Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27120
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHabibi, Saeid-
dc.contributor.authorMessing, Marvin-
dc.date.accessioned2021-10-25T18:30:10Z-
dc.date.available2021-10-25T18:30:10Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/11375/27120-
dc.description.abstractBattery Electric Vehicles (BEV) are gaining market share but still must overcome several engineering challenges related to the lithium-ion battery packs powering them. The batteries must be carefully managed to optimize safety and performance. The estimation of battery states, which cannot be measured directly, is an important part of battery management and remains an active area of research since small gains in estimation accuracy can help reduce cost and increase BEV range. This thesis presents several improvements to battery state estimation using different methods. Electrochemical Impedance Spectroscopy (EIS) is receiving increased attention from researchers as a method for state estimation and diagnostics for real-time applications. Due to battery relaxation behaviour, long rest times are commonly used before performing the EIS measurement. In this work, methods were developed to significantly shorten the required rest times, and a State of Health (SoH) estimation strategy was proposed by taking advantage of the relaxation effect as measured by EIS. This method was demonstrated to have an estimation error of below 1%. At low temperatures, the accuracy of the battery model becomes poor due to the non-linear battery response to current. By using an adaptive filter called the Interacting Multiple Model (IMM) filter, the next part of this work showed how to significantly improve low temperature State of Charge (SoC) estimation. Further reduction in estimation errors was achieved by pairing the IMM with the Smooth Variable Structure Filter (SVSF), for SoC estimation errors below 2%. The work presented in this thesis also includes the application of Deep Neural Networks (DNN) for SoC estimation from EIS data. Finally, an extensive aging study was conducted and an accelerated protocol was compared to a realistic drive cycle based protocol using EIS as a characterization tool.en_US
dc.language.isoenen_US
dc.subjectBatteriesen_US
dc.subjectState Estimationen_US
dc.subjectElectrochemical Impedance Spectroscopyen_US
dc.subjectAdaptive Filteringen_US
dc.subjectBattery Agingen_US
dc.subjectDeep Neural Networksen_US
dc.titleADVANCED CHARACTERIZATION OF BATTERY CELL DYNAMICSen_US
dc.typeThesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.description.layabstractReplacing conventional gasoline/diesel powered cars with battery powered vehicles is part of a solution to the climate crisis. However, the initial costs paired with range anxiety stops many from switching to electric cars. Both cost and range are related to the battery pack. To achieve the best possible range for the lowest possible cost, battery packs must be carefully controlled by sophisticated algorithms. Unfortunately, battery range or health cannot be measured directly, but must be inferred through measurable indicators. This thesis explores battery behavior under different operating conditions and develops improved methods which can be used to determine battery health and/or range. A powerful method usually used only in laboratory settings is studied and improved to make it more suitable for implementation in electric cars. In this work it is used for accurate battery health determination. Furthermore, a strategy for improving battery range determination at low temperatures is also proposed.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Messing_Marvin_2021September_PhD.pdf
Open Access
8.03 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue