Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26036
Title: An Axial-Flux Switched Reluctance Motor for Light Electric Vehicles
Authors: Jack Gillies
Advisor: Ali Emadi, Berker Bilgin
Department: Mechanical Engineering
Keywords: electric motor axial flux reluctance vehicle
Publication Date: 2020
Abstract: In an increasingly urgent climate crisis, the use of electric powertrains in smaller, purpose-built vehicles can expedite the global adoption of electrification. This thesis discusses the detailed design of an axial-flux switched reluctance motor for application in a light electric vehicle, such as an E-motorcycle. A vehicle application is studied based on typical driving conditions in an urban environment. The requirements of the propulsion motor are extracted, and a baseline machine topology is analyzed for its performance and manufacturability, towards the goal of a functional prototype. The prototype design includes a self-supporting foil winding, designed to maximize the use of axial space and allow for good conductive heat transfer to the machine casing. The rotor structure is found to be a limiting factor, where maximum speed is limited by the mechanical stresses. The performance of the motor is analyzed in detail, beginning with a numerical iron loss model that is implemented to provide faster simulation time of the machine efficiency than FEA. The efficiency is found to peak at 90%, comparable with other traction motors of similar size on the market. The switching angles are studied, and the trade-offs between torque quality and efficiency are quantified over the drive cycle. It was determined that the vehicle could save 19.6 Wh/km by accepting poor torque quality and operating with the most efficient control parameters. Thermal analysis is performed to determine the realistic performance limitations. The machine was found to have power ratings of 7.12 kW instantaneous and 4.76 kW continuous. The final temperature of the winding during the drive cycle was predicted not to exceed the temperature ratings of the insulation system. Finally, the prototype is assembled, and a test plan is outlined for qualification of the motor.
URI: http://hdl.handle.net/11375/26036
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Gillies_Jack_2020Sept_MASc.pdf
Access is allowed from: 2021-09-01
52.58 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue