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Abstract

Linear optimization is concerned with maximizing, or minimizing, a linear objec-
tive function over a feasible region defined as the intersection of a finite number
of hyperplanes. Pivot-based simplex methods and central-path following interior
point methods are the computationally most efficient algorithms to solve linear
optimization instances. Discrete optimization further assumes that some of the
variables are integer-valued. This dissertation focuses on the geometric properties
of the feasible region under some structural assumptions. In the first part, we con-
sider lattice (d,k)-polytopes; that is, the convex hull of a set of points drawn from
{0,1 . . . ,k}d , and study the largest possible diameter, δ (d,k), that a lattice (d,k)-
polytope can achieve. We present novel properties and an enumeration algorithm
to determine previously unknown values of δ (d,k). In particular, we determine
the values for δ (3,6) and δ (5,3), and enumerate all the lattice (3,3)-polytopes
achieving δ (3,3). In the second part, we consider the convex hull of all the 22d−1

subsums of the 2d − 1 nonzero {0,1}-valued vectors of length d, and denote by
a(d) the number of its vertices. The value of a(d) has been determined until d = 8
as well as asymptotically tight lower and upper bounds for loga(d). This convex
hull forms a so-called primitive zonotope that is dual to the resonance hyperplane
arrangement and belongs to a family that is conjectured to include lattice poly-
topes achieving the largest possible diameter over all lattice (d,k)-polytopes. We
propose an algorithm exploiting the combinatorial and geometric properties of the
input and present preliminary computational results.
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Chapter 1

Introduction

1.1 Polytopes

We start by recalling some basic definitions and properties of polytopes. For ad-
ditional properties, we refer to Ziegler [46] and references therein.

A convex polyhedron P is the, possible empty, intersection of finite number n

of half-spaces in Rd . In other words, P can be defined as the set of solutions
to a system of linear inequalities: P = {x ∈ Rd : Ax ≤ b} where A is a n by d

matrix.

A polytope is a bounded convex polytope; that is, there exists a scalar M such
that P is inside the d dimensional sphere of radius M. A polytope can also be
defined as the convex hull of a finite set of points in Rd [9]. A lattice polytope is
a polytope such that all its vertices are integer-valued. A lattice (d,k)−polytope
is a polytope in dimension d whose vertices are drawn from {0,1, . . . ,k}d .

We consider the face of P whose vertices’ ith coordinate is minimized over P.
When such face is of dimension (d− 1), it is denoted by F−i ; we also refer to
F−i as the facet of P defined as F−i = {x ∈ P : xi = γ

−
i } where γ

−
i = argmin{xi :
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x ∈ P}. Similarly, we use F+
i to denote a (d− 1) dimensional face of P whose

vertices’ ith coordinate is maximized over P; that is, F+
i is the facet of P defined

as F+
i = {x∈ P : xi = γ

+
i }where γ

+
i = argmax{xi : x∈ P}. In particular, when P is

a lattice (d,k)-polytope intersecting each of the 2d facets of the cube [0,k]d over a
facet of P, then F−i , respectively F+

i , is the intersection of P with the hyperplane
{x ∈ P : xi = 0}, respectively {x ∈ P : xi = k}.

A 1-dimensional face of P is referred to as an edge. The graph consisting of all
vertices and edges of P is also known as the edge-graph of P.

1.2 Shortest paths in the edge-graph and diameter

A path between two vertices (u,v) of a polytope P is a sequence of edges along
the edge-graph of P connecting the vertices u and v. A shortest path is a path con-
necting u and v consisting of the smallest number of edges. The distance, d(u,v),
is the length of a shortest path between u and v. The diameter of a polytope P,
denoted by δ (P), is the smallest value such that the distance of any pair of vertices
of P does not exceed it, that is the largest value of the shortest path between any
pair of vertices of P.

The distance from a vertex u to facet F , d(u,F), is defined as the minimum dis-
tance between u and v over all vertices v in F ; that is, d(u,F) = argmin{d(u,v) :
v ∈ F}.

1.3 Relation to optimization

Our research objectives relates to the following two related question in the area of
combinatorial optimization. The overarching objective is to understand the struc-
ture of polytopes achieving a high diameter with respect to given parameters such
as the dimension d, the number of inequalities (or facets; that is, facet-inducing
inequalities) n, or the range k for lattice polytopes. The diameter is a lower bound
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for the worst-case number of iterations required for pivot-based linear optimiza-
tion algorithms. The first part of the thesis deals with the determination of the
largest possible diameter over all lattice (d,k)-polytopes for small d and k. The
second part deals with a specific lattice polytope that belongs to a family of poly-
topes with large diameters. This family called primitive lattice zonotopes, includes
polytopes with applications ranging from convex matroid optimization [34, 38] to
quantum field theory [19].

1.3.1 Simplex method

Dantzig’s simplex method [12] is one of the most widely used algorithms to solve
linear optimization instances. It was the first practical algorithm that exploits the
combinatorial properties of polyhedra. Originally introduced in 1947 by George
Dantzig, the algorithm derives its name from the concept of a simplex, i.e. a gen-
eralization of a triangle in an arbitrary dimension. The method is pivot-based and
purely combinatorial. Starting from an initial vertex, found using a surrogate for-
mulation, the simplex method stays on the boundary of the feasible region until
reaching, in a finite number of iterations, a vertex maximizing a linear function.
Assuming for clarity of the exposition that every vertex of the feasible region is
simple; that is, satisfies with equality exactly d inequalities, the simplex method
travels from a vertex to an adjacent vertex using an edge whose scalar product with
the objective function is nonnegative (if we are maximizing). In the dual setting,
this corresponds to pivoting from a simplex to an adjacent simplex sharing a face
of dimension d−1, hence the simplex method name. The set of inequalities satis-
fied with equalities are associated to the basic variables and the other inequalities
to the nonbasic variables.

More specifically, the simplex algorithm is usually applied to linear programs
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which are in standard form:

max cT x

Ax≤ b

and x≥ 0

where x = (x1, . . . ,xd) are the decision variables, c = (c1, . . . ,cd) the coefficients
of the objective function, and a set of constraints defined by an n×d matrix A and
b = (b1, . . . ,bn) being the non-negative right hand side of the n inequalities.

Each constraint defines a half-space in d dimensions which is convex. The inter-
section of the n half-spaces forms the set of all feasible solutions which is convex
as the intersection of n convex sets. If the feasible region is bounded, it is also
equal to the convex hull of its vertices. Assuming the instance is feasible and
bounded in the direction of the objective function, to solve the linear optimization
problem is to find a feasible solution maximizing the objective function. Since
the set of maximizers form a face of the feasible region, the optimal solution must
occur at minimum at one vertex. This means that neighbouring vertices of an
optimal vertex cannot have a strictly larger objective value.

The simplex algorithm can be presented in a geometric fashion as a path traversal
problem along the exterior of the polytope representing the set of feasible solu-
tions, see Figure 1.1. The algorithm starts at a vertex of the polytope and checks
adjacent vertices for a larger objective value. If a neighbour has a larger objective
value, then the algorithms moves to that vertex according to a given pivoting rule
and continues. The algorithm traverses along the exterior of the polytope, going
from vertex to vertex, until it reaches a vertex with no neighbour having a better
objective value.

When there are multiple neighbours with a better solution, a pivot rule is used to
decide which vertex to go to. There are several choices for the pivot rule such
as picking the largest value of the scalar product between the objective function
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and the edge, an analogue of a steepest gradient, or some lexicographical order-
ing. The chosen pivot rule can significantly affect the running time of the algo-
rithm. While the simplex algorithm is quite efficient in practice, a worst case
instance leading to an exponential number of iterations, or even cycling, is known
for nearly all existing pivoting rules. Achieving a deeper understanding of the
combinatorial and geometric properties of polytopes achieving a large diameter
would contribute to finding for novel pivoting rules that are more efficient.

Figure 1.1: Iterations of the Simplex method, where the red point represents the current
basis and the green point represents previous bases.

1.4 Research objectives

As a step towards achieving a deeper understanding of the combinatorial and ge-
ometric properties of polytopes achieving a large diameter, our first goal is to
determine the maximal diameter of a lattice polytope in dimension d in an integer
grid ranging from 0 to k for small entries of d and k. We discuss the structural
properties, our proposed algorithm, and the obtained results in Chapter 2.
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In Section 2.1, we describe the problem in more detail and discuss the structural
properties in Section 2.2. In Section 2.3, we present a novel algorithm to deter-
mine the largest diameter of a lattice (d,k)-polytope. We show results obtained
using the algorithm including the results for (d,k) = (3,6) and (d,k) = (5,3) in
Section 2.4. Our algorithm is not only able to determine the maximal diameter
for a given d and k, but also to enumerate all the polytopes, up to symmetry,
achieving a target diameter. We provide an example of this for (d,k) = (3,3)
and (d,k) = (3,2) in the results section. The provided results are published in
[14].

The second part of the thesis deals with a family of lattice (d,k)-polytopes with
large diameter that is conjectured to include polytopes achieving the largest possi-
ble diameter over all possible lattice (d,k)-polytopes. This family consists of so-
called primitive zonotopes, that is, Minkowski sums of primitive segments. One
such primitive zonotope arises in a number of different contexts. This zonotope,
also called the white whale [4], is the Minkowski sum of all the 2d − 1 nonzero
{0,1}-valued vectors of length d and thus dual to the resonance hyperplane ar-
rangement, see [22] and references therein.

In Chapter 3, we present recent results concerning the vertices of the white whale
including lower and upper bounds for their numbers. Then, we delve into the
problem of enumerating all the vertices, propose an algorithm exploiting the com-
binatorial and geometric properties of the input, and present preliminary compu-
tational results.
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Chapter 2

Lattice polytopes with large
diameter

In this chapter, we examine the problem of determining the largest possible di-
ameter over all lattice (d,k)-polytopes, hereinafter referred to as δ (d,k). In Sec-
tion 2.2, we investigate the structural properties of lattice (d,k)-polytopes that
achieve the largest possible diameter in order to exploit the symmetries, extremal
properties, and reductions to smaller search spaces. We introduce a variable g

which can be considered as an integer slack variable that estimates a target di-
ameter given d,k, and δ (d− 1,k). In Section 2.3, we describe in detail a novel
algorithm to determine δ (d,k). We break the algorithm down into key steps, pro-
vide certificates of non-existence of polytopes achieving the target diameter and
show how the algorithm allows for the enumeration of all lattice (d,k)-polytope
achieving a target diameter. Finally, in Section 2.4, we present newly discovered
results including the entires for δ (3,6) and δ (5,3), and all lattice (3,3)-polytopes
achieving δ (3,3) as well as list a specific subset of all lattice (3,2)-polytopes
achieving δ (3,2).

7



2.1 Introduction

In this section, we review some open research questions and results that motivate
our work and present contributions by various researchers. We start by recalling
the Hirsch conjecture which provided the original motivation for this work, review
the progress made on the upper and lower bounds by researchers in the second
half of the 20 th century, and look at more recent results obtained in the past few
years.

The Hirsch conjecture, originally formulated in 1957 by Warren Hirsch and re-
ported in [11], stated that the diameter of a convex polytope in dimension d with
n facets is bounded by n− d. This has since been proven false with a counter-
example presented by Santos [40] in 2012, but nonetheless, the conjecture opened
up a new realm of research into the diameter of polytopes with many open ques-
tions related to the diameter of polytopes and more generally with the combinato-
rial, geometric, and algorithmic aspects of linear optimization. In particular, the
existence of a polynomial upper bound is still an open question. Note that the ini-
tial counterexample of Santos is of dimension 43 while further investigation lead
to a counterexample of dimension 20 [33, 41].

The problem of finding the maximal diameter of a polytope is inherently related
to the worst case complexity of the simplex method. Since the diameter is a lower
bound for the worst case complexity, exhibiting a polytope with a diameter ex-
ponential in (d,n) would imply that any pivot-based simplex method can not be
polynomial in (d,n). On the other end, being able to prove the existence of a poly-
nomial upper bound for the diameter is not enough to obtain a polynomial sim-
plex method, as being able to exhibit such a path might be intractable. Note that
since the simplex method is purely combinatorial, obtaining a polynomial sim-
plex method would yield a strongly polynomial algorithm for linear optimization,
and thus solve Smale’s 9th problem [42] which asks whether linear optimization
can be solved with a strongly polynomial algorithm. Concerning this still open
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computational optimization we refer to Allamigeon et al. [1] who showed that
primal-dual log-barrier interior point methods are not strongly polynomial.

The search for an upper bound on the largest diameter ∆(d,n) over all polytopes in
dimension d having n facets dates back to 1967 with the work of Klee and Walkup
[28] and the work of Larman [31] in 1970 who provided an upper bound that was
further improved by Barnette [3] to ∆(d,n) ≤ n2d/6. Note that this bound, for
fixed dimension d, is linear in n. In 1992, Kalai and Kleitman [25] provided a
bound of ∆(d,n) ≤ nlogd+2. This bound has since been tightened by Todd [44]
and Sukegawa [43] to ∆(d,n) ≤ (n− d)log(d−1). For additional results, we refer
the reader to [7, 8] and references therein.

In the case of lattice (d,k)-polytopes, k can be used an alternative parameter to
n and the value of the largest diameter δ (d,k) over all lattice (d,k)-polytopes
has been investigated by Naddef [37] in 1989 who showed that δ (d,1) = d, and
consequently that lattice (d,1)-polytopes, that is 0-1 polytopes, satisfy the Hirsch
conjecture. A few years later, Naddef’s result was generalized to any dimension
by Kleinschmidt and Onn [29] who proved that δ (d,k)≤ kd. Del Pia and Michini
[39] were able to strengthen this bound to δ (d,k)≤ kd−dd/2e when k ≥ 2, and
they showed that δ (d,2) = b3d/2c. The bound was further strengthened by Deza
and Pournin [16] to δ (d,k)≤ kdd2d/3e− (k−3) when k ≥ 3.

In 2017, Deza, Manoussakis, and Onn [15] introduced a lower bound that is
achieved by a family of lattice zonotopes, referred to as primitive zonotopes. They
proved that δ (d,k) ≥ b(k+ 1)d/2c for k ≤ 2d− 1. Furthermore, they proposed
conjecture 2.1.1.

Conjecture 2.1.1. For any d and k, δ (d,k) is achieved, up to translation, by

a Minkowski sum of lattice vectors. In particular, δ (d,k) = b(k + 1)d/2c for

k ≤ 2d−1.

Following this line of research, Chadder and Deza [10] developed a framework
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to show computationally that the conjecture holds for (d,k) = (3,4) and (d,k) =

(3,5), that is, δ (3,4) = 7 and δ (3,5)= 9. Our research results further substantiates
this conjecture.

Table 2.1 shows the latest results for the maximal diameter of lattice polytope,
δ (d,k) with our contributions in bold.

k
1 2 3 4 5 6 7 8 9 . . .

d

1 1 1 1 1 1 1 1 1 1 . . .
2 2 3 4 4 5 6 6 7 8 . . .
3 3 4 6 7 9 10
4 4 6 8
5 5 7 10
...

...
...

d d
⌊3

2d
⌋

Table 2.1: The largest possible diameter δ (d,k) of a lattice (d,k)-polytope

Considering the largest diameter over all lattice (d,k)-zonotopes, δz(d,k), Deza,
Pournin, and Sukegawa [18] showed that, up to an explicit multiplicative constant,
δz(d,k) grows like kd/d−1 when d is fixed and k goes to infinity. Since δz(d,k)≤
δ (d,k), this result provides a new lower bound for δ (d,k).

2.2 Structural properties of lattice (d,k)-polytopes
with large diameter

In this section, we introduce structural properties and lemmas that provide the
foundations for the algorithm described in section 2.3.

We start by defining some symbols and abbreviations. For u and v to be vertices of
a polytope P, let d(u,v) be the shortest distance between u and v on the edge-graph
of P. Let F be a facet of P, d(u,F) = min{d(u,v) : v ∈ F} is the shortest distance
from u to any vertex that lies on the facet F . Let δ (P) denote the diameter of the
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edge-graph of P, which is the longest shortest path between any pair of vertices
of P. The coordinates of a vector x ∈ Rd are denoted by x1 to xd , and its scalar
product with a vector y ∈ Rd by x·y.

We restate Lemma 2.2.1 originally introduced by Del Pia and Michini. This
lemma provides an upper bound for d(u,F) where u is a vertex of P and F a
facet of P. We build off of this lemma to introduce additional structural proper-
ties.

Lemma 2.2.1 ([39]). Consider a lattice (d,k)-polytope P. If u is a vertex of P

and c ∈ Rd is a vector with integer coordinates, then d(u,F) ≤ c·u− γ where

γ = min{c·x : x ∈ P} and F = {x ∈ P : c·x = γ}.

Assuming in Lemma 2.2.1 that c = ±ci where ci is the vector whose coordinates
are all equal to 0 except for the i-th coordinate that is equal to 1, we consider the
following objects. Let γ

−
i (P)=min{xi : x∈P} and F−i (P)= {x∈P : xi = γ

−
i (P)}.

Similarly, let γ
+
i (P) =max{xi : x∈ P} and F+

i (P) = {x∈ P : xi = γ
+
i (P)}. F−i (P),

and F+
i (P) will be denoted by F−i and F+

i , when there is no ambiguity. For paths
connecting u to v that go through F−i (P) or F+

i (P), d(u,v) can be bounded as
follows. Note that if d(u,v)≥ d(u,F−i )+d(v,F−i )+δ (d−1,k) for some pair of
vertices (u,v) of P then F−i must be a facet of P, that is a face of dimension d−1.
Similarly, if d(u,v) ≥ d(u,F+

i )+ d(v,F+
i )+ δ (d− 1,k) then F+

i must be a facet
of P.

d(u,v)≤ min
i=1,...,d

min{δ (F−i )+d(u,F−i )+d(v,F−i ),

δ (F+
i )+d(u,F+

i )+d(v,F+
i )}.

(2.1)

Since c =±ci, inequality (2.1) can be rewritten as Corollary 2.2.2 which is a key
component to show by induction that δ (d,k)≤ kd.
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Corollary 2.2.2. Let u and v be two vertices of a lattice (d,k)-polytope, then

d(u,v)≤ min
i=1,...,d

min{δ (F−i )+ui + vi,δ (F+
i )+2k−ui− vi}.

We use proposition 2.2.3, borrowed from [21], see Corollary 12.2 and Proposition
12.4 therein, to prove Lemma 2.2.4.

Proposition 2.2.3. Let P1 and P2 be two polytopes in Rd and P = P1 +P2 their

Minkowski sum. Let v = v1+v2, such that v1 ∈ P1 and v2 ∈ P2. Then v is a vertex

of P if and only if (i) v1 and v2 are vertices of P1 and P2, respectively; and (ii)

there exists an objective function c ∈ Rd that is uniquely minimized at v1 in P1

and at v2 in P2. Moreover, if u and v are adjacent vertices of P with Minkowski

decompositions u = u1+u2 and v = v1+v2, respectively, then ui and vi are either

adjacent vertices of Pi, or they coincide, for i = 1,2.

Lemma 2.2.4. For any lattice (d,k)-polytope Q, there exists a lattice (d,k)-polytope

P of diameter at least δ (Q) satisfying γ
−
i (P) = 0 and γ

+
i (P) = k for i = 1, . . . ,d.

Proof. Assume that, for some i, γ
+
i (Q)− γ

−
i (Q) < k. Up to translation, we can

assume that γ
−
i (Q) = 0. Consider the segment σ i = conv{0,(k−γ

+
i (Q))ci}where

ci is the point whose coordinates are all equal to 0 except for the ith coordinate
that is equal to 1. By construction, Q+σ i is a lattice (d,k)-polytope such that
γ
−
i (Q+σ i) = 0 and γ

+
i (Q+σ i) = k. Let u and v be two vertices of Q such that

d(u,v) = δ (Q). By Proposition 2.2.3, with c = ci, there exist two vertices u′ and
v′ of Q+σ i obtained as the Minkowski sums of u and v, respectively with two
(possibly identical) vertices of σ i. Moreover, for any path of length l between
u′ and v′ in the edge-graph of Q + σ i, there exists a path of length at most l

between u and v in the edge-graph of Q. Consequently, the distance of u and v

in Q is at most the distance of u′ and v′ in Q+σ i. Thus, δ (Q) ≤ δ (Q+σ i). If
γ
+
j (Q+σ i)−γ

−
j (Q+σ i)< k for some j 6= i, the above procedure can be repeated

12



until no such coordinate remains.

Next, we introduce a slack variable, g, to quantify the gap between the trivial
upper bound, δ (d,k)≤ δ (d−1,k)+k and a target diameter. Lemma 2.2.5 shows
how g can be used.

Lemma 2.2.5. Assume that δ (d,k) = δ (d− 1,k) + k− g for an integer g with

0≤ g≤ k.

(i) If u and v are two vertices of a lattice (d,k)-polytope such that d(u,v) =

δ (d,k), then |ui + vi− k| ≤ g for i = 1, . . . ,d.

(ii) There exists a lattice (d,k)-polytope P of diameter δ (d,k) such that the

intersection of P with each facet of the hypercube [0,k]d is, up to an affine

transformation, a lattice (d−1,k)-polytope of diameter at least δ (d−1,k)−
2g.

Proof. Setting d(u,v) = δ (d−1,k)+ k−g in Corollary 2.2.2 yields:

δ (d−1,k)+ k−g≤ δ (F−i )+(ui + vi) for i = 1, . . . ,d, (2.2)

δ (d−1,k)+ k−g≤ δ (F+
i )+2k− (ui + vi) for i = 1, . . . ,d. (2.3)

Thus,

k−g≤ ui + vi +δ (F−i )−δ (d−1,k) for i = 1, . . . ,d, (2.4)

k+g≥ ui + vi +δ (d−1,k)−δ (F+
i ) for i = 1, . . . ,d. (2.5)

Hence, since both δ (F−i ) and δ (F+
i ) are at most δ (d−1,k), the inequality k−g≤

ui + vi ≤ k+g holds for i = 1, . . . ,d; that is, item (i) holds.

By Lemma 2.2.4, there exists a lattice (d,k)-polytope P of diameter δ (d−1,k)+
k− g such that the intersection of P with each facet of the hypercube [0,k]d is

13



nonempty. Let u and v be two vertices of P such that d(u,v) = δ (P). Inequalities
(2.4) and (2.5) can be rewritten as:

δ (F−i )≥ δ (d−1,k)−g+ k− (ui + vi) for i = 1, . . . ,d, (2.6)

δ (F+
i )≥ δ (d−1,k)−g− k+(ui + vi) for i = 1, . . . ,d. (2.7)

Thus, since k−g≤ ui + vi ≤ k+g for i = 1, . . . ,d by item (i), δ (F−i ) and δ (F+
i )

are at least δ (d−1,k)−2g for i = 1, . . . ,d; that is, item (ii) holds.

We recall that the bounds obtained by Del Pia and Michini [39] and Deza and
Pournin [15] hold in general for lattice polytopes inscribed in rectangular boxes.

Corollary 2.2.6 (Remark 4.1 in [16]). Let δ (k1, . . . ,kd) denote the largest possible

diameter of a polytope whose vertices have their i-th coordinate in {0, . . . ,ki} for

i = 1, . . . ,d and, up to relabeling, k1 ≤ k2 ≤ ·· · ≤ kd . The following inequalities

hold:

1. δ (k1, . . . ,kd)≤ k2 + k3 + · · ·+ kd−dd/2e+2 when k1 ≥ 2,

2. δ (k1, . . . ,kd)≤ k2 + k3 + · · ·+ kd−d2d/3e+3 when k1 ≥ 3.

Observe that the statement of Remark 4.1 in [16] contains a typographical in-
correctness as k1 and kd were interchanged in (i) and in (ii). Conjecture 2.1.1
can also be stated for lattice polytopes inscribed in rectangular boxes; that is,
δ (k1, . . . ,kd) is at most b(k1 + k2 + · · ·+ kd +d)/2c, and is achieved, up to trans-
lation, by a Minkowski sum of lattice vectors. Note that this generalization of
Conjecture 2.1.1 holds for d = 2 and for (k1,k2,k3) = (2,2,3) and (2,3,3). More-
over, δ (k1,k2) = δ (k1,k1), and δ (2,2,3) = δ (2,3,3) = 5.
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2.3 Computational framework to determine δ (d,k)

To generate all lattice (d,k)-polytopes is quickly intractable even for relatively
small d. A brute force generation would require considering the convex hull of
all 2(k+1)d

subsets of the (k+ 1)d integer points in the cube [0,k]d . Note that for
k = 1, the number of lattice (d,1)-polytopes grows asymptotically like 22d

when
d goes to infinity.

We present a computationally efficient enumeration approach which takes advan-
tage of the combinatorial structure of the problem by breaking it down into a tree
structure. Each branch is analyzed to determine if a solution can be found. If not,
then the branch can be immediately eliminated from consideration. Otherwise,
the problem is broken down into further smaller scenarios. A crucial component
of the algorithm is the convex hull computation for a set of points. For this com-
ponent, we employ a library of the double description method implemented in C

by Komei Fukuda [20] and described in more details in 2.3.1. Our implementation
is described in more detail in 2.3.7.

2.3.1 Double description method for convex hull computations

An important component of the main algorithm is to generate the convex hull
for a given set of points to determine whether each point is a vertex or not. The
module used to compute the convex hull for a given set of points is the CDD
package developed by Komei Fukuda [20]. The module is written in C and uses
the double description method to compute the convex hull, hence its name. The
double description method was originally developed by Motzkin et al. [36] in the
1950s. The initial algorithm proposed by Motzkin et al. has been highly enhanced
by Komei Fukuda to make it one of the most efficient tools to compute general
dimension instances.

The double description algorithm is an incremental algorithm that, up to a nor-
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malization via a pointed cone reformulation, takes the set of inequalities as input
called the hyperplane representation, also referred to as the H− representation,
and outputs a vertex representation, referred to as V − representation, consisting
of all vertices and extreme rays. Since we only consider lattice (d,k)-polytopes,
our output is free of extreme rays. The algorithm first selects a set of d + 1 in-
equalities in general position and then adds remaining inequalities one by one to
construct the corresponding vertex representation. After each step, some vertices
are truncated from the current convex hull by the entering inequality and some
are added by the intersection of some edges with the entering inequality. The al-
gorithm terminates when all inequalities have been considered. The efficiency of
the algorithm can be greatly affected by the order in which the inequalities are
considered, see Avis, Bremner, and Seidel [2], and redundancy can also be an
issue.

2.3.2 The main algorithm

The main algorithm is based off the classical branch and bound algorithm coined
by Little et al. [32]. Branch and bound is an approach where a systematic enu-
meration of the search space is performed. A rooted tree represents the set of
candidate solutions and each branch contains a subset of the solution set. A cur-
rent optimal solution is maintained and before enumerating a branch, the branch
is checked against this solution. If it cannot produce a better solution than the
bound, then it is discarded and not considered. An important component of this
algorithm is to have efficient estimation of the bounds for each branch, otherwise,
the algorithm can degenerate into exhaustive brute-force.

For finding the diameter of a polytope, there are existing lower and upper bounds
providing a range of possible values. For cases where the difference is small, it is
reasonable to show that only one value is possible by eliminating all other possi-
bilities. Here, we introduce a slack variable g to account for this gap in the bounds.
This variable will allow us to set different objective diameters. By starting from
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upper bound, each potential value for δ (d,k) is explored and eliminated when we
can guarantee that no lattice (d,k)-polytopes exist with a diameter of the target
value. By this process of elimination, we eventually reach a value for δ (d,k)

where we can generate a valid lattice (d,k)-polytope, and hence find what the ac-
tual value is. We modify the classical branch and bound approach by considering
the target diameter our current optimal solution and by using heuristics to find the
best solution a branch can produce. So any branch which has an optimal solution
worse than the target diameter can be eliminated from consideration.

The main algorithm has three main components. First, we generate all possible
(u,v) pairs of vertices that can achieve the target diameter, δ (d− 1,k)+ k− g.
Then, for each pair of vertices, we create a sub-skeleton of a valid polytope by
considering each intersection with the [0,k]d hypercube, described in more detail
in Section 2.3.4. This procedure is called the shelling step, as we are attemping
to create a shell of a polytope by adding once facet at a time. A number of cer-
tificates of validity are checked after each new facet is added to ensure that the
current sub-skeleton can still achieve the target diameter. A set of choices for
the 2d intersections with the facets of the hypercube [0,k]d that is obtained by
the shelling step is called a shelling. If there are no valid sub-skeletons gener-
ated by the shelling step, then we can conclude that δ (d,k)< δ (d−1,k)+ k−g.
Finally, for each shelling, we consider all remaining interior points, with integer
coordinates ranging from 1 to k−1, as candidate vertices. The output of this final
step consists of a list of all polytopes achieving the target diameter containing the
given (u,v) pair. Polytopes which are duplicate up to the symmetries of the [0,k]d

hypercube are removed. This process is called the inner step and is described in
more detail in section 2.3.5.

The idea to consider each intersection of the [0,k]d hypercube was originally in-
troduced by Chadder et al. [10], but it can only determine whether δ (d,k) is equal
to δ (d−1,k)+k. In terms of 2.2.5, this is equivalent to assuming g= 0. This case
is significantly easier than g > 0 since both δ (F−i ) and δ (F+

i ) must be faces that
have the maximal diameter, δ (d−1,k) and therefore, greatly reduces the number
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of possibilities for the choice of each facet.

2.3.3 Generating potential (u,v) pairs

The first step of the algorithm is to generate the set of potential (u,v) pairs of
vertices of a lattice (d,k)-polytope that satisfies d(u,v) = δ (d−1,k)+ k−g. Re-
ducing the number of potential (u,v) pairs that are considered is a crucial step in
the algorithm. The number of (u,v) pairs determines the number of search trees,
hence, by having as few candidate pairs as possible, the overall search space is
greatly reduced. We present several key ideas used to accomplish this.

First, one can notice that many aspects of symmetry can be applied to the [0,k]d

hypercube. Take for example a polytope in dimension d with a vertex at (0,0, . . . ,0),
this polytope can be rotated in a way that the same vertex lies on (k,k, ...,k) in-
stead, or (0,k, . . . ,k), or (0,0,k, . . . ,k). Hence, we make the assumption that the
coordinates of u satisfies:

ui ≤ ui+1 ≤ bk/2c for i = 1, . . . ,d−1.

Furthermore, by item (i) of 2.2.5, the coordinates of u and v are constricted even
more to satisfy:

k−g≤ ui + vi ≤ k+g for i = 1, . . . ,d.

We can also use the symmetries of the [0,k]d hypercube acting on the pair (u,v)
and assume that all u are generated in lexicographical order (denoted by ≺ in
the following). The coordinates of u and v can be assumed to satisfy the follow-
ing conditions where w̃ is the point consisting of the coordinates of w reordered
lexicographically:

{vi ≤ vi+1 if ui = ui+1} for i = 1, . . . ,d−1,

u≺ w̃ where w = (k, . . . ,k)− v if {vi ≥ dk/2e for i = 1, . . . ,d}.
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The final idea that is used to reduce the number of potential (u,v) pairs is to
consider the fact that the intersections of the polytope with the facets of [0,k]d

must be of sufficiently large diameter. Let Vd,k,g denote the set formed by all the
vertices of all the lattice (d,k)-polytopes of diameter at least δ (d,k)− g and let
v̄i denote the point in Rd−1 consisting of all coordinates of v except vi. We then
define g−i = g+ui+vi−k and g+i = g+k−(ui+vi). For u and v to be vertices of a
lattice (d,k)-polytope such that d(u,v) is at least δ (d−1,k)+k−g, the following
conditions must be met:

{ūi ∈ Vd−1,k,g−i
if ui = 0} for i = 1, . . . ,d,

{v̄i ∈ Vd−1,k,g+i
if vi = k} for i = 1, . . . ,d.

Let Pd,k,g denote the set of all the points with integer coordinates that belong to
the intersection of all the lattice (d,k)-polytopes of diameter at least δ (d,k)− g.
Let C u,v

d,k,g denote the convex hull of u, v, and the following set of points:

[
d⋃

i=1

{x ∈ Rd : xi = 0 and x̄i ∈Pd−1,k,g−i
}

]
∪

[
d⋃

i=1

{x ∈ Rd : xi = k and x̄i ∈Pd−1,k,g+i
}

]
.

The following condition is necessary for u and v to be vertices of a lattice (d,k)-
polytope such that d(u,v) is at least δ (d−1,k)+ k−g:

u and v are vertices of C u,v
d,k,g.

Potential (u,v) pairs for (d,k,g) = (3,6,0)

In this section, we will use an example to illustrate the conditions that must be
met for a (u,v) pair capable of achieving d(u,v) = δ (d− 1,k)+ k− g. We will
examine the case of (d,k,g) = (3,6,0). In this case, we are assuming that u and v

are vertices of a lattice (3,6)-polytope of diameter 12. Since g= 0, we can assume
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that:

u1 ≤ u2 ≤ u3 ≤ 3,

k−g≤ ui + vi ≤ k+g =⇒ ui + vi = (6,6,6) for i = 1,2,3

{ūi ∈ V2,6,0 if ui = 0} for i = 1,2,3,

u is a vertex of C u,v
3,6,0 if u1 6= 0.

There are a total of 20 points satisfying u1≤ u2≤ u3≤ 3. Out of these points, only
(0,0,1), (0,0,2), (0,0,3), (0,1,1), and (0,1,2) satisfy the condition of u1 = 0
and (u2,u3) ∈ V2,6,0. There is no point where u1 6= 0 and is also a vertex of C u,v

3,6,0.
Thus, since u+ v = (6,6,6), we need to consider only 5 pairs of vertices (u,v).
The 5 pairs of vertices considered for (3,6,0) are shown in table 2.2.

u v
(0,0,1) (3,3,2)
(0,0,2) (3,3,1)
(0,0,3) (3,3,0)
(0,1,1) (3,2,2)
(0,1,2) (3,2,1)

Table 2.2: All considered pairs {u,v} for (d,k,g) = (3,6,0)

The sets V2,6,0 and P2,6,0 are illustrated in Figure 2.1. Note that both Vd,k,g and
Pd,k,g are invariant under the symmetries of [0,k]d .

Figure 2.1: The sets V2,6,0 and P2,6,0
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2.3.4 Main procedure to check whether polytopes achieving
the target diameter exists

The main procedure of the algorithm is the shelling step. This module takes as
input all (u,v) pairs generated by the step described in Section 2.3.3 and per-
forms the necessary calculations to determine whether there exists a lattice (d,k)-
polytope which contain u and v as vertices such that d(u,v) = δ (d−1,k)+ k−g.
We consider all possible choices for the 2d intersections with the facets of the
hypercube [0,k]d . For each intersection, we try all possible facets of dimension
d− 1 with a diameter greater or equal to δ (d− 1,k)− gi. Since there can be an
extensive number of polytopes achieving this diameter, reducing the search space
is an important factor.

Key ideas to reduce search space

The first key idea is to prioritize the sequencing of the intersections with the [0,k]d

hypercube. The order in which intersections are considered is crucial in reducing
the number of candidate branches to check. Intersections may have a different
number of candidate facets. Therefore, different orderings will result in different
search trees. We want to prioritize nodes with fewer branches as this will result in
more candidates being eliminated when a branch is pruned.

We use the facet gap parameter, g−i and g+i , as a score to determine the priority of
the facets, F−0 , ...,F+

d . These facet gap parameters are calculated as follows:

g−i = g+ui + vi− k

g+i = g+ k− (ui + vi)

A lower score is equivalent to a higher priority. The scores, g−i and g+i , are often
the same for different intersections, so we use the following tiebreaker rules to
determine the optimal sequencing.

1. The facet gap parameter, g−i and g+i . Lower value takes precedence.
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2. The number of currently known vertices of P belonging to the intersection.
An intersection containing more known points takes precedence.

3. An intersection containing u or v has higher priority over an intersection
containing neither.

4. Finally, a default order of F−1 , ...,F−d ,F+
1 , ...,F+

d is the last tiebreaker.

The facet gap parameter is used as the first tiebreaker since it is directly tied to
the number of candidate facets to be considered. Smaller values for gi means
that candidate polytopes in d− 1 have a larger diameter, and hence, fewer such
candidates exist.

Known vertices in an intersection also present a way to reduce candidate facets
from consideration. Suppose, we start with (u,v) equal to (0,0,0) and (3,3,3),
and we are considering F−0 . Any validate candidate must contain (0,0) as a vertex,
otherwise, it would invalidate our previously assumed vertex (0,0,0). Hence,
more known vertices means more restrictions on candidate facets, and therefore
fewer candidate facets exists.

The final two rules provide a deterministic way to select the sequencing of facets.

Another crucial step in reducing the search space is to identify paths between u

and v induced by the shelling step as early as possible. These are the estimation
of bounds that will determine when a branch of the search tree can be eliminated.
When a path, an upper bound for the maximal distance, is found from u to v that
is strictly less than δ (d−1,k)+ k−g, then this guarantees that there cannot exist
a candidate in the current branch capable of achieving the target diameter.

We introduce two certificates that show no lattice (d,k)-polytope with vertices u

and v can exist such that d(u,v) = δ (d−1,k)+ k−g.

Certificate 1: Shortest path in shelling is less than δ (d−1,k)+ k−g
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Let Γ denote the graph defined by the currently known edges and vertices of a
shelling. Initially, Γ only contains {u,v}, a pair of potential vertices. Let dΓ(x,y)

denote the distance in Γ between two vertices x and y. The following are upper
bounds for the distance between u or v and the intersection with a facet of the
[0,k]d:

d̃(u,F−i ) = min
w∈Γ
{dΓ(u,w)+wi} for i = 1, . . . ,d,

d̃(u,F+
i ) = min

w∈Γ
{dΓ(u,w)+ k−wi} for i = 1, . . . ,d,

d̃(v,F−i ) = min
w∈Γ
{dΓ(v,w)+wi} for i = 1, . . . ,d,

d̃(v,F+
i ) = min

w∈Γ
{dΓ(v,w)+ k−wi} for i = 1, . . . ,d.

One can notice that setting w to u or v gives d̃(u,F−i )≤ ui, d̃(v,F−i )≤ vi, d̃(u,F+
i )≤

k− ui, and d̃(v,F+
i ) ≤ k− vi. This intuitively makes sense since a distance from

a vertex to an intersection with the hypercube, F−i and F+
i , cannot exceed the

minimum of the value of the coordinate in said dimension, ui or vi, and k−ui or
k− vi.

The following quantity d◦(u,v), where both δ (F−i ) and δ (F+
i ) are bounded from

above by δ (d−1,k), is an upper bound for d(u,v) by inequality (2.1):

d◦(u,v)= min
i=1,...,d

{min{d̃(u,F−i )+ d̃(v,F−i )+δ (F−i ), d̃(u,F+
i )+ d̃(v,F+

i )+δ (F+
i )}}.

The value of d◦(u,v) is updated every time a choice for the intersection with a facet
of the hypercube [0,k]d is selected. Similarly, Γ can be considered a subgraph of
the edge-graph of the final polytope, all vertices and edges of Γ will be vertices
and edges in the graph of the final polytope. Therefore, dΓ(u,v) is another upper
bound for d(u,v). Thus, we define the following nonnegative parameter γ:

γ = δ (d−1,k)+ k−g−min{dΓ(u,v),d◦(u,v)}.
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Hence, γ > 0 is a certificate that no lattice (d,k)-polytope with vertices u and v

such that d(u,v) = δ (d−1,k)+ k−g exists.

Certificate 2: u or v is not a vertex of C Γ
d,k,g

Every time a selection is made for an intersection with the [0,k]d hypercube, the
vertex set of Γ is updated. Using Pd,k,g, defined previously as the set of all integer
points that belong to the intersection of all lattice (d,k)-polytopes of diameter at
least δ (d,k)−g, we can create a convex hull to determine whether u and v remain
vertices after a selection has been made. Let C Γ

d,k,g be the convex hull of the vertex
set of Γ and the following set of points:[

d⋃
i=1

{x ∈ Rd : xi = 0 and x̄i ∈Pd−1,k,g−i
}

]
∪

[
d⋃

i=1

{x ∈ Rd : xi = k and x̄i ∈Pd−1,k,g+i
}

]
.

A certificate that there does not exist a lattice (d,k)-polytope with vertices u and
v such that d(u,v) = δ (d−1,k)+ k−g is:

u or v is not a vertex of C Γ
d,k,g.

Shelling step

Using a branch and bound approach and the key ideas described in Section 2.3.4,
the shelling step attempts to build a polytope one facet at a time. For each facet,
all d−1 faces are considered and eliminated based upon a set of rules. The output
of this step is a set of shellings, sub-skeletons of polytopes, that achieve a target
diameter. As input, this step accepts a triple, (d,k,g), and a pair of vertices, (u,v).
The dimension is determined by d and the integer grid ranges from 0 to k in every
dimension. The slack variable g determines the target diameter to look for, δ (d−
1,k)+ k− g. Finally, the pair of vertices (u,v) provides a set of starting vertices
that can potentially achieve the target distance in a lattice (d,k)-polytope.
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First, each facet’s score, g−i and g+i is calculated. The ordering of intersections
to be considered is determined using the rules described in Section 2.3.4. For
each facet, F−i or F+

i , the set of all lattice (d−1,k)-polytopes of diameter at least
δ (d−1,k)−g−i or δ (d−1,k)−g+i respectively are generated. These polytopes
are iteratively selected as a candidate for the intersection. We define x̄i as the
point in d− 1 excluding the coordinate in the ith dimension of the intersection
being considered. For a polytope to be a valid candidate, it must contain vertices
which are currently vertices of the shelling; that is, x̄i must be a vertex if x is a
vertex of P and xi = 0 for F−i or xi = k for F+

i .

After one such (d− 1,k)-polytope is chosen, its vertices and edges are added to
Γ. The values of γ , C Γ

d,k,g, and the scores, g−i , and g+i , of not yet considered
intersections are all updated accordingly, to g−i = g+ d̃(u,F−i )+ d̃(v,F−i )−k and
g+i = g+ d̃(u,F+

i )+ d̃(v,F+
i )− k.

The certificates, described in Section 2.3.4, are checked to see if the current sub-
tree can contain an optimal solution, a full shelling containing u and v such that
d(u,v) = δ (d−1,k)+k−g. If either certificate of non-existence is fulfilled, then
the subtree can be pruned and the search moves on to the next candidate for the
current intersection. If neither certificate is fulfilled, then the algorithm moves
on to the next intersection with the highest priority. Typically, the first chosen
intersection will yield a certificate of non-existence.

At the conclusion of the algorithm, the output contains all full shellings that con-
tain u and v such that d(u,v) = δ (d−1,k)+ k−g. These are valid polytopes that
can achieve the target diameter, but may not be the complete set, up to symmetry,
of all polytopes achieving this diameter. In order to determine the full set, up to
symmetry, of polytopes with a non-empty intersection with the [0,k]d hypercube,
we required the inner step. Should the output of the shelling step be the empty set,
then it can be concluded that δ (d,k)< δ (d−1,k)+ k−g.
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Shelling process for (d,k,g) = (3,6,0)

An example is provided here to illustrate the shelling process for (d,k,g)= (3,6,0).
As discussed in Section 2.3.3, there are a total of 5 (u,v) pairs to consider in the
shelling process. Since g = 0, all the intersections have a score of 0. The only
currently known vertices are u and v and u1 = 0 for all pairs. According to the
tiebreaker rules established in Section 2.3.4, the first considered intersection is
therefore F−1 .

For each (u,v) pair, the set of lattice (2,6)-polytopes of diameter 6 contain-
ing (u2,u3) as a vertex are generated. There are only 4 different lattice (2,6)-
polytopes, and it can be easily checked that γ > 0 for each such choice for all
(u,v) pairs. Hence, since the certificate of non-existence is satisfied, the shelling
step completes after considering all possibilities for F−1 and it can be concluded
that there are no lattice (d,k)-polytopes that have a diameter of 12 and therefore,
δ (3,6)< 12.

2.3.5 Inner step

The inner step function is a post shelling step that is performed to generate all
lattice polytopes that achieve the desired diameter. This step is important since
the main algorithm uses lattice (d− 1,k)-polytopes as facets for the intersection
of the hypercubes, and these facets are generated by applying the algorithm on the
lattice (d−1,k)-polytopes.

As input, the function takes in the set of shellings generated by the shelling step.
Then, for each shelling, all inner points (points with integer coordinates that lie
inside of they hypercube and outside of the shelling), p such that pi ∈ {1, ...,k−
1} for i = 1, ...,d and p /∈ vertex set of Γ, are considered individually. Let C Γ∪p

d,k,g

denote the convex hull of p∪C Γ
d,k,g, then a necessary condition for p to be a

vertex of a lattice (d,k)-polytope of diameter δ (d−1,k)+k−g is p is a vertex of
C Γ∪p

d,k,g.
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Generated lattice (d,k)-polytopes whose diameter is at most δ (d − 1,k) + k−
g− 1 as well as duplicates, up to the symmetries of the hypercube [0,k]d , are
removed.

If the output of the inner step is empty, we can conclude that δ (d,k) is strictly less
than δ (d−1,k)+ k−g. Otherwise, we can conclude that δ (d,k) = δ (d−1,k)+
k−g, and the output of the inner step provides, up to the symmetries of the hyper-
cube [0,k]d , all lattice (d,k)-polytopes of diameter δ (d−1,k)+k−g whose inter-
section with each facet of the hypercube [0,k]d is nonempty. Further computations
allow to determine all lattice (d,k)-polytopes of diameter δ (d−1,k)+k−g with
an empty intersection with at least one facet of the hypercube [0,k]d , as detailed
in Section 2.3.6.

Inner step for (d,k,g) = (3,4,2)

Here is an example to illustrate the inner step for (d,k,g) = (3,4,2) and the pair
{u,v} = {(0,0,0),(4,4,4)}. This is equivalent to considering u = (0,0,0) and
v = (4,4,4) as vertices of a lattice (3,4)-polytope such that d(u,v) = 6.

First, the shelling step is performed to generate valid shellings. Since the scores
satisfy g−1 = g−2 = g−3 = g+1 = g+2 = g+3 = 2, the 6 intersections with the facets of
[0,4]3 are of diameter at least 2.

At the conclusion of the shelling step, one of the output candidates is a shelling
consisting of the 6 identical facets as depicted in Figure 2.2 where the edges of the
shelling are shown in blue. Each of these facets is, up to an affine transformation,
equal to the square [0,1]2. Out of the 27 points whose coordinates are {1,2,3}-
valued, 15 are contained in the convex hull of this shelling.

Thus, the inner step must consider the remaining 12 inner points as possible ver-
tices to be added to this shelling. There are a total of 214 lattice (3,4)-polytopes,
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Figure 2.2: A polytope considered by the inner step for (d,k,g) = (3,4,2) and {u,v} =
{(0,0,0),(4,4,4)}

up to the symmetries of [0,4]3, and all of them have a diameter of at most 5.

There are exactly 8 polytopes with a diameter equivalent to 5. One of these
lattice (3,4)-polytopes of diameter 5 is represented in Figure 2.3 where the 6
added vertices are show in green and the edges of the intersections with the
facets of [0,4]3 are shown in blue. Note that since polytopes of diameter at most
δ (d− 1,k)+ k− g− 1 = 4+ 4− 2− 1 = 5 are removed, none of the 214 lattice
(3,4)-polytopes generated by this shelling are part of the output of the inner step
for (d,k,g) = (3,4,2).

Figure 2.3: The unique shelling generated for (d,k,g) = (3,4,0)
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2.3.6 Generation of all lattice (d,k)-polytopes of diameter at
least δ (d−1,k)+ k−g

Running the main procedure for (d,k,g) allows us to determine, up to the sym-
metries of [0,k]d , the set of all the lattice (d,k)-polytopes with diameter at least
δ (d− 1,k)+ k− g whose intersection with each facet of [0,k]d is nonempty. In
this section, we outline how the ones with an empty intersection with at least one
facet of [0,k]d can be derived from this set.

The main idea behind generating all lattice (d,k)-polytopes with diameter at least
δ (d− 1,k)+ k− g whose intersection with one of the facets of [0,k]d is empty
is to use the idea from Lemma 2.2.4. We will attempt to expand the polytope
in a direction, s, to check the possibility of contracting P in the direction of −s.
If a possible contraction exists, we can then check the diameter of the resulting
polytope to see if a new valid polytope of diameter at least δ (d−1,k)+k−g with
an empty intersection with one of the facets of [0,k]d .

Let I(Q) denote the set of the coordinates i such that γ
+
i (Q)− γ

−
i (Q) < k. Con-

sider a lattice (d,k)-polytope Q of diameter at least δ (d− 1,k)+ k− g such that
I(Q) 6= /0. For all i ∈ I(Q), we can assume, up to translation, that γ

−
i (Q) = 0 and

consider the segment σ i = conv{0,(k− γ
+
i (Q))ci}. Let S denote the Minkowski

sum of all σ i for i ∈ I(Q). As shown in the proof of Lemma 2.2.4, Q+ S is a
lattice (d,k)-polytope of diameter at least δ (Q) satisfying I(Q+S) = /0. In other
words, Q+ S is, up to the symmetries of [0,k]d , in the output of the algorithm
ran for (d,k,g). Note that setting P1 = Q and P2 = [0,s] where si ≥ 0 for all i in
Proposition 2.2.3 gives Remark 2.3.1.

Remark 2.3.1. Consider a segment σ = [0,s]; a point v′ is a vertex of Q+σ if

and only if there exists an objective function c ∈ Rd that is uniquely minimized at

v in Q and (i) v′ = v and c is uniquely minimized at 0 in σ , or (ii) v′ = v+ s and

c is uniquely minimized at s in σ . Moreover, if u′ and v′ are adjacent vertices of
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Q+σ , then either (u′,v′) is equal to (u,v) or to (u+ s,v+ s) where u and v are

adjacent vertices of Q, or it is equal to (u,u+ s) where u is a vertex of Q.

Consequently, up to translation and up to the symmetries of the hypercube [0,k]d ,
the set of the lattice (d,k)-polytopes Q of diameter at least δ (d−1,k)+k−g such
that I(Q) 6= /0 can be generated as follows:

1. for each lattice (d,k)-polytope P in the output of the algorithm for (d,k,g),
check whether P=Q+σ where Q is a lattice (d,k)-polytope and σ a lattice
segment. By Remark 2.3.1, this can be done by checking whether P and
P+σ have the same number of vertices.

2. for each P such that P = Q+σ found at step (i), determine Q and check
whether δ (Q)≥ δ (d−1,k)+ k−g.

As for the shelling and inner steps, the symmetries of the hypercube [0,k]d are
used to remove duplicates generated within steps (i) and (ii). The set of lattice
segments σ considered in step (i) can be limited to a few segments whose coordi-
nates are relatively prime and used iteratively. For an illustration, we consider the
case (d,k,g) = (3,3,1). As discussed in Section 2.4.3, the output of the algorithm
consists in 9 lattice (3,3)-polytopes of diameter 6 whose intersection with each
facet of [0,3]3 is nonempty. One can check that, in order to perform step (i), it is
enough to consider for σ , iteratively, the 3 unit vectors ([0,0,1], [0,1,0], [1,0,0])
and the unique sums of pairs of unit vectors ([0,1,1], [1,0,1], [1,1,0]). All the 9
considered lattice (3,3)-polytopes of diameter 6 can be written as Q+σ . Per-
forming step (ii), one can check that δ (Q) = 5 for each such Q. Thus, there is no
lattice (3,3)-polytope Q of diameter 6 such that I(Q) 6= /0.

2.3.7 Implementation details

In this section, we describe the implementation (written in C#) of our algorithm
in more detail. All experiments were run on a MacBook Pro with a 2.8GHz i7
processor and 16GB of RAM. The implementation adheres to Object Oriented
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Programming principles by applying proper encapsulation, abstraction, and poly-
morphism as well as ensuring loose coupling and high cohesion.

Data Structures
The main data structures we use are a Point class and a Graph class.

The Point class represents an individual point (or vertex) and contains a list of
integer values corresponding to its coordinates. It contains the necessary accessors
and setters in addition to helper methods to perform actions including: comparing
with another Point, increasing/decreasing the dimension, incrementing the value
of a coordinate, and checking whether it shares a facet with another Point.

The Graph class is used to represent facets, shellings, and polytopes. It consists
two fields, a list of points representing its vertices, and a dictionary object con-
taining the adjacency list. A few key methods of this class included adding a new
graph to the current object (used to add facets during the shelling step), shallow
and deep clones of the current graph, and increasing the dimension of the current
graph. During each of these steps, we ensure consistency and accuracy by remov-
ing duplicate points and edges, ensuring the adjacency list remains current, and
updating all instances of a Point when it is modified.

Classes
Following a loose coupling design, we create a number of helper classes that each
perform a set of highly cohesive actions. These classes include a FileIO class, a
UVGeneration class, a Shelling class, and a CDD wrapper class.

The FileIO class provides a number of functionality related to reading and writ-
ing various objects (graphs, vertices, adjacency lists, etc.) from/to a file. These
methods ensure that objects are represented in a standardized and consistent for-
mat.

The UVGeneration class implements the ideas described in Section 2.3.3. Log-
ging is enabled to verify that all candidate pairs are checked as well as the reason
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for each candidate’s elimination. Candidate pairs are iteratively checked and elim-
inated if they meet any of the following criteria:

• u and v are the same point

• the reflection of v has already been considered

• {ūi /∈ Vd−1,k,g−i
if ui = 0} or {v̄i /∈ Vd−1,k,g+i

if vi = k}

The Shelling class contains all functionality related to the main shelling algo-
rithm including the inner step. Traversal of the search tree is implemented as a
combination of iterative and recursive steps. The intersections with the [0,k]d hy-
percube are considered recursively, and for each intersection, candidate facets of
dimension (d−1) are considered iteratively. The initial implementation included
generation of lattice (d−1,k)-polytopes, but this was revised in later versions to
use a pre-built index of polytopes for performance purposes.

The CDD wrapper classes is used to connect with the CDD library [20] to per-
form convex hull calculations. As an argument, a list of vertices is accepted
and converted to the V − representation format expected by the CDD library.
By starting a new process of the compiled CDD executable and passing in the
V −representation list of vertices, the CDD library calculates the convex hull and
returns the list of vertices and adjacency list. This can then be compared to the
input list of vertices to determine whether there are redundant vertices in the ini-
tial list. This part is not optimized for performance since each time this method is
called, a new process is spawned and scalability may be an issue.

Additionally, a global config file is used to store parameters including d, k, and g,
as well as other tunable settings (e.g. custom (u,v) pair).

2.4 Results

In this section, we detail the results that were obtained using the algorithm de-
scribed in section 2.3. The main result is theorem 2.4.1 which provided new
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values for δ (5,3) and δ (3,6).

Theorem 2.4.1. δ (5,3) and δ (3,6) are equal to 10.

Theorem 2.4.1 is obtained by computationally verifying that the output of the
inner step is empty for (d,k,g) = (3,6,1) and (5,3,0). Thus, δ (3,6) < 11 and
δ (5,3)< 11; and since we know that the lower bound for both δ (3,6) and δ (5,3)
is 10, therefore, δ (3,6) = δ (5,3) = 10. Running the algorithm for (5,3,0) re-
quires the determination of all lattice (3,3)-polytopes of diameter 5 or 6 and all
lattice (4,3)-polytopes of diameter 8.

2.4.1 Determination of δ (3,6)

As mentioned in Section 2.3.4, the output of the shelling step is empty for (d,k,g)=
(3,6,0) and thus we can conclude that δ (3,6) < 12. Running the algorithm for
(d,k,g) = (3,6,1) is computationally efficient because of two key properties.

First, there are only 4 lattice (2,6)-polytopes of diameter 6, see Figure 2.4 for an
illustration.

Second, for d = 2, there are only 8 lattice edges σ such that |σ1|+ |σ2| ≤ 2. Thus,
any lattice (2,6)-polytope of diameter 5 or 6 includes at least 2 edges such that
|σ1| or |σ2| is at least 2.

Consequently, unless both u and v are inner points, the update of the scores g−i =

g+ d̃(u,F−i ) + d̃(v,F−i )− k, respectively of g+i = g+ d̃(u,F+
i ) + d̃(v,F+

i )− k,
implies that g−i or g+i is updated to zero for some i after the first intersection with
a facet of [0,6]3 is considered in the shelling step. As g−i = 0 or g+i = 0 implies that
δ (F−i ) = 6 or δ (F+

i ) = 6, respectively, there are at most 4 lattice (2,6)-polytopes
to consider for the next intersection with a facet of [0,6]3, and so forth.

As an illustration, consider the pair {u,v} = {(0,0,0),(6,6,6)}. Initially, the
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Figure 2.4: All lattice (2,6)-polytopes of diameter 6

scores satisfy g−1 = g−2 = g−3 = g+1 = g+2 = g+3 = 1 and the shelling step starts
by considering a lattice (2,6)-polytope of diameter at least 5 for F−1 .

For example, assume that F−1 is, up to an affine transformation, the lattice (2,5)-
polytope obtained as the Minkowski sum of (1,0),(2,1),(1,1),(1,2), and (0,1).
Before the next intersection with a facet of [0,6]3 is considered, d̃(u,F+

2 ) is up-
dated to 5 as d(u,u′) = 2 and u′2 = 3, see Figure 2.5 where the vertex u′ is coloured
black while u and v are coloured red. The second edge on the path from u to u′

satisfies e2 ≥ 2. Consequently, g+2 is updated to g+ d̃(u,F+
2 )+ d̃(v,F+

2 )− 6 =

1+5+0−6 = 0. Thus, δ (F+
2 ) = 6 which is impossible since v̄2 = (6,6) 6∈ V2,6,0;

that is, there is no shelling with the current choice of F−1 .

The same holds for any choice of F−1 since any lattice (2,6)-polytope of diam-
eter at least 5 includes at least one edge σ such that |σ1| or |σ2| is at least 2.
Consequently, there is no shelling for {u,v}= {(0,0,0),(6,6,6)}.

Table 2.3 lists the 69 considered pairs {u,v} of vertices of a lattice (3,6)-polytope
P such that d(u,v) = 11 where P is assumed to have a nonempty intersection with
each facet of [0,6]3.
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Figure 2.5: Initial iteration of the shelling step for (d,k,g) = (3,6,1) and {u,v} =
{(0,0,0),(6,6,6)}

u v
(0,0,0) (6,6,6)
(0,0,1) (5,5,4), (5,5,5), (5,5,6), (5,6,4), (5,6,5), (5,6,6), (6,6,4), (6,6,5)
(0,0,2) (5,5,3), (5,5,4), (5,5,5), (5,6,3), (5,6,4), (5,6,5), (6,6,3), (6,6,4)
(0,0,3) (5,5,2), (5,5,3), (5,5,4), (5,6,2), (5,6,3), (5,6,4), (6,6,2), (6,6,3)
(0,1,1) (5,4,4), (5,4,5), (5,4,6), (5,5,5), (5,5,6), (6,4,4), (6,4,5), (6,5,5)

(0,1,2)
(5,4,3), (5,4,4), (5,4,5), (5,5,3), (5,5,4), (5,5,5), (5,6,4), (6,4,3),

(6,4,4), (6,4,5), (6,5,3), (6,5,4)
(0,1,3) (6,4,2), (6,4,3), (6,4,4), (6,5,2), (6,5,3), (6,6,2)
(0,2,2) (6,3,4), (6,4,4)
(0,2,3) (6,3,2), (6,3,4), (6,4,2), (6,4,3), (6,5,2)
(1,1,1) (4,5,5), (5,5,5)
(1,1,2) (5,5,3), (5,5,4)
(1,1,3) (5,5,2), (5,5,3), (5,6,2), (6,6,2)
(1,2,2) (5,4,4)
(1,2,3) (6,5,2)
(2,2,3) (4,5,2)

Table 2.3: All considered pairs {u,v} for (d,k,g) = (3,6,1)

35



2.4.2 Determination of δ (5,3)

The determination of δ (5,3) requires the list of all lattice (4,3)-polytopes of diam-
eter 8 up to the symmetries of [0,3]4. In order to obtain all lattice (4,3)-polytopes
of diameter 8, we first determine all lattice (4,3)-polytopes of diameter 8 with
a nonempty intersection with each facet of [0,3]4 by running the algorithm for
(d,k,g) = (4,3,1). Then, using the procedure described in Section 2.3.6, we can
use the output of the algorithm for (d,k,g) = (4,3,1) to determine all the lattice
(4,3)-polytopes of diameter 8 with an empty intersection with at least one facet
of [0,3]4.

Note that running the algorithm for (d,k,g) = (4,3,1) requires the list of all the
lattice (3,3)-polytopes of diameter 5 or 6. This is achieved by running the algo-
rithm for (d,k,g) = (3,3,2) and using the procedure described in Section 2.3.6.

Table 2.4 lists the 6 considered pairs {u,v} of vertices of a lattice (3,3)-polytope
P such that d(u,v) = 6 where P is assumed to have a non-empty intersection with
each facet of [0,3]3.

u v
(0,0,0) (3,3,3)
(0,0,1) (2,3,2), (2,3,3), (3,3,1), (3,3,2)
(0,1,1) (3,2,2)

Table 2.4: All considered pairs {u,v} for (d,k,g) = (3,3,1)

2.4.3 All lattice (3,3)-polytopes of diameter 6

As discussed in section 2.3.6, we provide a method to generate all lattice (d,k)-
polytopes achieving at least a given diameter, up to symmetry. In this section,
we present all 9 lattice (3,3)-polytopes of diameter 6, shown in Figure 2.6, up to
the symmetries of [0,3]3. In this figure, the edges of the intersections with the
facets of [0,3]3 are shown in blue. Using the procedure described in Section 2.3.6,
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one can check that there is no lattice (3,3)-polytope of diameter 6 with an empty
intersection with at least one facet of [0,3]3. In other words, any lattice (3,3)-
polytope of diameter 6 is, up to the symmetries of [0,3]3, one of the 9 polytopes
depicted in Figure 2.6.

Figure 2.6: All, up to the symmetries of [0,3]3, lattice (3,3)-polytopes of diameter 6

Table 2.5 provides the numbers f0(P) and f2(P) of vertices and facets of the 9
polytopes represented in Figure 2.6. The breakdown by incidence is also indi-
cated.

For example, 24{3} and 8{3}+6{8} indicates that the truncated cube P4 has 24
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vertices, all belonging to 3 facets, and 14 facets consisting in 8 triangles and 6
octagons.

Polytope f0(P) Vertex incidence f2(P) Facet incidence
P1 26 20{3}+6{4} 18 12{4}+6{6}
P2 23 20{3}+3{4} 15 9{4}+6{6}
P3 20 20{3} 12 6{4}+6{6}
P4 24 24{3} 14 8{3}+6{8}
P5 22 22{3} 13 6{3}+1{4}+2{6}+4{8}
P6 20 20{3} 12 4{3}+2{4}+4{6}+2{8}
P7 24 24{3} 14 4{3}+3{4}+4{6}+3{8}
P8 22 22{3} 13 2{3}+4{4}+6{6}+1{8}
P9 24 24{3} 14 6{4}+8{6}

Table 2.5: Some combinatorial properties of the lattice (3,3)-polytopes with maximal
diameter.

2.4.4 All lattice (3,2)-polytopes of diameter 4

Note first that a lattice (3,2)-polytope with an empty intersection with at least
one of the facet of [0,2]3 is either a hexagonal prism or a lattice (3,2)-polytope of
diameter at most 3. Thus, the hexagonal prism depicted in Figure 2.7 in the middle
of the top row is, up to the symmetries of [0,2]3, the unique lattice (3,2)-polytope
of diameter 4 with an empty intersection with at least one facet of [0,2]3.

The set V3,2 of all the vertices of all the lattice (3,2)-polytopes of diameter 4 con-
sists of all {0,1,2}-valued points except (1,1,1). This point forms the intersection
of all lattice (3,2)-polytopes of diameter 4; that is, P3,2 = {(1,1,1)}.

There are 3, up to the symmetries of [0,2]3, lattice (3,2)-polytopes of diameter
4 with 15 vertices which are depicted in the bottom row of Figure 2.7 where
the edges of the intersections with the facets of [0,2]3 are shown in blue. The
unique, up to the symmetries of [0,2]3, lattice (3,2)-polytope of diameter 4 with
11, respectively 16, vertices is represented leftmost, respectively rightmost, in the
top row.
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Figure 2.7: All, up to the symmetries of [0,2]3, lattice (3,2)-polytopes of diameter 4 with
11, 15, or 16 vertices, or with an empty intersection with at least one facet of [0,2]3

2.5 Future Work

There are still several directions that this research can go into to obtain more
results.

From a theoretical perspective, using our proposed algorithm, all polytopes achiev-
ing the maximal diameter can be found. Hence, more analysis could be performed
to explore the possibility of attributes or characteristics that are common to all of
these polytopes. Should these unique properties exist, then this could lead to
more results tightening the bounds as well as more efficient computational algo-
rithms.

Another research direction would be to adapt our framework to get polytopes with
large diameter with respect to n under the optimistic assumption that counterex-
amples to the Hirsch conjecture exist for relatively small d and k. Exploring such
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directions would involve considering all 3 parameters (d,k,n) together.

Due to the exponential nature of the search space, the problem quickly becomes
intractable as we increase d and k. One area of future work is to determine ad-
ditional properties that can be used to create heuristics to further increase the
scalability of the algorithm in order to solve for larger values.

On the computational side, parallelization and cloud computing can be leveraged
to handle the various levels of concurrency in this algorithm and improve on the
current implementation. This could significantly increase the performance and
enable the solving of instances with larger values of d and k. Since the algo-
rithm is based on a branch and bound approach, branches performing computa-
tions of sub-problems (i.e. considering different facets for an intersection with
the [0,k]d hypercube) are independent of each other and can be run on different
threads/cores. There would be minimal communication between these processes
so the overhead involved should not be a significant bottleneck.
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Chapter 3

Vertex enumeration algorithm for
primitive zonotopes

This chapter focus on a specific case of lattice polytopes called primitive zono-
topes; that is, Minkowski sums of segments with integer-valued vertices which
are primitives. A point or a vector is called primitive if the greatest common di-
visor of the coordinates is equal to 1. The zonotope Z associated to the set of
line-segments G, also called the set of generators of Z, is defined as the convex
hull of all the possible 2|G| subsums of element of G.

For example, let G = {g1,g2,g3}= {[0,1], [1,0], [1,1]}, then we have we consider
the 23 = 8 possible subsums ε1g1+ε2g2+ε3g3 with εi ∈ {0,1} for i = 1,2 and 3.
The 8 subsums yield the following 7 points

{(0,0),(0,1),(1,0),(1,1),(1,2),(2,1),(2,2)}

as (1,1) is repeated since it is realized with both (ε1,ε2,ε3)= (1,1,0) and (ε1,ε2,ε3)=

(0,0,1). Taking the convex hull of these 7 points yields the following 6-gon as
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(1,1) is not a vertex since (1,1) is the midpoint between (0,0) and (2,2)

{(0,0),(0,1),(1,0),(1,2),(2,1),(2,2)}.

Note that the diameter of a Minkowski sum is equal to the number of its pairwise
linearly independent generators. Thus, if we assume without loss of generality that
the first nonzero coordinate of any generator is positive, the diameter of a primitive
zonotope is equal to the number of its generators. Primitive (d,k)-zonotopes are
conjectured to achieve the largest diameter over all lattice (d,k)-polytopes, that is,
δ (d,k) = δz(d,k). Note that the conjecture holds for all known entries of δ (d,k)

and for (2,k) for all k, (d,1) and (d,2) for all d, (3,k) for k ≤ 6, and (d,3) for
d ≤ 5. The value of δz(d,k) was determined for any (d,k) by Deza, Pournin, and
Sukegawa [18] who showed that, up to an explicit multiplicative constant, δz(d,k)

grows like kd/d−1 when d is fixed and k goes to infinity. Since δz(d,k)≤ δ (d,k),
this result provides a new lower bound for δ (d,k).

One of the well-studied primitive zonotope is the so-called white whale that cor-
responds to the Minkowski sum of all the the 2d−1 nonzero vectors with {0,1}-
valued coordinates. Let Hd denotes the convex hull of all the possible 22d−1 sub-
sums of these 2d−1 nonzero vectors with {0,1}-valued coordinates. The number
of vertices of Hd is called a(d). For instance, the 6-gon describes above corre-
sponds to H2 and its number of vertices is a(2) = 6, see Figure 3.1 for an illus-
tration. Note that Hd is a centrally symmetric around σd = 2d−2(1,1, . . . ,1), and
that Hd is a lattice (d,2d−1)-polytope of diameter 2d−1.

In this chapter, we present our contributions to the effort of determining the value
of a(d) for small d by developing a computational framework that exploit the
combinatorial and geometric structure of the input. In Section 3.1, we recall a few
properties and results concerning H(d) and a(d). Section 3.2 describes different
areas where this zonotope arises including quantum field theory, psychometrics,
and combinatorics. Section 3.3 describes our contributions which include defining
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new properties, designing new heuristics, and presenting a new algorithm that is
used to efficiently verify existing results. While the framework is currently not
able to determine new values for a(d), previously known entries were efficiently
recomputed until d = 8. Section 3.4 lists the results that have been obtained.
We conclude this chapter with on-going and future research directions in Section
3.5.

3.1 Sizing the white whale

The quantity a(d) arises in several contexts, see [5, 6, 19, 26, 35]. For instance, it
appears in quantum field theory as the number of generalized retarded functions
on d+1 variables [19] and in combinatorics as the number of maximal unbalanced
families of subsets of {1,2, ...,d+1} [5]. The values of a(d) have been computed
up to d = 8 [19, 26, 45], and can be found in the Online Encyclopedia of Integer
Sequences as sequence A034997. We report them in Table 3.1.

d a(d)
1 2
2 6
3 32
4 370
5 11292
6 1066044
7 347326352
8 419172756930

Table 3.1: Number of vertices of Hd for d at most 8

It is shown in [5] that
d−1

∏
i=0

(
2i +1

)
≤ a(d)< 2d2

.

The lower bound on a(d); that is the size of the Hd which is also called the white
whale by Billera [4], has been significantly improved by Gutekunst, Mészáros,
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and Petersen [22] who showed that the upper bound is the right asymptotic esti-
mate. Note that the a(d) is the sum of the Betti numbers of its dual hyperplane
arrangement. The first two non-trivial of these Betti numbers have been deter-
mined by Kühne [30]. The upper bound was slightly improved by Deza, Pournin,
and Rakotonarivo [17].

Consequently the current best upper and lower bounds are :

(d +1)
2d+1 2d2(1− 10

lnd ) ≤ a(d)<
2(d +4)

23d−2 2d2
.

Note that, same as the number of vertices of any zonotope, a(d) is even and that,
in addition, a(d) is a multiple of d+1, see [5]. In the dual setting, Hd corresponds
to the central hyperplane arrangement consisting of all the 2d − 1 hyperplanes
which normal vector is a nonzero {0,1}-valued vector. This arrangement is called
the resonance arrangement and its regions are in a one-to-one relation with the
vertices of Hd . For instance, in dimension d = 2, the 3 hyperplanes defined by the
equalities x1 = 0,x2 = 0 and x1 + x2 = 0 form a(2) = 6 regions.

Figure 3.1: The 2-dimensional white whale H2

3.2 A few appearances of the white whale

The problem that we are investigating is concurrently being studied in several
related areas. Here, we review examples from three different fields including:
quantum field theory, psychometrics, and combinatorics.
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• QUANTUM FIELD THEORY

Quantum field theory is an important subfield of theoretical physics focusing on
the understanding of the microscopic world. It combines ideas from classical field
theory, special relativity, and quantum mechanics to construct physical models of
subatomic particles. Particles are treated as excited states (also called quanta)
of their underlying fields, which are more fundamental than the basic particles.
Interactions between particles are described by interaction terms in the Lagrangian
involving their corresponding fields. Each interaction can be visually represented
by Feynman diagrams, which are formal computational tools, in the process of
relativistic perturbation theory. For a more detailed description of the area, refer
to [24].

Within quantum field theory, there are a set of methods used to calculated expec-
tation values of physical observables at a finite temperature. This is the subfield
of thermal quantum field theory. Green functions are key tools in quantum field
theory. They are generated by taking functional derivatives with respect to the
sources of the generating functional and then setting unphysical sources to 0. The
retarded and advanced Green functions are decompositions of the Green func-
tion. They appear in the linear response approximation which tries to describe
small perturbations to a plasma. The retarded functions are usually written as ex-
pectation values of multiple commutators, with theta functions. The number of
generalized retarded functions on d +1 variables [19] is equal to a(d).

• PSYCHOMETRICS

Psychometrics is the field of study concerning the theory and measurement of
mental capacities and processes. Introduced originally in the field of psychomet-
rics, the unfolding model is used for preference ranking. Since its introduction,
the model has been used in many other fields including marketing science [13]
and voting theory [23].

Suppose there are m unique items labeled 1,2, ...,m and an individual is ranking
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these objects based on their preference. In the unfolding model, these m objects
are represented by the points µ1,µ2, . . . in Euclidean space Rn. The individual is
represented by the point y in the same space, commonly referred to as the joint
space. The individual, y, prefers object i to object j if and only if y is closer to µi

than to µ j. Hence, for a given y, a ranking of (i1, i2, . . . , im) is produced, where i1
denotes the most preferred item for the individual and im, the least preferred.

In general, there are m! rankings among m objects, but in the unfolding model,
some rankings can not be generated. Admissible rankings are rankings for which
there exists a y in the joint space with that ranking. Inadmissible rankings are
those where there does not exist a y in the joint space with that ranking. Take
for example, the case where m = 3 and n = 1. Suppose µ1 = 0, µ2 = 4, and
µ3 = 7. If y < 2, then the ranking is (1,2,3). If 2 < y < 3.5, then the ranking
is (2,1,3). If 3.5 < y < 5.5, the ranking is (2,3,1). The final scenario is when
y > 5.5, in which case the ranking is (3,2,1). So the admissible rankings are
(1,2,3),(2,1,3),(2,3,1),(3,2,1) and the inadmissible rankings are (1,3,2),(3,1,2).

The number of possible sets of rankings is called the ranking pattern. In general,
depending on the choices of µ1, ...,µm, the resulting ranking pattern will differ.
The problem is to determine how many distinct ranking patterns there are for a
particular m and n. If an additional constraint is added of the unfolding model
being of co-dimension one, i.e. n = m+ 2, then the result is equivalent to a(d),
see [27].

• COMBINATORICS

In the area of combinatorics, a family of subsets of natural numbers up to n is
considered to be balanced if there exists a convex combination of their char-
acteristic functions which is constant. Otherwise, they are an unbalanced fam-
ily. A family is considered to be maximally unbalanced if in addition to be-
ing unbalanced, any other family that is not a proper superset of it is balanced.
Let χF denote the characteristic function of F . Suppose n = 3, then the fam-
ily {F1 = {1},F2 = {1,2},F3 = {1,3}} is maximally unbalanced where χF1 =
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(1,0,0),χF2 = (1,1,0), and χF3 = (1,0,1). The family {F1 = {1},F2 = {1,2}}
is unbalanced, but not maximally unbalanced, since it is a subset of the previous
family. The number of maximal unbalanced families of subsets of a d element set
is equal to a(d), see [4].

3.3 Orbitwise enumeration of the vertices of Hd

In this section, we present a computational approach to generate, up to symme-
tries, all the vertices of Hd and thus to determine a(d). The input to the algorithm
is the set of all generators, Gd = {g1,g2, . . . ,g2d−1} and the list of all the canonical
vertices of Hd and, by action of the symmetry group on these canonical vertices,
the value of a(d).

Note that the origin is always a vertex of Hd . Starting from the origin, the algo-
rithm visit all possible neighbours of the currently know canonical vertices ob-
tained by adding a generator. Elementary checks are used to remove points from
the list of potential vertices. Then a certificate sufficient to show that a point is
not a vertex is used to further reduce the search space. A certificate sufficient to
show that a point is vertex to obtain the final list. Symmetries and combinatorial
properties are used achieve higher computational efficiency.

We recall a few elementary properties of Hd:

Lemma 3.3.1.

(i) Hd is a centrally symmetric lattice (d,2d−1)-polytope.

(ii) Hd is invariant under the symmetries induced by the permutations of the

coordinates and by the reflection centered on σd = 2d−2(1,1, . . . ,1).

(iii) The intersection of Hd with any facet of the cube [0,2d−1]d is, up to symme-

try and translation, equal to Hd−1.

Proof. Recall that any zonotope is centrally symmetric around the midpoint be-
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tween the origin and the point corresponding to the sum of all generator. Since

∑
2d−1
i=1 gi = 2d−1(1,1, . . . ,1), the center of symmetry of Hd is σd = 2d−2(1,1, . . . ,1)

and Hd is a lattice (d,2d−1)-polytope. Since the set of generators, Gd , is invariant
under the symmetries induced by the permutations of the coordinates, the same
applies to Hd . Since, up to truncating the last coordinate, the 2d−1−1 generators
of Gd having zero as last coordinate form Gd−1, the intersection of Hd with the
hyperplane xd = 0 is, up to truncating the last coordinate, equal to Hd−1. The
same holds for any other intersection of the cube [0,2d−1]d by the action of the
symmetries of Hd .

• CANONICAL VERTICES OF Hd

The vertices of Hd can be partitioned into equivalence classes, or orbits, by the
action of the group of symmetries. By item (i) and (ii) of Lemma 3.3.1, each
class can be represented by following the canonical vertex satisfying:

◦ xi ≤ xi+1 for i = 1, . . . ,d−1,

◦ ∑
d
i=1 xi ≤ d2d−2, and if ∑

d
i=1 xi = d2d−2, the number of coordinates larger

than 2d−2 is at most the number of coordinates smaller than 2d−2.

• LIFTING OPERATION

By item (iii) of Lemma 3.3.1, a point of Hd with zero as last coordinate is a vertex
of Hd if and only if truncating the last coordinate yields a vertex of Hd−1. Con-
sequently, we can define the 0-lifting of a vertex v = (v1,v2, ...,vd−1) of Hd−1 as
the vertex v = (v1,v2, ...,vd−1,0) of Hd . Consequently, assuming that the vertices
Hd−1 have been determined, our objective is to determine all the vertices of Hd

with coordinates satisfying 0 < xi < 2d−1 for i = 1, . . . ,d.

• CERTIFICATES OF NON-VERTEXHOOD

By convexity p, a point of a polytope P is a vertex of P if and only if

{p =
p1 + p2

2
with p1 ∈ P and p2 ∈ P}=⇒{p1 = p2 = p}
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Using a few points of Hd known to be vertices of Hd for any d, we can consider
a few simplices that belong to Hd and membership to this cone can be easily
computed. Any point that belong to such simplex without being one of its vertices
can not be a vertex Hd . Consider the following example: the origin and 2σ(d) =

2d−1(1, . . . ,1) are obvious symmetric vertices of Hd , thus, 2d−2(1, . . . ,1,0) is also
a vertex of Hd as the 0-lifting of the vertex 2σ(d−1) of Hd−1. Thus, the simplex
with (0, . . . ,0) as apex and the d permutations of 2d−2(1, . . . ,1,0) belongs to Hd .
This simplex has d+1 facets and thus is defined as the set of points satisfying the
following d +1 inequalities :

d

∑
j=1

x j ≤ (d−1)2d−2

(d−2)xi−
d

∑
j=1, j 6=i

x j ≤ 0 for i = 1, . . . ,d

Membership to this simplex amounts to checking whether any of the d + 1 in-
equalities is violated, and thus is computationally cheap. For example consider
d = 4, the simplex is defined by:

x1 + x2 + x3 + x4 ≤ 12

2x1− x2− x3− x4 ≤ 0

−x1 +2x2− x3− x4 ≤ 0

−x1− x2 +2x3− x4 ≤ 0

−x1− x2− x3 +2x4 ≤ 0

Thus, the point (2,2,3,4) can not be a vertex of H4 as it violated the last inequal-
ity.

While this type is certificate is valid for any polytope, we can consider additional
certificate that are applicable to Minkowski sums. In particular, any face of a
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Minkowski can be a written as the unique sum of a subset of generators. We
illustrate this general property of Minkowski sum with the following construction
that is specific to Hd .

Assume that a point p of Hd admits two decomposition, that is, there exist two
distinct subsets S and T of Gd such that

p = ∑
gi∈S

gi = ∑
gi∈T

gi

Then one can check that p is the midpoint of two distinct points of Hd and thus
can not be a vertex of Hd as

2p = ∑
gi∈S∩T

gi + ∑
gi∈S∪T

gi

For example, any {0,1}-valued point of H except the origin and the unit vector ad-
mit two decompositions and thus can not be vertices of Hd . Similarly, (1, . . . ,1,x)
where x∈{2,3, . . . ,d−1} admits two decompositions and thus can not be a vertex
of of Hd .

While checking whether a point admits two decomposition can be computation-
ally challenging, we can run fast heuristics that are able to find a second decom-
position by elementary flips when such decomposition exists which is the case for
most lattice points of Hd . The heuristic automatically stops after a predetermined
time if no second decomposition is found.

• CERTIFICATE OF VERTEXHOOD

Besides the 0-lifting of Hd−1, some points can be determined to be vertices of
Hd for any d. While for general polytopes, checking whether a point is a ver-
tex amounts to checking the feasibility of a potentially large linear optimization
instance, the same check can be performed for Minkowski sums via a linear opti-
mization instance of size equal to the number of generators.
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Let S be a subset of Gd and p the point defined as p = ∑gi∈S gi. Consider the
following linear optimization feasibility problem where c is the variable and of
size d×2d−1.

−cT gi ≤−1 for gi ∈ S

cT gi ≤−1 for gi /∈ S

This problem is feasible if and only of there exists a nonzero cost vector c such
that p = argmax{cT x : x ∈ Hd}. Since d = 9 is the smallest d such that Hd is un-
determined, solving such a linear optimization problem is computationally cheap.
The key issue is to be able to first remove most of the non-vertices with elementary
certificate of non-vertexhood and to run the linear optimization based certificate
of vertexhood on as few candidates as possible.

As illustration, let us consider the point p = (1,1, . . . ,1,d), that is, p = ∑gi∈S gi

where S= {[1,0, . . . ,0,1], [0,1,0 . . . ,0,1], . . . , [0, . . . ,0,1,1], [0, . . . ,0,1]}. To check
whether this Minkowski sum of d generators is a vertex of Hd , we need to check
whether there exists a c such that:

ci + cd ≥ 1 for i = 1, . . . ,d−1

cd ≥ 1

cT gi ≤−1 for gi /∈ S

One can check that c = (−2, . . . ,−2,3) is feasible and thus p = (1,1, . . . ,1,d) is
always a vertex of Hd .

We list a few known vertices of Hd for any d

◦ (0, . . . ,0) and its symmetric 2σ(d) = 2d−1(1, . . . ,1)

◦ (0, . . . ,0,1) and its symmetric (2d−1−1,2d−1, . . . ,2d−1)

◦ 2d−2(0,1, . . . ,1)
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◦ (1, . . . ,1,d)

◦ (1,2d−2 +1, . . . ,2d−2 +1)

We list a few simplices that belong to Hd for any d:

◦ Apex (0, . . . ,0), base formed by the d permutation of (1, . . . ,1,d)

◦ Apex (0, . . . ,0), base formed by the d permutation of 2d−2(0,1, . . . ,1)

◦ Apex (0, . . . ,0), base formed by the d permutation of (1,2d−2+1, . . . ,2d−2+

1)

As the algorithm discovers new vertices, new similar simplices can be added along
the way.

3.3.1 Main steps of the orbitwise enumeration of the vertices
of Hd

Assuming that the canonical vertices of Hd−1 are known, the list of known canoni-
cal vertices of Hd is initialized with, up to permutation, the 0-liftings of the canon-
ical vertices of Hd−1 and of the symmetric in Hd−1 of the canonical vertices of
Hd−1. Canonical vertices of Hd that are already known and not already in the list,
such as (1, . . . ,1,d) are added to the list.

Known or determined vertices of Hd are entered as their Minkowski sum of gen-
erators. For instance (1,1, . . . ,1,d) is entered as

S = {[1,0, . . . ,0,1], [0,1,0 . . . ,0,1], . . . , [0, . . . ,0,1]}.

A canonical vertex is marked as computed once all its orbitwise forward neigh-
bourhood has been determined. The forward neighbourhood of a vertex v consist
of all, up to symmetry, vertices of w of Hd such that w− v is a generator of Hd;
that is, w− v is a nonzero {0,1}-valued vector of length d. Note that the set of all
edges of a Minkowski sum form, up to translation, the set of generators.

52



To determine forward neighbourhood of a vertex v, we consider, up to symmetry,
adding one generator gi that was not used to generate v. The algorithm first checks
whether v+gi is a non-vertex using the convexity and double decomposition cer-
tificates presented earlier. If yes, this point is disregarded, otherwise the algorithm
checks whether v+gi is a vertex using the linear optimization based certificate pre-
sented earlier. If yes, the point is added to the list of canonical vertices, assuming
this vertex was not found earlier. Otherwise, this point is disregarded.

Once all vertices in the list of canonical vertices are marked as computed, the
algorithm terminates as this list contains all orbitwise vertices of Hd .

Note that the algorithm does not perform any convex hull computation.

3.4 Computational experiments for small d

• DETERMINING a(3)

We illustrate how the algorithm works to determine all the canonical vertices of
H3 and to compute a(3) = 72.

The list of canonical vertices of H2 is {(0,0),(0,1)}.

The list of canonical vertices of H3 is therefore initialized with

{(0,0,0),(0,0,1),(0,1,2),(0,2,2),(1,1,3)}

as the 4 0-liftings of the canonical vertices of H2 and their symmetric counterparts
by σ2 = (1,1) we can add known vertex (1,1,3).

The set G3 of generators of H3 is

{[0,0,1], [0,1,0], [1,0,0], [0,1,1], [1,0,1], [1,1,0], [1,1,1]}.

Consider first the canonical vertex v0 = (0,0,0), up to symmetry, we can consider

53



the following generators to be added to v0: [0,0,1], [0,1,1], and [1,1,1]. Out
of these 3 Minkowski sums, the only one that is a vertex of H3 is v1 = (0,0,1)
as all are potential 0-liftings of vertices of H2 since one of the coordinates is 0.
Consequently v0 is marked as computed, and v1 should be added to the list unless
it was already there – which is the case.

Consider the next canonical vertex v1 = (0,0,1). Since the generator [0,0,1] is
already used, we can consider, up to symmetry, the following generators to be
added to v1: [0,1,0], [1,0,1], [1,1,0] and [1,1,1]. This leads to the following 4
canonical points: (0,1,1) which not a vertex since (1,1) is not a vertex of H2, v2 =

(0,1,2) which is a known vertex, (1,1,1) which is known non-vertex, and (1,1,2)
which also a known non-vertex. Consequently v1 is marked as computed, and v2

should be added to the list unless it was already there – which is the case.

Consider the next canonical vertex v2 = (0,1,2). Since the generators [0,0,1]
and [0,1,1] are already used, we can consider, up to symmetry, the following
generators to be added to v2: [1,0,0], [0,1,0], [1,0,1], [1,1,0] and [1,1,1]. This
leads to the following 5 canonical points: (1,1,2) which is not a vertex since
(1,1,2) admits a second decomposition as [1,0,1]+ [0,1,1], v3 = (0,2,2) which
a known vertex, v4 = (1,1,3) which is a known vertex, and (1,2,3) which is not a
vertex as (1,2,3) admits a second decomposition as [0,0,1]+ [0,1,1]+ [0,1,0]+
[1,0,1]. Consequently v2 is marked as computed, and v3 and v4 should be added
to the list unless it was already there – which is the case.

Consider the next canonical vertex v3 = (0,2,2). Since canonical vertices of H3

must satisfy x1 + x2 + x3 ≤ 6, we can consider, up to symmetry, the following
generators to be added to v3: [1,0,0] and [1,0,1]. This leads to the following
2 canonical points: (1,2,2) which is not a vertex since (1,2,2) admits a second
decomposition as [1,1,1]+[0,1,1], and (1,2,3) that was previously identified as a
non-vertex. Thus the forward neighbourhood of v3 is empty and v3 can be marked
as computed.

Finally, we consider v4 = (1,1,3). The condition x1 + x2 + x3 ≤ 6 and the fact
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that [0,1,1] is already being used yields, up to symmetry, that only the genera-
tor (0,1,0) can be added to v4. This leads to the point (1,2,3) that was previ-
ously identified as a non-vertex. Consequently the forward neighbourhood of v4

is empty and v4 can be marked as computed.

Figure 3.2: Canonical vertices of H3 and their orbits

As all the vertices in the list have been marked as computed, the description is
complete. In other words, the vertices of H3 can be partitioned into 5 orbits as
indicated in Table 3.2. The action of the symmetry group on each canonical vertex
gives the size of its orbit. The sum of the orbit sizes is equal to a(3). The canonical
vertices of H3 and their corresponding orbits are shown in Figure 3.2.

The 3-dimensional white whale, H3, is represented in Figure 3.3 with its 5 canon-
ical vertices displayed in hollow circles, and the vertices of their orbits in the
corresponding colour.
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Canonical Vertex Method Obtained Orbit size
(0,0,0) Always a vertex 2
(0,0,1) Always a vertex 6
(0,1,2) 0-lifting of a vertex from a lower dimension 12
(0,2,2) 0-lifting of a vertex from a lower dimension 6
(1,1,3) Always a vertex 6

a(3) 32

Table 3.2: Canonical vertices of a(3)

Figure 3.3: The 3-dimensional white whale H3 with canonical vertices shown in hollow
circles and their corresponding orbits

• DETERMINING a(4)

The list of canonical vertices, the method used to obtained them, and their respec-
tive orbit sizes for d = 4 are listed in Table 3.3
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Canonical Vertex Method Obtained Orbit size
(0,0,0,0) Always a vertex 2
(0,0,0,1) Always a vertex 8
(0,0,1,2) 0-lifting of a vertex from a lower dimension 24
(0,0,2,2) 0-lifting of a vertex from a lower dimension 12
(0,1,1,3) 0-lifting of a vertex from a lower dimension 24
(0,1,3,3) 0-lifting of a vertex from a lower dimension 24
(0,2,2,4) 0-lifting of a vertex from a lower dimension 24
(0,2,3,4) 0-lifting of a vertex from a lower dimension 48
(0,3,4,4) 0-lifting of a vertex from a lower dimension 24
(0,4,4,4) 0-lifting of a vertex from a lower dimension 8
(1,1,1,4) Always a vertex 8
(1,1,4,4) Obtained from algorithm 12
(1,2,2,5) Obtained from algorithm 24
(1,2,4,5) Obtained from algorithm 48
(1,3,5,5) Obtained from algorithm 24
(2,2,3,6) Obtained from algorithm 24
(2,2,4,6) Obtained from algorithm 24
(3,3,3,7) Always a vertex 8

a(4) 370

Table 3.3: Canonical vertices of a(4)

• DETERMINING a(5)

The list of canonical vertices, the method used to obtained them, and their respec-
tive orbit sizes for d = 5 are listed in Table 3.4

Table 3.4: Canonical vertices of a(5)

Canonical Vertex Method Obtained Orbit size

(0,0,0,0,0) Always a vertex 2
(0,0,0,0,1) Always a vertex 10
(0,0,0,1,2) 0-lifting of a vertex from a lower dimension 40
(0,0,0,2,2) 0-lifting of a vertex from a lower dimension 20
(0,0,1,1,3) 0-lifting of a vertex from a lower dimension 60
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(0,0,1,3,3) 0-lifting of a vertex from a lower dimension 60
(0,0,2,2,4) 0-lifting of a vertex from a lower dimension 60
(0,0,2,3,4) 0-lifting of a vertex from a lower dimension 120
(0,0,3,4,4) 0-lifting of a vertex from a lower dimension 60
(0,0,4,4,4) 0-lifting of a vertex from a lower dimension 20
(0,1,1,1,4) 0-lifting of a vertex from a lower dimension 40
(0,1,1,4,4) 0-lifting of a vertex from a lower dimension 60
(0,1,2,2,5) 0-lifting of a vertex from a lower dimension 120
(0,1,2,4,5) 0-lifting of a vertex from a lower dimension 240
(0,1,3,5,5) 0-lifting of a vertex from a lower dimension 120
(0,1,5,5,5) 0-lifting of a vertex from a lower dimension 40
(0,2,2,3,6) 0-lifting of a vertex from a lower dimension 120
(0,2,2,4,6) 0-lifting of a vertex from a lower dimension 120
(0,2,4,6,6) 0-lifting of a vertex from a lower dimension 120
(0,2,5,6,6) 0-lifting of a vertex from a lower dimension 120
(0,3,3,3,7) 0-lifting of a vertex from a lower dimension 40
(0,3,3,5,7) 0-lifting of a vertex from a lower dimension 120
(0,3,4,6,7) 0-lifting of a vertex from a lower dimension 240
(0,3,6,6,7) 0-lifting of a vertex from a lower dimension 120
(0,4,4,4,8) 0-lifting of a vertex from a lower dimension 40
(0,4,4,5,8) 0-lifting of a vertex from a lower dimension 120
(0,4,4,7,7) 0-lifting of a vertex from a lower dimension 60
(0,4,5,6,8) 0-lifting of a vertex from a lower dimension 240
(0,4,6,6,8) 0-lifting of a vertex from a lower dimension 120
(0,4,7,7,7) 0-lifting of a vertex from a lower dimension 40
(0,5,5,7,8) 0-lifting of a vertex from a lower dimension 120
(0,5,7,7,8) 0-lifting of a vertex from a lower dimension 120
(0,6,6,8,8) 0-lifting of a vertex from a lower dimension 60
(0,6,7,8,8) 0-lifting of a vertex from a lower dimension 120
(0,7,8,8,8) 0-lifting of a vertex from a lower dimension 40
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(0,8,8,8,8) 0-lifting of a vertex from a lower dimension 10
(1,1,1,1,5) Always a vertex 10
(1,1,1,5,5) Obtained from algorithm 20
(1,1,2,2,6) Obtained from algorithm 60
(1,1,2,5,6) Obtained from algorithm 120
(1,1,3,6,6) Obtained from algorithm 60
(1,1,6,6,6) Obtained from algorithm 20
(1,2,2,3,7) Obtained from algorithm 120
(1,2,2,5,7) Obtained from algorithm 120
(1,2,4,7,7) Obtained from algorithm 120
(1,2,6,7,7) Obtained from algorithm 120
(1,3,3,3,8) Obtained from algorithm 40
(1,3,3,6,8) Obtained from algorithm 120
(1,3,4,7,8) Obtained from algorithm 240
(1,3,7,7,8) Obtained from algorithm 120
(1,4,4,4,9) Obtained from algorithm 40
(1,4,4,6,9) Obtained from algorithm 120
(1,4,4,8,8) Obtained from algorithm 60
(1,4,5,7,9) Obtained from algorithm 240
(1,4,7,7,9) Obtained from algorithm 120
(1,4,8,8,8) Obtained from algorithm 40
(1,5,5,8,9) Obtained from algorithm 120
(1,5,8,8,9) Obtained from algorithm 120
(1,6,6,9,9) Obtained from algorithm 60
(1,6,8,9,9) Obtained from algorithm 120
(1,7,9,9,9) Obtained from algorithm 40
(2,2,2,4,8) Obtained from algorithm 40
(2,2,2,5,8) Obtained from algorithm 40
(2,2,5,8,8) Obtained from algorithm 60
(2,2,6,8,8) Obtained from algorithm 60
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(2,3,3,4,9) Obtained from algorithm 120
(2,3,3,6,9) Obtained from algorithm 120
(2,3,5,8,9) Obtained from algorithm 240
(2,3,7,8,9) Obtained from algorithm 240

(2,4,4,5,10) Obtained from algorithm 120
(2,4,4,6,10) Obtained from algorithm 120
(2,4,5,9,9) Obtained from algorithm 120

(2,4,6,8,10) Obtained from algorithm 240
(2,4,7,8,10) Obtained from algorithm 240
(2,4,8,9,9) Obtained from algorithm 120

(2,5,6,9,10) Obtained from algorithm 240
(2,5,8,9,10) Obtained from algorithm 240

(2,6,7,10,10) Obtained from algorithm 120
(2,6,8,10,10) Obtained from algorithm 120
(3,3,4,4,10) Obtained from algorithm 60
(3,3,4,7,10) Obtained from algorithm 120
(3,3,5,8,10) Obtained from algorithm 120
(3,3,8,8,10) Obtained from algorithm 60
(3,4,5,5,11) Obtained from algorithm 120
(3,4,5,7,11) Obtained from algorithm 240
(3,4,6,8,11) Obtained from algorithm 240
(3,4,8,8,11) Obtained from algorithm 120
(3,4,9,9,10) Obtained from algorithm 120

(3,5,5,10,10) Obtained from algorithm 60
(3,5,9,9,11) Obtained from algorithm 120

(3,6,6,10,11) Obtained from algorithm 120
(3,7,7,11,11) Obtained from algorithm 60
(4,4,4,4,11) Obtained from algorithm 10
(4,4,4,8,11) Obtained from algorithm 40
(4,4,5,9,11) Obtained from algorithm 120
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(4,4,6,6,12) Obtained from algorithm 60
(4,4,6,7,12) Obtained from algorithm 120
(4,4,7,8,12) Obtained from algorithm 120
(4,4,8,8,12) Obtained from algorithm 60

(4,4,10,10,10) Obtained from algorithm 20
(4,5,5,5,12) Obtained from algorithm 40
(4,5,5,8,12) Obtained from algorithm 120

(4,5,5,10,11) Obtained from algorithm 120
(4,5,6,9,12) Obtained from algorithm 240

(4,6,6,10,12) Obtained from algorithm 120
(5,5,5,11,11) Obtained from algorithm 20
(5,5,6,6,13) Obtained from algorithm 60
(5,5,6,8,13) Obtained from algorithm 120
(5,5,7,9,13) Obtained from algorithm 120
(6,6,6,7,14) Obtained from algorithm 40
(6,6,6,8,14) Obtained from algorithm 40
(7,7,7,7,15) Always a vertex 10

a(5) 11 292

3.5 Future Work

While the proposed computational framework allows for an efficient orbitwise
enumeration of the vertices of Hd , further work is required to determine a(9) that
is still currently intractable.

One area to continue exploring is to improve existing or add new certificates
of detecting a vertex or non-vertex based on new structural properties. The 9-
dimensional white whale may have around 230 orbits and thus the certificate for
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not being a vertex must be further enhanced to allow for even more efficient prun-
ing. The linear optimization based certificate for being a vertex is difficult to
improve.

From a computational perspective, there are a few directions to try. Since many
tasks can be done in parallel, leveraging distributed computing resoures such as
using a cluster might allow for a significant speedup. Since there are significant
amounts of orbits, finding more efficient ways to store and manipulate these lists
of numbers can improve the performance.

Finally, solving theoretical questions that remain currently open may allow for a
dramatic speed-up. In particular, we wish to highlight the following fundamental
question dealing with Minkowski sums and lying at the boundary of convexity
and combinatorics.

As discussed earlier, for any Minkowski sum, if a sum of generators admits a
second decomposition, this sum of generators cannot be a vertex of the Minkowski
sum. Specifically for Hd , does the reverse implication hold, that is, is a sum of
generators of Hd a vertex of Hd if no other sum of generators gives the same point?
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[9] Grünbaum Branko. Convex Polytopes. Preprated by Volker Kaibel, Victor
Klee, and Günter M. Ziegler, 2nd edition, 2003.

[10] Nathan Chadder and Antoine Deza. Computational determination of the
largest lattice polytope diameter. Electronic Notes in Discrete Mathematics,
62:105–110, 2017.

[11] George B. Dantzig. Linear programming and extensions. Princeton Univer-
sity Press, 1963.

[12] George B. Dantzig, Alexander Orden, and Philip Wolfe. The generalized
simplex method for minimizing a linear form under linear inequality re-
straints. Pacific Journal of Mathematics, 5:183–195, 1955.

[13] Wayne S. DeSarbo and Donna L. Hoffman. Constructing mds joint spaces
from binary choice data: A multidimensional unfolding threshold model for
marketing research. Journal of Marketing Research, 24:40–54, 1987.

[14] Anna Deza, Antoine Deza, Zhongyan Guan, and Lionel Pournin. Distances
between vertices of lattice polytopes. Optimization Letters, 14:309–326,
2020.

[15] Antoine Deza, George Manoussakis, and Shmuel Onn. Primitive zonotopes.
Discrete and Computational Geometry, 60:27–39, 2018.

[16] Antoine Deza and Lionel Pournin. Improved bounds on the diameter of
lattice polytopes. Acta Mathematica Hungarica, 154:457–469, 2018.

[17] Antoine Deza, Lionel Pournin, and Rado Rakotonarivo. The vertices of
primitive zonotopes. Contemporary Mathematics, 764:71–82, 2021.

64



[18] Antoine Deza, Lionel Pournin, and Noriyoshi Sukegawa. The diameter
of lattice zonotopes. Proceedings of the American Mathematical Society,
148(8):3507–3516, 2020.

[19] Timothy S. Evans. What is being calculated with thermal field theory? 9th

Lake Louise Winter Institute: Particle Physics and Cosmology, pages 343–
352, 1994.

[20] Komei Fukuda. CDD and CDDplus homepage. https://people.inf.

ethz.ch/fukudak/cdd_home/index.html, 2018.

[21] Komei Fukuda. Polyhedral computation. ETH research collection. Zürich,
Switzerland, 2020. https://www.research-collection.ethz.ch/

bitstream/handle/20.500.11850/426218/PolyCompBook20200829.

pdf.

[22] Samuel C. Gutekunst, Karola Mészáros, and T. Kyle Petersen. Root cones
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