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Abstract

Nonsmoothness appears in various applications in chemical engineering, including

multi-stream heat exchangers, nonsmooth flash calculation, process integration. In

terms of numerical approaches, convex/concave relaxations of static and dynamic

systems may also exhibit nonsmoothness. These relaxations are used in deterministic

methods for global optimization. This thesis presents several new theoretical results

for nonsmooth sensitivity analysis, with an emphasis on convex relaxations.

Firstly, the “compass difference” and established ODE results by Pang and Stew-

art are used to describe a correct subgradient for a nonsmooth dynamic system with

two parameters. This sensitivity information can be computed using standard ODE

solvers.

Next, this thesis also uses the compass difference to obtain a subgradient for the

Tsoukalas-Mitsos convex relaxations of composite functions of two variables.

Lastly, this thesis develops a new general subgradient result for Tsoukalas-Mitsos

convex relaxations of composite functions. This result does not limit on the dimen-

sions of input variables. It gives the whole subdifferential of Tsoukalas-Mitsos convex

relaxations. Compare to Tsoukalas-Mitsos’ previous subdifferential results, it does

not require additionally solving a dual optimization problem as well. The new sub-

gradient results are extended to obtain directional derivatives for Tsoukalas-Mitsos
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convex relaxations. The new subgradient results and directional derivative results are

computationally approachable: subgradients in this article can be calculated both by

the vector forward AD mode and reverse AD mode. A proof-of-concept implementa-

tion in Matlab is discussed.
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5.8 Top: plot of g(z) =
z21−z22+1

(z1−1)6+z2+1
on Z = [0, 1] × [0, 1] from Example

5.5.5; Middle: convex relaxation gcv of g. Bottom: L is the subtangent

plane of gcv at ẑ = [0.5, 0.5] constructed using obtained subgradient. . 75

5.9 Top: Plot of g(z) =
z21−z22+1

(z1−1)6+z2+1
on Z = [0, 1] × [0, 1] from Example

5.5.5; Middle: convex relaxation gcv of g. Bottom: L is the subtangent
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Chapter 1

Introduction

1.1 Background and Goals

1.1.1 Nonsmoothness in Optimization

In this thesis, a smooth function is considered to be a function that is differentiable.

Nonsmooth models or functions are continuous but not differentiable everywhere.

Nonsmooth optimization (NSO) refers to the “problem of minimizing (or maximiz-

ing) functions that are typically not differentiable at their minimizers (maximizers).”

(Bagirov et al., 2014) Nonsmoothness appears in applications in chemical engineering.

In modelling multi-stream heat exchange for example, nonsmoothness appears when

changing thermodynamic phases along the heat exchanger (Watson et al., 2015).

In nonideal vapor-liquid equilibrium modelling, inside-out algorithms contain nons-

moothness for flash calculation (Watson et al., 2017). Nonsmoothness also appears in

dynamic systems, including campaign continuous pharmaceutical manufacturing (Pa-

trascu and Barton, 2018; Sahlodin and Barton, 2015).
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Nonsmoothness also appears in other highly structured problems like neural net-

works, image denoising (De los Reyes and Schönlieb, 2013) and data mining (Ozögür-

Akyüz et al., 2008) etc.

In terms of numerical approaches, convex/concave relaxations of an optimization

problem are also a source of nonsmoothness in process system engineering. (Mc-

Cormick, 1976; Tsoukalas and Mitsos, 2014).

1.1.2 Sensitivity Analysis

Sensitivity analysis aims to describe how a system behaves in response to changes in

system parameters. Sensitivity information may be used to construct useful linear

approximations that may be employed in optimization methods. Sensitivity informa-

tion is critical in nonsmooth optimization. For example, a typical subgradient method

(Scholtes, 2012, Theorem 2.1) uses a subgradient at each iteration to approximate

the optimal solution in nonsmooth convex optimization, so that the overall method

converges. Similarly, cutting plane methods, bundle methods and level methods use

subgradients at each iteration to form piece-wise linear approximations for minimizing

a convex function (Hiriart-Urruty and Lemaréchal, 2013b; Nesterov, 2018). Sensitiv-

ity information in nonsmooth optimization typically comprises directional derivatives

and subgradients.

1.1.3 Convex Relaxations

An optimization problem is convex if both the objective function and constraints

are convex. Several applications involve nonconvexity. For example, in the process

control area, hydro power plants’ hydroelectric generators have been modeled using

2
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nonconvex correlations (Glotić et al., 2014). In gas pipeline operations, nonconvex-

ity also appears in objective functions representing compressors (De los Reyes and

Schönlieb, 2013). Nonconvexity of these systems makes them challenge to analyze

and simulate.

Convex/concave relaxations are critical in determinstic methods for global opti-

mization. Nonconvex problems are difficult to solve. Convex/concave relaxations

can provide useful approximations of global solutions for non-convex problems in ac-

ceptable times (Li, 2015). Convex relaxations of functions are also used to provide

bounding information to deterministic global optimization methods for nonconvex

systems (Horst and Tuy, 2013).

Convex/concave relaxations under/over-estimate the objective function and con-

straints. Below is a general minimization problem:

min
x∈X

f(x)

s.t. g(x) ≤ 0

(1.1.1)

where f is an objective function, g is the constraint function and X is a decision set.

Both f and g could be nonconvex. In this case, a general form of convex relaxation

of the problem (1.1.1) can be established as follows:

min
x∈X̄

f cv(x)

s.t. gcv(x) ≤ 0

(1.1.2)

where the function f cv is a convex relaxation of f , with f cv(x) ≤ f(x) for each x; gcv

is convex relaxation of g, with gcv(x) ≤ g(x); and X̄ is a convex set for which X ⊂ X̄.

3
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A solution of this relaxation (1.1.2) is guaranteed to be a valid lower bound for the

unknown global solution of (1.1.1).

One important application of convex relaxations is branch-and-bound methods

for global optimization (Falk and Soland, 1969; Horst and Tuy, 2013). This algo-

rithm uses convex relaxations at each iteration to calculate the lower bound in a

region (Horst and Tuy, 2013). This method guarantees the location of a global solu-

tion for a nonconvex optimization within a certain tolerance. Convex relaxation can

also be applied to optimal distributed control (ODC) problems for linear discrete-

time deterministic and stochastic systems to obtain global optimal (Fazelnia et al.,

2016). Convex relaxation can also be used in optimal power flow (OPF) problems

to find a global solution for IEEE benchmark systems by applying semi-definite pro-

gramming (Madani et al., 2014). This technique is guaranteed to work over acyclic

distribution networks.

There are many different types of convex relaxation schemes. For example, α-BB

convex relaxations are designed for nonconvex twice-differentiable function. (Adjiman

et al., 1998a,b) The α-BB algorithm operates within a branch-and-bound framework.

BARON’s convex relaxation for factorable problems involve relaxing optimization

problems directly (Ryoo and Sahinidis, 1996), and is available as a global optimiza-

tion solver in GAMS (Sahinidis, 1996). McCormick relaxation (McCormick, 1976;

Mitsos et al., 2009; McCormick, 1983) also provides a scheme for computing convex

underestimators and concave overestimators for factorable functions which are com-

posed of addition, multiplication, and simple univariate intrinsic functions. Tsoukalas

and Mitsos (Tsoukalas and Mitsos, 2014) extend the McCormick relaxation idea to

consider general compositions with multivariate outer functions.

4
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1.1.4 Goals

The “compass difference” named by Khan (Khan and Yuan, 2020) provides a way

to calculate a subgradient for any scalar-valued bivariate function that is locally

Lipschitz continuous and directionally differentiable. The first goal of this study is

to use this compass difference to propagate a subgradient in a nonsmooth dynamic

system with two parameters.

The second goal is using compass differences to propagate a subgradient for mul-

tivariate McCormick relaxations with two variables (Tsoukalas and Mitsos, 2014).

In this thesis, the third goal is to propagate a whole subdifferential set and di-

rectional derivatives for multivariate McCormick relaxations, no matter the number

of input variables. The new results aim to extend Tsoukalas and Mitsos sensitivity

results for multivariate McCormick relaxations (Tsoukalas and Mitsos, 2014). This

new subgradient result and directional derivative result can be used with any system

that applies multivariate McCormick relaxations.

1.2 Contributions and Structures

This thesis is organized into the following parts:

Chapter 2 introduces basic mathematical notation that will be used in this thesis:

including concepts of sets, vector spaces and matrices. Also, some established mathe-

matical concepts that will be used in latter parts are also summarized here, including

directional derivatives and subdifferentials, basic definitions of local Lipschitz conti-

nuity, compass differences (Khan and Yuan, 2020) and the Tsoukalas-Mitsos convex

relaxations (Tsoukalas and Mitsos, 2014) of composite functions.

5
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Chapter 3 and Chapter 4 present new applications of the compass difference.

Chapter 3 shows how to use compass differences to describe a correct subgradient

for solutions of parametric ordinary differential equations (ODEs) with parameters

in R2. This approach reduces to the classical ODE sensitivity approach of (Hartman,

2002, Section V, Theorem 3.1) when the original ODE is defined in terms of smooth

functions. Unlike established methods (Khan and Barton, 2014), this new formulation

can be solved by standard ODE solvers.

Chapter 4 uses compass differences and Hogan’s Theorem (Hogan, 1973) to obtain

a subgradient for the Tsoukalas-Mitsos convex relaxations (Tsoukalas and Mitsos,

2014) of composite functions of two variables. Compared to Tsoukalas-Mitsos’ estab-

lished subdifferential results (Tsoukalas and Mitsos, 2014), it has no need to solve a

dual optimization problem.

Chapter 5 develops a new subgradient result for Tsoukalas-Mitsos convex relax-

ations of composite functions in general. It has no limitation on dimensions of input

variables unlike the method if Chapter 4. It can give the whole subdifferential set for

Tsoukalas-Mitsos convex relaxations. Compared to Tsoukalas-Mitsos’ subdifferential

results (Tsoukalas and Mitsos, 2014, Thoerem 4), it no need to additionally solve dual

optimization problems. Chapter 5 also extends the new subgradient results to obtain

directional derivatives for Tsoukalas-Mitsos convex relaxations. The new subgradient

results and directional derivatives results are computationally tractable: subgradi-

ents in this article can be calculated both by the vector forward mode and reverse

mode of automatic differentiation(AD). This chapter also extends the product-rule

and fractional-term applications by Tsoukalas and Mitsos (Tsoukalas and Mitsos,

6
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2014) and gives numerical examples of sensitivity results for both. This new subgra-

dient result for relaxations can be applied to dynamic global optimization. (Song

and Khan, 2020)

7



Chapter 2

Mathematical Background

This section presents mathematical definitions and formulations that will be used in

this thesis. This section is aimed to help the reader understand basic concepts that

will be used in later part of thesis.

In addition to this section, Chapters 3, 4 and 5 introduce further concepts that

are specific to those chapters.

2.1 Notation

Capital letters like Y denotes sets (or matrices). X ⊂ Y means that a set X is a

subset of Y . y ∈ Y means y is an element of Y . The convex hull, the interior and

the closure of a set S ⊂ Rn are denoted as convS, int S and clS, respectively.

R denotes the set of real numbers. Z denotes the set of integers. N = {1, 2, · · · }

8
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denotes the set of natural numbers. Rn denotes the space of vectors with real com-

ponents in n dimensions. eg: x ∈ Rn implies

x :=


x1

...

xn

 = (x1, · · · , xn),

where xi denotes the ith component of x. Also given vectors x, y ∈ Rn, x ≤ y means

xi ≤ yi for each i ∈ {1, · · · , n}.

〈·, ·〉 denotes the Euclidean inner product. For example, consider two vectors

a, b ∈ Rn; the inner product of these is:

〈a, b〉 = aT b := a1b1 + a2b2 + · · ·+ anbn ∈ R

The ith unit coordinate vector in Rn is denoted as e(i), and components of vectors

are indicated using subscripts, e.g. xi := 〈e(i), x〉.

Let V and W be two sets, “f : V → W” means a function named f whose domain

is a set V , and whose codomain is a set W .

In matrix space, Rm×n denotes the set of matrices with m rows and n columns.

For example, given A ∈ Rm×n:

A =



a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

...
...

...
...

am1 am2 am3 . . . amn



9
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where ai,j or aij denotes the element in the ith row and jth column.

Below are definitions for Lipschitz continuity and lexicographical (L–)smoothness.

Definition 2.1.1. (Hiriart-Urruty and Lemaréchal, 2013a, Theorem 3.1.1) A func-

tion f : X → Rm with X ⊂ Rn is called Lipschitz continuous, if there exists a

Lipschitz constant L ≥ 0 such that for all x, x̂ ∈ X,

||f(x)− f(x̂)|| ≤ L||x− x̂||,

where || · || denotes appropriate norms.

A function f : X → Rm with X ⊂ Rn is locally Lipschitz continuous, if for any

x ∈ X, there exist a neighborhood N of x such that f restricted to N is Lipschitz

continuous.

Definition 2.1.2. (Nesterov, 2005b) Consider an open set X ⊂ Rn and a locally

Lipschitz continuous function f : X → R. The function f is lexicographically (L–

)smooth at x ∈ X if the following conditions are satisfied:

� f is directionally differentiable at x,

� with f (0) := f ′(x; ·), for any collection of vectors m(1), . . . ,m(n) ∈ Rn, the fol-

lowing inductive sequence of higher-order directional derivatives is well-defined:

f (k) := [f (k−1)]
′
(m(k); ·), for each k ∈ {1, 2, . . . , n}.

If these vectors m(i) are linearly independent, then f (n) is linear, and its constant gra-

dient is called a lexicographic subgradient of f at x. The lexicographic subdifferential

∂Lf(x) is the set of all lexicographic subgradients of f at x.

10
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2.2 Convexity

2.2.1 Convex Set

Definition 2.2.1. A set S ⊂ Rn is convex, if for any x, y ∈ S and all 0 ≤ α ≤ 1, it

holds that

(αx+ (1− α)y) ∈ S.

2.2.2 Convex Function

Definition 2.2.2. Let X ⊂ Rn be a convex set. A function f : X → R is convex if

for any x, y ∈ X and all 0 < α < 1,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (2.2.1)

The function f is said to be strictly convex when strict inequality holds in (2.2.1)

if x 6= y.

2.3 Directional Derivatives and Subgradients

The following definitions are standard in nonsmooth analysis (Clarke, 1990).

Definition 2.3.1. Consider an open set X ⊂ Rn and a function f : X → R. The

following limit, if it exists, is the (one-sided) directional derivative of f at x ∈ X in

11
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the direction d ∈ Rn:

f ′(x; d) := lim
t→0+

f(x+ td)− f(x)

t
.

If f ′(x; d) exists in R for each d ∈ Rn, then f is directionally differentiable at x.

For example, in this thesis [f cv]′(z; d) denotes the directional derivative for a func-

tion f cv at z in direction d.

Definition 2.3.2. Given a convex set X ⊂ Rn and a convex function f : X → R,

s ∈ Rn is a subgradient of f at x ∈ X if

f(y) ≥ f(x) + 〈s, y − x〉, for each y ∈ X

The set of all subgradients of f at x is the (convex) subdifferential ∂f(x).

Proposition 2.3.3. (Scholtes, 2012, Theorem 3.1.1) Consider open sets X ⊂ Rn

and Z ⊂ Rp, and functions g : Z → X and f : X → Rm that are locally Lipschiz

continuous and directionally differentiable at any z ∈ Z and x ∈ X. Then the

directional derivative at z ∈ Z of the composite function f ◦ g is

[f ◦ g]′(z; d) = f ′(g(z); g′(z; d)) ∀d ∈ Rp. (2.3.1)

2.4 Compass Difference

This section gives a definition of compass differences as introduced in (Khan and

Yuan, 2020). Directional derivatives form the compass differences. Briefly, the com-

pass differences in two dimension is a subgradient. (Khan and Yuan, 2020)

12
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Definition 2.4.1. Consider an open set X ⊂ Rn and a function f : X → R that

is directionally differentiable at x ∈ X. The compass difference of f at x is a vector

∆⊕f(x) := (∆⊕1f(x), . . . ,∆⊕nf(x)) ∈ Rn for which, for each i ∈ {1, . . . , n},

∆⊕i f(x) :=
1

2
(f ′(x; e(i))− f ′(x;−e(i))).

2.4.1 Nonconvex Functions of Two Variables

Proposition 2.4.2. (Khan and Yuan, 2020, Theorem 3.3) Consider an open set

X ⊂ R2 and a locally Lipschitz continuous function f : X → R. If f is differentiable

at some x ∈ X, then ∆⊕f(x) ∈ ∂f(x), with ∂f(x) denoting Clarke’s generalized

gradient (Clarke, 1990), if f is nonconvex. Moreover, if f is L-smooth at x in the

sense of (Nesterov, 2005a), then ∆⊕f(x) ∈ cl conv ∂Lf(x) ⊂ ∂f(x).

Proposition 2.4.3. (Khan and Yuan, 2020, Corollary 3.4) Consider an open set

X ⊂ R2, a locally Lipschitz continuous function f : X → R, and a nonsingular matrix

V ∈ R2×2. If f is directionally differentiable at some x ∈ X, and if v(i) denotes the

ith column of V , then

1

2
(V T)−1

f ′(x; v(1))− f ′(x;−v(1))

f ′(x; v(2))− f ′(x;−v(2))

 ∈ ∂f(x).

2.4.2 Convex Functions of Two Variables

Proposition 2.4.4. (Khan and Yuan, 2020, Corollary 3.6) Consider an open convex

set X ⊂ R2 and a convex function f : X → R. For each x ∈ X, ∆⊕f(x) ∈ ∂f(x).

13



M.A.Sc. Thesis – Y. Yuan McMaster University – Chemical Engineering

For convex functions, Clarke’s generalized gradient coincides with the subdifferen-

tial (Clarke, 1990). All convex functions on open domains in Rn are L-smooth (Nes-

terov, 2005b).

2.5 Multivariate McCormick relaxation

McCormick relaxation (McCormick, 1976; Mitsos et al., 2009; McCormick, 1983)

provides a scheme for computing convex underestimators and concave overestimators

for factorable functions. Factorable functions are functions that are well-defined finite

compositions of simple intrinsic functions.

Definition 2.5.1. Consider a set X ⊂ Rn, a function h : X → R, and a convex

subset C ⊂ X. A function hcv: C → R is a convex relaxation of h on C if hcv is

convex and hcv(x) ≤ h(x) for each x ∈ C. A function hcc : C → R is a concave

relaxation of h on C if hcc is concave and hcc(x) ≥ h(x) for each x ∈ C.

The convex envelope of h on C is the unique convex relaxation of h on C that

dominates all other convex relaxations of h on C. The concave envelope of h on C

is the unique concave relaxation of h on C that is dominated by all other concave

relaxations of h on C .

Tsoukalas and Mitsos (Tsoukalas and Mitsos, 2014) give a generalization of Mc-

Cormick relaxation (McCormick, 1976) for compositions with multivariate outer

functions.

Definition 2.5.2. (Tsoukalas and Mitsos, 2014, Theorem 2) Consider nonempty

convex sets Z ⊂ Rn and Xi ⊂ R for each i ∈ I = {1, 2, . . . ,m}, and define X as the

14
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Cartesian product X1 × · · · × Xm. Consider functions F : X → R and fi : Z → xi

for each i ∈ I, and suppose the following relaxations exist:

� a continuous convex relaxation f cvi : Z → Xi of fi on Z for each i ∈ I,

� a continuous concave relaxation f cci : Z → Xi of fi on Z for each i ∈ I,

� a continuous convex relaxation F cv of F on X.

Then, the following multivarite McCormick mapping is a continuous convex relaxation

of the composite function g : Z → R : z 7→ F (f1(z), · · · , fm(z)) on Z:

gcv(z) = min{F cv(x) : x ∈ Rm, f cvi (z) ≤ xi ≤ f cci (z) ∀i ∈ I}. (2.5.1)

The whole subdifferential for the relaxation of Definition 2.5.2 is computed by

Tsoukalas and Mitsos (Tsoukalas and Mitsos, 2014), and involves solving the follow-

ing dual problem.

Definition 2.5.3. (Adapted from (Tsoukalas and Mitsos, 2014, Theorem 4)) Con-

sider the same assumptions and notation in Definition 2.5.2. The subdifferential of

gcv at ẑ is given by:

∂gcv(z) =


m∑
i=1

ρcvi s
cv
i − ρcci s

cc
i |

(ρcv1 , . . . , ρ
cv
m , ρ

cc
1 , . . . , ρ

cc
m) ∈ Λ(ẑ),

scvi ∈ ∂f cvi (ẑ), scci ∈ ∂f cci (ẑ) ∀i = 1, . . . ,m


where L is the following Lagrangian function:

L (x, λcv, λcc, ẑ) = F cv(x) +
m∑
i=1

λcvi (−x+ f cvi (ẑ)) + λcci (x− f cci (ẑ))

Λ(ẑ) = arg max
(λcv ,λcc)

{
min
x∈X

L (x, λcv, λcc, ẑ)

}
.
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Chapter 3

Sensitivity Analysis for Dynamic

Systems Using Compass Difference

This chapter shows how to use directional derivatives to form compass differences

of convex functions with two variables to give sensitivity information for parametric

ordinary differential equations (ODEs). These compass differences are guaranteed to

be subgradients for parametric ODEs’ initial value problems. This presented method

is easy to implement by standard ODE solvers and can find a subgradient even if

ODE right-hand side (RHS) is nonsmooth. This work is already published. (Khan

and Yuan, 2020)

3.1 Background

Nonsmooth dynamic process models are often expressed as systems of parametric

ordinary differential equations (ODEs). Below is a classic form of parametric ordinary

differential equations (ODEs):
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Definition 3.1.1. Consider a system of parametric ordinary differential equations

(ODEs), with state variables x and parameters p:

dx

dt
(t, p) = f(t, p, x(t, p)), f (t0, p) = x0(p)

where x0(p) is the initial value at time t = 0.

A description of parametric derivatives for smooth ODEs is summarized by Hart-

man (Hartman, 2002, Chapter5,Theorem 3.1). This method gives sensitivity infor-

mation of state variables with respect to uncertain parameters by solving related

linear ODEs. This approach requires ODEs’ right-hand sides (RHS) to be smooth

and to have continuous first order partial derivatives. In a smooth dynamic system,

the result in Section 3.4 below reduced to Hartman’s result. Hartman’s work does

not apply to the non-smooth case, but the new result in Section 3.4 below can. The

ability to construct sensitivity information for nonsmooth ODEs is important since

nonsmoothness widely appears in engineering optimization problems.

Pang and Stewart (Pang and Stewart, 2009, Theorem 11) show that Clarke Ja-

cobian’s supersets are linear Newton approximations when a parametric ODE RHS

function is semismooth (Clarke, 1990, Theorem 7.4.1). They generate directional

derivatives as the unique solution of a related ODE constructed by directionally dif-

ferentiating the RHS of original parametric ODEs (Pang and Stewart, 2009, Theorem

7). However, linear Newton approximations of a convex function at a domain point

can include elements that are not subgradients (Khan and Barton, 2014). Neverthe-

less, in section 3.4 below, directional derivatives obtained from (Pang and Stewart,

2009, Theorem 7) can be used to form a subgradient as a compass difference.

A description of sensitivity analysis for nonsmooth parametric ODEs was obtained

17
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by Khan and Barton (Khan and Barton, 2014, Theorem 4.1 & Theorem 4.2). This

description illustrates that Nesterov’s lexicographic derivatives (Nesterov, 2005b) can

be used to construct a plenary Jacobian element. The plenary Jacobian is a certain

superset of Clark’s generalized Jacobian (Clarke, 1990, Theorem 7.4.1). They de-

scribe this plenary Jacobian element of the unique solution of a nonsmooth parametric

ODE system as the unique solution of another ODE system (Khan and Barton, 2014,

Theorem 4.2). However, this method cannot generally be implemented with stan-

dard ODE solvers, since the RHS functions describing lexicographic derivatives are

not always continuous respect to state variables. In the method presented in section

3.4 below, the ODE systems’ RHS functions are continuous and so the ODE can be

solved by standard ODE solvers.

3.2 Mathematical Background

This section shows how Theorem 7 in (Pang and Stewart, 2009) can be used to get

directional derivatives for dynamic systems.

Proposition 3.2.1. (Pang and Stewart, 2009, Theorem 7) Consider function f :

Rn → Rn that is locally Lipschitz continuous and directionally differentiable, and

an ordinary differential equation (ODE) initial value problem (IVP) formulated as

follows:

dx̂

dt
= f(x̂), x̂(0) = p̂, (3.2.1)

where p̂ ∈ Rn is an initial condition. Let x̂(t, p̂) denote any solution to the ODE

(3.2.1) above.
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x̂′t((t, p̂); (0, η)) is then the unique solution ŷ(t) on [0, T ] of the ODE below:

dŷ

dt
= f ′(x̂(t, p̂); ŷ) ŷ(0) = η. (3.2.2)

3.3 Problem Formulation

Assumption 3.3.1. Consider an ordinary differential equation (ODE) initial value

problem (IVP) formulated as follows:

dx

dt
= f(x), x(0, p) = x0(p), (3.3.1)

where the right-hand-side (RHS) function f : Rn → Rn is directionally differentiable

and locally Lipschitz continuous, x0: R2 → Rn describes the initial value, and p ∈ R2

is a parameter. x(t, p) denotes the solution to the ODE (3.3.1) above and is assumed

to be exist for all t ∈ [0, T ] where 0 < T . x0 is directionally differentiable and locally

Lipschiz continuous.

Consider a cost function: φ: R2 → R, for which

φ(p) : = g(p, x(T, p)), (3.3.2)

where g: R2×RN → R, is locally Lipschitz continuous and directionally differentiable.

The goal of this section is to find a subgradient of the cost function φ in Equation

(3.3.2) at any given p, where this subgradient is understood to be a element of Clarke’s

generalized gradient, if φ is nonconvex.
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3.4 Computing a Subgradient of an ODE Solution

This section shows how to use compass differences to calculate a subgradient of the

parametric ODE system (3.3.1). Directional derivatives obtained from Pang and

Stewart (Pang and Stewart, 2009, Theorem 7) are used to form this compass differ-

ence.

Theorem 3.4.1. Under Assumption 3.3.1, and using the same notation as Section

3.3, then, consider the following parametric ODE on t ∈ [0, T ]:

dy

dt
(t, d) = f ′(x(t, p); y(t, d)) y(0, d) = x′0(p; d). (3.4.1)

This ODE has a unique solution y, and a subgradient of φ at p in Equation 3.3.2 is

1

2

 φ′(p; (1, 0))− φ′(p; (−1, 0))

φ′(p; (0, 1))− φ′(p; (0,−1))

, (3.4.2)

where φ′(p; d) = g′(p, x(T, p); (d, y(T, d))).

Proof. This proof proceeds by showing hat the assumptions in Theorem 3.4.1 satisfy

all assumptions in Proposition 3.2.1.

Observe that f is locally Lipschitz continuous. Also, Assumption 3.3.1 states (ii),

that x(t, p) exists for all t ∈ [0, T ], which satisfies the corresponding assumption in

Proposition 3.2.1.

According to (Khan and Barton, 2014, Theorem 4.1), for each t ∈ [0, T ], the

function xt ≡ x(t, ·) is well-defined and Lipschitz continuous on a neighborhood of

p, with a Lipschitz constant that is in dependent of t. Moreover, xt is directionally

differentiable at p for all t ∈ [0, T ].
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The difference between Equation (3.3.1) and the Equation (3.2.1) is that the

initial condition of Equation (3.2.1) is a parameter p̂ while the the initial condition

of Equation (3.3.1) is x0(p).

By applying the directional derivative chain rule (Scholtes, 2012, Theorem 3.1.1),

x′T (p; d) and φ′(p; d) become:

x′T (p; d) = x̂′T (x0(p);x′0(p; d)), (3.4.3)

φ′(p; d) = g′(p, x(T, p); (d, x′T (p; d))), (3.4.4)

where x′0(p; d) is the directional derivative of x0 at p along d, and x̂′T (x0(p);x′0(p; d))

is the directional derivative of x̂T at x0(p) along the direction x′0(p; d).

According to Proposition 3.2.1, x̂′T (x0(p);x′0(p; d)) is the unique solution of the

ODE Equation (3.4.1) at time t = T . So x′T (p; d) = x̂′T (x0(p);x′0(p; d)) = y(T, d).

Next, substituting Equation (3.4.4) into (3.4.3), we get

φ′(p; d) = g′(p, x(T, p); (d, y(T, d))). (3.4.5)

By using Definition 2.4.1 , the compass difference of φ at p is ∆⊕φ(p):

∆⊕φ(p) =
1

2

 φ′(p; (1, 0))− φ′(p; (−1, 0))

φ′(p; (0, 1))− φ′(p; (0,−1))

 , ∀t ∈ [0, T ].

Considering Proposition 2.4.2 before, we conclude that ∆⊕φ(p) ∈ ∂φ(p).
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3.5 Case Study

To illustrate computation of the subgradient provided by Theorem 3.4.1, this example

describes a Matlab implementation for solving a nonsmooth ODE IVP and calculating

a subgradient of φ(p) by using Theorem 3.4.1. In this case φ is convex. Then this

subgradient is used to form a subtangent plane of the original function’s graph and

is tested if the subtangent is correctly below the original function or not. Details can

be seen in the text below and Figure 3.1. The ODE solver: ode15s in Matlab is used

here.

Example 3.5.1. Consider the following ODE IVP instance, f :R3 → R3 , x ∈ R3,

p ∈ R2:

dx

dt
= f(x1, x2, x3), x(0, p) = x0(p) =


p1

p2

p1

 ∀t ∈ [0, 1]

dx1

dt
= |x1|+ |x2|+ x3

dx2

dt
= |x2|,

dx3

dt
= x3

φ(p) = g(p, x(T, p)) = x1(T, p).

Using Equation (3.4.1) and evaluating directional derivatives of f by hand, the
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directional derivative of x(t) at p in the direction d can be described by the ODE:

dy

dt
(t, d) = f ′(x(t, p); y(t, d)), y(0, d) = x′0(p; d)

dy1

dt
=



−y1 − y2 + y3, if x1 < 0, x2 < 0

−y1 + y2 + y3, if x1 < 0, x2 > 0

−y1 + |y2|+ y3, if x1 < 0, x2 = 0

y1 − y2 + y3, if x1 > 0, x2 < 0

y1 + y2 + y3, if x1 > 0, x2 > 0

y1 + |y2|+ y3, if x1 > 0, x2 = 0

|y1| − y2 + y3, if x1 = 0, x2 < 0

|y1|+ y2 + y3, if x1 = 0, x2 > 0

|y1|+ |y2|+ y3, if x1 = 0, x2 = 0

dy2

dt
=


y2, if x2 > 0

|y2|, if x2 = 0

−y2, if x2 < 0

dy3

dt
= y3.

The directional derivatives at p̄ =

 p̄1

p̄2

 =

 0

0

, in direction d = (1, 0) ,

d = (−1, 0) ,d = (0, 1) and d = (0,−1) at final time t = T = 1 were then found by
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solving the coupled ODE systems in x and y in Matlab:

y(T, (1, 0)) =


[x1]′T (p̄; (1, 0))

[x2]′T (p̄; (1, 0))

[x3]′T (p̄; (1, 0))

 =


5.4366

0

2.7183



y(T, (−1, 0)) =


[x1]′T (p̄; (−1, 0))

[x2]′T (p̄; (−1, 0))

[x3]′T (p̄; (−1, 0))

 =


−1.5431

0

−2.7183



y(T, (0, 1)) =


[x1]′T (p̄; (0, 1))

[x2]′T (p̄; (0, 1))

[x3]′T (p̄; (0, 1))

 =


2.7183

2.7183

0



y(T, (0,−1)) =


[x1]′T (p̄; (0,−1))

[x2]′T (p̄; (0,−1))

[x3]′T (p̄; (0,−1))

 =


1.1751

−0.3679

0

 .

The directional derivative for the cost function φ becomes:

φ′(p̄; d) = g′(p̄, x(T, p); (d, y(T, d))) = [x1]′T (p̄; d)

Then φ′(p̄; (1, 0)) = 5.4316;φ′(p̄; (−1, 0)) = −1.5431;φ′(p̄; (0, 1)) = 2.7183;φ′(p̄; (0,−1)) =

1.1751.

By using the Equation (3.4.2), the subgradient of φ with initial value p̄ at t = 1
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is:

∆⊕φ(p̄) =
1

2

 φ′(p̄; (1, 0))− φ′(p̄; (−1, 0))

φ′(p̄; (0, 1))− φ′(p̄; (0,−1))

 =

 3.4898

0.7715

 , ∀t ∈ [0, T ]

The subtangent hyperplane G(p) : R2 → R to φ(p̄) at p̄ =

 p̄1

p̄2

 =

 0

0

 is

constructed by ∆⊕φ(p̄):

G(p) = φ(p̄) + ∆⊕φ(p̄)
T

(p− p̄)

Figure 3.1 shows the cost function φ and its subtangent plane G(p) at p̄1 = 0, p̄2 =

0 and T = 1. G is always below φ according to the figure. According to the definition

of the subgradient (Hiriart-Urruty and Lemaréchal, 2013a, VI, Definition 1.2.1), the

subdifferential of function f at x is the set of vectors s satisfying:

f(y) ≥ f(x)+ < s, y − x >, ∀ y ∈ Rn.

Thus, this result says if ∆⊕φ(p̄) is subgradient, then the graph G would always be

below the graph of the original function φ. If ∆⊕φ(p̄) was not a subgradient, the figure

would show G above or crossing over φ. Here, G is always below φ. So ∆⊕φ(p̄) is

readily verified to be subgradient of φ.
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Figure 3.1: The function φ : p 7→ x1(T, p) (top) with t = T = 1 and its subtangent
plane G(p) (bottom) at (0, 0) on [−10, 10]2.
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Chapter 4

Subgradient Propagation for

Multivariate McCormick

Relaxations of Two Variables

This chapter shows how compass differences (Khan and Yuan, 2020) can be used

to obtain a subgradient of the Tsoukalas-Mitsos convex relaxations (Tsoukalas and

Mitsos, 2014) of composite functions of two variables. Directional derivatives are

obtained here from Hogan’s Theorem (Hogan, 1973, Theorem 3). This work has

been published in (Khan and Yuan, 2020).

4.1 Background

In addition to the results in Chapter 3. Compass differences also can used to obtain

one subgradient for an optimal-value function. Danskin (Danskin, 1966, Thoeo-

rem 1) provided a method to obtain directional derivatives for certain optimal value
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functions.

Proposition 4.1.1. (Khan and Yuan, 2020, Proposition 4.8) Consider a compact

set C ⊂ Rn, some open superset Z of C, and a continuously differentiable function

f : R2 × Z → R. Define an optimal-value function φ : R2 → R for which

φ : x 7→ min{f(x, y) : y ∈ C}.

For some particular x̂ ∈ R2, define the following:

� a set Y := {ŷ ∈ C : f(x̂, ŷ) ≤ f(x̂, y), ∀y ∈ C},

� for each d ∈ R2, a point ψ(d) := min{〈d,∇xf(x̂, y)〉 : y ∈ Y }.

Then φ is locally Lipschitz continuous and directionally differentiable, and

1

2

ψ(1, 0)− ψ(−1, 0)

ψ(0, 1)− ψ(0,−1)


is an element of ∂φ(x̂).

Proof. The optimal-value function φ has already been established to be locally Lip-

schitz continuous (Dempe et al., 2012, Theorem 2.1) and directionally differen-

tiable (Danskin, 1966), with directional derivatives given by φ′(x̂; d) = ψ(d) for each

d ∈ R2. The claimed result then follows immediately from Proposition 2.4.2.

The Tsoukalas-Mitsos convex relaxations (Tsoukalas and Mitsos, 2014) of com-

posite functions 2.5.1 are based entirely on analogous optimal-value functions. This

supports the idea that a subgradient of Tsoukalas-Mitsos convex relaxations of two

variables can be calculated by applying the compass difference.

28



M.A.Sc. Thesis – Y. Yuan McMaster University – Chemical Engineering

4.2 Mathematical Background

This section summarizes Theorem 3 in (Hogan, 1973), which may be used to compute

directional derivatives of an optimal-value function.

Assumption 4.2.1. Consider a convex set X ⊂ Rp and a set Y ⊂ Rn, x ∈ X

y ∈ Y . Consider a function f : Rp×Rn → [−∞,+∞], and a function g : Rp×Rn →

[−∞,+∞]m. Consider the optimal-value problem:

v(y) = sup f(x, y) subject to g(x, y) ≤ 0

Define an optimal solution set M ,

M(y) = {x ∈ X| g(x, y) ≤ 0 and v(y) ≤ f(x, y)}

A point-to-set mapping H is defined as the set of feasible directions:

H(x,y)(d) ≡ {w|g(x+ λw, y + λd) ≤ 0 and x+ λw ∈ X ∀ 0 < λ ≤ λ(x, y, d, w)}.

Proposition 4.2.2. (Hogan, 1973, Theorem 3) Consider the setup of Assumption

4.2.1, and suppose X is a nonempty convex set, and that −f and g are convex on

X × Y . At ȳ ∈ Y , v(ȳ) is finite, and x̂ ∈M(ȳ). Then the directional derivative of v

at ȳ in the direction d ∈ Rn is

v′(y; d) = sup
w∈H(x,y)(d)

f ′(x̂, ȳ;w, d).
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4.3 Subgradient Computation

This section shows how to use compass differences to calculate a subgradient of multi-

variate McCormick relaxations in R2. Directional derivatives obtained from Hogan’s

Theorem (Hogan, 1973, Theorem 3) are used to form the compass difference.

Definition 4.3.1. Consider the same set up as Definition 2.5.2. Let I = {1, · · · ,m},

at some specific ẑ ∈ Z, define the following:

� A set M(ẑ) = {x ∈ X| gcv(ẑ) ≥ F cv(x) and f cvi (ẑ) ≤ xi ≤ f cci (ẑ) ∀i ∈ I}.

� A set of feasible direction H(x,ẑ)(d) ≡ {w|f cv(ẑ+λd) ≤ x+λw ≤ f cc(ẑ+λd) ,

and x+ λw ∈ X for all sufficient small λ > 0}

Theorem 4.3.2. Consider the notation in Definition 2.5.2 and the in Definition

4.3.1, when Z ⊂ R2 and X ⊂ Rm is a nonempty convex set. At specific ẑ ∈ Z, and

x̂ ∈M(ẑ), the directional derivative of gcv at ẑ, in the direction d ∈ R2 is:

[gcv]′(ẑ; d) = min
w∈H(x̂,ẑ)(d)

{[F cv]′(x̂;w))} (4.3.1)

Then, a subgradient of the function gcv(ẑ) is :

1

2

 [gcv]′(ẑ; (1, 0))− [gcv]′(ẑ; (−1, 0))

[gcv]′ (ẑ; (0, 1))− [gcv]′(ẑ; (0,−1))



Proof. F cv is convex on x. Define a constrain function for Equation 2.5.1 to be func-

tion k(z, x) =

 f cv(z)− x

−f cc(z) + x

. Since f cv and −f cc are both convex on z, f cv(z)− x

30



M.A.Sc. Thesis – Y. Yuan McMaster University – Chemical Engineering

and −f cc(z) + x are convex with respect to (x, z). Then, gcv is directionally differ-

entiable due to Proposition 4.2.2, with its directional derivatives given by Equation

(4.3.1).

By using Definition 2.4.1 , the compass difference of gcv(z) is ∆⊕g(z), given as

follow:

∆⊕g(z) =
1

2

 [gcv]′(ẑ; (1, 0))− [gcv]′(ẑ; (−1, 0))

[gcv]′ (ẑ; (0, 1))− [gcv]′(ẑ; (0,−1))

 .

Considering Proposition 2.4.2 before, we conclude that ∆⊕g(z) ∈ ∂gcv(z).
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Chapter 5

Sensitivity Analysis for

Multivariate McCormick

Relaxations

This section provides a new subgradient result and directional derivative result for

Tsoukalas-Mitsos relaxations of composite functions. (Tsoukalas and Mitsos, 2014)

This material is intended for publication; a manuscript is currently in preparation

(Yuan and Khan, 2020).

5.1 Background

Tsoukalas and Mitsos (Tsoukalas and Mitsos, 2014) provide a “multivariate Mc-

Cormick” framework for convex/concave relaxations of composition functions. This

result can be used to underestimate/overestimate nonconvex problems in global op-

timization. Tsoukalas and Mitsos also provide subgradients for this multivariate
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McCormick relaxation. However, to use this subgradient result, a dual optimization

problem must to be solved. In this chapter a new method for computing sensitivity

results of multivariate McCormick relaxations is developed. Multivariate McCormick

convex relaxations are formulated as nonlinear convex programming problems. Prop-

erties of Karush-Kuhn-Tucker (KKT) multipliers and subgradient chain rules are used

to get whole subdifferentials of multivariate McCormick relaxations. The advantage

of this approach is once the relaxation is evaluated, then all information for tractably

calculating the subdifferential is known. There is no need for solving a dual optimiza-

tion problem.

In essence, the new method obtains sensitivity information for NLP (nonlinear

programming). Sensitivity analysis describes how a system behaves in response to

changes in system’s parameters. Nonsmoothness appears frequently in NLP, since

optimal-value functions for NLPs with smooth objectives and constrains are typically

nonsmooth (Danskin, 1966). Nonsmooth models are continuous but not differentiable

everywhere. Thus, multivariate McCormick relaxations are typically nonsmooth mod-

els. Sensitivity information is critical in nonsmooth optimization. For example, a

typical subgradient method (Scholtes, 2012, Theorem 2.1) uses a subgradient at each

iteration to approximate the optimal solution in nonsmooth convex/concave optimiza-

tion, so that the overall method converges. Similarly, cutting plane methods, bundle

methods and level methods use subgradients at each iteration to form piece-wise linear

approximations for minimizing a convex function (Hiriart-Urruty and Lemaréchal,

2013b; Nesterov, 2018). Relevant sensitivity information in this nonsmooth optimiza-

tion context is considered to be directional derivatives and subgradients.

There are other applicable sensitivity analysis theories for NLP. Stechlinski, Khan
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and Barton calculate B-subdifferential elements of primal and dual variables in para-

metric NLP solutions when the active index set is changing. (Stechlinski et al., 2018)

In this chapter, however, the whole B-subdifferential is obtained. Danskin gives a

way to obtain directional derivatives for optimization problems as the solutions of re-

lated optimization problems in a general setting. (Bertsekas, 1997, Proposition B.25)

There are special requirements for the objective function in Danskin’s theorem: when

doing minimization, the objective function must be concave. Due to this constraint,

Danskin’s theorem cannot apply to evaluating directional derivatives for multivariate

McCormick relaxation. Similarly, Hogan’s result (Hogan, 1973, Theorem 3) also de-

scribes directional derivatives for optimal-value functions. Nevertheless, although the

optimal-value functions in this chapter satisfy Hogan’s assumptions, our directional

derivative results do not appear to follow directly from Hogan’s results.

To address this problem, this chapter uses the properties of relationship between

subdifferentials and directional derivative (Hiriart-Urruty and Lemaréchal, 2013a)

and our new subgradients result to evaluate directional derivatives of multivariate

McCormick relaxation.

In terms of optimization of algorithms, Mitsos et al. show that a vector forward

mode of AD (Automatic differentiation) can automatically construct convex or affine

relaxations of algorithms for global optimization and can also obtain subgradients

of classical McCormick relaxations (Mitsos et al., 2009). This implies that the new

subgradients in this chapter can be calculated by vector forward AD mode as well since

the same subgradient chain rule applied. In Beckers and Nauman also obtain a reverse

AD mode for computing subgradients for classical McCormick relaxations. (Beckers

et al., 2012) The subgradients in this chapter can also be calculated by reverse AD
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mode. Additionally, directional derivatives in this paper can be computed by the

(non-vector) forward AD.

This chapter extends the product-rule and fractional term applications by Tsoukalas

and Mitsos (Tsoukalas and Mitsos, 2014) and gives numerical examples of sensitiv-

ity results on both. Also, a case study example provides subgradients to a certain

convex envelope (Khajavirad and Sahinidis, 2013, Corollary 1). In terms of future

applications, we expect that this new subgradient result for multivariate McCormick

relaxation can be applied to dynamic global optimization methods. (Song and Khan,

2020)

This chapter is structured as follows. Section 5.2 summarizes basic mathemati-

cal background: including concepts of piecewise differentiable functions. Section 5.3

presents new methods for subgradients propagation for multivariate McCormick re-

laxations. Section 5.4 demonstrates methods for calculating directional derivatives

for multivariate McCormick relaxation in the following cases: the general case; when

the objective function is piecewise differentiable; and when the objective function

is differentiable. Section 5.5 describes several examples for illustration which are

implemented in Matlab.

5.2 Mathematical Background

Definition 5.2.1. For any σ ∈ R, let σ+ denote σ+ = max(0, σ), and let σ− denote

σ− = min(0,−σ). Observe that [−σ]+ = σ−, and [−σ]− = σ+ for each σ ∈ R.
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5.2.1 Piecewise Differentiable Functions

This section shows a definition of piecewise differentiable functions and the associated

set of essentially active indices. This will be used in Section 5.4 as one of the cases.

Definition 5.2.2. (Scholtes, 2012, Chapter 4.1) Given a open set X ⊂ Rn, consider

a function F : X → Rm. This function F is called piecewise differentiable (PC1)

at x0 ∈ X, if there exists a neighborhood U ⊂ X of x0 and a finite collection of C1

selection functions: fj : X → Rn, j = 1, · · · , k, such that F is continuous on U , and

if F (x) ∈ {f1(x), ..., fk(x)} for every x ∈ U .

The essentially active indices of F at x0 are:

IeF (x0) = {j ∈ {1, . . . , k}|x0 ∈ cl(int{x ∈ U |f(x) = fj(x)})}. (5.2.1)

The essentially active functions F e of F at x0 are:

F e(x0) = {fj | j ∈ IeF (x0)}

Scholtes (Scholtes, 2012) shows that IeF (x0) is always nonempty.

Lemma 5.2.3. Consider a closed convex set X ⊂ Rm, a PC1-function F : X → R

and a convex continuous function c : Rm → Rn. Then, at point a x0 ∈ X:

max{c(σ) : σ ∈ ∂F (x0)} = max{c(σ) : σ ∈ ∂f ∗(x0), f ∗ ∈ F e(x0)}. (5.2.2)

Proof. The function F is piecewise differentiable. From (Scholtes, 2012, Proposition
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4.3.1), the subdifferential of F at x is:

∂F (x) = conv{∇fj(x)|j ∈ IeF (x)},

where ∇ denotes the gradient.

The mapping σ ∈ Rm 7→ c(σ) is convex. The feasible set of the first NLP in

equation (5.2.2) ( ∂F (x)) is convex. Through a result (Rockafellar, 1970, Corollary

32.3.2) concerning concave minimization and convex maximization: some extreme

point of ∂F (x) is a maximum for the first optimization problem (5.2.2).

Through Definition 5.2.2, the function F involves active selection function in F e

at x0. So

max{c(σ) : σ ∈ ∂F (x0)} = max{c(σ) : σ ∈ ∂f ∗(x0), f ∗ ∈ F e(x0)}.

5.3 Subgradient Characterization

Lemma 5.3.1. Let X ⊂ Rm and C ⊂ Rmbe nonempty compact convex sets, and

define a set Φ := {(φcv, φcc) : φcv ∈ C,−φcc ∈ C, φcv ≤ −φcc}. Consider a continuous

convex function F cv : X → R and a function h : Φ→ R, for which

h(φcv, φcc) = min{F cv(x) : −x ≤ −φcv, x ≤ −φcc}. (5.3.1)

Let x̂ be an optimal solution of the right-hand-side optimization problem in Equa-

tion (5.3.1). Let I = {1, 2 · · · ,m}. The subdifferential of h at (φ̂cv, φ̂cc) ∈ Φ is given
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by:

∂h(φ̂cv, φ̂cc) =
{ σ+ + a

σ− + a

 :σ ∈ ∂F cv(x̂); a ∈ Rm, a ≥ 0,

ai = 0 whenever φ̂cvi 6= −φ̂cci , for any i ∈ I
} (5.3.2)

Proof. The Lagrangian L for the right-hand-side optimization problem in Equation

(5.3.1) is:

L(x, µ) = F cv(x) +
m∑
i=1

(µcvi (−xi + φcvi ) + µcci (xi + φcci )), (5.3.3)

where X ⊂ Rm and multipliers µcv, µcc ∈ Rm. Let M(x) denote the associated set

of Lagrange multipliers (µcv, µcc).

According to (Hiriart-Urruty and Lemaréchal, 2013a, §VII Propositions 3.1.1

& 3.1.4), x̂ is an optimal solution of the right-hand-side optimization problem in

Equation (5.3.1), so it also minimizes L(·, µcv, µcc) in Equation (5.3.3).

Since the NLP in (5.3.1) is convex and is linearly constrained, the Karush-Kuhn-

Tucker (KKT) optimality conditions are necessary and sufficient for optimality. x̂

solves (5.3.1), thus, x̂ also satisfies the nonsmooth KKT condition (Hiriart-Urruty and

Lemaréchal, 2013a, §VII. Theorem 2.1.4). So there exist σ ∈ ∂F cv(x̂) and µcv, µcc ∈

Rm for which:

σ +
m∑
i=1

(−µcvi + µcci ) = 0

µcvi ≥ 0, µcci ≥ 0

µcvi (−x̂i + φcvi ) = 0, µcci (x̂i + φcci ) = 0 for i = 1, . . . ,m.

(5.3.4)
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Consider a function P : Rm × Rm → R and (φ̂cv, φ̂cc) ∈ Φ, for which, for each

w, y ∈ Rm

P (w, y) = inf{F cv(x) : φ̂cv − x ≤ w, φ̂cc + x ≤ y}. (5.3.5)

P is convex. According to (Hiriart-Urruty and Lemaréchal, 2013a, §VII. 3.3), then

P (0, 0) = h(φ̂cv, φ̂cc).

According to (Hiriart-Urruty and Lemaréchal, 2013a, §VII. Theorem 3.3.2), any

multipliers µcv, µcc ∈M(x̂) satisfy: for each w, y ∈ Rm it holds that

P (w, y) ≥ P (0, 0)− µcvw − µccy,

and so, by (Hiriart-Urruty and Lemaréchal, 2013a, §VI. Definition 1.2.1),

 −µcv
−µcc

 ∈ ∂P (0, 0). (5.3.6)

Since φ̂cv− x̂ ≤ φ̂cv−φcv and φ̂cc + x̂ ≤ φ̂cc−φcc, by substituting Equation (5.3.1)

into (5.3.5), the result is:

h(φcv, φcc) ≡ P (φ̂cv − φcv, φ̂cc − φcc).

According to (Bertsekas, 1997, Theorem 2.9.9), the subdifferential for h at any
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(φcv, φcc) is then:

∂h(φcv, φcc) = {−ν : ν ∈ ∂P (φ̂cv − φcv, φ̂cc − φcc)}

Thus, the subdifferential for h at (φ̂cv, φ̂cc) is:

∂h(φ̂cv, φ̂cc) = {−ν : ν ∈ ∂P (0, 0)} (5.3.7)

Equations (5.3.6) and (5.3.7) together yield

 µcv

µcc

 ∈ ∂h(φ̂cv, φ̂cc),

which also means,

M(x̂) ⊂ ∂h(φ̂cv, φ̂cc), (5.3.8)

We have already verified that if

 µcv

µcc

 ∈ M(x̂), then M(x̂) ⊂ ∂h(φ̂cv, φ̂cc).

For the converse, first assume

 µcv

µcc

 ∈ ∂h(φ̂cv, φ̂cc), and we wish to show that

∂h(φ̂cv, φ̂cc) ⊂M(x̂). Then, for any (φcv, φcc) ∈ Φ,

h(φcv, φcc) ≥ h(φ̂cv, φ̂cc) + µcv(φcv − φ̂cv) + µcc(φcc − φ̂cc). (5.3.9)

Since h(φcv, φcc) ≡ P (φ̂cv − φcv, φ̂cc − φcc) and h(φ̂cv, φ̂cc) ≡ P (0, 0), with the
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substitutions w = φ̂cv − φcv and y = φ̂cc − φcc for each w, y ∈ Rm, Equation (5.3.9)

becomes:

P (w, y) ≥ P (0, 0)− µcvw − µccy,

which means,

 −µcv
−µcc

 ∈ ∂P (0, 0).

According to (Hiriart-Urruty and Lemaréchal, 2013a, §VI. Theorems 3.3.2 & 3.3.3

) ∂P (0, 0) = −M(x̂). So

 µcv

µcc

 are multipliers of the primal optimization problem

in (5.3.4): and so

 µcv

µcc

 ∈M(x̂). This means

∂h(φ̂cv, φ̂cc) ⊂M(x̂) (5.3.10)

Thus, by (5.3.8) and (5.3.10), ∂h(φ̂cv, φ̂cc) ⊂ ∂M(x̂) and M(x̂) ⊂ ∂h(φ̂cv, φ̂cc), and

so:

∂h(φ̂cv, φ̂cc) = M(x̂) (5.3.11)

The next step is using the KKT conditions (5.3.4) to evaluate the multipliers

(µcv, µcc). For any σ ∈ ∂F cv(x̂), then at the point (φ̂cv, φ̂cc), the multipliers of the
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NLP (5.3.1) satisfy:

σi + (−µcvi + µcci ) = 0,

µcvi ≥ 0, µcci ≥ 0,

µcvi (−x̂i + φ̂cvi ) = 0, µcci (x̂i + φ̂cci ) = 0 for i = 1, . . . ,m.

Since φ̂cv ≤ x̂ ≤ −φ̂cc, using the equations above, we may evaluate (µcv, µcc) in

three separate cases (for each i ∈ I = {1, · · · ,m}):

� Case I: Suppose φ̂cvi < xi. Then, because µcvi (−x̂i + φ̂cvi ) = 0, we can conclude

µcvi = 0. Moreover, σi + (−µcvi + µcci ) = 0 implies µcci = −σi; Also µcvi ≥ 0

implies σi ≤ 0. Lastly, due to µcci (x̂i + φ̂cci ) = 0, so xi = −φ̂cci .

� Case II: Suppose xi < −φ̂cci . Following similar arguments as Case I, we can

conclude that µcci = 0, µcvi = σi, σi ≥ 0 and xi = φ̂cvi .

� Case III: Suppose φ̂cvi = x̂i = −φ̂cci . This case is continued below.

In case I,II,

µcvi = σ+
i

and µcci = σ−i

If these case hold for all i ∈ I, then, by Definition 5.2.1, the corresponding subd-

ifferential of h is

∂h(φ̂cv, φ̂cc) =
{ σ+

σ−

 : σ ∈ ∂F cv(x̂)
}
.
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The special Case III (if φ̂cvi = xi = −φ̂cci ), according to KKT conditions (5.3.4),

µcvi , µ
cc
i for any i ∈ I satisfy:

µcvi − µcci = σi,

µcvi ≥ 0, µcci ≥ 0

(5.3.12)

Equation (5.3.12) has infinitely many solutions µcvi /µ
cc
i . Assume for any i ∈ I,

µcvi = σ+
i + ai and µcci = σ−i + bi, where a ∈ Rm, b ∈ Rm are unknowns. Equation

(5.3.12) implies:

σ+
i + ai − σ−i − bi = σi

σ+
i + ai ≥ 0, σ−i + bi ≥ 0.

(5.3.13)

Next, we determine the value of ai and bi by looking at the signs of σi

For any i ∈ I, if σi ≥ 0, then σ+
i = σi and σ−i = 0, Equation (5.3.13) becomes

σi + ai − 0− bi = σi

σi + ai ≥ 0, bi ≥ 0.

This implies ai = bi, and both ai ≥ 0, bi ≥ 0.

For any i ∈ I, if σi < 0, then σ+
i = 0 and σ−i = −σi, Equation (5.3.13) becomes

0 + ai + σi − bi = σi

ai ≥ 0,−σi + bi ≥ 0.

This also implies ai = bi, and both ai ≥ 0, bi ≥ 0.

In general, for any i ∈ I, no matter the sign of σi is in Case III, always ai = bi

and ai ≥ 0.

So collecting all these cases, the subdifferential of h is given by Equation (5.3.2).
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Theorem 5.3.2. Consider the sets and functions from Definition 2.5.2. Let x̂ denote

an optimal solution of the right-hand-side optimization problem in Equation (2.5.1),

and let I = {1, 2 · · · ,m}.

The subdifferential of gcv at z ∈ Z is given by:

∂gcv(z) =
{ m∑

i=1

[(σ+
i + ai)v(i) − (σ−i + ai)w(i)] : σ ∈ ∂F cv(x̂); v(i) ∈ ∂f cvi (z),

w(i) ∈ ∂f cci (z) ∀i ∈ I, a ∈ Rm, a ≥ 0;

if f cvi (z) 6= f cci (z), then ai = 0, for any i ∈ I
}

(5.3.14)

Proof. Consider Equation (2.5.1) in Definition 2.5.2 and Equation (5.3.1), and observe

that

gcv(z) ≡ h(f cv1 (z), · · · , f cvm (z),−f cc1 (z), · · · ,−f ccm (z))

From the convexity of F cv in Equation (2.5.1), the function h is increasing and convex

as a perturbation function of a convex problem. (Boyd and Vandenberghe, 2004)

Moreover,

∂[−f cci ](z) = {w : −w ∈ ∂f cci (z)}.

By applying (Tsoukalas and Mitsos, 2014, Lemma 1) and Lemma 5.3.1, the

subdifferential of gcv becomes Equation (5.3.14).
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Corollary 5.3.3. Consider the setup of Theorem 5.3.2. If any one of the following

conditions hold, gcv(z) is differentiable:

� All of F cv, f cv, f cc are differentiable.

� For all i ∈ I, ∂f cvi (z) = 0 and ∂f cci (z) = 0.

� All elements in ∂F cv(x̂) are 0.

� All elements in ∂F cv(x̂) are smaller than 0, and for all i ∈ I ∂f cci (z) = 0.

� All elements in ∂F cv(x̂) are greater than 0, and for all i ∈ I ∂f cvi (z) = 0.

5.4 Directional Derivatives

This section shows how to compute directional derivatives for multivariate McCormick

relaxations (Tsoukalas and Mitsos, 2014). Several cases will be discussed: the general

case under the same setup as Theorem 5.3.2; when the objective function is piecewise

differentiable; and when the objective function is differentiable.

Lemma 5.4.1. Consider the setup of Lemma 5.3.1. Let x̂ be an optimal solution of

the right-hand-side optimization problem in Equation (5.3.1). Let I = {1, 2 · · · ,m}.

The directional derivative of h at a point (φ̂cv, φ̂cc) ∈ Φ in the direction (d1, d2), for

d1 ∈ Rm and d2 ∈ Rm, is:

h′((φ̂cv, φ̂cc); (d1, d2)) = max

{
m∑
i=1

σ+
i d1,i + σ−i d2,i : σ ∈ ∂F cv(x̂)

}
. (5.4.1)

provided that, if φ̂cvi = −φ̂cci for any i ∈ I, then an additional requirement needs to be

satisfied: d1,i + d2,i ≤ 0 .
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Proof. From (Hiriart-Urruty and Lemaréchal, 2013a, Remark 4.1.6), in which di-

rectional directive and subdifferentials are related, the directional derivative of h in

Equation (5.3.1) becomes:

h′((φ̂cv, φ̂cc); (d1, d2)) = max
{
〈ψ+, d1〉+ 〈ψ−, d2〉 :

 ψ+

ψ−

 ∈ ∂h(φ̂cv, φ̂cc)
}

(5.4.2)

From Lemma 5.3.1, we know

∂h(φ̂cv, φ̂cc) =
{ σ+ + a

σ− + a

 :σ ∈ ∂F cv(x̂); a ∈ Rm, a ≥ 0,

ai = 0 whenever φ̂cvi 6= −φ̂cci , for any i ∈ I
}
,

so for each i ∈ I, ψ+
i = σ+

i + ai and ψ−i = σ−i + ai, ai ≥ 0.

Equation (5.4.2) becomes

h′((φ̂cv, φ̂cc); (d1, d2)) = max
σ∈∂F cv(x̂)

{ m∑
i=1

σ+
i d1,i + σ−i d2,i + (d1,i + d2,i)ai : a ∈ Rm, a ≥ 0,

ai = 0 whenever φ̂cvi 6= −φ̂cci , for any i ∈ I
}
.

(5.4.3)

If φ̂cvi = −φ̂cci for any i ∈ I, due to the feasible direction of h, d1,i + d2,i ≤ 0. To

maximize term (d1,i + d2,i)ai for any i ∈ I, then ai = 0, Equation (5.4.3) becomes

h′((φ̂cv, φ̂cc); (d1, d2)) = max

{
m∑
i=1

σ+
i d1,i + σ−i d2,i : σ ∈ ∂F cv(x̂)

}
.
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Theorem 5.4.2. Consider the setup of Theorem 5.3.2. Define ci = [f cvi ]′(z; d), di =

[f cci ]′(z; d) ∀i ∈ I. The directional derivative of g at z in the direction d ∈ Rn is:

[gcv]′ (z; d) = max

{
m∑
i=1

(σ+
i ci − σ−i di) : σ ∈ ∂F cv(x̂)

}
. (5.4.4)

where we require that, if f cvi (z) = f cci (z) for any i ∈ I, then ci + di ≤ 0 .

Proof. The result follows from Definition 5.2.1, Lemma 5.4.1 and the chain rule

(Scholtes, 2012, Theorem 3.1.1):

gcv(z) = h(f cv(z),−f cc(z))

According to the directional derivative chain rule (Scholtes, 2012, Theorem 3.1.1)

[gcv]′ (z; d) = h′(f cv(z),−f cc(z); [f cv]′(z; d),−[f cc]′(z; d))

= max

{
m∑
i=1

(σ+
i [f cvi ]′(z; d)− σ−i [f cci ]′(z; d)) : σ ∈ ∂F cv(x̂)

}
.

Corollary 5.4.3. Consider the setup of Theorem 5.4.2, and suppose that F cv is

piecewise differentiable. Define ci = [f cvi ]′(z; d), di = [f cci ]′(z; d) ∀i ∈ I. Also let

F e(x̂) be the essential active function of F cv at x̂.

The directional derivative of g at z in direction d ∈ Rn is:

[gcv]′ (z; d) = max

{
m∑
i=1

(σ+
i ci − σ−i di) : σ ∈ ∂f ∗(x̂), f ∗ ∈ F e(x̂)

}
.

Proof. Since the mapping: σ ∈ Rm 7−→
∑m

i=1(σ+
i ci − σ−i di) is both convex and

47



M.A.Sc. Thesis – Y. Yuan McMaster University – Chemical Engineering

concave.

The result follows from Theorem 5.4.2 and Lemma 5.2.3

Corollary 5.4.4. Consider the setup of Theorem 5.4.2, and suppose that F cv , f cv

and f cc are differentiable. Define σ = ∇F cv(x̂); v(i) = ∇f cvi (z) and w(i) = ∇f cci (z)

∀i ∈ I and also define a direction d ∈ Rn . The gradient of gcv at z is:

∇gcv(z) =
m∑
i=1

(σ+
i v(i) − σ−i w(i)). (5.4.5)

Proof. The result follows from Theorem 5.4.2.

Define v(i) = ∇f cvi (z), w(i) = ∇f cci (z) ∀i ∈ I, then, for any d ∈ Rn [f cvi ]′(z; d) =

〈v(i), d〉 and [f cci ]′(z; d) = 〈w(i), d〉. Since σ = ∇F cv(x̂), the directional derivative of

gcv in direction d becomes

[gcv]′ (z; d) = max

{
m∑
i=1

(σ+
i 〈v(i), d〉 − σ−i 〈w(i), d〉) : σ ∈ ∂F cv(x̂)

}

=
m∑
i=1

(σ+
i 〈v(i), d〉 − σ−i 〈w(i), d〉)

Since all of F cv, f cv(z) and f cc(z) are differentiable , due to Corollary 5.3.3, gcv is

differentiable: 〈∇gcv(z), d〉 = [gcv]′(z; d).
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5.5 Examples

5.5.1 Directional Derivative Computation

Product Rule

In this section, Theorem 5.4.2 and Corollary 5.4.3 will be used to provide directional

derivatives for bilinear products of functions described by (Tsoukalas and Mitsos,

2014, Corollary 5). All assumptions here are the same as (Tsoukalas and Mitsos,

2014, Corollary 5). Consider the function mult(x1, x2) = x1x2. The convex/concave

envelopes of mult(x1, x2) on the domain [xL1 , x
U
1 ]× [xL2 , x

U
2 ] by (Al-Khayyal and Falk,

1983; McCormick, 1976) are:

multcv(x1, x2) = max{xU2 x1 + xU1 x2 − xU1 xU2 , xL2 x1 + xL1 x2 − xL1 xL2 }

multcc(x1, x2) = min{xL2 x1 + xU1 x2 − xU1 xL2 , xU2 x1 + xL1 x2 − xL1 xU2 }

Consider a nonempty convex set Z ∈ Rn. Let g(z) = mult(f1(z), f2(z)), with

f1 : Z → R, f2 : Z → R. Also fLi , fUi denote lower and upper bounds for fi on Z,

and let f cvi ,f cci be convex and concave relaxation of fi on Z. Then, the Tsoukalas-

Mitsos convex relaxation of g on Z is:

gcv(z) = min
xi∈[fLi ,fUi ]

max
{
fU2 x1 + fU1 x2 − fU1 fU2 , fL2 x1 + fL1 x2 − fL1 fL2

}
s.t. f cv1 (z) ≤ x1 ≤ f cc1 (z)

f cv2 (z) ≤ x2 ≤ f cc2 (z).

Example 5.5.1. Consider g(z) = mult(f1(z), f2(z)) = f1(z)f2(z) with f1(z) = (z +
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1)2 and f2(z) = (z − 1)6 + 1 on Z = [0, 2] ∈ R. Bounds of fi on Z are calculated

by hand to be fL1 = 1, fU1 = 9, fL2 = 1 and fU2 = 2. The following functions are

relaxations of fi in Z:

f cv1 (z) = (z + 1)2, f cc1 (z) = 1 + 4z

f cv2 (z) = (z − 1)6 + 1, f cc2 (z) = 2

The multivariate McCormick relaxation of g(z) by Definition 2.5.2 becomes

gcv(z) = min
xi∈[fLi ,fUi ]

F cv(x)

s.t. f cv1 (z) ≤ x1 ≤ f cc1 (z)

f cv2 (z) ≤ x2 ≤ f cc2 (z)

(5.5.1)

with

F cv(x) = max {Q1(x), Q2(x)} ,

where Q1(x) = fU2 x1 + fU1 x2 − fU1 fU2 = 2x1 + 9x2 − 18

Q2(x) = fL2 x1 + fL1 x2 − fL1 fL2 = x1 + x2 − 1

To calculate gcv(z), the optimization problem (5.5.1) is expressed as an LP below

50



M.A.Sc. Thesis – Y. Yuan McMaster University – Chemical Engineering

and solved in Matlab using the LP solver ‘linprog’:

gcv(z) = min
xi∈[fLi ,fUi ];

t∈R

t

s.t. fU2 x1 + fU1 x2 − fU1 fU2 ≤ t

fL2 x1 + fL1 x2 − fL1 fL2 ≤ t

f cv1 (z) ≤ x1 ≤ f cc1 (z)

f cv2 (z) ≤ x2 ≤ f cc2 (z)

(5.5.2)

F cv is a piecewise differentiable function, and Figure 5.1 shows gcv is also a nons-

mooth function. In this case, the directional derivative of gcv at the point z = ẑ = 1.75

will be tested to illustrate Corollary 5.4.3, since this is a nonsmooth point of gcv. In

two direction d1 = 1 and d2 = −1 will be found in this example.

51



M.A.Sc. Thesis – Y. Yuan McMaster University – Chemical Engineering

Figure 5.1: The relaxation gcv(z) on z = [0, 2] in example 5.5.1.

At point z = ẑ = 1.75, gcv(ẑ) = 7.7405, the optimal solution of (5.5.1) is

x̂1 = 7.5626, x̂2 = 1.1780. Q1 and Q2 are essentially active function of F cv(x̂1, x̂2).

According to Definition 5.2.2, the essentially active functions of F cv at x̂ are:

F e(x̂1, x̂2) ={Q1, Q2}

The partial derivatives of Q1 Q2 at (x̂1, x̂2) are ∂Q1

∂x̂1
= 2, ∂Q1

∂x̂2
= 9, ∂Q2

∂x̂1
= 1 and
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∂Q2

∂x̂2
= 1. According to Lemma 5.2.3, the subdifferential of F cv at x̂ is

∂F cv(x̂) = conv{∇fj(x̂)|j ∈ IeF cv(x̂)}

= conv{∇Q1(x̂),∇Q2(x̂)}.

Define v(i) = ∇f cvi (z), w(i) = ∇f cci (z) ∀i ∈ I , at z = ẑ = 1.75 = 1.75,

v(1) = (2ẑ+2), v(2) = 6(ẑ−1)5, w(1) = 4 and w(2) = 0. Let ai ≡ [f cvi ]′(ẑ; d) = 〈v(i), d〉,

bi ≡ [f cci ]′(ẑ; d) = 〈w(i), d〉 for all i ∈ I.

Applying Corollary 5.4.3, the directional derivative of gcv at ẑ = 1.75 in direction

d1 = 1 becomes:

[gcv]′ (z; d) = max

{
m∑
i=1

(σ+
i ci − σ−i di) : σ ∈ ∂f ∗(x̂), f ∗ ∈ F e(x̂)

}
= 23.8125.

The directional derivative of gcv at ẑ = 1.75 in direction d2 = −1 becomes:

[gcv]′ (z; d) = max

{
m∑
i=1

(σ+
i ci − σ−i di) : σ ∈ ∂f ∗(x̂), f ∗ ∈ F e(x̂)

}
= −6.9238.

In Figure 5.2 below, on T = [0, 0.2], the solid blue line is gcv(ẑ + td1) plotted

against t when ẑ = 1.75 and d1 = 1 are fixed.

The dotted red line V : R → R shows an affine function constructed with slope

[gcv]′(ẑ; d1) when ẑ = 1.75 and the direction d1 = 1 are fixed:

V (t) = gcv(ẑ + td1) + [gcv]′(ẑ; d1)(t− 0).

Here [gcv]′(ẑ; d1) is the slope of V (t).
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In the definition of the directional derivative given by Definition 2.3.1,

f ′(x; d) = lim
t→0

f(x+ td)− f(x)

t

Then the directional derivative of f at x is the slope of the tangent line at t = 0 in

f(x+ td)vs t when x and d are fixed.

Figure 5.2 shows that the graph of V is always below gcv(ẑ + td1) and is tangent

to gcv(ẑ + td1) at t = 0. Then, [gcv]′(ẑ; d1) is verified to be the directional derivative

of gcv at ẑ in direction d1.

Similar to T = [0, 0.2], in Figure 5.3, the solid blue line shows gcv(ẑ+ td2) plotted

against t when ẑ = 1.75 and direction d2 = −1 are fixed.

The red dotted line W (t) : R→ R in Figure 5.3 is constructed by [gcv]′(ẑ; d2) when

ẑ = 1.75 and d2 = −1 are fixed:

W (t) = gcv(ẑ + td2) + g′cv(ẑ; d2)(t− 0)

here [gcv]′(ẑ; d2) is the slope of W (t).

The graph of W (t) is also tangent to gcv(ẑ+ td2) at t = 0. It is thus verified to be

the directional derivative of gcv at ẑ in direction d2.
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Figure 5.2: At fixed ẑ = 1.75, the relaxation gcv(ẑ + td1) in Example 5.5.1 with
d1 = 1 on T = [0, 0.2] (top). Tangent line V (t) (bottom) is constructed by

directional derivative [gcv]′(ẑ; d1)
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Figure 5.3: At fixed ẑ = 1.75, the relaxation gcv(ẑ + td2) in Example 5.5.1 with
d2 = −1 on T = [0, 0.2] (top). Tangent line W (t) (bottom) is constructed by the

directional derivative [gcv]′(ẑ; d2).

5.5.2 Subgradient

Product Rule

In this section, Theorem 5.3.2 will be used to provide subgradients of relaxations of

bilinear products of functions same as in Section 5.5.1. The two examples involve two

and three variables, respectively. These two examples are smooth functions, which

shows Theorem 5.3.2 is valid for computing gradients for smooth functions.

Example 5.5.2. Consider g(z) = mult(f1(z), f2(z)) = f1(z)f2(z) with f1(z) = (z +

1)2 and f2(z) = (z − 1)6 + 1 on Z = [0, 1] ⊂ R. Bounds of fi calculated by hand are
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fL1 = 1, fU1 = 4 and fL2 = 1, fU2 = 2. Convex and concave relaxations of fi are:

f cv1 (z) = (z + 1)2, f cc1 (z) = 1 + 3z

f cv2 (z) = (z − 1)6 + 1, f cc2 (z) = 2− z

The multivariate McCormick relaxation of gcv according to Definition 2.5.2 is

gcv(z) = min
xi∈[fLi ,fUi ]

F cv(x)

s.t. f cv1 (z) ≤ x1 ≤ f cc1 (z)

f cv2 (z) ≤ x2 ≤ f cc2 (z)

(5.5.3)

with

F cv(x) = max {Q1(x), Q2(x)}

where Q1(x) = fU2 x1 + fU1 x2 − fU1 fU2

Q2(x) = fL2 x1 + fL1 x2 − fL1 fL2

To evaluate gcv, the optimization problem (5.5.3) is expressed as an LP below and

57



M.A.Sc. Thesis – Y. Yuan McMaster University – Chemical Engineering

calculated in Matlab using ‘linprog’. This is shown in Figure 1:

gcv(z) = min
xi∈[fLi ,fUi ];

t∈R

t

s.t. fU2 x1 + fU1 x2 − fU1 fU2 ≤ t

fL2 x1 + fL1 x2 − fL1 fL2 ≤ t

f cv1 (z) ≤ x1 ≤ f cc1 (z)

f cv2 (z) ≤ x2 ≤ f cc2 (z)

(5.5.4)

In order to calculate a subgradient of gcv at z using Equation (5.3.14) in Theorem

5.3.2, then elements of ∂f cvi (z), ∂f cvi (z) and ∂F cv
i (x̂) need to be known. ∂f cvi (z), ∂f cvi (z)

are easily to be calculated by hand in this case:

v1 = 2z + 2; v1 ∈ ∂f cv1 (z)

w1 = 3; w1 ∈ ∂f cc1 (z)

v2 = 6(z + 1)5; v2 ∈ ∂f cv2 (z)

w2 = −1; w2 ∈ ∂f cc2 (z)

Now, F cv(x̂) = max{Q1(x̂), Q2(x̂)}, Q1 and Q2 are both affine functions, and the

difference between them is 4Q(x̂) = Q1(x̂) − Q2(x̂) = x1 + 3x2 − 7. Two cases can

be considered when describing some σ ∈ ∂F cv(x̂):

� if 4Q(x̂) ≥ 0,then F cv(x̂) = Q1(x̂) and we may choose σ ∈ ∂Q1(x̂), so σ = 2

4


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� if 4Q(x̂) < 0,then F cv(x̂) = Q2(x̂) and σ ∈ ∂Q2(x̂): σ =

 1

1



We now compute a subgradient of gcv at the point ẑ = 0.5: The optimal solution

of (5.5.4) is gcv(ẑ) = 2.2656 and x̂ =

 x̂1

x̂2

 =

 2.2500

1.0156

, which was computed in

Matlab, and

v1 = 2ẑ + 2 = 3

w1 = 3

v2 = 6(ẑ − 1)5 = −0.1875

w2 = −1

Here, 4Q(x̂) = Q1(x̂) − Q2(x̂) = x̂1 + 3x̂2 − 7 = −1.7032 < 0, so in Theorem

5.3.2, we may choose σ ∈ ∂Q1(x̂); so σ =

 1

1

. Then by using Definition 5.2.1 ,

σ+, σ− becomes:

σ+ =

 1

1

 ;σ− =

 0

0


Since f cvi (ẑ) 6= f cvi (ẑ) for each i ∈ I, ai = 0 for all i ∈ I.
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A subgradient of gcv at ẑ = 0.5 by Equation (5.3.14) is

2∑
i=1

(σ+
i vi − σ−i wi) = 2.8125 =: s

s ∈ ∂gcv(ẑ)

Then, the tangent function K(z) : R → R to gcv at ẑ = 0.5 is constructed using

this subgradient s:

K(z) = gcv(z) + s(z − ẑ)

Figure 5.4 shows the orignal product g(z) = (z + 1)2((z − 1)6 + 1) and its convex

relaxation gcv on Z = [0, 1]. K(z) is evidently the tangent line of gcv at ẑ = 0.5 and

is always below gcv. According to Definition 2.3.2, the subdifferential of function f at

x is set of vectors s satisfying:

f(y) ≥ f(x) + 〈s, y − x〉, ∀ y ∈ Rn.

Thus, this result says: if s is subgradient, then K would always below original

function gcv. If s is not subgradient, K would lie above or cross over gcv. Here, the

graph of K is always below gcv. So s is readily verified to be a subgradient of gcv at ẑ.
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Figure 5.4: Plot of g(z) = (z + 1)2((z − 1)6 + 1) from Example 5.5.2 and its convex
relaxation gcv(z) on Z = [0, 1]. K(z) is the tangent line of gcv at ẑ = 0.5,

constructed using the computed subgradient

Example 5.5.3. Consider g(z) = mult(f1(z), f2(z)) with f1(z) = z2
1 − z2

2 + 1 and

f2(z) = (z1 − 1)6 + z2 + 1 on Z = [0, 1] ⊂ R2. BoundS of fi calculated by hand are

fL1 = 0, fU1 = 2 and fL2 = 1, fU2 = 3. Convex and concave relaxations of each fi are:

f cv1 (z) = z2
1 + z2

2 − 2, f cc1 (z) = 3z1 + 3z2 + 2

f cv2 (z) = (z1 − 1)6 + z2 + 1, f cc2 (z) = 2− z1 + z2.

As in Example 5.5.2, the multivariate McCormick relaxation of g by Definition
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2.5.2 is

gcv(z) = min
xi∈[fLi ,fUi ]

F cv(x)

s.t. f cv1 (z) ≤ x1 ≤ f cc1 (z)

f cv2 (z) ≤ x2 ≤ f cc2 (z)

(5.5.5)

with

F cv(x) = max {Q1(x), Q2(x)}

where Q1(x) = fU2 x1 + fU1 x2 − fU1 fU2

Q2(x) = fL2 x1 + fL1 x2 − fL1 fL2 .

To evaluate the gcv(z), the optimization problem Equation (5.5.5) is expressed as

an LP below and solved in Matlab using ‘linprog’ which can be seen in Figure 5.5:

gcv(z) = min
xi∈[fLi ,fUi ];

t∈R

t

s.t. fU2 x1 + fU1 x2 − fU1 fU2 ≤ t

fL2 x1 + fL1 x2 − fL1 fL2 ≤ t

f cv1 (z) ≤ x1 ≤ f cc1 (z)

f cv2 (z) ≤ x2 ≤ f cc2 (z)

(5.5.6)

In order to calculate a subgradient of gcv(z) using Equation (5.3.14) in Theorem

5.3.2, we do the following.
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Set:

v =

∂fcv1∂z1 (z)
∂fcv1
∂z2

(z)

∂fcv2
∂z1

(z)
∂fcv2
∂z2

(z)

 =

 2z1 2z2

6(z1 − 5)5 1


w =

∂fcc1∂z1 (z)
∂fcc1
∂z2

(z)

∂fcc2
∂z1

(z)
∂fcc2
∂z2

(z)

 =

 3 3

−1 1

 .
Now, F cv(x̂) = max{Q1(x̂), Q2(x̂)}, where Q1 and Q2 are affine functions, so the

difference between them is 4Q(x̂) = Q1(x̂)−Q2(x̂) = (fU2 − fL2 )x̂1 + (fU1 − fL1 )x̂2 −

(fU1 f
U
2 − fL1 fL2 ) = 2x̂1 + 2x̂2 − 6. Two cases can be considered when describing some

σ ∈ ∂F cv(x̂):

� if 4Q(x̂) ≥ 0,then F cv(x̂) = Q1(x̂) and we may choose σ ∈ ∂Q1(x̂), so σ = fU2

fU1



� if 4Q(x̂) < 0,then F cv(x̂) = Q2(x̂) and σ ∈ ∂Q2(x̂) is valid, so σ =

 fL2

fL1



We now compute a the subgradient of gcv at point ẑ =

 0.5

0.5

: The optimal solution

of (5.5.6) is gcv(ẑ) = −1.5 and x̂ =

 x̂1

x̂2

 =

 −1.5

1.5168

 which was computed in
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Matlab, and

v =

 1 1

−0.1875 1


w =

 3 3

−1 1

 .
Here, 4Q(x̂) = Q1(x̂) − Q2(x̂) = 2x̂1 + 2x̂2 − 6 = −5.9664 < 0, so in Theorem

5.3.2 we may choose σ ∈ ∂Q1(x̂); so σ =

 1

0

. Then by using Definition 5.2.1 ,

σ+, σ− becomes:

σ+ =

 1

0

 ;σ− =

 0

0


Since f cvi (ẑ) 6= f cvi (ẑ) for each i, ai = 0 for all i ∈ I.

By Equation (5.3.14), the subgradient of gcv at ẑ =

 0.5

0.5

 is


2∑
i=1

(σ+
i vi,1 − σ−i wi,1)

2∑
i=1

(σ+
i vi,2 − σ−i wi,2)

 =

 1

1

 =: s

s ∈ ∂gcv(ẑ)

Then, the subtangent function M : R2 → R2 to gcv at ẑ =

 0.5

0.5

 is constructed

64



M.A.Sc. Thesis – Y. Yuan McMaster University – Chemical Engineering

using subgradient s:

M(z) = gcv(z) + sT (z − ẑ).

Figure 5.5 shows the original product rule g(z) = (z2
1 − z2

2 + 1)((z1 − 1)6 + z2 + 1)

on Z = [0, 1]× [0, 1] and its convex relaxation gcv. M is evidently a subtangent plane

of gcv at ẑ =

 0.5

0.5

 and is always below gcv. Same as Example 5.5.2, according

to (Hiriart-Urruty and Lemaréchal, 2013a, §VI, Definition 1.2.1), the graph of M is

always below gcv, so s is readily verified to be a subgradient of gcv at ẑ.

Figure 5.5: Top: Plot of g(z) = (z2
1 − z2

2 + 1)((z1 − 1)6 + z2 + 1) from Example 5.5.3
on Z = [0, 1]× [0, 1]; Middle: convex relaxation gcv of g. Bottom: M is subtangent

plane of gcv at ẑ = [0.5, 0.5], constructed using obtained subgradient.
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Fractional Terms

In this section, Theorem 5.3.2 will be used to compute a subgradient for bilinear

fraction terms considered in (Tsoukalas and Mitsos, 2014, Corollary 6). All assump-

tions are the same as (Tsoukalas and Mitsos, 2014, Corollary 6). The two examples

invilve two and three variables, respectively. These two examples’ relaxations are non-

smooth functions, which shows Theorem 5.3.2 is valid for computing subgradients for

nonsmooth functions.

Consider the function div(x1, x2) = x1
x2

. A convex relaxation of div(x1, x2) on the

domain [xL1 , x
U
1 ]× [xL2 , x

U
2 ] (Tsoukalas and Mitsos, 2014, Equation 30) is:

divcv(x1, x2) = max{ x1

xU2
+
xL1
x2

− xL1
xU2
,
x1

xL2
+
xU1
x2

− xU1
xL2
}

Let g(z) = div(f1(z), f2(z)), with f1 : Z ⊂ Rn → R, f2 : Z ⊂ Rn → R. Let

fLi , fUi denote lower and upper bounds for fi, and let f cvi ,f cci be convex and concave

relaxations of fi on Z. Then:

gcv(z) = min
xi∈[fLi ,fUi ]

max

{
x1

fU2
+
fL1
x2

− fL1
fU2

,
x1

fL2
+
fU1
x2

− fU1
fL2

}
s.t. f cv1 (z) ≤ x1 ≤ f cc1 (z)

f cv2 (z) ≤ x2 ≤ f cc2 (z)

is a convex relaxation of g on Z.

Let F cv(x) ≡ max
{
x1
fU2

+
fL1
x2
− fL1

fU2
, x1
fL2

+
fU1
x2
− fU1

fL2

}
for x ∈ R2. By Theorem 5.3.2,
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the subdifferential of g at z becomes:

∂gcv(z) =
{ m∑

i=1

[(σ+
i + ai)v(i) − (σ−i + ai)w(i)] : σ ∈ ∂F cv(x̂); v(i) ∈ ∂f cvi (z),

w(i) ∈ ∂f cci (z) ∀i ∈ I, a ∈ Rm, a ≥ 0; if f cvi (z) 6= f cci (z), then ai = 0, for any i ∈ I
}

where x̂ denotes one of the optimal solutions of the right-hand-side optimization

problem of defining gcv(z).

Example 5.5.4. Consider g(z) = div(f1(z), f2(z)) = f1(z)
f2(z)

with f1(z) = (z + 1)2 and

f2(z) = (z − 1)6 + 1 on Z = [0, 1] ⊂ R. Bounds of fi on Z calculated by hand are

fL1 = 1, fU1 = 4 and fL2 = 1, fU2 = 2. Convex and concave relaxations of fi on Z are:

f cv1 (z) = (z + 1)2, f cc1 (z) = 1 + 3z

f cv2 (z) = (z − 1)6 + 1, f cc2 (z) = 2− z

The multivariate McCormick relaxation of g on Z by Definition 2.5.2 is

gcv(z) = min
xi∈[fLi ,fUi ]

F cv(x)

s.t. f cv1 (z) ≤ x1 ≤ f cc1 (z)

f cv2 (z) ≤ x2 ≤ f cc2 (z)
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with

F cv(x) = max {Q1(x), Q2(x)}

where Q1(x) =
x1

fU2
+
fL1
x2

− fL1
fU2

Q2(x) =
x1

fL2
+
fU1
x2

− fU1
fL2

To calculate gcv(z) above, since both fL1 and fL2 are greater than 0, then, x1 =

f cv1 , x2 = f cc2 . So, if Q1(x) ≥ Q2(x), then gcv(z) = Q1(x). If Q1(x) ≤ Q2(x), then

gcv(z) = Q2(x).

In order to calculate a subgradient of gcv using Equation (5.3.14) in Theorem 5.3.2,

and σ ∈ ∂F cv(x̂) and vi ∈ ∂f cvi (z), wi ∈ ∂f cci (z) for all i ∈ I, then, ∂f cvi (z), ∂f cvi (z)

and ∂F cv
i (x̂) need to be known. ∂f cvi (z), ∂f cvi (z) are easily calculated by hand in this

case:

v1 ∈ ∂f cv1 (z); v1 = 2z + 2

w1 ∈ ∂f cc1 (z); w1 = 3

v2 ∈ ∂f cv2 (z); v2 = 6(z − 1)5

w2 ∈ ∂f cc2 (z); w2 = −1

Now, F cv(x̂) = max{Q1(x̂), Q2(x̂)}, Q1(x̂) and Q2(x̂) are both function in terms

of x, the difference between them is 4Q(x̂) = Q1(x̂) − Q2(x̂). Two cases can be

considered separately to choose some σ ∈ ∂F cv(x̂):

� if 4Q(x̂) ≥ 0, then F cv(x̂) = Q1(x̂) and we may choose σ ∈ ∂Q1(x̂), so σ =
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 1
fU2

−fL1
x̂22


� if 4Q(x̂) < 0, then F cv(x̂) = Q2(x̂) and we may choose σ ∈ ∂Q2(x̂), so

σ =

 1
fL2

−fU1
x̂22



Now, we find a subgradient of gcv at the point ẑ = 0.5: In Matlab, gcv(ẑ) = 1.2917

was computed to be x̂ =

 x̂1

x̂2

 =

 2.25

1.5

, with

v1 = 2ẑ + 2 = 3

w1 = 3

v2 = 6(ẑ − 1)5 = −0.1875

w2 = −1

4Q(x̂) = Q1(x̂) − Q2(x̂) = 0.375 > 0, so we may choose σ ∈ ∂Q1(x̂), so σ = 0.5

−0.4444

. Then by using Definition 5.2.1 , σ+, σ− becomes:

σ+ =

 0.5

0

 ;σ− =

 0

0.4444


Since f cvi (ẑ) 6= f cvi (ẑ) for each i, ai = 0 for all i ∈ I.
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A subgradient of gcv at ẑ = 0.5 is then

2∑
i=1

(σ+
i vi − σ−i wi) = 1.9444 =: s

s ∈ ∂gcv(ẑ)

Then, a tangent line R(z) : R → R to gcv at ẑ = 0.5 in Figure 5.6 and ẑ = 0.63

in Figure 5.7 are constructed with s:

R(z) = gcv(z) + s(z − ẑ)

Figure 5.6 and 5.7 show the original function g(z) = (z+1)2

(z−1)6+1
and its convex relax-

ation gcv on Z = [0, 1]. R(z) is the tangent line of gcv at ẑ = 0.5, ẑ = 0.63 constructed

with the new subgradient and is always below gcv(z). According to definition of sub-

gradient Definition 2.3.2, the subdifferential of function f at x is set of vectors s

satisfying:

f(y) ≥ f(x) + 〈s, y − x〉, ∀ y ∈ Rn.

Thus, this result says: if s is subgradient, if and only if the graph of R is below

the original function gcv. Here, R is always below gcv. So s is readily verified to be a

subgradient of gcv at x̂.
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Figure 5.6: Plot of g(z) = (z+1)2

(z−1)6+1
and its convex relaxation gcv(z) on Z = [0, 1] in

Example 5.5.4. R(z) is a subtangent line of gcv at ẑ = 0.5.

Figure 5.7: Plot g(z) = (z+1)2

(z−1)6+1
and its convex relaxation gcv(z) on Z = [0, 1] in

Example 5.5.4. R(z) is a subtangent line of gcv at ẑ = 0.63.

Example 5.5.5. Consider g(z) = div(f1(z), f2(z)) = f1(z)
f2(z)

with f1(z) = z2
1 − z2

2 + 1

and f2(z) = (z1 − 1)6 + z2 + 1 on Z = [0, 1]× [0, 1]: Z ∈ R2. Bounds of fi calculated
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by hand are fL1 = 0, fU1 = 2 and fL2 = 1, fU2 = 3. Convex and concave relaxations of

fi on Z are:

f cv1 (z) = z2
1 − z2 + 1, f cc1 (z) = −z2

2 + z1 + 1

f cv2 (z) = (z1 − 1)6 + z2 + 1, f cc2 (z) = 2− z1 + z2.

In Example 5.5.2, the multivariate McCormick relaxation of g by Definition 2.5.2

becomes

gcv(z) = min
xi∈[fLi ,fUi ]

F cv(x)

s.t. f cv1 (z) ≤ x1 ≤ f cc1 (z)

f cv2 (z) ≤ x2 ≤ f cc2 (z)

(5.5.7)

with

F cv(x) = max {Q1(x), Q2(x)}

where Q1(x) =
x1

fU2
+
fL1
x2

− fL1
fU2

Q2(x) =
x1

fL2
+
fU1
x2

− fU1
fL2

To calculate gcv(z) above, since both fL1 and fL2 are greater than 0, then, x1 =

f cv1 (z), x2 = f cc2 (z). If Q1(x) ≥ Q2(x), then gcv(z) = Q1(x). If Q1(x) ≤ Q2(x), then

gcv(z) = Q2(x).

In order to calculate a subgradient of gcv at z using Equation 5.3.14 in Theorem

5.3.2, we proceed similar by Example 5.5.2:
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v =

∂fcv1∂z1 (z)
∂fcv1
∂z2

(z)

∂fcv2
∂z1

(z)
∂fcv2
∂z2

(z)

 =

 2z1 −1

6(z1 − 5)5 1


w =

∂fcc1∂z1 (z)
∂fcc1
∂z2

(z)

∂fcc2
∂z1

(z)
∂fcc2
∂z2

(z)

 =

 1 −2z2

−1 1

 .
Now, F cv(x̂) = max{Q1(x̂), Q2(x̂)}, Q1(x̂) and Q2(x̂) are both functions in terms

of x, the difference between them is 4Q(x̂) = Q1(x̂) − Q2(x̂). Two cases can be

considered to determine some σ ∈ ∂F cv(x̂):

� if 4Q(x̂) ≥ 0,then F cv(x̂) = Q1(x̂) and σ ∈ ∂Q1(x̂): σ =

 1
fU2

−fL1
x̂22



� if 4Q(x̂) < 0,then F cv(x̂) = Q2(x̂) and σ ∈ ∂Q2(x̂): σ =

 1
fL2

−fU1
x̂22



We now compute a subgradient of gcv at the point ẑ =

 0.5

0.5

: The optimal

solution of (5.5.7) is gcv(ẑ) = 0.25 and x̂ =

 x̂1

x̂2

 =

 0.75

2

, which was computed

in Matlab, and

v =

 1 −1

−0.1875 1


w =

 1 −1

−1 1

 .
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Here, 4Q(x̂) = Q1(x̂) − Q2(x̂) = 0.5 > 0, so in Theorem 5.3.2, we may choose

σ ∈ ∂Q1(x̂), so σ =

 0.3333

0

. Then by using Definition 5.2.1 , σ+, σ− becomes:

σ+ =

 0.3333

0

 ;σ− =

 0

0


Since f cvi (ẑ) 6= f cvi (ẑ) for each i, ai = 0 for all i ∈ I.

A subgradient of gcv at ẑ =

 0.5

0.5

 is


2∑
i=1

(σ+
i vi,1 − σ−i wi,1)

2∑
i=1

(σ+
i vi,2 − σ−i wi,2)

 =

 0.3333

−0.3333

 =: s.

Then, the subtangent function L : R2 → R2 to gcv at ẑ =

 0.5

0.5

 is constructed

using this subgradient s:

L(z) = gcv(z) + sT (z − ẑ).

Figure 5.8 shows the original function g(z) =
z21−z22+1

(z1−1)6+z2+1
on Z = [0, 1]× [0, 1] and

its convex relaxation gcv. L is evidently the subtangent plane of gcv at ẑ =

 0.5

0.5


and is always below gcv(z). The corresponding subtangent plane L(z) : R2 → R2 to
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gcv(z) at ẑ =

 0.6

0.2

 is shown in Figure 5.9. As in Example 5.5.2, according to

Definition 2.3.2, L is always below gcv, so s is readily verified to be a subgradient of

gcv at ẑ.

Figure 5.8: Top: plot of g(z) =
z21−z22+1

(z1−1)6+z2+1
on Z = [0, 1]× [0, 1] from Example 5.5.5;

Middle: convex relaxation gcv of g. Bottom: L is the subtangent plane of gcv at
ẑ = [0.5, 0.5] constructed using obtained subgradient.
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Figure 5.9: Top: Plot of g(z) =
z21−z22+1

(z1−1)6+z2+1
on Z = [0, 1]× [0, 1] from Example

5.5.5; Middle: convex relaxation gcv of g. Bottom: L is the subtangent plane of gcv

at ẑ = [0.6, 0.2] constructed using obtained subgradient.

Convex Envelope

In this section, Theorem 5.3.2 will be used to provide a subgradient for a nontrivial

convex envelope (Khajavirad and Sahinidis, 2013, Corollary 1). Consider the function

F =
√
x2
x21

, for x1 ∈ [−2,−1] and x2 ∈ [1, 4]. The convex envelope F cv(x) can be
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expressed as below (Khajavirad and Sahinidis, 2013, Example 1) :

F cv(x) =


(4−x2)3

3(3x1+2x2−2)2
+ x2−1

6
, if − 2 ≤ x1 ≤ −0.14x2 − 1.45

(0.09x2+0.9)3

x21
, if − 0.14x2 − 1.45 ≤ x1 ≤ −0.09x2 − 0.9

2(x2−1)3

3(3x1−x2+4)2
+ 4−x2

3
, if − 0.09x2 − 0.9 ≤ x1 ≤ −1.0

(5.5.8)

Example 5.5.6. Consider g(z) =

√
f2(z)

f1(z)2
with f1(z) = z − 2 and f2(z) = z3 + 2z + 1

on Z = [0, 1] ⊂ R. Bounds of fi calculated by hand are fL1 = −2, fU1 = −1 and

fL2 = 1, fU2 = 4. Convex and concave relaxations of fi on Z are:

f cv1 (z) = z − 2, f cc1 (z) = z − 1

f cv2 (z) = z3 + 2z + 1, f cc2 (z) = 3z + 1

The multivariate McCormick relaxation of g according to 2.5.2 is

gcv(z) = min
xi∈[fLi ,fUi ]

F cv(x)

s.t. f cv1 (z) ≤ x1 ≤ f cc1 (z)

f cv2 (z) ≤ x2 ≤ f cc2 (z)

(5.5.9)

where F cv(x) is the same in equation (5.5.8).

In order to calculate a subgradient of gcv at z using Equation (5.3.14) in Theorem

5.3.2,then elements of ∂f cvi (z), ∂f cvi (z) and ∂F cv
i (x̂) need to be known. ∂f cvi (z), ∂f cvi (z)

are easily calculated by hand in this case:
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v1 = 1; v1 ∈ ∂f cv1 (z)

w1 = 1; w1 ∈ ∂f cc1 (z)

v2 = 3z2 + 2; v2 ∈ ∂f cv2 (z)

w2 = 3; w2 ∈ ∂f cc2 (z)

These cases below can be considered when describing some σ ∈ ∂F cv(x̂):

� if −2 ≤ x1 ≤ −0.14x2 − 1.45, then σ =

 2(x2−4)3

(3x1+2x2−2)3

− 4(4−x2)3

3(3x1+2x2−2)3
− (4−x2)2

(3x1+2x2−2)2
+ 1

6



� if −0.14x2 − 1.45 ≤ x1 ≤ −0.09x2 − 0.9, then σ =

 −0.001458(x2−10)3

x31

0.002187(x2−10)2

x21



� if −0.09x2 − 0.9 ≤ x1 ≤ −1.0, then σ =

 − 4(x2−1)3

(3x1−x2+4)3

4(x2−1)3

3(3x1−x2+4)3
+ 2(x2−1)2

(3x1−x2+4)2
− 1

3


We now compute a subgradient of gcv at point ẑ = 0.5: The optimal solution of

(5.5.9) is gcv(ẑ) = 0.5776 and x̂ =

 x̂1

x̂2

 =

 −1.5

2.125

, which was computed in

Matlab, and

v1 = 1

w1 = 1

v2 = 2.75

w2 = −3,
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soσ =

 0.7701

0.1429

.

Then by using Definition 5.2.1 , σ+, σ− becomes:

σ+ =

 0.7701

0.1429

 ;σ− =

 0

0


Since f cvi (ẑ) 6= f cvi (ẑ) for each i, ai = 0 for all i ∈ I.

A subgradient of gcv at ẑ = 0.5 is

2∑
i=1

(σ+
i vi − σ−i wi) = 1.1630 =: s,

s ∈ ∂gcv(ẑ)

Then, the tangent function O : R → R to gcv at ẑ = 0.5 in Figure 5.10 is

constructed using this subgradient s:

O(z) = gcv(z) + s(z − ẑ)

Figure 5.10 shows the original function g(z) =
√
z3+2z+1
(z−2)2

and its convex relaxation

gcv on Z = [0, 1]. O(z) is tangent line of gcv(z) at ẑ = 0.5 and is always below gcv(z).

According to Definition 2.3.2, the subdifferential of the function f at x is set of vectors

s satisfying:

f(y) ≥ f(x) + 〈s, y − x〉, ∀ y ∈ Rn.

Thus, this result says: if s is a subgradient, then O would always be below original
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function gcv. If s is not a subgradient, O would lie above or cross over gcv. Here, O

is always below gcv. Here, the graph of O is always below gcv. So s is readily verified

to be a subgradient of gcv at ẑ.

Figure 5.10: Plot of g(z) =
√
z3+2z+1
(z−2)2

from Example 5.5.6 and its convex relaxation

gcv(z) on Z = [0, 1]. O(z) is the tangent line of gcv at ẑ = 0.5 constructed using the
computed subgradient.

80



Chapter 6

Conclusion and Future Work

This chapter summarizes the contributions of the entire study and suggests avenues

for future research.

6.1 Conclusion

In this thesis, several new theoretical results for nonsmooth sensitivity analysis are

developed.

Chapter 3 uses compass differences and extends Pang and Stewart’s directional

derivative result (Pang and Stewart, 2009, Theorem 11) to describe a correct subgra-

dient for nonsmooth dynamic system in R2 in Theorem 3.4.1. It is computationally

inexpensive and can be computed by standard ODE solvers.

In chapter 4, compass differences are used to give a subgradient for certain optimal-

value functions in R2, including Tsoukalas-Mitsos convex relaxations (Tsoukalas and

Mitsos, 2014). Its limitations are: this result cannot apply to functions more than

three variables; comparing to the new subgradient result Theorem 5.3.2 in chapter 5,
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it can just get a subgradient instead of the whole subdifferential set.

Chapter 5 develops a new subgradient result, Theorem 5.3.2, for Tsoukalas-Mitsos

convex relaxations of composite function. This new result has no limitation on di-

mensions of input variables. It can give the whole subdifferential set of the Tsoukalas-

Mitsos convex relaxations. Compared to Tsoukalas-Mitsos’ previous subdifferential

results (Tsoukalas and Mitsos, 2014, Theorem 4), it has no need to solve a dual

optimization problem as well. This chapter also extends the new subgradient results

to obtain directional derivatives for Tsoukalas-Mitsos convex relaxations in Theo-

rem 5.4.2. The new subgradient results and directional derivatives results are both

computational approachable.

6.2 Future Work

In the future, we expect that the new subgradient result can be applied in nonsmooth

dynamic system.

A particular application for this new subgradient result is the computation of sub-

gradients for convex relaxations solutions of the parametric ODE which is in prepara-

tion (Song and Khan, 2020). A typical ODE system is shown in Definition 3.1.1. As

in (Song and Khan, 2020), this may be accomplished by solving an auxiliary ODE

based on subgradients of relaxations of f , with these subgradients computed using

this new subgradient Theorem 5.3.2.
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