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ABSTRACT  

A dose prediction model for treatment planning was generated using U-Net 

architecture. The model was generated for advanced stage cancer patients. The U-

Net architecture was created with depth=6 and kernel=6. The model architecture 

was successful to reduce the input image size (192X192) to feature map (6X6) 

which helped to extract the low level features. The dose prediction of the model 

was trained with depth=6, kernel=6, MSE loss, Adam optimizer, 1000 epochs and 

a batch size of 4. The predicted dose was rescaled for gamma analysis to quantify 

accuracy of the model. The renormalized predicted dose was quantified using 

gamma analysis with a 3mm, 3% dose tolerance. The gamma map was generated 

to visualize the regions where dose distributions failed. The gamma percentage 

values obtained on the training set were acceptable. The mean and standard 

deviation values of gamma pass percentage obtained on training dataset were 

97.5% and 1.24% respectively, which concluded that training process was 

successful and was an almost perfect match of true dose and predicted dose. 

However, gamma pass percentage values obtained on validation set was not a good 

representation of the true dose. Nevertheless, the validation dataset was able to 

predict the approximate highest dose region. A gamma analysis with a 5mm, 5% 

dose tolerance was performed to test the the level of discrepancy between the 

predicted and true dose in the validation set.  This increased the gamma pass 

percentage compared to the 3mm, 3% analysis to a mean gamma pass percentage 

of 26.2 ± 7.47%.  Although the predicted dose was not of sufficient accuracy for 

clinical use, there technique studied in this work show promise for further 
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Chapter 1 
Introduction 

 
 
1.1 A brief introduction to deep learning 
 
Artificial intelligence (AI) refers to the science and engineering of computer simulation of human 

intelligence. Its development and deployment has become the most discussed topic in industry and 

academia. In the last 15 years, machine learning (ML), a subcategory of AI, has been a prominent 

area of research and development due to its ability to solve complex practical problems by learning 

from available data1.In recent years, another exceptional achievement has been obtained in the 

field of deep learning (DL), a subcategory of ML. DL2,3 is based on neural networks which are 

programed to learn with various degree of supervision from unstructured data. DL requires some 

prior knowledge to learn the system, however it’s capability to process the data and extract 

meaningful representations is outstanding. DL aims to utilize multiple neural networks to 

hierarchically extract high level features from the low level features of the provided input. DL has 

overshadowed traditional ML methods due to the accessibility of large-scale datasets in 

combination with advanced computing systems equipped with model training algorithms.  

The main difference between AI, ML and DL is the range of scope by which a problem 

can be solved. AI4,5  refers to the intelligence developed by computers to achieve abilities similar 

to human intelligence. The machine is capable of providing solutions to wide array of problems, 

where it is not restricted to categorize, comprehend, recognize patterns and can also provide 

conclusions. On the other hand, ML comprises numerical algorithms mostly restricted to 

performing established tasks via a specially designed model.  Hence, ML algorithms extract 

statistics from data to find meaningful relations already present in the data. DL6 employs multiple 

methods of ML to enhance the ability of the machine to identify the smallest correlations. This 
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process is known as a deep neural network, where it utilizes multi-layer architecture to 

computationally generate the predicted output. The diagram below shows the relationship between 

AI, ML and DL. 

 

Figure 1.1: Relationship between artificial intelligence, machine learning and deep learning7. 

 

1.2 Biology of a neural network: 

The human brain comprises approximately 10 billion neurons, our basic units of computation.  A 

biological neuron consists of two most important parts: dendrites and axons. Each dendrite 

communicates with an axon with the help of synapses. The main underlying principle is that each 

neuron has its own electric potential and will excite only if it reaches a particular threshold. The 

synaptic strength decides the interaction level of the signals in the neurons. Below is the diagram 

of the biological neuron of the human brain. 
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Figure 1.2: Biological neuron8 

In AI, biological neurons are modelled using representations such as the Perceptron8 shown 

in Figure (1.3).  Signals xi arrive at synapses where each is multiplied by a unique weight, wi. The 

weighted signals are summed and a bias b is added.  The bias represents the firing threshold of the 

neuron.  A non-linear activation function, f  is then applied to the total signal to generate the output, 

y. Equation (1.1) represents decision boundary of such outcome of the activation of a neuron, !" 

!" = $ %"&"" + b      (1.1) 
 
 

 
Figure 1.3: Single layer perceptron depicting one decision boundary8. 

 

The complicated functionality of biological neurons requires the use of a nonlinear activation 

function in artificial neurons as it is certain that the desired output will not be a linear combination 

of the inputs. 
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1.3 Timeline of deep learning 

DL has increased learning capabilities due to the large number of neuronal layers.  Training a DL 

model requires the optimization of the network parameters to reduce the error between the 

computed and the desired output.  One network architecture that is interesting for the work in this 

thesis is the convolutional neural network (CNN). CNNs utilize kernels to extract and preserve the 

spatial location of features to predict the outcomes in computer vision applications. The first CNN 

was presented in 1988 by LeCun et al.9 The lack of computational power and knowledge of 

complicated pipeline to train the model was the major hindrance in its development. It did not gain 

recognition until 2012 when Alex Krizhevsky et al.10 used a CNN to win the ImageNet 

competition11.  Their group developed a CNN with five convolution layers, comprising 60 million 

parameters and 650,000 neurons.  The network classified 1.2 million images, 50,000 validation 

images and 150,000 testing images into 1,000 exclusive categories. This became the major 

breakthrough in the field of deep learning.  With further advancement, AI became highly 

interesting in many fields of study and after 2010, there has been observed increment of 

publications as shown in Figure (1.4)12. 

 

Figure 1.4: Number of papers published with “artificial intelligence” subject till Nov 201812.  
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With the rapid progress in DL, high computational power became increasingly necessary 

to train neural networks.  Thus, there is a correlation between developments in computational 

power and DL13,14,15,16.The major contributor to increased computational power has been the 

replacement of the central processing unit (CPU) with graphics processing units (GPU)17. GPUs 

are highly parallelized and designed for floating point arithmetic, making them well suited to the 

task of training deep networks.  

Another factor leading to increased use of DL is the improving availability of 

computational packages and frameworks that make implementation straightforward.  These 

frameworks offer predefined activation functions, different methods of loss calculations, 

optimization algorithms etc., allowing users to apply the functions directly for their required task. 

This has eased the implementation of the methods such that effort can now be diverted away from 

the task of basic construction of the models.  

PyTorch14 is one framework that has gained support in last three years. It utilizes the Python 

programming language which is easy to use and comes with many available packages for data 

visualization and processing. This has been developed by Facebook’s AI Research lab and has 

been found useful for computer vision programming. It consists of an open source machine 

learning library based on the Torch library. The Torch library18,19 supports multidimensional arrays 

known as tensors. Tensors in PyTorch store matrices, vectors, numbers, arrays etc.  It is also 

embedded with a computationally effective C++ runtime module, which can be used for validation 

without the need for Python. These properties of PyTorch allows it to enable seamless 

implementation of DL on the GPU.   
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1.4 External beam radiotherapy treatment planning 

Radiotherapy aims to destroy cancerous cells via energy deposited by ionizing radiation. The basic 

goal is to maximize the lethal dose of radiation delivered to the tumor while minimizing the dose 

to the surrounding tissue.  The process starts with patient positioning and the acquisition of high 

quality images. Images are acquired using a variety of modalities, including positron emission 

tomography (PET), magnetic resonance imaging (MRI) and computerized tomography (CT).    

Typically, the CT image is the main modality used for target and organ at risk visualization.  The 

image is used to delineate the carcinogenic tissue and identify proximal organs at risk (OARs).  

CT images also provide attenuation coefficients of tissues and are thus useful for dose computation 

during treatment planning.           

 A team of radiation oncologists, radiation therapist and medical physicists then select the 

appropriate linear accelerator beam energy, position, angles, and so on. In intensity modulated 

radiotherapy (IMRT), beam parameters are then optimized such that acceptable target coverage 

and OAR sparing is achieved.  Generating a minimally acceptable plan is usually a quick process, 

however, improving the plan for the patient is laborious and often requires many iterations between 

the planners and the treatment planning system. In this process, the radiotherapy team may need 

to interact repeatedly based on intermediate plans.  This iterative process requires tremendous 

human efforts which may result in the delay of patient’s treatment or acceptance of a sub-optimal 

plans.  Figure (1.5(A),1.5(B)) demonstrates the present treatment planning structure and a potential 

future workflow involving AI. 
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Figure 1.5(A): Present radiation treatment plan structure 22 
 
 
 
 
 
 
 
 
 
 

Figure 1.5(B): Future radiation treatment planning structure with AI22 

 

The proposed planning method with AI will save time due to fewer iterations between the 

physician and dosimetrist. The dose prediction generated using the AI method will reduce the time 

necessary for the dosimetrist to generate an acceptable plan since knowledge of what is achievable 

will reduce the number of iterations between the physician and dosimetrist.  For example, prior 

dose knowledge may be used to set achievable dose objectives during inverse treatment plan 

optimization.  

Another issue in the current workflow is that the planned treatment is acceptable for the 

patient anatomy as seen in the original CT scan.  Radiation treatment is given in multiple fractions 

over many days.  The anatomy of the patient will change daily which will ultimately lead to change 



 
 

8 

in the delivered dose distribution. The patient positioning is also an important component in the 

computation of dose and will have to be readjusted due to the change in anatomy of the patient. 

AI is expected to play an important in such situations allowing faster evaluation of the impact of 

positional and anatomical changes on the dose distribution.  

 

1.5 Motivation 

Stage III non-small cell lung cancer (NSCLC) is typically treated with chemotherapy along with 

radiotherapy at a daily dose of about 2 Gy over about 30 daily fractions20.  The initial radiotherapy 

treatment plan is designed as described above and the dose distribution is approved by a team 

comprising radiation oncologists, radiation therapists, and medical physicists.  For each fraction, 

the patient is positioned on the treatment unit and a cone-beam CT (CBCT) image is captured.  

The CBCT image is used to ensure patient positioning and anatomy are as close as possible to the 

geometry observed during treatment planning.  This ensures the planned dose distribution is 

delivered each day.  However, advanced stage lung cancer patients experience several tissue 

changes during a treatment course. Patients suffer from weight loss due to the toxicity of the 

treatment23. Also, with the ongoing chemotherapy, the tumor size is reduced which impacts the 

dose distribution plan. There are also changes in the accumulation of fluid in the lung due to 

treatment.  With all the changes occurring during the treatment, there is an overall variability in 

patient setup. These changes make it impossible to reproduce the planned dose distribution each 

day.  Instead, the treating radiation therapists are constantly analyzing the differences in anatomy 

between the planning CT and treatment CBCT images.  At some threshold, the therapists decide 

it is no longer reasonable to continue delivering the original plan and, with further analysis by the 

attending radiation oncologist, the patient is sent for a new CT scan.  The dose distribution is 
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recomputed by the traditional method discussed above and the acceptability of the plan is 

determined.  This is a laborious and time consuming process.  This thesis aims to study if it is 

possible to predict the dose using the daily cone-beam CT (CBCT) scan to help decide if the 

treatment dose distribution is acceptable just prior to delivery.  Having the full dose distribution 

of the day also allows one to make decisions on the cumulative dose delivered. Unfortunately, due 

to time constraints, this work was only able to focus on the prediction of dose based on the planning 

CT.   

Prediction of dose using DL has been a popular area of study in the last two years.  Some 

authors demonstrated outstanding predictions of dose for prostate and head and neck cancers21,22 

using different models and frameworks .  Nguyen et al.22 for example, trained U-Net to predict the 

planned dose given contours of the planning target volume (PTV), bladder, body, left femoral 

head, right femoral head, and rectum.  They achieved a mean dice similarity value of 0.91 for 

isodose volumes in the range of 0-100% of the prescription dose.  The average value of absolute 

differences of [mean] between predicted and planned doses expressed as a percentage of the 

prescribed dose were [1.03%] (PTV), [4.22%] (Bladder), [0.48%] (Body), [1.79%] (L Femoral 

Head), [ 2.55%] (R Femoral Head), and [1.62%](Rectum).  The most outstanding part of the 

research was that only limited data (88 patients) were used to predict the dose distribution.  Another 

work looked at lung cancer diagnosis using deep learning for the annual Data Science Bowl (DSB) 

competition 26,23.  In DBS, teams are provided with thoracic CT scans and the goal is to predict if 

the patient will be diagnosed with lung cancer in the following year. 1972 teams participated and 

two top teams achieved lowest loss values of 0.8524 and 0.8725 .  

The goal of this thesis was to predict dose from CT images using U-Net , similar to the 

approach used by Nguyen et al.22.  The difference with this approach was that only CT images 
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were used as inputs.  This is the preferred approach since no human interaction is required for dose 

prediction.  However, dose prediction based on CT images alone is a difficult problem to solve. 

Programming was done in the PyTorch framework. 
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Chapter 2 

Basics of Convolutional Neural Network 

This chapter describes the basics of deep neural networks including CNNs. Later, the U-Net 

architecture is discussed. The chapter has been written with reference to books by Nielsen, 

Michael26 and Simon Haykin27. 

 
2.1 Deep neural networks 
 

Single artificial neurons are the basic structure of deep neural networks (Figure 2.1). In a feed-

forward neural network, input at the first layer proceeds through hidden layers to produce the 

output.  As each layer is connected to the next layer, the signal is “fed forward” consecutively 

between the layers in a forward direction. Hidden layers do not provide direct correlation between 

input and output layers. As deep neural networks comprise multiple hidden layers, the architecture 

of the model provides complex intuitions as data moves deeper into the network.  

 

    Figure 2.1: Multiple layer neural network26. 
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2.2 Convolutional neural networks 

 
  
A CNN is a type of deep neural network.  In CNNs, a multi-channel input image can be processed 

with learnable weights and biases to understand its complexity and to differentiate it from other 

images.   Figure (2.2) shows an example of a CNN designed to recognize characters. 

 

 

Figure 2.2: CNN architecture for digit recognition28.   

 

The section below discusses the formulation and terms used in the CNN network. 

 
Convolutional layer 
 
Convolutional layers are the building block of the CNN network. In this layer, a mathematical 

operation is performed to combine input data with filters/kernels to extract feature maps that 

highlight features such as edges for further processing. Hence, a convolutional layer produces 

feature/activation maps from low feature input images. 

Mathematically, convolution29 is an operation where two functions (x  and w) produce a 

real valued y, an output. In a neural network, x is an input, w is the kernel and output is known as 

the feature map. The kernel is an important parameter in a CNN.  It consists of a matrix of kx rows, 

ky columns, and d depth that is applied to the region of the input image known as the receptive 
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field. The depth of the kernel usually represents the number of channels in the input image of size 

(height=Ix, width=Iy and depth=d). Matrix multiplication of the input image and kernel produces a 

summed single value assigned to a pixel of the output feature map. The final output feature map 

is obtained by sliding the kernel over the input image.  

During convolutions, kernel stride describes the shape of the output feature map. Stride is 

defined as the number of pixels the kernel moves on the input image matrix at each successive 

multiplication. The row and column of output matrix size, (*+	X	*.) with input image dimension 

(0+	X	0.), kernel size (1+	X	1.) with a stride of 2 is mathematically formulated as: 

 
*+ =

34564

7
+ 1      (2.1a) 

*. =
39569

7
+ 1      (2.1b) 

Below is a simple example where an input image of size (4X4) is convolved with a kernel of size 

(3X3) with a stride of 1 to produce an output feature map of size (2X2). 

 
                     
Figure 2.3: Convolution of a (4X4) image with a (3X3) kernel and a stride of 1 to obtain a (2X2) 
feature map.30 
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It is convenient to represent convolution using a convolution matrix.  For the example in Figure 

(2.3), the convolution matrix would be determined as shown in Figure (2.4). 

 

 
 
 
 

                  Kernel (3X3)    Convolution Matrix (4X16) 
 
Figure 2.4: Convolution matrix (4X16) where each row represents the position of the kernel (3X3) 
on the input image (4X4)30 
 
 
To perform convolution, the input image would be flattened as shown below. 
 
 
 
 
 
 
 
 
 
 
 
     Input image matrix (4X4) 
 
 

 
 
Flattened Image (16X1) 

 
Figure 2.5: Flattened matrix of input image.30 
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The convolution operation is then obtained by matrix multiplication of convolution matrix and the 

flattened image as shown below in Figure (2.6) 

 
 
 
 
 
 
 																																																																																		 
             
 

 
 
 
Convolution Matrix (4X16)                                            Image after convolutions (4X1) 

 
 
 

Flattened Image (16X1) 
Figure 2.6: Matrix multiplication of convolution matrix and flattened image for general 
convolution process.30 

 
Transposed Convolutions 
 
A convolution is performed to compress the input image to generate the high level feature map 

with reduced spatial representation. The transposed convolution, also known as an auto encoder, 

is performed to decompress the abstract mapping to obtain the reconstructed output image. Figure 

(2.7) shows the process of convolution and transposed convolution to obtain the reconstructed 

image. 

X = 
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Figure 2.7: Convolution and transposed convolution method to obtain a reconstructed image from 
an input image.30 
 

Transposed convolution can then be obtained by multiplying the transpose of the convolutional 

matrix and the output of the convolution.  This generates the final output, recovering spatial 

information.  Thus, transpose convolution can be thought of as a deconvolution process. 

 

 
   Transposed Kernel (16X4)   Output Image (16X1) 
 
Figure 2.8:  The process of transposed convolution where matrix multiplication is performed 
between the transposed kernel and the output of a convolution to obtain the output image31.  
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Convolution implementation in PyTorch 
 
In PyTorch, it is possible to convolve an input matrix with a general number of channels Cin to 

generate an output matrix with a different number of channels Cout. This formulation helps to 

increase or decrease the depth of the output feature map.  The Conv2d function implements this 

using31:  

 
*:; <=>?@

= ABC2 <=>?@
+ %DBEℎ; <=>?@

, 1 ⋆ BIJ:;(1)
KLM5N

6OP
,                  (2.2) 

 

where ⋆ is the sliding dot product. 

2.3 Activation function 

 
A convolution layer in a CNN produces a feature map.  Every pixel in this feature map is then sent 

to an activation function.  Consider the example of a single neuron with four inputs &N = 2, &R =

5, &T = 9	and	&Y = 6 , weights %N = 0.1, %R = 0.2, %T = 0.3	and	%Y = 0.4	, and bias, A = 7 as 

shown in figure (2.9).  

 

Figure 2.9: A single neuron with inputs &N = 2, &R = 5, &T = 9	and	&Y = 6  , weights %N =
0.1, %R = 0.2, %T = 0.3	and	%Y = 0.4	, and  bias, A = 7. x is computed as &"%"

Y

"ON .32 
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The sum of the weighted input and bias is given below: 
 

& = &N%N + &R%R + &T%T + &Y%Y + A = 13.3 

Using sigmoid activation, $ & =
N

N`ab4
: 

*:;J:; = Cc;BdC;BeI	e$	;ℎD	BIJ:; = 	
1

1 + D5NT.T
= 1 

The threshold of sigmoid activation function is 0.5, hence this neuron will be fired. 

Some of the most incorporated non-linear activation functions33 are sigmoid, hyperbolic tangent, 

and rectified linear units (ReLU).  The sigmoid function was used initially since it models the all 

or none response of biological neurons.  However, recently, the ReLU function has is used as it 

improves convergence during model optimization34.  One of the advantage of using ReLU is that 

the activation of neurons occurs at different times and the gradient computation of the deactivated 

neurons will be assigned zero if the output of linear transformation is less than zero. Equations 

(2.3a) and (2.3b) describe the functions: 

Sigmoid function : $ & =
N

N`ab4
        (2.3a) 

 
 
ReLU function: $ & = max 0, &         (2.3b) 
 
Below Figure (2.10) are the functions and the activation functions. 

 

(a): Sigmoid Function 
 

(b): ReLU function 

Figure 2.10: Example activation functions35 
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The above functions are applied in the hidden layers of the network. Softmax is another activation 

function that is applied at the last layer of the network to interpret the final output. It is a multi-

class classifier that generates the probability distribution of N different possible outcomes where 

z is the input vector from the last layer. Mathematically it is represented as36:  

																																										$(h") =
a
iL

aiM
j
Mkl

		for	B = 1…… . . q,     (2.4) 

where h" are the elements of input values.   

 
 
2.4 Pooling layer 
 
Pooling is usually applied on each feature map independently after the nonlinear activation function 

to reduce the spatial size of the representation. Reduction in the amount of parameters leads to 

reduced computational load in the network and decreases the chance of overfitting. Average pooling 

and max pooling are common pooling methods. The max pooling method summarizes the presence 

of the most activated feature whereas average pooling summarizes the presence of the average 

feature. Another important aspect of the pooling layer is that it is also implemented with using the 

kernel and stride concept.  Figure (2.11) shows a pooling example. 

 

(a) Max Pooling 

 

(b) Average Pooling 

Figure 2.11: Max pooling and average pooling example with a kernel of size (2X2) and a stride of 
length of (2x2).37 
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2.5 Gradient descent: 

 
Gradient descent is an optimization process used to find the global minimum of a function by 

iteratively taking the negative direction of its gradient. In DL, gradient descent is utilized to update 

network parameters such as its weights and biases to minimize a loss/cost function that quantifies 

the difference between the predicted and desired output.  Figure (2.12) shows a simple illustration 

of the gradient descent method. 

 

 
 

Figure 2.12: Simple illustration of gradient descent of a single weight38. 
 

For a single node artificial network, the cost function parameters are the weights, %" and 

bias, A.  A simple loss function is the mean squared difference between the predicted and the 

desired output as shown below39: 

r %, A =
N

s
!" − $ %&" + A

R
u

"ON    (2.5) 

The gradient is: 

r
v
%, A =

wx y,z

wy

wx y,z

wz

=

N

s
−
R+Lw{ .L5{ y+L`z

wy

N

s
−
Rw{ .L5{ y+L`z

wz
.

   (2.6) 
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For simplicity, let | denote the parameters w and b.  The initial loss is evaluated and the derivative 

of the loss ∇~r(|) is computed as shown above.  The parameters are then updated using:  

| = | − �∇~r(|),     (2.7) 
  
where the learning rate parameter, � is introduced to limit the step size performed at each update.  

This process is repeated until the desired level of loss function is obtained.  However, gradient 

descent does only one update for each parameter in one iteration of dataset.  This process is 

computationally not effective if the dataset is large. With this consideration, many types of gradient 

descent was introduced. One of the most common implementations is the Stochastic gradient 

descent (SGD) method. SGD attempts to find the global minimum after each training process by 

fine-tuning the network parameters independently for small set of randomly selected inputs.  

Hence, SGD works with a randomly selected batch of data to move the model from a local 

minimum to global minimum.  This helps to update the parameters faster since only small selection 

of data is processed in a single iteration of training. 

 
Despite this, SGD is still susceptible to fining the local minimum instead of the global 

minimum. The computational speed of SGD is improved by introducing the concept of 

momentum.  Momentum is used to update the slope of the loss function based on the slope in the 

previous iteration.  The equations governing momentum in SGD are given below: 

d? = Äd?5N + �∇~r(|),    (2.8) 

| = | − d?,      (2.9) 
 

where d? is the current update vector (modified gradient), d?5N is the past updated vector, t is the 

iteration number (time) and Ä is the momentum coefficient with a typical value of 0.9.    
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The process of momentum in an optimizer can be compared to the situation where a ball is 

rolling downhill.  The ball gains momentum as it progresses down the slope eventually reaching a 

constant velocity.  Once the other side of the hill is reached, the ball continues rolling uphill due 

to momentum.  This allows the optimizer to search beyond local minimum for possible global 

minima.  However, this technique may still be susceptible to finding the local minimum.  Thus, 

algorithms with adaptive learning rates such as AdaGrad40, AdaDelta41, RMSprop42 and Adam43 

were introduced.  

The Adaptive Gradient Algorithm (AdaGrad) is controlled by learning rate, decay learning 

rate, weight decay and epsilon parameters. AdaGrad is able to train large-scale neural networks 

due to the introduction of the adaptive learning rate. The learning rate of AdaGrad is different for 

every parameter and at every time and is adapted to the inconsistency in the dataset. The problem 

encountered with AdaGrad is the accumulation of squared terms in the denominator.  This causes 

the learning rate to become infinitesimally small with iterations, which stops further training of 

the model. AdaDelta solved the diminishing learning rate problem.  It restricts the size of the 

denominator accumulated over iterations.  AdaDelta takes similar parameters as AdaGrad, 

however it adds Åℎe Ç = 0.9 and removes decay learning rate. Ç is very similar to the momentum 

term but is applied only on the current and previous update.  Root mean squares propagation 

(RMSprop) was developed around the time as AdaDelta to solve the AdaGrad problem. It has a 

similar approach as AdaGrad, however in the denominator it has an exponentially decaying 

average, which allows the learning rate to adapt as it is near the local minima after each iteration 

of the dataset. Hence, it allows the learning rate to become big and small with respect to the 

steepness of the gradient.  The most recent optimizer is adaptive moment estimation algorithm 

(Adam). Adam is governed by parameters É, the learning rate, ÑN = 0.9,  ÑR = 0.999, and epsilon, 
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Ö = 1.0E-8.   Ö  is set to a small value to allow the algorithm to avoid asymptotes. A small value of 

Ö will make larger weight updates while a larger value of will cause smaller weight updates and 

will slow the training of the model, hence a small value as 1.0E-8 is preferred . The learning rate, 

É, controls the step size.  Larger step size leads to faster convergence at the risk of potentially 

missing the global minimum. ÑN and ÑR are the exponential rates of first and second momentum 

terms.  It is recommended that  ÑN be near 1 and that ÑR is slightly higher than  ÑN. Adam has been 

found to work well in practice as compared to other optimizers44. 

2.6 Backpropagation 
 
A CNN takes images as input and produces an output.  Its ability to produce the desired output is 

controlled by various parameters that are optimized during model training. The learning algorithm 

process is described below45: 

1. The network is randomly initialized with network parameters (weights and biases) 

2. A validation input is allowed to pass through the network to generate a model prediction  

3. The target (known truth) and the prediction are compared and a loss is calculated.  

4. Backpropagation is performed to determine the gradient of the loss function with respect 

to the neural network parameters (details are presented in the example below). 

5. The gradient descent method is used to update the parameters such that the total loss is 

minimized. 

6. The process is repeated until the loss below a set threshold 

Below Figure (2.13) describes a basic outline of the training model. 
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Figure 2.13: Basic outline of training a model with backpropagation45. Here j is the jth neuron of 
the neural network. 
 
During CNN training, multiple forward and backward passes are performed to optimize network 

parameters. The following paragraphs briefly describe the computational method of the forward 

and backward pass. 

 

Forward pass 

In the forward pass, an image is input into the first network layer and an activation map is 

produced. This activation map is the input to the first hidden layer and the next activation map is 

generated. The process continues through many hidden layers until the final network output is 

computed. 

 

Backward pass 

In this phase, the gradient of the loss function with respect to the parameters is computed through 

backpropagation and the gradient decent method is used to update the weights to minimize the 

loss. The loss function is usually a predefined function of the network.    

During neural network training, an epoch elapses when the complete dataset goes through the 

forward and backward processes of the network.  
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Example: Backpropagation algorithm for training a single and multi-layer network 

The mathematical foundation26,27,29,46 in backpropagation for weight updating is an important 

concept in neural networks. The following derivation refers to the example network depicted 

below.  

 

Figure 2.14: A single layer perceptron. &P ……&" are the inputs, the weights are %Ü" and bias is 
AÜ = 0. The activation function is given by f and CÜ = &"%Ü""  is the net neuron activation. 
!Ü, DÜ, and	;Ü are the output, error and desired output of the training network46. 

The diagram shows the situation for a single training set x composed of components xi.  To allow 

for further discussion, let xn represent the training set n composed of components xn
i.  The sample 

&
u is sent to the neural network to produce the output of the jth neuron, !Üu . The desired output is 

;Ü
u. Bias is considered to be 0 and has thus been removed from the derivation.   

The net activation is 

CÜ
u
= %"Ü&"

u
"      (2.10) 

and the output is 

     !Üu = $(CÜ
u
)       (2.11) 
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To update the weights, the error, DÜu	of the prediction should be evaluated. The error is the 

difference between the desired output, ;Üuand the predicted output, !Üu.  

DÜ
u
= ;Ü

u
− !Ü

u         (2.12) 

The sum of squared errors of each output is considered as the total loss for this derivation. The 

division by 2 is used to make the derivation simpler:47.  

    r
u
=

N

R
DÜ
u

R

Ü =
N

R
(!Ü

u
− ;Ü

u
)
R

Ü     (2.13) 
   

Now the chain rule may be used to determine the gradient of the error with respect to each 

weight, %"Ü 
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     (2.14) 

Since  áx
M

áa
@

M
= DÜ

u, 
áa

@

M

á.
@

M
= −1,  

á.
@

M

áà
@

M
= $

v
(CÜ

u
), and 

áà
@

M

áyL@

= &"
u  the Jacobian of the output layer can 

be now represented as 

     áx
M

áyL@

= −&"
u
DÜ
u
$
v
(CÜ

u
)      (2.15) 

To simplify changes in synaptic weights, we define the local gradient, âÜu as: 

âÜ
u
=

áx
M

áà
@

M
=

áx
M

áa
@

M

áa
@

M

á.
@

M

á.
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v
(CÜ

u
)    (2.16) 

Hence equation (2.15) can be written as 

áx
M

áyL@

= âÜ
u
&"
u      (2.17) 

The correction factor applied to %"Ü is thus 
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∆%"Ü = −�
áx

M

áyL@

= −�âÜ
u
&"
u    (2.18) 

where � is learning rate.         

 The above equation updates the weights in the training dataset to minimize the loss function 

for a single layer perceptron.  The following is an extension to the network with a single hidden 

layer shown in Figure (2.15).  Further extension to multiple hidden layers would follow a similar 

process.  

 

Figure 2.15: Single hidden layer perceptron. The output neurons have weights %6Ü and the 
hidden neurons have weights %Ü"

46.  

The output layer’s weights can be found easily using equation (2.18) because of the similar single-

layer network structure. Hence, using the same delta rule error analysis, we obtain: 

áx
M

áyã@

=
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M
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áàã
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=
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M
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ã
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ã

M

á.ã
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áà
ã

M
!Ü
u
= â6

u
!Ü
u   (2.19) 

 

The hidden neuron does not have a direct relation to the error signal, hence the error calculation is 

obtained by working backwards with respect to the error signal obtained from all the neurons to 

which the particular hidden neuron is directly connected. Here the hidden layer is connected to 

output neuron layer (!6). This is the main principle of back-propagation.   
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Hence to derive the weight update for the hidden layer, the partial derivative of error, ru with 

respect to hidden weight, %Ü" is  

áx
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   (2.20) 

In equation (2.20), the term in the first bracket is for the output neuron and the second term is for 

the hidden neuron.  

From equation (2.19), we can rewrite equation (2.20) as  
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M

áy@L
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u
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u áàã
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   (2.21)  

Using equation (2.10), the net activation of the hidden layer is  C6u = %6Ü!Ü
u
.Ü  and da/dy = %6Ü. 

Also ,  
á.

@

M

áà
@

M
= $

v
(CÜ

u
), and 

áà
@

M

áyL@

= &", hence equation (2.21) can be given as 
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u
)&"    (2.22) 

Using the local gradient definition to hidden layer from equation (2.18) 
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Hence,      áx
M

áy@L

= âÜ
u
&"       (2.24) 

2.7 Loss function:  

Loss functions quantify the difference between the predicted output and the desired output. The 

lower the loss function the more accurate the model.  For successful training it is important that 
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the loss function sufficiently quantifies the differences between the predictions and desired output.  

Typical loss functions used in neural networks are the mean absolute error (MAE) and mean 

squared error (MSE).  

MAE = r &, & =
N

s
& − &

s

"OP    (2.25) 
 

 
MSE = r &, & =

N

s
& − &

Rs

"OP    (2.26) 
 
Of the two, MSE may be more effective at training models that are able to reproduce a more varied 

output due to the presence of the squared term. On the other hand, MAE may be more effective at 

avoiding overfitting and the production of models that are more resistant to outliers. 

 

2.8 Hyperparameters and training 

As discussed before, backpropagation plays a major role in the training process of the network. 

Another component of network training is the setting of hyperparameters, the values in the network 

structure that are manually set before training begins. The learning rate, choice of optimizer, and 

selecting appropriate batch size before the training process are a few of the hyperparameters that 

need to be adjusted before the training process.  The learning rate regulates the changes in network 

weights with respect to the loss gradient. A small rate may lead to longer optimization of the 

network while larger value may lead the training to converge or diverge too soon leading to 

incorrect trained model.  

Batch size is defined as the number of training examples used in one epoch of model 

training. Batch size can be chosen from one of three options; batch mode where batch size is equal 

to total number of training cases, mini-batch mode where batch size is greater than one but less 

than the total number of cases, and stochastic mode where batch size is one.  In batch mode, the 
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number of gradient decent iterations over the entire dataset and the number of epochs are equal, in 

mini-batch mode there will be multiple optimization iterations in one epoch and in stochastic 

mode, the number of iterations in one epoch is equivalent to the length of dataset.  Very similar to 

the learning rate, choosing the appropriate batch size is imperative because a small batch size will 

converge or diverge faster but a large batch will attain global minima faster. The type of dataset 

also contributes to the decision of the batch size.  

There are hyperparameters which are used for a particular network architecture. Among 

them are the size of convolutional kernel, type of activation functions and loss functions, et cetera. 

Convolutional kernel size establishes the size of receptive field in the CNN. Kernel size of (3×3) 

and (5×5) are common in CNNs that analyze medical images48.  

Another parameter to select is the number of training epochs.  A large number of epochs 

may lead to model overfitting while insufficient iteration leads to underfitting.  In either case, the 

model will not be effective in real world applications.   

Setting hyperparameter is complex process in network training. The most appropriate 

choice is often discovered through careful observation of results rather than through theoretical  

knowledge of the model 

 
2.9 U-Net architecture 

U-Net is a CNN architecture purposed in 2015 by Ronneberger et al.49. It was specifically designed 

for biomedical image segmentation. In the original work, the input50 consisted of 30 sections from 

a serial section Transmission Electron Microscopy (ssTEM) data set of the Drosophila first instar 

larva ventral nerve cord (VNC). Each image was accompanied with its segmentation map in black 

and white corresponding to membranes and cells respectively. The output image was the 

segmentation map of the input. It was divided into two classes, (cells) foreground and (membrane) 
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background class (black and white respectively). The network is very effective in providing 

accurate localized lesions and segmentation outputs can be obtained with a small training dataset. 

The training dataset can have different scales and resolutions. As presented in Figure (2.16), the 

name U-Net is given for its U-shape in which layers are sequenced.  

 

Figure 2.16: Original U-Net architecture described by Ronneberger et al.49 

 

The U-Net architecture consists of an encoder and decoder and has 23 convolutional layers. 

The encoder, also known as the contracting path, is the part where sequential convolutions are 

performed to perceive detailed features. The size of input image is (572X572X1) and after four 

blocks of two (3X3) convolution layers and (2X2) max pooling we obtain image of size of 



 
 

32 

(64X64X512). After the encoder path, high features are obtained however spatial information is 

lost due to repeated convolution. Hence, the decoder is the expansive path is introduced where 

transposed convolutions are performed to restore the spatial information. However, before the 

decoder path, bottleneck part is performed, where two convolutions of (3X3) is performed without 

any max pooling and the size of image obtained is (28X28X1024). This bottom part allows 

compression of the input data to extract the useful high feature map which can be later used to 

reconstruct the segmentation map. In the decoder path, features along with spatial information are 

combined using skip connections. Skip connections are links between convolutional and 

transposed convolution layers. As in the above Figure (2.16), each block in the expansion path, 

consists of (3X3) convolutional layer followed by (2X2) up-convolutional layer. The following 

layer appends half of the feature map with the half of the corresponding contraction path. Though 

there is lack of theoretical evidence, U-Net has been able to obtain the spatial information of the 

high-level features to output the predicted image from skip connections.  The last uppermost 

section of U-Net was to reshape the image to obtain the desired output.  The softmax function is 

used to obtain the prediction. Sigmoid was the right choice in this scenario because the desired 

image was the segmentation map into two classes, background and foreground of the input image. 

Hence, U-Net architecture has proven to be successful in the segmentation task in the biomedical 

imaging field. 

Dose prediction using U-Net 

U-Net architecture has been used to predict dose for prostate cancer patients, planned with seven 

IMRT fields using contours of the planning target volume and organs at risk22. The U-Net 

architecture consisted of seven blocks of both contraction path and expansion path and a bottle-

neck at the very bottom part.  Below is the Figure (2.17) of the U-Net architecture used: 
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Figure 2.17: U-Net architecture used for dose prediction for IMRT of prostate cancer22. 
 
 

The input image consisted of six contours (planning target volume, bladder, body, left 

femoral head, right femoral head and rectum) of each patient. Single slices of each contour were 

used to train the model. The size of input image was (256X256) with one channel per contour for 

a total of 6 channels. Another important aspect is the block of seven convolutions. The operation 

of seven block of two (3X3) convolutions and (2X2) max pooling allows the reduction of input 

image to (4X4). The reduced (4X4) image at the bottleneck allows two (3X3) convolution to attain 

the knowledge of connection between the center of the tumor and the edge of the patient’s body. 

The expansion path followed the similar concept as the original U-Net paper49.  Padding was set 

to zero to maintain the size of the feature. This process will allow high precision of dose 

distribution. Dropout, a process in which randomly neurons are not trained, was performed to avoid 
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overfitting due to large valued dataset and the dropout parameters were chosen such that validation 

and training loss were close.  The training model was implemented in the Keras with Tensorflow 

framework. 

The next step was to train the architecture for the dose prediction of prostate cancer treated using 

a seven beam IMRT approach. For training and testing purpose, the dataset was divided into three 

groups, train set, validation set and test set. The training datasets is the one which updates the 

weight, validation dataset tests how the trained model generalizes the dataset which is not a training 

set and test dataset is used to perform an unbiased evaluation of the final model. The total of 88 

patients, six contours were used for the study. The test set comprised data from patient 1 to 8.  For 

the first run, the validation set comprised data from patient 9 to 16 with remaining data used to 

train the model.  In the second run, the validation set comprised data from patient 17 to 24 with 

remaining data used to train.  Thus a 10 fold validation was performed.  . MSE loss function was 

considered to calculate the loss between the actual dose and predicted dose. Adam optimizer with 

parameters ÑN = 0.9, ÑR = 0.99	and	decay = 0 	was used.  With this implementation, Nyugen 

et.al22 were able to predict the dose distribution for prostate cancer patients within 5% of that 

obtained clinically.  
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Chapter 3 

Methods 

 
Chapter 3 describes the method use to predict dose distributions given CT images used in 

radiotherapy treatment planning for advanced stage lung cancer patients. The beginning of the 

chapter describes the dataset and its processing. The next section gives detail about the training 

of the model. 

 

3.1 Dataset details: 
 
The data used in this thesis comprises 3D  CT images and their corresponding dose grids generated 

for 22 advanced stage, lung cancer patients at the Juravinski Cancer Centre between March and 

June of 2020.   The CT images were acquired using either the Brilliance Big Bore (Philips N.V., 

Amsterdam, Netherlands) or the Somatom (Siemens Healthineers AG, Erlangen, Germany) 

scanners.  Slice thickness of 3mm was reconstructed on a (512 X 512) matrix with a pixel size of 

about 1.17mm.  All patients were planned with radical intent to a prescription of 63 Gy in 30 

fractions.  The plans were developed using the v9.10 Pinnacle Treatment Planning System (Philips 

N.V., Amsterdam, Netherlands).  Four to five coplanar beams were used, predominantly on the 

ipsilateral side of the target.  The beam angles were standard but were modified by the planner to 

accommodate the anatomy of the patient. The target was contoured using PET and CT images. 

Very similar dose objectives were used in IMRT optimization although each case was tweaked by 

the planning team to achieve patient-specific dose goals.  Final dose computation was performed 

with the Adaptive Convolve Algorithm on a dose grid with 2.5 mm voxels. To improve 

computational efficiency yet maintain some 3D capabilities, the dose prediction model was trained 
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with 3, 2D slices extracted from each patient’s set. The 3 slices were obtained using nearest 

neighbor interpolation and coincided with the location of the prescription point ±2	cm in the 

superior/inferior direction.  

The dataset was divided into two groups.  The training set was utilized to train the dose prediction 

model and the validation set was used to test the effectiveness and to quantify the developed model. 

The data was divided such that 45 image/dose pairs (15 patients) formed the training set and 21 

image/dose pairs (7 patients) formed the validation set. 

 

 Computational Environment 

This work was performed on a Dell laptop equipped with 16 GB of RAM, i7 processor (US Intel 

Corporation, Santa Clara, California, United States) and a GeForce GTX 1050 Ti graphics card 

(Nvidia, Santa Clara, USA).  Software was developed using the Jupyter environment (Project 

Jupyter) making use of the PyTorch framework (Facebook’s AI research lab, Cupertino, USA). 

 

 Preprocessing of datasets 

The pixel size of the original CT images was 1.17mm in-plane with 3mm slices.  The voxel size 

in the dose images was 2.5mm in all three dimensions.  Each CT slice spanned an area of 60 cm 

by 60 cm while the dose grids were smaller, corresponding only to the relevant anatomy (e.g. 38 

by 20 cm).   

Early in the work it became apparent that processing (512 X 512) datasets required 

significantly more RAM than available in the computational environment.  Thus, the CT images 

were downsampled to a matrix size of (256 X 256) comprising of 2.34 X 2.34 X 3 mm voxels 

using nearest neighbor interpolation.   
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U-Net requires that the input and output data be on the same matrix with a 1:1 pixel spatial 

correspondence.  Thus, the dose grids were resampled to match the (256 X 256) CT images.  

Resampling was performed by computing the world coordinate for every CT pixel (in mm) using:  

BëCEDí=ìw = BëCED"uwa+ ∗ BëCEDï"+w"ñ + BëCED7?àì?,  (3.1) 

where BëCED"uwa+ is the pixel number in the CT image, BëCEDï"+w"ñ is the pixel size of the CT 

image (mm),  and BëCED7?àì? is the coordinate of the first pixel in the CT image (mm). This CT 

pixel coordinate was then converted to a matrix index in the dose grid using: 

óe2D"uwa+ =
"ñàòaôöõú5w=7aùûüõû

w=7a†L4úL°

,     (3.2) 

where óe2D7?àì? is the coordinate of the first pixel in the dose image (mm),  and óe2Dï"+w"ñ		is the 

pixel size in the dose grid (mm). 

Finally, bilinear interpolation is performed in the original dose grid to obtain the dose at 

the CT image pixel location.  Bilinear interpolation involves computing the weighted average of 

the intensities at the four nearest neighbors. As shown in Figure (3.1), if the four nearest neighbors 

co-ordinates are &N, !N , &R, !N , &N, !R 	and	 &R, !R  and the unknown pixel is at &, ! , then the 

intensity at (x,y) is determined using equation (3.3). 

 

Figure 3.1: Four neighboring pixels of (x,y) pixel. 
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0 &, ! =
3

+¢5+l .¢5.l

&R − &				& − &N
0 &N, !N 0 &N, !R

0 &R, !N 0 &R, !R

!R − !

! − !N
   (3.3) 

The last step was to further reduce the image size by removing the outer border of the image 

as it was normally filled with zero valued pixels. This was done by removing 32 pixels around the 

CT images and the resampled dose grids to obtain a final data matrix size of (192 X 192). 

Data standardization 

Standardization in this case refers to rescaling of data intensities across the available cases.  

Standardization of data is used during DL to reduce the impact of variability in specific cases on 

the final model51. An often used method attempts to rescale the pixel values to achieve a zero mean 

and unit standard deviation across all cases.  In a regular analysis, each pixel intensity would thus 

be standardized by subtracting the mean dividing by the standard deviation. However, since the 

data was fed in batches in this work, the regular method would only compute the mean and standard 

deviation for one batch.  This would have to be saved and re-applied to the data before training the 

model.  To avoid this, the running mean and standard deviation52 may be updated recursively as 

the data are loaded. 

Mean:    £ñaàu =
ñ

u`ñ
£=§w +

u

u`ñ
£uay 

Standard deviation:    •7?w¶ =
ñ

u`ñ
•ñ
R
+

u

u`ñ
•u
R
+

ñu

ñ`u ¢
£=§w − £uay

R      

where m is the number of previous observations, n is the number of new observations, £=§w and 

£uay are the means for the old and new observations, respectively, and •ñ and  •u are the standard 

deviations for the old and new observations, respectively. 
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Once all the data were loaded and the mean and standard deviation computed as shown 

above, each image or dose grid intensity was modified by subtracting the mean and dividing by 

the standard deviation.  The mean and standard deviation were stored in a file for later recovery of 

the standardized data into their original form. 

3.2 Training methods 

Model parameters 

The U-Net model was trained to predict the dose distribution given the CT image. The U-Net 

architecture code was downloaded from github.com53 and implemented as a class in the Jupyter 

application. Jupyter is a web developer tool used to access Python and PyTorch environments. The 

Anaconda54 package manager was used to install Python 3.7.3, PyTorch 1.3.0 and Jupyter. The 

gold standard dose distribution for each CT image was the resampled dose grid from treatment 

planning.  U-Net has the following hyperparameters: in_channels, n_classes, depth, wf and 

padding. In_channels defines the number of input channels for the input image, n_classes is the 

number of channels in the output, depth defines the level of feature extraction, wf is the number 

of filters applied and padding ensures that the matrix size in the input is maintained in the output.  

All convolutions are performed using a (3 X 3) kernel.  The two most important parameters in     

U-Net are depth and wf.  Both parameters control the architecture of U-Net.  The value of depth 

determines how many convolutions/deconvolutions will take place that reduce/increase the matrix 

size of the feature map.  Simultaneously, wf controls the number of channels produced/reduced 

during convolutions/deconvolutions.  The number of channels at a particular depth is given by 

2
(y{`waï?ß).  For example: at the first depth with wf = 6 the number of channels for feature 

detection will be 2(N`®) = 128.  Increasing the depth of U-Net allows the extraction of features at 
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a particular image resolution while increasing wf improves the ability to extract those features.  

The default values for U-Net parameters were in_channels=1,  n_classes=2, wf=5,  depth=5, and 

padding was False. For simplicity, wf will be referred to as kernel in the remainder of the thesis. 

For lung dose prediction training, the U-Net model was set with following parameters: 

n_channels=1 (input is a single channel CT image), n_classes=1 (output is a single channel dose 

grid) and padding = True (same output matrix as input was desired).  The depth and kernel were 

the primary hyperparameters in the U-Net model which required optimization to obtain the 

predicted dose. Initially, the optimizer was SGD and the loss function was MSE. The number of 

parameters and the estimated memory needed to store the parameters were observed form the U-

Net model to help decide the experimental parameters. The most obvious benefit of choosing more 

trainable parameters was the potential to extract more complex features. Hence, initial 

experimentation evaluated the effect of changing depth and kernel values for a single case.  For 

this case, the predicted dose grids appeared to approach the computed dose after depth=5 and 

kernel=5.  With a depth of 6 and kernel of 6 an even lower loss value was obtained with improved 

predicted dose appearance compared to the computed.  With this knowledge, training of all 45 

images was performed.  To study the loss value for various kernel and depth values, the depth was 

initialized at 6 and kernel was changed from 1 to 6. Later to observe the depth effect on the training 

model, the kernel was kept at 6 and the depth was changed from 1 to 6. The depth and kernel could 

not be increased beyond 6 due to limited RAM in the computational environment. 

The training was performed with different layers of convolutions, transposed convolutions and 

skip connections throughout the experiment. The contraction and expansion path structure were 

not changed from the original. Below is the final U-Net architecture. 
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Figure 3.2: U-Net architecture. 

Optimizer 

The model was trained using SGD, AdaGrad, AdaDelta and ADAM optimizers. The optimizer can 

be changed using the torch.optim package. Below is the illustration with code to show the 

implementation of the four optimizers. The hyperparameters of the optimizer have already being 

explained in chapter 2.  

SGD optimizer: 

optimizer = optim.SGD(unet.parameters(), lr=0.0001) 
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AdaGrad optimizer: 

optimizer=optim.Adagrad(unet.parameters(), lr=0.0001, lr_decay=0, weight_decay=0, initial _  
                accumulato_value=0) 

AdaDelta optimizer: 

optimizer=optim.Adadelta(unet.parameters(), lr=0.0001, rho=0.9, eps=1e-06,weight_decay=0) 

Adam Optimizer: 

optimizer = optim.Adam(unet.parameters(), betas=(0.9, 0.999),lr=0.0001,weight_decay=0) 

 

Loss Function 

The MSE loss function was used to compute the loss of the model. The MSE loss was computed 

between the predicted and the computed dose distributions. 

Batch Size: 

As discussed in Chapter 2, batch size is also a hyperparameter. Previous studies55 have found that 

larger batch sizes converge faster and provide better accuracy.  The number of training datasets 

was 45 but training with such a large batch was impossible due to limited RAM availability.  In 

fact, a batch size of four was the maximum possible so all training was performed with a batch of 

four.  

Model Training 

The U-Net model was trained by back propagation method. The following pseudo-code was used 

for training the model: 
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Validity of dose prediction 

The accuracy of the predicted dose was assessed visually and quantitatively using gamma analysis. 

Gamma analysis involves computing the dose difference to compare predicted and target dose 

distributions. It encompasses discrepancy in both the dose and spatial position of the dose. The 

minimum value of  gamma index,Ä56 is given as  

Ä Åì, Åa = ëBI
ìõ5ì™

¢

∆w¢
+

´õ ìõ 5´™ ì™
¢

∆´¢
                             (3.4) 

where, Åì − Åa  is the distance between the position Åì in the reference dose grid and the position 

Åa in the evaluation dose grid; ì̈ Åì − ä Åa  is the absolute difference between doses at  Åì and 

Åa; ∆ó is the distance to agreement criterion, ∆¨ is the dose difference criterion, and min indicates 
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that for each reference dose grid location, the location in the evaluation dose grid that results in 

the minimum gamma is sought.   

  Gamma analysis was performed using the Python class available on Github57.  	

Implementation of this in the computational environment was as simple as including the class in 

the main code.  Gamma evaluation was performed with tolerances of 3mm and 3% of the 

prescribed dose.  Pixels below 20% of the maximum true dose were not analyzed.  
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Chapter 4 
Results and Discussion 

 
 
Model performance was highly dependent on the choice of hyperparameters. The first three 

sections of this chapter discuss the performance of the model due to changes in depth, kernel, 

optimizer and epochs. The chapter ends with results and conclusions.  

 

4.1 Assessment of depth and kernel: 

The training of U-Net was performed with different depths, kernels, and optimizers. Table (4.1) 

and Table (4.2) below show the loss obtained, number of trainable parameters and estimated size 

of parameters. 

Table 4.1: Loss, number of trainable parameters and estimated total size of parameters 
obtained with kernel 6 and various depths over 1000 epochs 

 
Depth 

 
Loss 

No of trainable 
parameters 

Estimated total 
size of parameters 

(MB) 
1 5.37X10-1    3.76X104 36.7 
2 1.83X10-1 4.02105 73.9 
3 1.60X10-2 1.86106 98.0 
4 6.39X10-3 7.70X106 129 
5 2.25X10-3 3.10X107 222 
6 2.00X10-3 1.24X108 580 

 

Table 4.2: Loss, number of trainable parameters and estimated total size of parameters 
obtained with depth 6 and various kernel over 500 epochs 

 
Kernel 

 
Loss 

No of trainable 
parameters 

Estimated total 
size of 

parameters(MB 
1 1.18X10-1 1.2 X105 4.19 
2 6.64X10-1 4.87 X105 8.89 
3 6.78 X10-1 1.94 X106 21.1 
4 1.31 X10-2 7.78 X106 56.5 
5  7.41 X10-3 3.11 X107 118 
6 3.73 X10-3 1.24 X108 580 
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The above results confirm that loss decreases as depth and kernel increase.   The two experiments 

were performed with a different number of epochs due to a hardware failure in the laptop’s GPU.  

Training with 1000 epochs was performed before the failure, employing the GPU.  After the 

failure, only 500 epochs were ran on the CPU.    The epoch number could not be increased on the 

CPU because one epoch took about 50 minutes at full depth compared to approximately 10 seconds 

needed on the GPU.   Below Figure (4.1) shows an approximate exponential trend for trainable 

parameters (and thus, memory required) for computation during model training. 

 

Figure 4.1: Trainable parameter number versus depth for kernel set to 6. 
 

As shown in Figure (4.2), we can conclude that as training with more parameters reduces the loss.  

 

Figure 4.2: Loss vs. depth for kernel set to 6. 
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The decrease in loss with increase in kernel and depth means the model is converging and is able 

to learn from training data. This behavior of model confirms a better performance.  

4.2 Assessment of the optimizer: 

The choice of optimizer is another hyperparameter that affects model convergence.  The optimizers 

used for testing were SGD, AdaGrad, AdaDelta, and Adam. A total of 1000 epochs were ran with 

each optimizer.  Below are the graphs and table of Log(loss) vs. epochs for the four optimizers:  

 

 
 

 (a) SGD  

 
 

 (b) AdaGrad  

 

 
 

 (c): AdaDelta  

 
 

 (d) Adam  
 
 
Figure 4.3: Loss vs. epoch obtained during training with depth 6, kernel 6 with various optimizers 
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Table 4.3: Loss obtained after 1000 epochs of training                    
with various optimizers and depth 6, kernel 6.  

Optimizer Loss 
SGD 6.65X10-1 

AdaGrad 1.59X10-1 
AdaDelta 8.31X10-1 

Adam 2.93X10-3 
 
 
The Adam optimizer achieved the lowest loss. AdaDelta looked like it was continuing to converge 

after 1000 epochs but another training run with 3000 epochs did not reduce the loss further.  From 

the Figure(4.3) and Table (4.3) it was confirmed that Adam converged the fastest and to the lowest 

loss value. The noisy trend observed in Adam optimization is discussed in the next section. 

 
4.3 Assessment of epochs: 
 
The Adam optimizer achieved the lowest loss and so was used to assess the training for overfitting 

and underfitting. The training was performed for depth 6 and kernel 6 for 1000 epochs and the 

following loss was measured: 

 
 

Figure 4.4: Loss observed with Adam over 1000 epochs 
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The increased loss near epochs 400 and 800 along with the various spikes are caused by the batch 

size parameter58. Jeffrey. M. Ede et. al 1, have studied this phenomenon and concluded that low 

batch number is the primary cause. Given the backpropagation gradient equation, they conclude 

that a change in loss is directly proportional to a change in parameters.  Hence, if a high loss is 

observed by the optimizer, a large change in parameter is experienced, causing a disturbance in 

the learning process. At this point, the optimizer again has to re-train the parameter to achieve a 

better model. This is attained after few iterations of training.  The loss then declines after the spike 

because the parameters are updated again.  

4.4 Dose prediction accuracy 

Dose prediction was performed using the model trained with depth 6, kernel 6, MSE loss, Adam 

optimizer, 1000 epochs, and a batch size of 4. While training, it was determined that absolute dose 

prediction was not possible due to various limitations in the model as discussed in the conclusion 

section.  Hence, the predicted dose was rescaled for gamma analysis to quantify accuracy.  For 

rescaling, pixels where true dose exceeds 50% of the max true dose were located and the average 

true dose for those pixels was computed. These locations were then used to compute the 

corresponding average in the predicted dose.  Then, the ratio of the average true dose to the average 

predicted dose was used to rescale the predicted dose before gamma evaluation. Accuracy of the 

renormalized predicted dose was quantified using gamma analysis with a 3mm, 3% dose tolerance.  

The gamma maps showed the regions where the model failed.  The percentage of pixels passing 

the dose criteria is given in the table below 
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Table 4.4: Predicted vs. true dose gamma analysis pass rate for the training dataset. 

 
Patient Number 

Gamma Pass Percentage 
+2cm from 
prescription 

position 

At prescription 
position 

-2 cm from 
prescription 

position 
1 97.2 95.7  94.9  
2 96.6  97.7  97.6  
3 96.3  96.2  96.1 
4 95.1 96.7 97.2  
5 97.3  95.4  95.7  
6 96.9  96.6  96.4  
7 98.1  98.6  99.1  
8 97.4  97.5  97.5  
9 96.9  98.2 97.9  
10 99.2  98.9  99.0  
11 98.2  98.1  98.3  
12 97.9  94.9  96.6  
13 98.2  98.2  98.7  
14 99.5  98.6  98.7  
15 98.2  98.6  99.1  

Overall Mean 97.5  
Standard Deviation 1.24 

Min, Max 94.9, 99.5  
 

From the training dataset result, we observe that the gamma pass percentage was relatively high 

(mean 97.5% and standard deviation of 1.24%).  From this it can be concluded that the training 

process was successful as an almost perfect match of true dose and predicted dose was observed. 

Below are the gamma maps for the patients with the highest and lowest gamma pass percentages.   
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Figure 4.5(a): Gamma map with the highest gamma passing percentage of 99.0±1.0.  The CT scans, 
true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices of true dose 
+2cm from prescription position, at prescription position and -2cm from prescription position are 
in column 1,2 and 3 respectively. 
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Figure 4.5(b): Gamma map with the lowest gamma passing percentage of 96.6±1.0.  The CT scans, 
true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices of true dose 
+2cm from prescription position, at prescription position and -2cm from prescription position are 
in column 1,2 and 3 respectively. 
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From the validation dataset, the predicted dose was not a good representation of the true dose.  The 

table below shows the obtained gamma percentages.  Further below are the dose grids and gamma 

maps.  

         Table 4.5:Gamma percentage for validation dataset with 3mm, 3% dose tolerance 

 
Patient Number 

Gamma Pass Percentage 
+2cm from 
prescription 

position 

At prescription 
position 

-2 cm from 
prescription 

position 
16 11.6  9.86  9.07  
17 14.4  14.2  11.9  
18 17.7  22.8  16.6  
19 19.4  18.6  14.6  
20 7.62  4.78  61.4  
21 18.9  15.9  15.8  
22 18.5  15.1  13.7  

Mean 14.2  
Standard 
Deviation 

4.69  

Min,Max 18.9 ,4.78  
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Figure 4.6(a): Gamma map of patient number 16 with gamma passing percentage of 10.2±1.0.  The 
CT scans, true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices of 
true dose +2cm from prescription position, at prescription position and -2cm from prescription 
position are in column 1,2 and 3 respectively. 
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Figure 4.6(b): Gamma map of patient number 17 with gamma passing percentage of 13.5±1.0.  
The CT scans, true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices 
of true dose +2cm from prescription position, at prescription position and -2cm from prescription 
position are in column 1,2 and 3 respectively. 
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Figure 4.6(c): Gamma map of patient number 18 with gamma passing percentage of 19.0±3.0.  The 
CT scans, true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices of 
true dose +2cm from prescription position, at prescription position and -2cm from prescription 
position are in column 1,2 and 3 respectively. 
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Figure 4.6(d): Gamma map of patient number 19 with gamma passing percentage of 17.5±2.0.  
The CT scans, true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices 
of true dose +2cm from prescription position, at prescription position and -2cm from prescription 
position are in column 1,2 and 3 respectively. 
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Figure 4.6(e): Gamma map of patient number 20 with gamma passing percentage of 6.18±1.0.  The 
CT scans, true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices of 
true dose +2cm from prescription position, at prescription position and -2cm from prescription 
position are in column 1,2 and 3 respectively. 
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Figure 4.6(f): Gamma map of patient number 21 with gamma passing percentage of 16.8±2.0.  The 
CT scans, true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices of 
true dose +2cm from prescription position, at prescription position and -2cm from prescription 
position are in column 1,2 and 3 respectively. 
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Figure 4.6(g): Gamma map of patient number 22 with gamma passing percentage of 15.7±2.0.  
The CT scans, true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices 
of true dose +2cm from prescription position, at prescription position and -2cm from prescription 
position are in column 1,2 and 3 respectively. 
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The percentage of pixels passing the dose criteria is very low for the validation dataset. Visually, 

many hotspots are observed on the gamma map. These are the regions where the dose prediction 

has failed. From current gamma map, the dose prediction is not acceptable for clinical purpose, 

however it is promising as the model was able to predict the approximate highest dose region.  The 

main reason could be that more datasets are needed to learn all possible image patterns and 

generalize for better predictions on new datasets.  

To test the the level of discrepancy between the predicted and true dose in the validation set, a 

gamma analysis with a 5mm, 5% dose tolerance was performed. The table below shows the 

obtained gamma percentages. 

 Table 4.6:Gamma percentage for validation dataset with 5mm, 5% dose tolerance 

 
      Patient Number 

Gamma Pass Percentage 
+2cm from 
prescription 

position 

At prescription 
position 

-2 cm from 
prescription 

position 
16 22.9  21.0  17.2  
17 27.4  25.8  24.6  
18 32.1  39.8  29.1  
19 34.9  32.9  26.9  
20 14.4  11.3 13.6  
21 34.4  29.7  26.7  
22 32.7  26.9  24.9  

Mean 26.2  
Standard Deviation 7.47  

Max,Min 11.3,39.9  

From Table (4.6) the percentage of pixels passing the dose criteria for validation is slightly better 

than the validation dataset with 3mm, 3% dose tolerance. This demonstrates the discrepancy 

between the predicted and true dose in the validation set is more than at the level of 5% and 5mm.   
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4.5 Conclusions: 
 
A dose prediction model for treatment planning of advanced stage lung cancer patients was 

generated using the U-Net architecture. The gamma distribution map was created to observe the 

regions where dose distributions failed (gamma > 1). With the U-Net architecture with depth=6 

and kernel=6, the feature map was reduced from (192X192) to (6X6) which helped extract the low 

level features. The obtained gamma percentage values on the training set were acceptable, however 

the gamma map values obtained on the validation dataset were not in agreement within the distance 

and threshold. Visually we observe a dose distribution very similar to true dose on training set of 

the data and a relative dose obtained was within the true dose range. However, for validation set, 

the highest dose region was located, but the overall performance was unacceptable.  

There are several reasons for the poor performance of the model with the validation set.  

The training model was limited to depth/kernel=6.  If depth=7 was possible, the feature map would 

have been reduced to (3X3), which would have allowed extraction of dose distribution at the core 

level of the true dose, giving a better prediction of the dose distribution. The increase of kernel 

would have also helped to extract a more accurate dose result.  The data was trained only on 45 

training samples, representative of 15 patients (3 slices of each image). The number of datasets 

was very small, limited to what was easily available during the work.  It was promising however 

to see that the model was trained sufficiently to be able to extract accurate dose for the training set 

itself.  It is quite possible that additional training cases would have improved the overall 

performance of the model. Another limitation was the reduction of the original image data from 

(512X512) to (192X192) to reduce RAM requirements and improve computational speed.  Using 

the full data may have improved the dose prediction resolution.  Another method to improve results 
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would have been to provide the model with additional input such as contours from the treatment 

planning system as was done in the work of Nyugen et. al22. 

Finally, the dose prediction results may be improved with the use of other network 

architectures.  For example, the GAN (Generative Adversarial Network) has shown outstanding 

results in producing precise images from arbitrary inputs59,60,61. 
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