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Abstract

Image degradation arises from various environmental conditions due to the exis-

tence of aerosols such as fog, haze, and dust. These phenomena mitigate image vis-

ibility by creating color distortion, reducing contrast, and fainting object surfaces.

Although the end-to-end deep learning approach has made significant progress in

the field of homogeneous dehazing, the image quality of these algorithms in the

context of non-homogeneous real-world images has not yet been satisfactory. We

argue two main reasons that are responsible for the problem: 1) First, due to the

unbalanced information processing of the high-level and low-level information in

conventional dehazing algorithms, 2) due to lack of trainable data pairs. To ad-

dress the above two problems, we propose a parallel dual-branch design that aims

to balance the processing of high-level and low-level information, and through a

method of transfer learning, utilize the small data sets to their full potential. The

results from the two parallel branches are aggregated in a simple fusion tail, in

which the high-level and low-level information are fused, and the final result is

generated. To demonstrate the effectiveness of our proposed method, we present

extensive experimental results in the thesis.
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Notation and abbreviations

AGCA-Net Dual Branch Attention Guided Context Aggregation Network

KTDN Knowledge Transfer Dehazing Network

CNN Convolutional Neural Network

ReLu Rectified Linear unit

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity

GPU Graphics Processing Unit

SOTS Synthetic Objective Testing Set

RESIDE Realistic Single Image Dehazing Dataset

ITS Indoor Training Set of RESIDE

NH-Haze Non-homogeneous Haze
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Chapter 1

Introduction

1.1 Problem Background

Image degradation arises from various environmental conditions due to the ex-

istence of aerosols such as fog, haze, and dust. These phenomena mitigate im-

age visibility by creating color distortion, reducing contrast, and fainting object

surfaces, which is undesirable in applications such as autonomous driving, aerial

remote sensing, and video surveillance.

Image dehazing aims to recover the haze-free image from its degraded version,

which has received tremendous attention in the computer vision field and the artifi-

cial intelligence community over the past several decades. It’s also been considered

a crucial preprocessing step to lots of high-level vision tasks such as image clas-

sification and object detection. And many dehazing methods (He et al. 2010; Li

et al. 2017; Ren et al. 2016; Qin et al. 2020; Li et al. 2019; Shu et al. 2019; Engin

et al. 2018) have been proposed.
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Figure 1.1: Samples from our dehazing results.

The atmospheric scattering model(ASM) has been widely used to describe the

formation of hazy images. This model was first introduced by McCartney (Mc-

Cartney 1976). The ASM can be usually formulated as:

I(x) = J(x)t(x) + A(1− t(x)), (1.1)

where I(x) donates the observed intensity, J(x) donates the clean image, A is the

global atmosphere light, and t(x) = e−βd(x) is the transmission map, with β and

d(x) being the atmosphere scattering parameter and the scene depth respectively.

Traditional dehazing methods (He et al. 2010; Berman, Avidan, et al. 2016;

2
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Zhu et al. 2015) try to use hand-crafted prior such as color attenuation prior (Zhu

et al. 2015), non-local prior (Berman, Avidan, et al. 2016) and DCP prior (He

et al. 2010) to estimate global atmosphere light A and transmission map t(x) of

the ASM. These methods have shown certain success dealing with homogeneous

haze scenes, but fail on most the real-world images due to complex nature of the

scenes. With the hand-crafted prior, it is difficult to predict the complex haze,

thus a data-driven approach that utilizes deep learning neural networks to dehaze

the image appears to be the most promising method in recent years.

Since convolutional neural network(CNN) has made great progress in image

restoration tasks, the dehazing algorithm (Liu et al. 2020; Dong et al. 2020; Anvari

and Athitsos 2020; Fu et al. 2021; Liu et al. 2021) naturally also has a lot of related

work based on CNN. This type of method can be divided into two categories. The

first category is still based on the atmospheric degradation model (Zhang and

Patel 2018; Li et al. 2017; Cai et al. 2016), which uses neural networks to estimate

the parameters in the model. Most of the early methods are based on this idea.

However, this can easily lead to accumulating errors due to model mismatch, which

makes dehazing less accurate. The second type is to use the input hazy image to

directly output the hazy image without using ASM model, which is often called

end-to-end (Liu et al. 2019; Ren et al. 2018; Qin et al. 2020) in deep learning.

Although the end-to-end approach has made significant progress in the field of

homogeneous dehazing, the image quality of these algorithms in the context of

non-homogeneous real-world image has not yet been satisfactory.

The two main reasons that we think are responsible for the problem are as

follows:

3
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1. Since the non-homogeneous haze in the picture is unevenly distributed, a lot

of high-level details are obscured by the hazy, and a lot of low-level color

information about the image is also lost. Consequently, this requires the

hazing algorithm to have a larger enough receptive field to fully extract the

information obscured by the haze. Thus multi-scale structures like encoder-

decoder model and U-net (Ronneberger et al. 2015; Wu et al. 2020; Fu et al.

2021) model are often employed in the state-of-the-art dehazing algorithm to

achieve this purpose. Though the multi-scale structure can effectively extract

image features, due to the nature of down-sampling, a significant amount of

low-level color information is also lost, which results in color distortion in the

outputs. Therefore, we argue that the unbalanced processing of the high-

level and low-level information in the non-homogeneous haze image is an

important reason for the inefficient hazy removal.

2. In general, CNN-based dehazing methods require a paired training set, that

is, hazy images and their clear, and an effective dehazing model should be

able to learn from the mapping of a hazy image to the clear one. However,

as fog/haze is a natural phenomenon, it is difficult in reality to obtain an

accurate image pair that is capable of being learned by a neural network.

Prior models are trained heavily on synthetic data sets, which also impacted

the model performance on real-world data. As of 2020, NTIRE2020 non-

homogeneous dehazing challenge (Ancuti et al. 2020b) has released 45 image

pairs that can be used for training, and this year, 25 more image pairs have

been released from NTIRE2021 non-homogeneous dehazing challenge (An-

cuti et al. 2021). These precious photographs were taken with professional

4
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haze generating machines and cameras systems. However, the volume of

photos contained in these public data sets continues to be limited, which

presents a second challenge for researchers.

To address the above two problems, we propose a dual-branch design that aims

to balance the processing of high-level and low-level information, and through a

method of transfer learning, utilize the small data sets to their full potential. More

specifically, our network is divided into two parallel branches, each accepting the

same input. One is the conventional encoder-decoder structure, which employs a

multi-scale approach that allows for the effective extraction of high-level informa-

tion. At the same time, as a solution to the limitation of the small dataset, we

employ the transfer learning strategy in the encoder part of the branch. A pre-

trained ImageNet network (Res2Net) is used in order to transfer substantial prior

knowledge, allowing the decoder to learn and extract information more efficiently.

For our second branch, we give up the multiple scales structure and let the image

pass through the network in full resolution. Furthermore, in order to expand the

receptive field further, we also bring dilated convolution in each layer, so that

this branch can obtain more low-level information. On the other hand, we have

brought attention modules in the two branches to reduce performance damage

caused by complex haze. Finally, the results from the last two parallel branches are

aggregated in a simple fusion tail, in which the high-level and low-level information

are fused together, and the final result is generated. Although our final result

still falls short of the performance of state-of-the-art systems, a large number of

experiments have confirmed our design to be feasible and effective. Please refer to

Fig 1.1 for samples from our result.

5
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1.2 Thesis Structure

In the next chapter, we will give a quick review of the current existing dehaz-

ing techniques and previous work. Then, Chapter 3 will introduce the proposed

network in detail including model architecture, attention module and loss func-

tion. Chapter 4 will compare our proposed network with other current state-of-art

dehazing algorithms. It will also discuss datasets used and various training pa-

rameters involved in training our model. Finally, Chapter 5 concludes our thesis.

6



Chapter 2

Previous Work

2.1 Single Image Dehazing

In the aspect of removing haze from single hazy images, dehazing algorithms can

be divided into two categories: the traditional prior based methods and deep-

learning-based methods (as shown in Fig 2.1).

Figure 2.1: The workflow of the supervised dehazing method. The blue arrow
indicates ASM-based methods while the green arrow stands for methods that do
no require ASM.

7
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Prior Based Methods: Various image priors have been proposed to remove

haze from single hazy images. The prior-based methods utilize (He et al. 2010)

handcrafted priors from the empirical observation to make predictions based on

atmospheric scattering model. A classical way to utilize the ASM model is to

estimate the unknown parameters within Eq.(1.1), where the trans-map t(x) can

be obtained though depth map d(x), and if we can also estimate global atmospheric

light A, Eq.(1.1) can be inverted as:

J(x) = I(x)− A
t(x) + A. (2.1)

Among the process of using prior and assumption to successfully estimate J(x),

(Tan 2008) observed that compared to the input hazy image, the clear image

must have higher contrast. Though maximizing the contrast of local region in the

dehazed image, Tan’s algorithm achieved a visually pleasing result. (Zhu et al.

2014) utilized a color attenuation prior and by creating a linear model of scene

depth for hazy image, supervised the learning process to learn model parameters.

Dark Channel Prior(DCP) was introduced by (He et al. 2010) which brings a

more reliable way to calculate the transmission matrix. DCP asserts that hazy

image may have extremely low intensities in at least one color channel. In other

words, the minimum intensity of such patches should have low values. Thus we

can define the DCP of the J(x):

Jdark (x) = min
c∈{r,g,b}

(
min
y∈Ω(x)

J c(y)
)
, (2.2)

where J c is the dark channel of J image, Ω(x) is a collection of areas for which the

8
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center x is located. Base on author’s assertion, the dark channel value of a natural

image tends to have a very low or sometimes zero value:

Jdark = 0. (2.3)

Considering Eq.(2.1) becomes invalid when t(x) tends to be 0, a lower bound t0 is

incorporated into the Eq.(2.2):

J(x) = I(x)− A
max (t(x), t0) + A. (2.4)

Suppose that the transmission map t(x) is constant within local patch Ω(x), do-

nated t̃(x). A is assumed to be given, and from Eq.(1.1) we have:

˜
min
c

(
min
y∈Ω(x)

(
Ic(y)
Ac

))
) = t̃(x) min

c

 min
y∈Ω(x)

 J c( y
)

Ac

+ (1− t̃(x)).(2.5)

After invoking Eq.(2.3) we have t̃(x):

t̃(x) = 1−min
c

(
min
y∈Ω(x)

(
Ic(y)
Ac

))
, (2.6)

where minc
(
miny∈Ω(x)

(
Ic(y)
Ac

))
is the dark channel prior of the standardized hazy

image. Now we can directly estimate the atmospheric transmission map t(x).

DCP has shown to be effective for image dehazing problems. However, when

the scene objects are inherently similar to sky area or no shadow appearances in

the scene, DCP method tends to be invalid.

Despite the tremendous effort on utilizing image priors, all the priors still rely

9
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on assumption and have a limit on certain target scene, leading to unpleasant

results in complex real-life scenarios.

Learning Based Methods: In contrast to the above methods which rely on

hand-crafted prior, deep-learning-based method (Du and Li 2018; Engin et al. 2018;

Pei et al. 2019; Li et al. 2018b) is a data-driven approach that use convolutional

neural network(CNN) to recover hazy images directly. For instance, (Cai et al.

2016) proposed an end-to-end model that utilizes multiple convolutional layers

to estimate the medium transmission map t(x) in the ASM, but they left the

estimation of atmospheric light A behind.

Figure 2.2: An overview of the proposed DCPDN image dehazing method. There
are four modules in the DCPDN: 1. Dehazing via ASM. 2. Joint discriminator.
3. Pyramid densely connected transmission map estimation net. 4. Atmospheric
light estimation net. We begin by estimating the transmission map based on
pyramid densely-connected transmission estimation net. Next, the atmospheric
light is predicted using the U-net. Finally, we estimate the dehazed image from
the estimated transmission map and atmospheric light.(Image originally used in
(Zhang and Patel 2018))

10
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The densely connected pyramid dehazing network(as shown in Fig 2.2) is in-

troduced by (Zhang and Patel 2018), who argue that previous method mainly

focusing on the estimation of t(x) without the A. So they took the advantage of

U-net (Ronneberger et al. 2015) and integrated with the edge retention pyramid

densely-connected encoder-decoder to better estimate t(x) and A respectively.

The AOD-Net (Li et al. 2017) represents another direction by using light-weight

end-to-end CNN directly to generate clear images, without estimation of transmis-

sion map and atmospheric light. This lightweight design can be embedded into

other models likes Faster-RCNN. The core idea is to combine t(x) and A in Eq.(1.1)

as a single parameter K(x); after reformulate Eq.(2.1), we get:

J(x) = K(x)I(x)−K(x) + c, (2.7)

where c is a constant value. The K-estimating module in the network is responsible

for estimating the K(x) parameter from the input I(x), followed by a clean image

generation module, which uses K(x) as its input adaptive parameter to estimate

J (x). The network diagram can be seen from Fig 2.3.

As we mentioned earlier, that atmosphere scattering model plays an important

role in the network design process of the aforementioned dehazing algorithm. This

model is also widely used to produce synthetic homogeneous data set during the

training process.

(Liu et al. 2019) who proposed the GridDehazeNet raises the concern that the

model-dependent algorithm may perform worse on real-world images due to model

11
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Figure 2.3: The diagram and configuration of AOD-Net.(Image originally used in
(Li et al. 2017))

mismatch, thus they proposed a end-to-end method that has no reliance on the

atmosphere scattering model. The success of their work sheds a light to non-

model-dependent approach for dehazing tasks. Fig 2.4 illustrates their network.

Figure 2.4: The architecture of GridDehazeNet.(Image originally used in (Liu
et al. 2019))

GCA-net proposed by (Chen et al. 2019) also took a direct estimation approach,

and used smoothed dilated convolution(as shown in Fig 2.5) to fix the grid artifacts

12
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problems (as shown in Fig 2.6) introduced by conventional dilated convolution.

Figure 2.5: An overview of the proposed GCANet, which follows a basic auto-
encoder structure. The encoder part of the algorithm consists of three convolution
blocks, while the decoder part consists of one deconvolution block and two con-
volution blocks. In order to aggregate context information without grid artifacts,
smoothed dilated res-blocks have been inserted between them. The gate fusion
sub-network is used to fuse the features from different levels. (Image originally
used in (Chen et al. 2019))

The gated fusion sub-network they proposed can fuse image features both on

high-level and low-level coherently.

(Qin et al. 2020) proposed FFA-Network with a novel feature attention mod-

ule that combines channel-wise and pixel-wise attention which achieved pleasing

results. However, despite all the researching effort, there is still a domain gap

between the synthetic and real world data-set for dehazing due to the difficulty of

removing non-uniformly distributed haze.

To cope with the complex distribution of nonhomogeneous images, (Wu et

al. 2020) introduce a knowledge transfer dehazing network(KTDN) that utilizes

a teacher network as supervision to the student network, where the teacher was

trained substantially using clear images only in order to provide the strong im-

age prior for the student network to learn how a clean image should look like.

The encoder part of student network is a Res2Net (Gao et al. 2019) pre-trained

13
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Figure 2.6: This figure illustrates grid artifacts associated with dilated convolution
and the proposed smoothed dilated convolution. Each of the four points in the
next layer is indicated by a different color. They are associated with completely
different sets of units of the previous layer, which may cause the grid artifacts to
appear. On the other hand, the smoothed dilated convolution, which introduces
an extra separable and shared convolution layer before the dilated convolution,
adds the dependency between input units.

Figure 2.7: The feature fusion attention network (FFA-Net) architecture.(Image
originally used in (Qin et al. 2020))

14
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on ImageNet classification dataset. This novel approach ranks second place in

NTIRE-2020 nonhomogeneous (Ancuti et al. 2020b) dehazing challenge.

2.2 Transfer Learning

Transfer learning aims at transferring knowledge between different domains to help

to improve performance of the target learner. This concept may originally come

from psychology research of education (Judd 1927). Psychologist Judd proposed

that learning to transfer is the result of generalizing one’s experiences. If a per-

son can generalize his experiences, it is possible to transfer from one scenario to

another. This process can be intuitively understood by Fig 2.8.

Figure 2.8: Illustrative examples about transfer learning

This concept can be also applied to machine learning tasks when there is lack of

target training data. One can utilize generalized knowledge gained from another

dataset to improve performance as long as two data-sets contain related source

domains.

15
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In our experiment, we utilize a network pre-trained for image classification tasks

and leverage the strong feature extraction ability generalized during the process.

Compared with the random initialized network, the pre-trained network demon-

strates robust performance in both visual and quantitative evaluation metrics.
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Chapter 3

Proposed Method

This section describes our network. First, our network consists of two branches

with different tasks and focuses on design. The attention guided context aggrega-

tion branch focuses on extracting low-level information(color, texture, etc.), while

the transfer learning branch, focuses on extracting high-level information(object,

event, etc.). We will look at the structural details(shown in Fig 3.1) of the two

sub-networks and their design logic respectively, and analyze the benefits of each

branch. Then we will introduce the loss functions used during the training process

and explain their meanings respectively.

3.1 Network Architecture

As shown in Fig 3.1, our model consists of two branches: attention guided context

aggregation(AGCA) branch and transfer learning branch. The dual-branch design

allows each branch to process information separately to tackle different tasks with
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same input. With the proper fusion method, this design has shown great perfor-

mance on various deep learning task (Dai et al. 2020; Wu et al. 2020) when two

branches are trained to be the complement of each other.

With this observation in mind, we design our dual-branch network with different

purposes: the attention guided context aggregation branch aims to minimize the

pixel loss during the conventional multi-scale process and the build-in attention

mechanism will further guide the branch to increase the visibility of low-level

features inside the heavy hazy area. The transfer learning branch, on the other

hand, helps to extract robust feature maps from the input with pre-trained weight;

the multi-scale encoder-decoder design is more capable of extracting high-level

representation. The fusion tail is also properly tested, concatenating both high-

level and low-level information from two branches, and fuse this complementary

information and return the dehazed output.

Figure 3.1: A representation of our model architecture. The model consists of
two branches: attention guided context aggregation(AGCA) branch and transfer
learning branch. AGCA branch consists of 14 AGCA blocks.
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3.1.1 Attention Guided Context Aggregation Branch

In traditional CNN, to increase the receptive field of the network while decreasing

the size of feature maps, sub-sampling operation is employed. As a result of

the reduced size of feature maps, the number of feature maps can be increased

without overloading the hardware memory, resulting in a bigger context for the

final prediction through the network.

Due to the complex distribution of non-homogeneous haze, dehazing algorithms

often suffer from loss of low-level details such as edge and corner or color distortion.

We argue that these phenomena are closely related to pixel loss during the side-

effect of handling the multi-size feature map using sub-sampling operation.

Inspired by the top path of (Zotti et al. 2017) where no sub-sampling operation

is performed to keep the feature map sizes constant, we aim to design the attention

guided context aggregation branch with a similar strategy within this branch to

override the side effect of sub-sampling. However, without using the sub-sampling

operation, the receptive field of the feature map is very small. Thus we adopt

the dialed-convolution (Yu and Koltun 2015) within each AGCA layer(shown in

Fig 3.2) to further increase the receptive field. Our final design of AGCA block is

based on the SDCAB block (Deng et al. 2019) from a deraining task.

As shown in Fig 3.2, each AGCA block consists of two AGCA layers and skip

connection, the skip connection further ensures the maximum information flow

though the 14 AGCA blocks. The AGCA block consists of three scales of dilated

convolution whose dilation scales are 1, 3, 5 respectively. We concatenate the out-

put features right after to ensure that the most significant feature can be extracted.
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Figure 3.2: Detail structure of attention guided context aggregation block. Each
block consists of two AGCA layers and a skip connection to ensure a large receptive
field and maximum information flow. The illustration of detailed dilated operation
has been shown on the right-hand-side of AGCA layer. (Please note that the
channel attention block in green color will only be used at the first layer of the
AGCA block due to computation cost.)

A simple channel attention (Hu et al. 2018) is used at the first layer of each AGCA

block after the concatenation to highlight salient features. Finally, we utilize a 1 x

1 convolution to reduce the feature dimensions. Please note, the channel attention

has only been added to the first layer of each AGCA to bring balance between

computational cost and performance. In the end, a long skip connection has also

been adopted between the first and last AGCA block to overcome the gradient

vanishing problem (Hochreiter 1998).
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Despite the effort to use feature maps at the same resolution and usage of dilated

convolution, the AGCA branch still suffers from over-fitting problems during the

training stage due to the small dataset provided during NTIRE challenge. To

leverage the full power of AGCA branch and bring dynamic between high-level

and low-level features, we are motivated to construct another branch that aims

to transfer the knowledge learned from another larger dataset to extend learning

ability of the whole system.

3.1.2 Transfer Learning Branch

Our transfer learning branch aims to help the AGCA branch overcome the over-

fitting problem during the training stage by utilizing extra prior knowledge gained

from the image classification task. To be more specific, we use Res2net (Gao et

al. 2019) pretrained on ImageNet (Deng et al. 2009) as the encoder. The detail

structure of Res2Net block can be seen from Fig 3.4.

Compared to the conventional bottleneck block, Res2Net block is known for its

ability to express multi-scale features at the fine granularity level and increase the

receptive field of each layer. This feature is consistent with our requirement for

the non-homogeneous dehazing network to increase the receptive field for better

visibility of the complex haze. As can be seen from Fig 3.4, after the input features

pass the first 1x1 convolution layer, we divide the feature map to s equal subset,

where s is a control parameter for scale dimension originally proposed by the (Gao

et al. 2019); for our branch, s = 4. We define the subset as xi, i ∈ {1, 2, . . . , s}.

Each feature subset has the same feature size but only a 1/s of the number of

channels compared to the input features. Besides x1, all other sub-features xi
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Figure 3.3: Attention Module

have corresponding 3x3 convolution kernel, denoted by Ki(). The output of Ki

is denoted by yi. Each 3x3 convolution operation can potentially accept all the

feature information on its left, and each output can increase the receptive field,

so each Res2Net output can obtain different number and combination of receptive

field sizes/scales. Thus we can express yi as:

yi =


xi i = 1;

Ki (xi) i = 2;

Ki (xi + yi−1) 2 < i ≤ s.

(3.1)

As for the decoder part, we adopt PixelShuffle (Shi et al. 2016) layer to up-

sample the feature map to the appropriate size. The main function of pixel shuffle
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layer is to obtain a high-resolution feature map by convolution and multi-channel

reorganization of the low-resolution feature map. This method was originally pro-

posed to solve the problem of image super-resolution. It has become an effective

way of up-sampling feature maps to original resolution.

Inspired by (Wu et al. 2020), we also adopt an attention module to further

guide information extraction process during handling non-homogeneous haze. We

have illustrated the attention module in Fig 3.3. The channel attention module is

modified from the original channel attention module (Wu et al. 2020) by adding

a max-pooling layer in parallel with average pooling layer. This design is based

on CBAM channel attention (Woo et al. 2018), which shows that max-pooling

layer can infer finer channel-wise attention on distinctive object features. For both

channel and pixel attention, we utilize the sigmoid function as activation function.

The feature first passes through the channel attention module then passes to the

pixel attention. A skip connection is adopted to preserve more information.

3.1.3 Fusion Tail

The fusion tail takes the output feature maps generated by two distinct branches

and outputs a clear image. To be more specific we have chosen two 7x7 convolution

kernels followed by a tangent activation function to provide sufficient learning

parameters.

3.1.4 Loss Function

To train the proposed network in a supervised manner, we employ the smooth L1

loss, MS-SSIM loss and perceptual loss.
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Figure 3.4: Res2Net Module

Smooth L1 aims to provide a quantitative measurement of error distance be-

tween the predicted image and ground truth image. It is a robust L1 norm that

is less sensitive to outliers than the MSE since L1 can prevent gradient explosions

(Girshick 2015). On the other hand, perceptual and MS-SSIM loss ensure that

the visual quality of the predicted image is similar to the ground truth by provid-

ing high-level feature space and measurement of structural similarity respectively.

The total loss of the proposed network is computed by a weighted sum of the

aforementioned loss to enhance training performance.

Smooth L1 Loss. Smooth L1 loss can be considered as a combination of

L1-loss (Zhu et al. 2015) and L2-loss (Zhao et al. 2016). It behaves like L1 loss
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with small absolute errors and behaves like L2 Loss when the absolute value of the

argument is close to zero. Smooth L1 loss has been widely used in various image

restoration tasks (Deng et al. 2020; Wu et al. 2021), and it can be express as:

Lsmooth−L1 = 1
N

N∑
y=1

3∑
i=1

α
(
Ŷi(z)− Yi(z)

)
, (3.2)

where Ŷi(z) and Yi(z) represent the intensity of the i-th channel of each pixel z

in the reconstructed haze-free image and in the ground truth, respectively. N

indicates the number of pixels total, where α can be defined as follows:

α(e) =


0.5e2, if |e| < 1

|e| − 0.5, otherwise .
(3.3)

Perceptual Loss. Besides the pixel-level loss, perceptual loss compares the

features from the convolution of real pictures with those from the convolution

of the generated picture, and brings high-level feature space (content and global

structure) closer. We use VGG19 (Simonyan and Zisserman 2014) pre-trained

weight on ImageNet (Deng et al. 2009) as a loss network, and we compute the

feature losses at layers 2, 7, 12, 21 and 30 to ensure perceptual quality. The loss

function can be described as:

Lper =
3∑
j=1

1
CjHjWj

‖φj(y)− φj (yt)‖ , (3.4)

where y and yt are restored image and ground truth respectively. Hj , Wj , and

Cj denote the height, the width, and the channel of the feature map in the j-th
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layer, φj is the activation of the j-th layer.

SSIM loss. Furthermore, we employ a structural similarity loss (SSIM) (Wang

et al. 2003) that is intended to reconstruct the RGB images through improving

the structural similarity index. In contrast to predictions made without applying

SSIM loss, the resulting images are more perceptually acceptable. And the loss

function can be defined as :

LSSIM = 1− FSSIM(Ŷi − Y i), (3.5)

where F denotes the function of calculating structural similarity index.

Total loss. The total loss is described as:

Ltotal = λsmooth−L1Lsmooth−L1 + λSSIMLSSIM + λperLper, (3.6)

where λsmooth−L1, λSSIM , λper are the hyper-parameters used to equally weigh

different losses during the training stage.
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Chapter 4

Experiments

In this section, we will first introduce dataset details, experiment setting, and

evaluation metrics. Then, a series of ablation studies are conducted to demonstrate

the benefit of each component in AGCA-Net. Finally, we compare our method

with the other state-of-the-art dehazing algorithms. In the last part, AGCA-

Net is tested extensively on synthetic and real-world datasets to demonstrate its

effectiveness in dehazing quantitative results and qualitative effects.

4.1 Training and Testing Dataset

There are two categories in our training dataset: ASM-based synthetic dataset

and real-world camera-based dataset. These datasets contain different haze distri-

butions and have been widely used in various dehazing algorithms.
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4.1.1 ASM-Based Dataset

Since there aren’t many real-world hazy photos and their haze-free counterparts,

data-driven dehazing methods often rely on synthetic hazy images, which can be

derived by appropriately choosing the scattering coefficient and the atmospheric

light of clear images generated using the ASM model.

RESIDE (Li et al. 2018a), which is an abbreviation of Realistic Single Image

Dehazing, is a large-scale benchmark dataset consisting of both synthetic and real-

world hazy images. RESIDE contains four subsets with diverse data sources and

image content. For the ASM-based dataset, we adopt the widely used Indoor

Training Set(ITS) and indoor Synthetic Objective Testing Set(SOTS) of RESIDE

as our training and testing set respectively. The Indoor Training Set(ITS) of RE-

SIDE contains 13990 hazy image pairs, generated from 1399 clear indoor images

using atmospheric spherical scattering model with β ∈ [0.6, 1.8] and A ∈ [0.7, 1.0].

The d(x) is derived from the (Silberman et al. 2012) and (Scharstein and Szeliski

2003). The Synthetic Objective Testing Set (SOTS) is utilized for testing, com-

prised of 500 hazy images pairs.

4.1.2 Real-World Dataset

Real-world datasets are generally hard to collect thus often appear in small scale,

thus we try to utilize as much resources as we can to deal with the over-fitting

problem when training with small scale dataset. The real-world dataset we adopt

all utilize professional haze-generated machines to simulate the real-world haze.

They can be grouped into two categories based on the distribution characteristics

of the haze: homogeneous and non-homogeneous haze.
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For the homogeneous haze real-world dataset, we adopt the Dense-Haze dataset

(Ancuti et al. 2019a) generated for NTIRE2019 Dehazing Challenge(Ancuti et al.

2019b). DENSE-HAZE dataset contains 45 training pairs, 5 testing pairs and 5

validation pairs captured in a dense homogeneous haze environment. We use the

45 training pairs together with 5 additional validation pairs as the training set,

and 5 testing pairs as the testing set.

For the nonhomogeneous haze real world dataset, we adopt the NH-Haze (An-

cuti et al. 2020a) dataset obtained from NTIRE2020 (Ancuti et al. 2020b) De-

hazing Challenge and NH-Haze2 dataset generated for NTIRE2021 (Ancuti et al.

2021) Dehazing Challenge. NH-Haze contains 45 training pairs, 5 validation pairs

and 5 additional testing pairs. NH-HAZE2, on the other hand, only contains 25

nong-homogeneous hazy images and the corresponding ground truth image with

no additional validation and testing pair. Thus, we choose 20 of the 25 pairs as

the training set, and the remaining 5 pairs as the testing set.

4.2 Evaluation Metrics

Every method in this section is trained in the same way with AGCA-Net for

fair comparison, and then evaluated on the test sets mentioned above. For the

quantitative comparison, two objective quality metrics are used: Peak Signal to

Noise Ratio (PSNR) and Structural Similarity Index (SSIM). Assuming that a

dehazed image and the corresponding ground-truth are given, both PSNR and

SSIM are calculated to determine how similar an image is to its reference both

pixel-wise and structurally.
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Mathematically, for an m× n dehazed image K and its ground truth image I,

the PSNR is defined as:

PSNR = 10 · log10

(
MAX2

I

MSE

)
, (4.1)

where MSE is described as,

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2. (4.2)

SSIM can be defined as:

SSIM(I,K) = (2µIµK + c1) (2σIK + c2)
(µ2

I + µ2
K + c1) (σ2

I + σ2
K + c2) , (4.3)

where µI , σ2
I are the mean value and variance of I, µK , σ2

K are the mean value

and variance of K, σIK is the covariance of I and K. c1 = (a1L)2 , c2 = (a2L)2 are

two constants with a1=0.01 and a2=0.03 being default values respectively and L

represents the range of pixel value.

4.3 Training Details

We adopt the same training strategy regardless of the differences in the char-

acteristics of each dataset. First, We use simple data augmentation strategy to

increase training samples to 8 times of original image counts. In order to do this,

we crop 256x256 size patches and provide random rotation of 90, 180, 270 degrees

along with horizontal or vertical flip. Second, for best optimization result we uti-

lize Adam optimizer (Kingma and Ba 2014) with initial learning rate 0.0001, and
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β1 = 0.9 and β1 = 0.999. The batch size is set to be 4 and we conducted our all

of experiments on a single Nvidia V100 GPU. Our method is implemented using

Pytorch library. Finally, to balance the loss in a smoother loss surface, we set

λsmooth−L1 = 1, λSSIM = 0.22, λper = 0.36 respectively.

4.4 Ablation Study

In this study, we consider different configurations and module combinations of

the attention guided context aggregation network(AGCA-Net). During the study,

a combination of three factors goes into ablation study. First, we test the ef-

fectiveness of ImageNet pre-trained weights. Second, we test the effectiveness of

the AGCA-block. Finally, we test the effectiveness of combined the dual branch

together. The ablation configuration is shown below:

1. TLB without pre-trained weight: only use the randomly initialized transfer

learning branch.

2. TLB with pre-trained weight: only use the transfer learning branch, but

loaded with ImageNet pre-trained weight

3. AGCA-10: only use the AGCA branch constructed by 10 attention guided

context aggregation blocks.

4. AGCA-12: only use the AGCA branch constructed by 12 attention guided

context aggregation blocks.

5. AGCA branch: only use the AGCA branch proposed in this paper, with 14

attention guided context aggregation blocks.
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6. TLB without pre-trained + AGCA branch: use both transfer learning branch

and proposed AGCA branch without loading ImageNet pre-trained weight.

7. TLB + AGCA branch: use both pre-trained transfer learning branch and

AGCA branch.

Methods Pre-trained PSNR SSIM
(1)TLB - 18.01 0.553
(2)TLB

√
19.75 0.783

(3)AGCA-10 - 19.12 0.694
(4)AGCA-12 - 19.97 0.736
(5)AGCA - 20.05 0.819

(6)TLB+AGCA - 20.15 0.862
(7)TLB+AGCA

√
20.49 0.879

Table 4.1: Quantitative comparison of ablation study. TLB represents the transfer
learning branch, AGCA represents the 14-layers attention guided context aggre-
gation Branch. “

√
” represents the branch loaded with ImageNet pre-trained

weight, “ - ” represents that no pre-trained weight was loaded.

Please refer to Fig 4.1 for visual comparison result of the NH-HAZE2 from

NTIRE2021. We conduct our experiment on the test set of NH-HAZE2. The

quantitative results can be found in Table 4.1. From Table 4.1, we can clearly see

the improvement in both PSNR and SSIM when using pre-trained ImageNet weight

(by comparing (1) and (2)), thus suggesting that utilizing knowledge transfer can

indeed boost dehazing performance. On the other hand, by comparing (3),(4),(5),

we also can observe that both PSNR and SSIM increase with more AGCA blocks.

The AGCA branch (5) proposed in this paper with 14 AGCA blocks, achieves the

maximums of 20.05 dB and 0.819 in terms of PSNR and SSIM, which indicates

the effectiveness of the AGCA blocks even without using ensemble strategy.
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(6) and (7) are dual-branch model designs, and both have superior dehazing per-

formance compared to single branch designs. By comparing (6) and (7), we find by

loading the network with pre-trained ImageNet weight, the dehazing performance

is boosted 0.34 dB in terms of PSNR, which shows the strong predictive ability

of the pre-trained transfer learning branch. With our full model, we achieve 20.49

dB and 0.879 in PSNR and SSIM. Both quantitative and visual results indicate

the effectiveness of our design.

Figure 4.1: The visual comparison of the NTIRE2021 NH-HAZE2 ablation study

4.5 Comparisons with the State-of-the-art

We compare our proposed method with state-of-art methods on both synthetic

ASM based dataset (Li et al. 2018a) and real-word camera based dataset (Dense-

Haze (Ancuti et al. 2019b), NH-Haze (Ancuti et al. 2020b), and NH-Haze2 (Ancuti

et al. 2021)). Those SOTA methods include: DCP (He et al. 2010), AOD-NET (Li

et al. 2017), GCA-Net (Chen et al. 2019), FFA-net (Qin et al. 2020) and KTDN
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(Wu et al. 2020). We train DCP, AOD-Net and KTDN on RESIDE dataset, and

obtain testing results of GCA-Net and FFA-Net from release paper and corre-

sponding testing code. As for the real-world dataset, all methods are substantially

trained to gain best result. Although our method does not significantly surpass

the SOTA methods, the competitive results prove the effectiveness of our method.

Both visual and quantitative results of mentioned methods can be found in the

following section.

4.5.1 Result on RESIDE Dataset

Qualitative Visual Result Fig 4.2 shows the qualitative visual comparison of the

indoor images from RESIDE. DCP tends to cause severe color distortion (darker

than ground truth) due to the inaccurate estimation of ASM model, which harms

the output quality of the image. While the AOD-Net does largely overcome the

color distortion problem, it leaves much of the hazy effect un-removed. GCA-Net

surpasses the above two methods and removes most of the haze, but there are still

region suffering from color distortion. KTDN and our method have better visual

results by removing most of the haze without losing important image features

and causing color distortion. The FFA-net has the best visual result among all

methods.

Quantitative Result Table 4.2 shows the quantitative comparison of all the

methods. DCP and AOD-net with 18.93 dB and 19.06 dB PSNR respectively,

have the worst visual quality as well. All other methods have PSNR exceeding 30

dB. FFA achieves the best performance on PSNR, surpassing our method by 3.07

dB. Our method ranked second place in the testing.
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Methods DCP AOD-Net GCANet FFA KTDN Ours
PSNR 18.93 19.06 30.15 36.69 30.23 33.62
SSIM 0.882 0.852 0.975 0.988 0.982 0.936

Table 4.2: Quantitative comparisons of RESIDE(ITS) dataset. The best results
are in bold, and the second best are with underline.

Figure 4.2: Qualitative visual evaluation on RESIDE(ITS).

4.5.2 Result on Dense-Haze Dataset

Qualitative Visual Effect Result From Fig 4.3, we clearly see that due to the

dense haze of input images, there is a serious loss of details, textures, edges, and

colors in the input image. As the result of increasing dehazing difficulty, there are

color distortions in DCP such that the colors of results are bluer than a true sense,

and the priors are clearly violated in the certain area. AOD-Net generated output

is darker than ground truth, and large portion of the dense haze also remains un-

removed, and most of details of the image are still bury under haze. GCA-Net also

has difficulty in removing the dense haze especially in areas with a similar color.

KTDN and our method can remove most of the haze, but when haze is present in
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Methods DCP AOD-Net GCANet FFA KTDN Ours
PSNR 11.15 13.01 12.35 16.26 15.25 15.95
SSIM 0.423 0.471 0.469 0.526 0.531 0.552

Table 4.3: Quantitative comparisons of Dense-Haze dataset. The best results are
in bold, and the second best are with underline.

high concentrations, they may not be able to remove it completely. FFA has the

best visual result among all methods, but we can still observe severe loss of details

and color distortion in the most concentrated hazy area.

Quantitative Result As shown in Table 4.3, our method ranked 2nd place in

terms of PSNR and 1st place in SSIM, with 15.95 dB and 0.552 respectively. FFA-

net has best PSNR of 16.26 dB and the best visual performance overall. DCP,

AOD-net and GCA-net, which produced non-visually pleasing results, also shown

struggled performance in both PSNR and SSIM.

4.5.3 Result on NH-Haze Dataset

Qualitative Visual Result From Fig 4.4, we can see clearly that much of the

color information has been lost on DOP, which causes DCP to produce a bluer

color. Also, we can obverse remaining haze and artifacts. AOD-net cannot remove

the haze effectively as a big portion of area is still covered by non-homogeneous

haze. GCA-net also suffer from lost of details and shows deviate color. In addition,

due to the huge GPU usage, we have to split the input image to 4 smaller chunks

and combine them together after individual inference, resulting in more color dis-

tortion. Although FFA shows good results as it has removed a large portion of

the haze, it also suffers from GPU overload problem, but relying on the strong

dehazing ability, the FFA experiences a lighter "checkerboard" effect compared to
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Methods DCP AOD-Net GCANet FFA KTDN Ours
PSNR 12.92 12.94 17.29 18.79 20.31 20.45
SSIM 0.485 0.395 0.601 0.638 0.736 0.737

Table 4.4: Quantitative comparisons of NH-HAZE 2020 dataset. The best results
are in bold, and the second best are with underline.

AOD-net. KTDN can remove most of the complex haze, and reconstruct most

of the sharp edges with a little artifact. Our method produces similar visual re-

sult as KTDN by preserving most of the details but also has a more vivid color.

This again shows the effectiveness of our design by restoring both high-level and

low-level information.

Quantitative Result DCP and AOD-Net have the worst performance both

visually and quantitatively, with 12.92 dB and 12.94 dB in PSNR respectively.

Our method achieves the best PSNR score of 20.45 dB, 0.14dB more than the

KTDN. The results can be found in Table 4.4.

4.5.4 Result on NH-Haze2 Dataset

Qualitative Visual Effect Result From Fig 4.5, DCP still produces a bluish

image and artifact. AOD-Net performs better than NH-Haze dataset by removing

more haze, but still can’t produce a visually pleasing result. Both FFA and KTDN

manage to remove most of the haze but still suffer color distortion in the dense

haze area. Our method achieves the best visual results by removing most of the

haze and minimum color deviation among all methods.

Quantitative Result Our method also achieves the best quantitative result in

the dataset, with the highest PSNR score of 20.49 dB and SSIM 0.879. FFA ranked
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Methods DCP AOD-Net GCANet FFA KTDN Ours
PSNR 12.56 13.98 19.01 20.42 20.38 20.49
SSIM 0.405 0.5589 0.801 0.858 0.752 0.879

Table 4.5: Quantitative comparisons of NH-HAZE 2021 dataset. The best results
are in bold, and the second best are with underline.

Methods Parameters
AOD 1.7K
FFA 3.7M
GCA 0.7M
KTDN 40M
Our 68M

Table 4.6: Total number of parameter of each method.

2nd place with 1.63 dB gained compared to NH-Haze. GCA-net also improves

significantly compared to NH-Haze, with 19.01 dB. The results can be found in

Table 4.5.

4.5.5 Runtime Comparison

We conduct this experiment on a single Nvidia V100 GPU, and show the result in

Fig 4.6. We also provide the total number of parameters of each method in Table

4.6. Our proposed method takes about 0.382 seconds to dehaze an image with size

1200 x 1600, which is very close to KTDN with 0.35s. Also our method has 68M

total parameters and it is the largest model among all other methods. Please refer

to Table 4.6 for details.
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Figure 4.3: Qualitative visual evaluation on Dense-Haze.
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Figure 4.4: Qualitative visual evaluation on NH-Haze.
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Figure 4.5: Qualitative visual evaluation on NH-HAZE2.
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Figure 4.6: Compare the runtime performance of DCP, AOD, GCA, FFA, KTDN
and our methods on NH-HAZE2.
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Chapter 5

Conclusion

In this thesis, we have proposed a dual-branch attention guided context aggrega-

tion network, namely AGCA-Net. Due to the dual-branch design, we can focus

on high-level and low-level information separately, then combine and balance the

information between the two in the output dehazed image. Also, we utilize a

transfer learning strategy in the transfer learning branch with an ImageNet pre-

trained weight to remove haze even when there is only a small dataset available.

Although our final result still falls short of the performance of state-of-the-art sys-

tems, a large number of experiments have confirmed our design to be feasible and

effective.
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