Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27029
Title: Selective oxidation and reactive wetting of an Fe-0.15C-5.5Mn-1.17Si-1Al advanced high strength steel (AHSS) during hot-dip galvanizing
Authors: Gol, Saba
Advisor: McDermid, Joseph
Department: Materials Science and Engineering
Keywords: Selective oxidation and reactive wetting of advanced high strength steel (AHSS) during hot-dip galvanizing
Publication Date: 2021
Abstract: Third-generation advanced high-strength steels (3G AHSS) are being developed to assist in vehicle light weighting so that fuel efficiency may be improved without sacrificing passenger safety. 3G-AHSS have received significant interest from the automotive industry as a critical candidate for their unique combination of high strength and ductility. However, due to selective oxidation of the principal alloying elements such as Mn, Si, Al, and Cr at the steel surface during the annealing stage prior to immersion in the galvanizing Zn(Al, Fe) bath, the process of continuous hot-dip galvanizing of these steel is challenging. This thesis determined the influence of annealing process parameters such as oxygen partial pressure and annealing time, on the selective oxidation and reactive wetting of an Fe-0.15C-5.56Mn-1.17Si-1Al (wt%) prototype 3G AHSS during intercritical annealing as well as continuous galvanizing. Simulated annealing and galvanizing were conducted on the prototype Fe-0.15C-5.56Mn-0117Si-1Al (wt%) 3G steel; Intercritical annealing heat treatments were carried out at 690˚C in a N2-5 vol pct H2 process atmosphere under dew points of 223 K (–50 °C), 243 (–30 °C) and 268 K (–5 °C). MnO was the major oxide formed at the outmost layer of the external oxides on all annealed samples. The experimental parameters, on the other hand, had a substantial impact on the morphology, distribution, thickness, and surface oxide coverage. The greatest Mn surface concentration as well as maximum surface oxide coverage and thickness was obtained by annealing the panels under the 223 K (–50 °C) and 243 (–30 °C) dp process atmospheres. The oxides formed under these process atmospheres largely comprised coarse, compact, and continuous film nodules. In contrast, MnO nodules formed under the 268 K (–5 °C) dewpoint process, exhibited wider spacing between finer and thinner nodules, which was consistent with the internal oxidation mode, while under 223 K (–50 °C) dp process atmosphere, generally external oxidation took place. Poor reactive wetting was obtained for the panels annealed under the 223 K (–50 °C) dp process atmosphere for both the 60 s and 120 s holding times as well as the 243 K (–30 °C) dp process atmosphere for 120 s. This was attributed to the formation of a thick, compact oxide layer on the steel surface, which acted as a barrier between the substrate and Zn bath, preventing Fe dissolution from the substrate surface for the formation of the desired Fe2Al5Znx interfacial layer. However, a well-developed interfacial Fe-Al intermetallic layer was formed under the 268 K (–5 °C) and 243 (–30 °C) dp process atmospheres for intercritical annealing times of 60 s, which is indicative of a good reactive wetting since the thinner and nodule-like oxides on the steel surface after annealing encourage the reactive wetting. External oxides morphology plays a dominant role in facilitating the contact between Zn-alloy bath and the substrate via different mechanisms such as aluminothermic reduction which occurred for the sample annealed under the 268 K (–5 °C) dp process atmosphere.
URI: http://hdl.handle.net/11375/27029
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Gol_Saba_2021 October_M.A.Sc.pdf
Access is allowed from: 2022-10-07
2.11 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue