Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26121
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKhan, Kamil-
dc.contributor.authorYuan, Yingwei-
dc.date.accessioned2021-01-02T02:13:39Z-
dc.date.available2021-01-02T02:13:39Z-
dc.date.issued2020-
dc.identifier.urihttp://hdl.handle.net/11375/26121-
dc.description.abstractNonsmoothness appears in various applications in chemical engineering, including multi-stream heat exchangers, nonsmooth flash calculation, process integration. In terms of numerical approaches, convex/concave relaxations of static and dynamic systems may also exhibit nonsmoothness. These relaxations are used in deterministic methods for global optimization. This thesis presents several new theoretical results for nonsmooth sensitivity analysis, with an emphasis on convex relaxations. Firstly, the "compass difference" and established ODE results by Pang and Stewart are used to describe a correct subgradient for a nonsmooth dynamic system with two parameters. This sensitivity information can be computed using standard ODE solvers. Next, this thesis also uses the compass difference to obtain a subgradient for the Tsoukalas-Mitsos convex relaxations of composite functions of two variables. Lastly, this thesis develops a new general subgradient result for Tsoukalas-Mitsos convex relaxations of composite functions. This result does not limit on the dimensions of input variables. It gives the whole subdifferential of Tsoukalas-Mitsos convex relaxations. Compare to Tsoukalas-Mitsos’ previous subdifferential results, it does not require additionally solving a dual optimization problem as well. The new subgradient results are extended to obtain directional derivatives for Tsoukalas-Mitsos convex relaxations. The new subgradient results and directional derivative results are computationally approachable: subgradients in this article can be calculated both by the vector forward AD mode and reverse AD mode. A proof-of-concept implementation in Matlab is discussed.en_US
dc.language.isoenen_US
dc.subjectsensitivity analysisen_US
dc.subjectsubgradientsen_US
dc.subjectdirectional derivativesen_US
dc.subjectnonsmoothen_US
dc.subjectglobal optimizationen_US
dc.subjectconvex relaxationen_US
dc.titleSensitivity Analysis of Convex Relaxations for Nonsmooth Global Optimizationen_US
dc.typeThesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Yuan_Yingwei_2020December_MASc.pdf
Access is allowed from: 2021-12-23
Final MASc Thesis820.09 kBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue