Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26150
Title: Realistic Galaxy Simulations: Feedback, Magnetic Fields and the ISM
Authors: Robinson, Hector
Advisor: Wadsley, James
Department: Physics and Astronomy
Keywords: galaxies;hydrodynamics;supernova;magnetic fields;magnetohydrodynamics;galaxy evolution;high performance computing
Publication Date: 2021
Abstract: The evolution of galaxies rely on a wide variety of physics, and numerical simulations are one of the main tools used to study them. In this thesis we develop a framework for what models can be used to realistically simulate galaxies and study their evolution. We begin with setting specific requirements on the numerical resolution of galaxies, and then test the effects of different stellar feedback models on isolated disk galaxies. We then investigate the addition of magnetic fields into the simulations, and what role they play in determining the contents, behaviour, and star formation, within the interstellar medium of galaxies.
URI: http://hdl.handle.net/11375/26150
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Robinson_Hector_S_2020January_MSc.pdf
Open Access
9.9 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue