Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27005
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorJun, Chen-
dc.contributor.authorSong, Xiang-
dc.date.accessioned2021-10-07T01:40:56Z-
dc.date.available2021-10-07T01:40:56Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/11375/27005-
dc.description.abstractImage degradation arises from various environmental conditions due to the exis tence of aerosols such as fog, haze, and dust. These phenomena mitigate image vis ibility by creating color distortion, reducing contrast, and fainting object surfaces. Although the end-to-end deep learning approach has made significant progress in the field of homogeneous dehazing, the image quality of these algorithms in the context of non-homogeneous real-world images has not yet been satisfactory. We argue two main reasons that are responsible for the problem: 1) First, due to the unbalanced information processing of the high-level and low-level information in conventional dehazing algorithms, 2) due to lack of trainable data pairs. To ad dress the above two problems, we propose a parallel dual-branch design that aims to balance the processing of high-level and low-level information, and through a method of transfer learning, utilize the small data sets to their full potential. The results from the two parallel branches are aggregated in a simple fusion tail, in which the high-level and low-level information are fused, and the final result is generated. To demonstrate the effectiveness of our proposed method, we present extensive experimental results in the thesis.en_US
dc.language.isoenen_US
dc.subjectimage processingen_US
dc.subjectdeep learningen_US
dc.subjectdehazingen_US
dc.titleA Dual-Branch Attention Guided Context Aggregation Network for NonHomogeneous Dehazingen_US
dc.typeThesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Final_Thesi_Xiang_Song.pdf
Open Access
64.19 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue