Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27020
Title: INVESTIGATING THE NEUROPROTECTIVE MECHANISMS OF CANNABINOIDS THROUGH ENDOPLASMIC RETICULUM STRESS MODULATION
Authors: Patel, Vidhi
Advisor: Mishra, Ram
Department: Neuroscience
Keywords: Neuroprotection;ER Stress;Cannabinoids
Publication Date: Nov-2021
Abstract: The aggregation of misfolded proteins in the endoplasmic reticulum (ER) is a pathological trait shared by many neurodegenerative disorders. This aggregation leads to the persistent activation of the unfolded protein response (UPR) and ultimately apoptosis due to ER stress. Cannabinoids, such as tetrahydrocannabinol (THC) and cannabidiol (CBD), have been reported to be neuroprotective in in vitro and in vivo models of neurodegeneration through their antioxidant and anti-inflammatory properties. However, little is known about the role of these cannabinoids in the context of ER stress. STHdhQ7/Q7 cells were treated with the ER stress inducer thapsigargin (TG) and cannabinoids in three different experimental paradigms to investigate the effect of 2.5 µM THC and 1 µM CBD monotreatment and cotreatment on ER stress-induced cell death. The mouse striatal neurons survived significantly more when THC or CBD was given before TG exposure. To further investigate this experimental paradigm, the gene and protein expression of UPR proteins was measured to determine the effect of cannabinoid pre-treatment on cell survival through ER stress modulation. A significant increase in the gene expression of the ER chaperone GRP78 and the ER-resident neurotrophic factor MANF in pre-treated samples suggest that with THC or CBD pre-treatment, the protein folding capacity of the cell is improved. Additionally, a decrease in the ER-mediated apoptotic markers such as BIM and caspase 12 with THC or CBD pre-treatment provides further evidence that cannabinoid pre-treatments are neuroprotective through ER stress modulation. These data suggest that prior cannabinoid monotherapy prepares the cell for future insults to the ER. Understanding the role of ER stress in the neuroprotective properties of THC and CBD provides insight into the therapeutic potential of cannabinoids and the role of ER dysfunction in various neurodegenerative disorders.
URI: http://hdl.handle.net/11375/27020
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Patel_Vidhi_2021_09_MSc.pdf
Access is allowed from: 2022-09-23
2.73 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue