Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26017
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWierzbicki, Marcin-
dc.contributor.authorSingh, Rachna-
dc.date.accessioned2020-10-29T19:54:21Z-
dc.date.available2020-10-29T19:54:21Z-
dc.date.issued2020-
dc.identifier.urihttp://hdl.handle.net/11375/26017-
dc.description.abstractA dose prediction model for treatment planning was generated using U-Net architecture. The model was generated for advanced stage cancer patients. The U- Net architecture was created with depth=6 and kernel=6. The model architecture was successful to reduce the input image size (192X192) to feature map (6X6) which helped to extract the low level features. The dose prediction of the model was trained with depth=6, kernel=6, MSE loss, Adam optimizer, 1000 epochs and a batch size of 4. The predicted dose was rescaled for gamma analysis to quantify accuracy of the model. The renormalized predicted dose was quantified using gamma analysis with a 3mm, 3% dose tolerance. The gamma map was generated to visualize the regions where dose distributions failed. The gamma percentage values obtained on the training set were acceptable. The mean and standard deviation values of gamma pass percentage obtained on training dataset were 97.5% and 1.24% respectively, which concluded that training process was successful and was an almost perfect match of true dose and predicted dose. However, gamma pass percentage values obtained on validation set was not a good representation of the true dose. Nevertheless, the validation dataset was able to predict the approximate highest dose region. A gamma analysis with a 5mm, 5% dose tolerance was performed to test the the level of discrepancy between the predicted and true dose in the validation set. This increased the gamma pass percentage compared to the 3mm, 3% analysis to a mean gamma pass percentage of 26.2 ± 7.47%. Although the predicted dose was not of sufficient accuracy for clinical use, there technique studied in this work show promise for further development.en_US
dc.language.isoen_USen_US
dc.subjectDose predictionen_US
dc.subjectLung canceren_US
dc.subjectDeep learningen_US
dc.subjectU-Neten_US
dc.titleDose Prediction for Radiotherapy of Advanced Stage Lung Canceren_US
dc.typeBooken_US
dc.contributor.departmentHealth and Radiation Physicsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Singh_Rachna_202009_MSc.pdf
Open Access
10.78 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue