J. Wu, C. Zhang, and Z. Chen, “A method for state of en-

ergy estimation of lithium-ion batteries at dynamic currents and temper-

atures,” Journal of Power Sources, vol. 270, pp. 151–157, 2014, doi:

https://doi.org/10.1016/j.jpowsour.2014.07.107.

[56] K. Li, F. Wei, K. J. Tseng and B. Soong, "A Practical Lithium-Ion Battery Model

for State of Energy and Voltage Responses Prediction Incorporating Temperature

and Ageing Effects," in IEEE Transactions on Industrial Electronics, vol. 65, no. 8,

pp. 6696-6708, Aug. 2018, doi: 10.1109/TIE.2017.2779411.

[57] Pan, Chaofeng, et al. “Driving Range Estimation for Electric Vehicles Based on

Driving Condition Identification and Forecast.” AIP Advances, vol. 7, no. 10, Oct.

2017, p. 105206, 10.1063/1.4993945. Accessed 15 Nov. 2021.

[58] M. Ceraolo and G. Pede, "Techniques for estimating the residual range of an electric

vehicle," in IEEE Transactions on Vehicular Technology, vol. 50, no. 1, pp. 109-115,

Jan. 2001, doi: 10.1109/25.917893.

114



M.A.Sc Thesis
Fauzia Khanum

McMaster University
Electrical and Computer Engineering

[59] M. Ismail, R. Dlyma, A. Elrakaybi, R. Ahmed and S. Habibi, "Battery state of

charge estimation using an Artificial Neural Network," 2017 IEEE Transportation

Electrification Conference and Expo (ITEC), Chicago, IL, USA, 2017, pp. 342-349.

[60] Jun Xu, Chunting Chris Mi, Binggang Cao and Junyi Cao, "A new method to

estimate the state of charge of lithium-ion batteries based on the battery impedance

model," Journal of Power Sources, vol. 233, 2013, pp. 277-284.

[61] A. Nugroho, E. Rijanto, F. D. Wijaya and P. Nugroho, "Battery state of charge

estimation by using a combination of Coulomb Counting and dynamic model with

adjusted gain," 2015 International Conference on Sustainable Energy Engineering

and Application (ICSEEA), Bandung, Indonesia, 2015, pp. 54-58.

[62] I. Baccouche, S. Jemmali, B. Manai, R. Chaibi and N. E. Ben Amara, "Hardware

implementation of an algorithm based on kalman filtrer for monitoring low capac-

ity Li-ion batteries," 2016 7th International Renewable Energy Congress (IREC),

Hammamet, Tunisia, 2016.

[63] C. Chang, Y. Zheng, and Y. Yu, “Estimation for Battery State of Charge Based on

Temperature Effect and Fractional Extended Kalman Filter,” Energies, vol. 13, no.

22, p. 5947, Nov. 2020.

[64] Q.-Z. Zhang, Z.-Y. Wang, and H.-M. Yuan, Estimation for SOC of Li-ion

battery based on two-order RC temperature model, 28-Jun-2018. [Online]. Avail-

able: https://ieeexplore-ieee-org.libaccess.lib.mcmaster.ca/document/8398150.

[Accessed: 2020].

[65] Kollmeyer, Phillip; Skells, Michael (2020), “Turnigy Graphene 5000mAh 65C Li-ion

Battery Data”, Mendeley Data, V1, doi: 10.17632/4fx8cjprxm.1

[66] R. Ahmed, "OCV-RRC Models in State Space, Kalman Filtering and State of

115



M.A.Sc Thesis
Fauzia Khanum

McMaster University
Electrical and Computer Engineering

Charge Estimation," MECH ENG 754 Management and Control of Electric Vehicle

Batteries Lecture 7, McMaster University, Hamilton, Ontario, Fall 2020.

[67] Daoming Sun, Xiaoli Yu, Chongming Wang, Cheng Zhang, Rui Huang, Quan Zhou,

Taz Amietszajew, Rohit Bhagat "State of charge estimation for lithium-ion battery

based on an Intelligent Adaptive Extended Kalman Filter with improved noise es-

timator," Energy, vol. 214, 2021.

[68] Kollmeyer, Phillip (2018), “Panasonic 18650PF Li-ion Battery Data”, Mendeley

Data, V1, doi: 10.17632/wykht8y7tg.1

[69] Naguib, Mina; Kollmeyer, Phillip; Skells, Michael (2020), “LG 18650HG2 Li-ion

Battery Data and Example Deep Neural Network xEV SOC Estimator Script”,

Mendeley Data, V1, doi: 10.17632/b5mj79w5w9.1

[70] F. Khanum, E. Louback, F. Duperly, C. Jenkins, P. J. Kollmeyer and A. Emadi,

"A Kalman Filter Based Battery State of Charge Estimation MATLAB Function,"

2021 IEEE Transportation Electrification Conference & Expo (ITEC), 2021, pp.

484-489, doi: 10.1109/ITEC51675.2021.9490163.

[71] J. Gazzarri, "Modeling Batteries Using Simulink and Simscape," Mathworks,

[Online]. Available: https://www.mathworks.com/videos/modeling-batteries-using-

simulink-and-simscape-1562930245321.html. [Accessed 19 December 2020].

[72] The Idaho National Laboratory, "Battery Test Manual for Plug-In Hybrid Electric

Vehicles," U.S. Department of Energy, Idaho Falls, Idaho, 2010.

[73] Florian Knorn (2021). M-code LaTeX Package. [Online]. Available:

https://www.mathworks.com/matlabcentral/fileexchange/8015-m-code-latex-

package.

116



M.A.Sc Thesis
Fauzia Khanum

McMaster University
Electrical and Computer Engineering

[74] “2019 Tesla Model 3 Standard Range plus RWD - Specifications and Price.” EVSpec-

ifications, https://www.evspecifications.com/en/model/bc5896. Accessed 22 Nov.

2021.

[75] P. Kollmeyer, “Electromechanical Modeling and Analysis of a Corbin Sparrow Elec-

tric Vehicle using On the Road Data,” M.S. Thesis, University of Wisconsin - Madi-

son, 2011.

[76] O. US EPA, “Annual Certification Data for Vehicles, Engines, and Equipment,”

www.epa.gov, Nov. 08, 2017. https://www.epa.gov/compliance-and-fuel-economy-

data/annual-certification-test-data-vehicles-and-engines (accessed Oct. 04, 2021).

[77] P. G. Anselma, P. Kollmeyer, J. Lempert, Z. Zhao, G. Belingardi, and A. Emadi,

“Battery state-of-health sensitive energy management of hybrid electric vehicles:

Lifetime prediction and ageing experimental validation,” Applied Energy, vol. 285,

p. 116440, Mar. 2021, doi: 10.1016/j.apenergy.2021.116440. �

�

[78] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," in IEEE

Transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681, Nov. 1997, doi:

10.1109/78.650093.

[79] K. Yao, G. Zweig, M. Hwang, Y. Shi, D. Yu, “Recurrent Neural Networks for

Language Understanding” in Interspeech, Aug. 2013, doi: 10.13140/2.1.2755.3285.

[80] H. Sak, A. Senior, F. Beaufays, “Long short-term memory recurrent neural network

architectures for large scale acoustic modeling”, Proceedings of the Annual Con-

ference of the International Speech Communication Association, INTERSPEECH,

pp. 338-342, 2014.

117



M.A.Sc Thesis
Fauzia Khanum

McMaster University
Electrical and Computer Engineering

[81] R. Pascanu, T. Mikolov, Y. Bengio, “On the difficulty of training Recurrent Neural

Networks,” in Proceedings of the 30th International Conference on Machine Learn-

ing, 2012, doi: 10.5555/3042817.3043083

[82] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computa-

tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[83] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, CoRR

abs/1412.6980, http://arxiv.org/abs/1412.6980.

[84] D. Zhu, J. J. Campbell and G. Cho, "Battery Voltage Prediction Using Neural

Networks," 2021 IEEE Transportation Electrification Conference & Expo (ITEC),

2021, pp. 807-812, doi: 10.1109/ITEC51675.2021.9490081.

[85] O. J. Ojo, X. Lin, H. Lang and X. Hu, "A Voltage Fault Detection Method Enabled

by A Recurrent Neural Network and Residual Threshold Monitor for Lithium-ion

Batteries," 2021 IEEE Transportation Electrification Conference & Expo (ITEC),

2021, pp. 813-820, doi: 10.1109/ITEC51675.2021.9490102.

[86] Li, Shuangqi, et al. “Big Data Driven Lithium-Ion Battery Modeling Method Based

on SDAE-ELM Algorithm and Data Pre-Processing Technology.” Applied Energy,

vol. 242, May 2019, pp. 1259–1273, 10.1016/j.apenergy.2019.03.154. Accessed 10

Nov. 2021.

118


	Abstract
	Acknowledgements
	Abbreviations
	Introduction
	Background and Motivation
	Thesis Contributions
	Thesis Organization

	State-of-the-Art Review on Lithium-Ion Batteries in Electric Vehicles
	Introduction
	Lithium-ion Battery Basics and Models
	Battery Basics
	Battery Capacity
	Battery Power and Energy
	Battery Life

	Modelling Batteries
	Equivalent Circuit Models
	Electrochemical Models
	Data Driven Models

	State-of-Charge Estimation Methods
	Coulomb Counting
	SOC-OCV
	Model-Based Methods
	Data Driven Methods

	Range Estimation
	Range Estimation Influencing Factors
	Vehicle Design and Simulation
	Driver Behaviour
	Environmental Factors

	Range Estimation Methods
	Current Problems with Range Estimation

	Summary

	A Kalman Filter Based Battery State of Charge Estimation
	Introduction
	State of Charge Estimation Algorithm
	Battery Modelling
	Extended Kalman Filter

	Extended Kalman Filter State-of-Charge Estimation Function
	Battery Parameters

	Simulation Example
	Summary

	Battery Cell Tests: Vehicle Model and Design of Experiment
	Introduction
	Electric Vehicle Model
	Model of Tesla Model 3 Drive Train Power
	Energy Storage System

	Experimental Measurement and Preparation of Data
	Cell Characterization
	Drive Cycles
	Cut-off Capacity Calculation
	Data Preparation

	Summary

	Range Estimation of Electric Vehicles using a Recurrent Neural Network-based Voltage Estimation
	Introduction
	Recurrent Neural Network Voltage Estimation Model
	Driving Range Estimation
	LSMT-RNN Training on SHARCNET vs. Personal Computer
	Voltage Estimation Results
	Learnable Parameters and Hyper-Parameters
	Whole vs. Classic Dataset Comparison

	Range Estimation based on LSTM-RNN Battery model
	Model Performance: Best vs. Worst Result for Standard Four Drive Cycles
	Model Performance Over Temperature
	Model Performance in Custom Cycles
	Voltage Estimation Comparison to Literature

	Range Estimation Results
	Range Estimation Comparison to Literature


	Conclusions and Future Work
	Concluding Remarks
	Future Work
	Publications

	Appendix
	References

