Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27062
Title: Computational and Geometric Aspects of Linear Optimization
Authors: Guan, Zhongyan
Advisor: Deza, Antoine
Franek, Frantisek
Department: Computing and Software
Keywords: Linear Optimization;Lattice Polytopes;Diameter of Polytopes;Primitive Zonotopes
Publication Date: 2021
Abstract: Linear optimization is concerned with maximizing, or minimizing, a linear objective function over a feasible region defined as the intersection of a finite number of hyperplanes. Pivot-based simplex methods and central-path following interior point methods are the computationally most efficient algorithms to solve linear optimization instances. Discrete optimization further assumes that some of the variables are integer-valued. This dissertation focuses on the geometric properties of the feasible region under some structural assumptions. In the first part, we consider lattice (d,k)-polytopes; that is, the convex hull of a set of points drawn from {0,1,...,k}^d, and study the largest possible diameter, delta(d,k), that a lattice (d,k)- polytope can achieve. We present novel properties and an enumeration algorithm to determine previously unknown values of delta(d,k). In particular, we determine the values for delta(3,6) and delta(5,3), and enumerate all the lattice (3,3)-polytopes achieving delta(3,3). In the second part, we consider the convex hull of all the 2^(2^d - 1) subsums of the 2^d - 1 nonzero {0,1}-valued vectors of length d, and denote by a(d) the number of its vertices. The value of a(d) has been determined until d =8 as well as asymptotically tight lower and upper bounds for loga(d). This convex hull forms a so-called primitive zonotope that is dual to the resonance hyperplane arrangement and belongs to a family that is conjectured to include lattice polytopes achieving the largest possible diameter over all lattice (d,k)-polytopes. We propose an algorithm exploiting the combinatorial and geometric properties of the input and present preliminary computational results.
URI: http://hdl.handle.net/11375/27062
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Guan_Zhongyan_202105_PhD.pdf
Access is allowed from: 2022-05-31
2.12 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue