

Dose Prediction for Radiotherapy of Advanced Stage Lung Cancer

by

Rachna Singh

A Thesis Submitted to the School of Graduate Studies in Partial
Fulfilment of the Requirements for Master of Science

McMaster University ©Copyright by Rachna Singh, 2020

 ii

McMaster University
MASTER OF SCIENCE (2020)
Hamilton, Ontario (Radiation Sciences)
TITLE: Dose prediction for radiotherapy of advanced stage lung cancer.
AUTHOR: Rachna Singh
SUPERVISOR: Professor Marcin Wierzbicki
NUMBER OF PAGES: xiv, 68

 iii

ABSTRACT

A dose prediction model for treatment planning was generated using U-Net

architecture. The model was generated for advanced stage cancer patients. The U-

Net architecture was created with depth=6 and kernel=6. The model architecture

was successful to reduce the input image size (192X192) to feature map (6X6)

which helped to extract the low level features. The dose prediction of the model

was trained with depth=6, kernel=6, MSE loss, Adam optimizer, 1000 epochs and

a batch size of 4. The predicted dose was rescaled for gamma analysis to quantify

accuracy of the model. The renormalized predicted dose was quantified using

gamma analysis with a 3mm, 3% dose tolerance. The gamma map was generated

to visualize the regions where dose distributions failed. The gamma percentage

values obtained on the training set were acceptable. The mean and standard

deviation values of gamma pass percentage obtained on training dataset were

97.5% and 1.24% respectively, which concluded that training process was

successful and was an almost perfect match of true dose and predicted dose.

However, gamma pass percentage values obtained on validation set was not a good

representation of the true dose. Nevertheless, the validation dataset was able to

predict the approximate highest dose region. A gamma analysis with a 5mm, 5%

dose tolerance was performed to test the the level of discrepancy between the

predicted and true dose in the validation set. This increased the gamma pass

percentage compared to the 3mm, 3% analysis to a mean gamma pass percentage

of 26.2 ± 7.47%. Although the predicted dose was not of sufficient accuracy for

clinical use, there technique studied in this work show promise for further

 iv

development.

 v

DEDICATION

For

My grandfather

who would take pride in every small step I took………..

 vi

ACKNOWLEDGMENTS

I express my sincerest gratitude to my advisor, Prof. Marcin Wierzbicki, for his

invaluable assistance, support and guidance in this research. Prof Wierzbicki’s

enthusiasm and aspiration for last one year has helped me to perform this research.

I hope to emulate his abilities in my forthcoming research career.

 I express my deepest gratitude to Prof. Tom Farrell for recommending me

and providing me with confidence and believing in me. I would also like to thank

Prof. Orest Ostapiak and Prof. Roxana Vlad for being in my committee.

On a personal note, I would like to thank my cousin, Shashank Bhushan for

his helpful inputs during the research.

Finally, I would like to thank my husband, Kamesh, for his support during

this journey (especially with the monumental task for teaching me python and

pytorch programming) and my children Spriha and Kashvi for not bothering me

when I am at my work.

 vii

TABLE OF CONTENTS

 Page

LIST OF TABLES ... ix

LIST OF FIGURES ... x

CHAPTER

1. INTRODUCTION ...1

1.1 A brief introduction to deep learning ...1

1.2 Biology of Neural Network ..2

1.3 Timeline of deep learning ...4

1.4 External beam radiotherapy treatment planning……………………..6

1.5 Motivation………………………………………………….............8

2. BASICS OF CONVOLUTIONAL NEURAL NETWORK11

2.1 Deep neural networks ...11

2.2 Convolutional neural networks ..12

2.3 Activation function ...17

2.4 Pooling layer ..19

2.5 Gradient Descent……………………………………………....…20

2.6 Backpropogation.……………………………………………...…23

2.7 Loss function………………………………………………..……28

2.8 Hyperparameters and training…………...……………...……..…29

2.9 U-Net architecture……………………………………...……..….30

3. Methods..35

3.1 Dataset details ..35

 viii

CHAPTER Page

3.2 Training methods ..39

4. RESULTS AND DISCUSSIONS ..45

4.1 Assessment of depth and kernel ..45

4.2 Assessment of optimizer ...47

4.3 Assessment of epochs ...48

4.4 Dose prediction accuracy ..49

4.5 Conclusions ...62

 REFERENCES ... 64

 ix

LIST OF TABLES

Table Page

4.1 Loss, number of trainable parameters and estimated total size of parameters

 obtained with kernel 6 and various depths over 1000 epochs……………………......45

4.2 Loss, number of trainable parameters and estimated total size of parameters

 obtained with depth 6 and various kernel over 500 epochs…………………………..45

4.3 Loss obtained after 1000 epochs of training with various optimizers and

 depth 6, kernel 6……………………………………………………………………. ..48

4.4 Predicted vs. true dose gamma analysis pass rate for the training dataset…………. ..50

4.5 Gamma percentage for validation dataset with 3mm, 3% dose tolerance…………. ..53

4.6 Gamma percentage for validation dataset with 5mm, 5% dose tolerance……………61

 x

LIST OF FIGURES

Figure Page

1.1 Relationship between artificial intelligence, machine learning and deep

learning…………………………………………………………………………….……2

1.2 Biological neuron……………..………...3

1.3 Single layer perceptron depicting one decision boundary…………………..………….3

1.4 Number of papers published with “artificial intelligence” subject till Nov

 2018…………………………………………………………………………………….4

1.5 (A)Present radiation treatment plan structure…………………………….. ….7

 (B)Future radiation treatment planning structure with A………………………….. ….7

2.1 Multiple layer neural network……………………………………………………… …11

2.2 CNN architecture for digit recognition……………………………………… …12

2.3 Convolution of a (4X4) image with a (3X3) kernel and a stride of 1 to obtain

 a (2X2) feature map……………………………………………………………….13

2.4 Convolution matrix (4X16) where each row represents the position of the

 kernel (3X3) on the input image (4X4)………………………………………….14

2.5 Flattened matrix of input image……………………………………………… ...14

2.6 Matrix multiplication of convolution matrix and flattened image

for general convolution process…………………………………………………..15

2.7 Convolution and transpose convolution method to obtain a

 reconstructed image from an input image……………………………………..16

 xi

Figure Page

2.8 The process of transposed convolution where matrix multiplication

 is performed between the transposed kernel and the output of

 convolution to obtain the output image…………….……………………………..16

2.9 A single neuron with inputs () = 2, (, = 5, (. = 9	and	(4 = 6 , weights

 5) = 0.1, 5, = 0.2, 5. = 0.3	and	54 = 0.4	, and bias, 9 = 7. x is

 computed as (:5:4
:;) …………………………………………………………….....17

2.10 Example activation functions…………………………………………………….…18

2.11 Max pooling and average pooling example with a kernel of size (2X2)

 and a stride of length of (2x2)………………………………………………………19

2.12 Simple illustration of gradient descent of a single weight…… ……….………20

2.13 Basic outline of training a model with backpropagation……………….……....24

2.14 A single layer perceptron. (< ……(: are the inputs, the weights are

 5>: and bias is 9> = 0. The activation function is given by f and ...

 ?> = 5>:: is the net neuron activation. @>, A>, and	B> are the output,

 error and desired output of the training network………………………… .…...25

2.15 Single hidden layer perceptron. The output neurons have weights

 5C> and the hidden neurons have weights 5>:……………………………….…...27

2.16 Original U-Net architecture described by Ronneberger et al……………………..31

2.17 U-Net architecture used for dose prediction for IMRT of prostate cancer……………....33

3.1 Four neighboring pixels of (x,y) pixel……………………………………………….37

3.2 U-Net architecture……………………………………………………………………..41

 xii

Figure Page

4.1 Trainable parameter number versus depth for kernel set to… ……………46

4.2 Loss vs. depth for kernel set to 6……………………………………………….46

4.3 Loss vs. epoch obtained during training with depth 6, kernel 6

with various optimizers………………………………………………………….47

4.4 Loss observed with Adam over 1000 epochs…………………………………..48

4.5(a) Gamma map with the highest gamma passing percentage of

 99.0±1.0. The CT scans, true dose, predicted dose and gamma

 map are in row 1,2,3,4 respectively. The slices of true dose

 +2cm from prescription position, at prescription position and

 -2cmfrom prescription position are in column 1,2 and 3 respectively……….51

4.5(b) Gamma map with the lowest gamma passing percentage of

 96.6±1.0. The CT scans, true dose, predicted dose and

 gamma map are in row 1,2,3,4 respectively. The slices of true

 dose +2cm from prescription position, at prescription position

 and -2cm from prescription position are in column 1,2 and 3

 respectively…………………………………………………………………………52

4.6(a) Gamma map of patient number 16 with gamma passing percentage

 of 10.2±1.0. The CT scans, true dose, predicted dose and gamma

 map are in row 1,2,3,4 respectively. The slices of true dose +2cm

 from prescription position, at prescription position and -2cm from

 prescription position are in column 1,2 and 3 respectively………………..54

 xiii

Figure Page

4.6(b) Gamma map of patient number 17 with gamma passing percentage

 of 13.5±1.0. The CT scans, true dose, predicted dose and gamma

 map are in row 1,2,3,4 respectively. The slices of true dose +2cm

 from prescription position, at prescription position and -2cm from

 prescription position are in column 1,2 and 3 respectively…………………55

4.6(c) Gamma map of patient number 18 with gamma passing percentage

 of 19.0±3.0. The CT scans, true dose, predicted dose and gamma

 map are in row 1,2,3,4 respectively. The slices of true dose +2cm

 from prescription position, at prescription position and -2cm from

 prescription position are in column 1,2 and 3 respectively…………………56

4.6(d) Gamma map of patient number 19 with gamma passing percentage

 of 17.5±2.0. The CT scans, true dose, predicted dose and gamma

 map are in row 1,2,3,4 respectively. The slices of true dose +2cm

 from prescription position, at prescription position and -2cm from

 prescription position are in column 1,2 and 3 respectively…………………57

4.6(e) Gamma map of patient number 20 with gamma passing percentage

 of 6.18±1.0. The CT scans, true dose, predicted dose and gamma

 map are in row 1,2,3,4 respectively. The slices of true dose +2cm

 from prescription position, at prescription position and -2cm from

 prescription position are in column 1,2 and 3 respectively…………………58

 xiv

Figure Page

4.6(f) Gamma map of patient number 21 with gamma passing percentage

 of 16.8±2.0. The CT scans, true dose, predicted dose and gamma map

 are in row 1,2,3,4 respectively. The slices of true dose +2cm from

 prescription position, at prescription position and -2cm from

 prescription position are in column 1,2 and 3 respectively……………………59

4.6(g) Gamma map of patient number 22 with gamma passing percentage

 of 15.7±2.0. The CT scans, true dose, predicted dose and gamma map

 are in row 1,2,3,4 respectively. The slices of true dose +2cm from

 prescription position, at prescription position and -2cm from

 prescription position are in column 1,2 and 3 respectively……………………60

1

Chapter 1
Introduction

1.1 A brief introduction to deep learning

Artificial intelligence (AI) refers to the science and engineering of computer simulation of human

intelligence. Its development and deployment has become the most discussed topic in industry and

academia. In the last 15 years, machine learning (ML), a subcategory of AI, has been a prominent

area of research and development due to its ability to solve complex practical problems by learning

from available data1.In recent years, another exceptional achievement has been obtained in the

field of deep learning (DL), a subcategory of ML. DL2,3 is based on neural networks which are

programed to learn with various degree of supervision from unstructured data. DL requires some

prior knowledge to learn the system, however it’s capability to process the data and extract

meaningful representations is outstanding. DL aims to utilize multiple neural networks to

hierarchically extract high level features from the low level features of the provided input. DL has

overshadowed traditional ML methods due to the accessibility of large-scale datasets in

combination with advanced computing systems equipped with model training algorithms.

The main difference between AI, ML and DL is the range of scope by which a problem

can be solved. AI4,5 refers to the intelligence developed by computers to achieve abilities similar

to human intelligence. The machine is capable of providing solutions to wide array of problems,

where it is not restricted to categorize, comprehend, recognize patterns and can also provide

conclusions. On the other hand, ML comprises numerical algorithms mostly restricted to

performing established tasks via a specially designed model. Hence, ML algorithms extract

statistics from data to find meaningful relations already present in the data. DL6 employs multiple

methods of ML to enhance the ability of the machine to identify the smallest correlations. This

2

process is known as a deep neural network, where it utilizes multi-layer architecture to

computationally generate the predicted output. The diagram below shows the relationship between

AI, ML and DL.

Figure 1.1: Relationship between artificial intelligence, machine learning and deep learning7.

1.2 Biology of a neural network:

The human brain comprises approximately 10 billion neurons, our basic units of computation. A

biological neuron consists of two most important parts: dendrites and axons. Each dendrite

communicates with an axon with the help of synapses. The main underlying principle is that each

neuron has its own electric potential and will excite only if it reaches a particular threshold. The

synaptic strength decides the interaction level of the signals in the neurons. Below is the diagram

of the biological neuron of the human brain.

3

Figure 1.2: Biological neuron8

In AI, biological neurons are modelled using representations such as the Perceptron8 shown

in Figure (1.3). Signals xi arrive at synapses where each is multiplied by a unique weight, wi. The

weighted signals are summed and a bias b is added. The bias represents the firing threshold of the

neuron. A non-linear activation function, f is then applied to the total signal to generate the output,

y. Equation (1.1) represents decision boundary of such outcome of the activation of a neuron, !"

!" = $ %"&"" + b (1.1)

Figure 1.3: Single layer perceptron depicting one decision boundary8.

The complicated functionality of biological neurons requires the use of a nonlinear activation

function in artificial neurons as it is certain that the desired output will not be a linear combination

of the inputs.

4

1.3 Timeline of deep learning

DL has increased learning capabilities due to the large number of neuronal layers. Training a DL

model requires the optimization of the network parameters to reduce the error between the

computed and the desired output. One network architecture that is interesting for the work in this

thesis is the convolutional neural network (CNN). CNNs utilize kernels to extract and preserve the

spatial location of features to predict the outcomes in computer vision applications. The first CNN

was presented in 1988 by LeCun et al.9 The lack of computational power and knowledge of

complicated pipeline to train the model was the major hindrance in its development. It did not gain

recognition until 2012 when Alex Krizhevsky et al.10 used a CNN to win the ImageNet

competition11. Their group developed a CNN with five convolution layers, comprising 60 million

parameters and 650,000 neurons. The network classified 1.2 million images, 50,000 validation

images and 150,000 testing images into 1,000 exclusive categories. This became the major

breakthrough in the field of deep learning. With further advancement, AI became highly

interesting in many fields of study and after 2010, there has been observed increment of

publications as shown in Figure (1.4)12.

Figure 1.4: Number of papers published with “artificial intelligence” subject till Nov 201812.

5

With the rapid progress in DL, high computational power became increasingly necessary

to train neural networks. Thus, there is a correlation between developments in computational

power and DL13,14,15,16.The major contributor to increased computational power has been the

replacement of the central processing unit (CPU) with graphics processing units (GPU)17. GPUs

are highly parallelized and designed for floating point arithmetic, making them well suited to the

task of training deep networks.

Another factor leading to increased use of DL is the improving availability of

computational packages and frameworks that make implementation straightforward. These

frameworks offer predefined activation functions, different methods of loss calculations,

optimization algorithms etc., allowing users to apply the functions directly for their required task.

This has eased the implementation of the methods such that effort can now be diverted away from

the task of basic construction of the models.

PyTorch14 is one framework that has gained support in last three years. It utilizes the Python

programming language which is easy to use and comes with many available packages for data

visualization and processing. This has been developed by Facebook’s AI Research lab and has

been found useful for computer vision programming. It consists of an open source machine

learning library based on the Torch library. The Torch library18,19 supports multidimensional arrays

known as tensors. Tensors in PyTorch store matrices, vectors, numbers, arrays etc. It is also

embedded with a computationally effective C++ runtime module, which can be used for validation

without the need for Python. These properties of PyTorch allows it to enable seamless

implementation of DL on the GPU.

6

1.4 External beam radiotherapy treatment planning

Radiotherapy aims to destroy cancerous cells via energy deposited by ionizing radiation. The basic

goal is to maximize the lethal dose of radiation delivered to the tumor while minimizing the dose

to the surrounding tissue. The process starts with patient positioning and the acquisition of high

quality images. Images are acquired using a variety of modalities, including positron emission

tomography (PET), magnetic resonance imaging (MRI) and computerized tomography (CT).

Typically, the CT image is the main modality used for target and organ at risk visualization. The

image is used to delineate the carcinogenic tissue and identify proximal organs at risk (OARs).

CT images also provide attenuation coefficients of tissues and are thus useful for dose computation

during treatment planning.

 A team of radiation oncologists, radiation therapist and medical physicists then select the

appropriate linear accelerator beam energy, position, angles, and so on. In intensity modulated

radiotherapy (IMRT), beam parameters are then optimized such that acceptable target coverage

and OAR sparing is achieved. Generating a minimally acceptable plan is usually a quick process,

however, improving the plan for the patient is laborious and often requires many iterations between

the planners and the treatment planning system. In this process, the radiotherapy team may need

to interact repeatedly based on intermediate plans. This iterative process requires tremendous

human efforts which may result in the delay of patient’s treatment or acceptance of a sub-optimal

plans. Figure (1.5(A),1.5(B)) demonstrates the present treatment planning structure and a potential

future workflow involving AI.

7

Figure 1.5(A): Present radiation treatment plan structure 22

Figure 1.5(B): Future radiation treatment planning structure with AI22

The proposed planning method with AI will save time due to fewer iterations between the

physician and dosimetrist. The dose prediction generated using the AI method will reduce the time

necessary for the dosimetrist to generate an acceptable plan since knowledge of what is achievable

will reduce the number of iterations between the physician and dosimetrist. For example, prior

dose knowledge may be used to set achievable dose objectives during inverse treatment plan

optimization.

Another issue in the current workflow is that the planned treatment is acceptable for the

patient anatomy as seen in the original CT scan. Radiation treatment is given in multiple fractions

over many days. The anatomy of the patient will change daily which will ultimately lead to change

8

in the delivered dose distribution. The patient positioning is also an important component in the

computation of dose and will have to be readjusted due to the change in anatomy of the patient.

AI is expected to play an important in such situations allowing faster evaluation of the impact of

positional and anatomical changes on the dose distribution.

1.5 Motivation

Stage III non-small cell lung cancer (NSCLC) is typically treated with chemotherapy along with

radiotherapy at a daily dose of about 2 Gy over about 30 daily fractions20. The initial radiotherapy

treatment plan is designed as described above and the dose distribution is approved by a team

comprising radiation oncologists, radiation therapists, and medical physicists. For each fraction,

the patient is positioned on the treatment unit and a cone-beam CT (CBCT) image is captured.

The CBCT image is used to ensure patient positioning and anatomy are as close as possible to the

geometry observed during treatment planning. This ensures the planned dose distribution is

delivered each day. However, advanced stage lung cancer patients experience several tissue

changes during a treatment course. Patients suffer from weight loss due to the toxicity of the

treatment23. Also, with the ongoing chemotherapy, the tumor size is reduced which impacts the

dose distribution plan. There are also changes in the accumulation of fluid in the lung due to

treatment. With all the changes occurring during the treatment, there is an overall variability in

patient setup. These changes make it impossible to reproduce the planned dose distribution each

day. Instead, the treating radiation therapists are constantly analyzing the differences in anatomy

between the planning CT and treatment CBCT images. At some threshold, the therapists decide

it is no longer reasonable to continue delivering the original plan and, with further analysis by the

attending radiation oncologist, the patient is sent for a new CT scan. The dose distribution is

9

recomputed by the traditional method discussed above and the acceptability of the plan is

determined. This is a laborious and time consuming process. This thesis aims to study if it is

possible to predict the dose using the daily cone-beam CT (CBCT) scan to help decide if the

treatment dose distribution is acceptable just prior to delivery. Having the full dose distribution

of the day also allows one to make decisions on the cumulative dose delivered. Unfortunately, due

to time constraints, this work was only able to focus on the prediction of dose based on the planning

CT.

Prediction of dose using DL has been a popular area of study in the last two years. Some

authors demonstrated outstanding predictions of dose for prostate and head and neck cancers21,22

using different models and frameworks . Nguyen et al.22 for example, trained U-Net to predict the

planned dose given contours of the planning target volume (PTV), bladder, body, left femoral

head, right femoral head, and rectum. They achieved a mean dice similarity value of 0.91 for

isodose volumes in the range of 0-100% of the prescription dose. The average value of absolute

differences of [mean] between predicted and planned doses expressed as a percentage of the

prescribed dose were [1.03%] (PTV), [4.22%] (Bladder), [0.48%] (Body), [1.79%] (L Femoral

Head), [2.55%] (R Femoral Head), and [1.62%](Rectum). The most outstanding part of the

research was that only limited data (88 patients) were used to predict the dose distribution. Another

work looked at lung cancer diagnosis using deep learning for the annual Data Science Bowl (DSB)

competition 26,23. In DBS, teams are provided with thoracic CT scans and the goal is to predict if

the patient will be diagnosed with lung cancer in the following year. 1972 teams participated and

two top teams achieved lowest loss values of 0.8524 and 0.8725 .

The goal of this thesis was to predict dose from CT images using U-Net , similar to the

approach used by Nguyen et al.22. The difference with this approach was that only CT images

10

were used as inputs. This is the preferred approach since no human interaction is required for dose

prediction. However, dose prediction based on CT images alone is a difficult problem to solve.

Programming was done in the PyTorch framework.

11

Chapter 2

Basics of Convolutional Neural Network

This chapter describes the basics of deep neural networks including CNNs. Later, the U-Net

architecture is discussed. The chapter has been written with reference to books by Nielsen,

Michael26 and Simon Haykin27.

2.1 Deep neural networks

Single artificial neurons are the basic structure of deep neural networks (Figure 2.1). In a feed-

forward neural network, input at the first layer proceeds through hidden layers to produce the

output. As each layer is connected to the next layer, the signal is “fed forward” consecutively

between the layers in a forward direction. Hidden layers do not provide direct correlation between

input and output layers. As deep neural networks comprise multiple hidden layers, the architecture

of the model provides complex intuitions as data moves deeper into the network.

 Figure 2.1: Multiple layer neural network26.

12

2.2 Convolutional neural networks

A CNN is a type of deep neural network. In CNNs, a multi-channel input image can be processed

with learnable weights and biases to understand its complexity and to differentiate it from other

images. Figure (2.2) shows an example of a CNN designed to recognize characters.

Figure 2.2: CNN architecture for digit recognition28.

The section below discusses the formulation and terms used in the CNN network.

Convolutional layer

Convolutional layers are the building block of the CNN network. In this layer, a mathematical

operation is performed to combine input data with filters/kernels to extract feature maps that

highlight features such as edges for further processing. Hence, a convolutional layer produces

feature/activation maps from low feature input images.

Mathematically, convolution29 is an operation where two functions (x and w) produce a

real valued y, an output. In a neural network, x is an input, w is the kernel and output is known as

the feature map. The kernel is an important parameter in a CNN. It consists of a matrix of kx rows,

ky columns, and d depth that is applied to the region of the input image known as the receptive

13

field. The depth of the kernel usually represents the number of channels in the input image of size

(height=Ix, width=Iy and depth=d). Matrix multiplication of the input image and kernel produces a

summed single value assigned to a pixel of the output feature map. The final output feature map

is obtained by sliding the kernel over the input image.

During convolutions, kernel stride describes the shape of the output feature map. Stride is

defined as the number of pixels the kernel moves on the input image matrix at each successive

multiplication. The row and column of output matrix size, (*+	X	*.) with input image dimension

(0+	X	0.), kernel size (1+	X	1.) with a stride of 2 is mathematically formulated as:

*+ =

34564

7
+ 1 (2.1a)

*. =
39569

7
+ 1 (2.1b)

Below is a simple example where an input image of size (4X4) is convolved with a kernel of size

(3X3) with a stride of 1 to produce an output feature map of size (2X2).

Figure 2.3: Convolution of a (4X4) image with a (3X3) kernel and a stride of 1 to obtain a (2X2)
feature map.30

14

It is convenient to represent convolution using a convolution matrix. For the example in Figure

(2.3), the convolution matrix would be determined as shown in Figure (2.4).

 Kernel (3X3) Convolution Matrix (4X16)

Figure 2.4: Convolution matrix (4X16) where each row represents the position of the kernel (3X3)
on the input image (4X4)30

To perform convolution, the input image would be flattened as shown below.

 Input image matrix (4X4)

Flattened Image (16X1)

Figure 2.5: Flattened matrix of input image.30

15

The convolution operation is then obtained by matrix multiplication of convolution matrix and the

flattened image as shown below in Figure (2.6)

 																																																																																		

Convolution Matrix (4X16) Image after convolutions (4X1)

Flattened Image (16X1)
Figure 2.6: Matrix multiplication of convolution matrix and flattened image for general
convolution process.30

Transposed Convolutions

A convolution is performed to compress the input image to generate the high level feature map

with reduced spatial representation. The transposed convolution, also known as an auto encoder,

is performed to decompress the abstract mapping to obtain the reconstructed output image. Figure

(2.7) shows the process of convolution and transposed convolution to obtain the reconstructed

image.

X =

16

Figure 2.7: Convolution and transposed convolution method to obtain a reconstructed image from
an input image.30

Transposed convolution can then be obtained by multiplying the transpose of the convolutional

matrix and the output of the convolution. This generates the final output, recovering spatial

information. Thus, transpose convolution can be thought of as a deconvolution process.

 Transposed Kernel (16X4) Output Image (16X1)

Figure 2.8: The process of transposed convolution where matrix multiplication is performed
between the transposed kernel and the output of a convolution to obtain the output image31.

17

Convolution implementation in PyTorch

In PyTorch, it is possible to convolve an input matrix with a general number of channels Cin to

generate an output matrix with a different number of channels Cout. This formulation helps to

increase or decrease the depth of the output feature map. The Conv2d function implements this

using31:

*:; <=>?@

= ABC2 <=>?@
+ %DBEℎ; <=>?@

, 1 ⋆ BIJ:;(1)
KLM5N

6OP
, (2.2)

where ⋆ is the sliding dot product.

2.3 Activation function

A convolution layer in a CNN produces a feature map. Every pixel in this feature map is then sent

to an activation function. Consider the example of a single neuron with four inputs &N = 2, &R =

5, &T = 9	and	&Y = 6 , weights %N = 0.1, %R = 0.2, %T = 0.3	and	%Y = 0.4	, and bias, A = 7 as

shown in figure (2.9).

Figure 2.9: A single neuron with inputs &N = 2, &R = 5, &T = 9	and	&Y = 6 , weights %N =
0.1, %R = 0.2, %T = 0.3	and	%Y = 0.4	, and bias, A = 7. x is computed as &"%"

Y

"ON .32

18

The sum of the weighted input and bias is given below:

& = &N%N + &R%R + &T%T + &Y%Y + A = 13.3

Using sigmoid activation, $ & =
N

N`ab4
:

*:;J:; = Cc;BdC;BeI	e$;ℎD	BIJ:; = 	
1

1 + D5NT.T
= 1

The threshold of sigmoid activation function is 0.5, hence this neuron will be fired.

Some of the most incorporated non-linear activation functions33 are sigmoid, hyperbolic tangent,

and rectified linear units (ReLU). The sigmoid function was used initially since it models the all

or none response of biological neurons. However, recently, the ReLU function has is used as it

improves convergence during model optimization34. One of the advantage of using ReLU is that

the activation of neurons occurs at different times and the gradient computation of the deactivated

neurons will be assigned zero if the output of linear transformation is less than zero. Equations

(2.3a) and (2.3b) describe the functions:

Sigmoid function : $ & =
N

N`ab4
 (2.3a)

ReLU function: $ & = max 0, & (2.3b)

Below Figure (2.10) are the functions and the activation functions.

(a): Sigmoid Function

(b): ReLU function

Figure 2.10: Example activation functions35

19

The above functions are applied in the hidden layers of the network. Softmax is another activation

function that is applied at the last layer of the network to interpret the final output. It is a multi-

class classifier that generates the probability distribution of N different possible outcomes where

z is the input vector from the last layer. Mathematically it is represented as36:

																																										$(h") =
a
iL

aiM
j
Mkl

		for	B = 1…… . . q, (2.4)

where h" are the elements of input values.

2.4 Pooling layer

Pooling is usually applied on each feature map independently after the nonlinear activation function

to reduce the spatial size of the representation. Reduction in the amount of parameters leads to

reduced computational load in the network and decreases the chance of overfitting. Average pooling

and max pooling are common pooling methods. The max pooling method summarizes the presence

of the most activated feature whereas average pooling summarizes the presence of the average

feature. Another important aspect of the pooling layer is that it is also implemented with using the

kernel and stride concept. Figure (2.11) shows a pooling example.

(a) Max Pooling

(b) Average Pooling

Figure 2.11: Max pooling and average pooling example with a kernel of size (2X2) and a stride of
length of (2x2).37

20

2.5 Gradient descent:

Gradient descent is an optimization process used to find the global minimum of a function by

iteratively taking the negative direction of its gradient. In DL, gradient descent is utilized to update

network parameters such as its weights and biases to minimize a loss/cost function that quantifies

the difference between the predicted and desired output. Figure (2.12) shows a simple illustration

of the gradient descent method.

Figure 2.12: Simple illustration of gradient descent of a single weight38.

For a single node artificial network, the cost function parameters are the weights, %" and

bias, A. A simple loss function is the mean squared difference between the predicted and the

desired output as shown below39:

r %, A =
N

s
!" − $ %&" + A

R
u

"ON (2.5)

The gradient is:

r
v
%, A =

wx y,z

wy

wx y,z

wz

=

N

s
−
R+Lw{ .L5{ y+L`z

wy

N

s
−
Rw{ .L5{ y+L`z

wz
.

 (2.6)

21

For simplicity, let | denote the parameters w and b. The initial loss is evaluated and the derivative

of the loss ∇~r(|) is computed as shown above. The parameters are then updated using:

| = | − �∇~r(|), (2.7)

where the learning rate parameter, � is introduced to limit the step size performed at each update.

This process is repeated until the desired level of loss function is obtained. However, gradient

descent does only one update for each parameter in one iteration of dataset. This process is

computationally not effective if the dataset is large. With this consideration, many types of gradient

descent was introduced. One of the most common implementations is the Stochastic gradient

descent (SGD) method. SGD attempts to find the global minimum after each training process by

fine-tuning the network parameters independently for small set of randomly selected inputs.

Hence, SGD works with a randomly selected batch of data to move the model from a local

minimum to global minimum. This helps to update the parameters faster since only small selection

of data is processed in a single iteration of training.

Despite this, SGD is still susceptible to fining the local minimum instead of the global

minimum. The computational speed of SGD is improved by introducing the concept of

momentum. Momentum is used to update the slope of the loss function based on the slope in the

previous iteration. The equations governing momentum in SGD are given below:

d? = Äd?5N + �∇~r(|), (2.8)

| = | − d?, (2.9)

where d? is the current update vector (modified gradient), d?5N is the past updated vector, t is the

iteration number (time) and Ä is the momentum coefficient with a typical value of 0.9.

22

The process of momentum in an optimizer can be compared to the situation where a ball is

rolling downhill. The ball gains momentum as it progresses down the slope eventually reaching a

constant velocity. Once the other side of the hill is reached, the ball continues rolling uphill due

to momentum. This allows the optimizer to search beyond local minimum for possible global

minima. However, this technique may still be susceptible to finding the local minimum. Thus,

algorithms with adaptive learning rates such as AdaGrad40, AdaDelta41, RMSprop42 and Adam43

were introduced.

The Adaptive Gradient Algorithm (AdaGrad) is controlled by learning rate, decay learning

rate, weight decay and epsilon parameters. AdaGrad is able to train large-scale neural networks

due to the introduction of the adaptive learning rate. The learning rate of AdaGrad is different for

every parameter and at every time and is adapted to the inconsistency in the dataset. The problem

encountered with AdaGrad is the accumulation of squared terms in the denominator. This causes

the learning rate to become infinitesimally small with iterations, which stops further training of

the model. AdaDelta solved the diminishing learning rate problem. It restricts the size of the

denominator accumulated over iterations. AdaDelta takes similar parameters as AdaGrad,

however it adds Åℎe Ç = 0.9 and removes decay learning rate. Ç is very similar to the momentum

term but is applied only on the current and previous update. Root mean squares propagation

(RMSprop) was developed around the time as AdaDelta to solve the AdaGrad problem. It has a

similar approach as AdaGrad, however in the denominator it has an exponentially decaying

average, which allows the learning rate to adapt as it is near the local minima after each iteration

of the dataset. Hence, it allows the learning rate to become big and small with respect to the

steepness of the gradient. The most recent optimizer is adaptive moment estimation algorithm

(Adam). Adam is governed by parameters É, the learning rate, ÑN = 0.9, ÑR = 0.999, and epsilon,

23

Ö = 1.0E-8. Ö is set to a small value to allow the algorithm to avoid asymptotes. A small value of

Ö will make larger weight updates while a larger value of will cause smaller weight updates and

will slow the training of the model, hence a small value as 1.0E-8 is preferred . The learning rate,

É, controls the step size. Larger step size leads to faster convergence at the risk of potentially

missing the global minimum. ÑN and ÑR are the exponential rates of first and second momentum

terms. It is recommended that ÑN be near 1 and that ÑR is slightly higher than ÑN. Adam has been

found to work well in practice as compared to other optimizers44.

2.6 Backpropagation

A CNN takes images as input and produces an output. Its ability to produce the desired output is

controlled by various parameters that are optimized during model training. The learning algorithm

process is described below45:

1. The network is randomly initialized with network parameters (weights and biases)

2. A validation input is allowed to pass through the network to generate a model prediction

3. The target (known truth) and the prediction are compared and a loss is calculated.

4. Backpropagation is performed to determine the gradient of the loss function with respect

to the neural network parameters (details are presented in the example below).

5. The gradient descent method is used to update the parameters such that the total loss is

minimized.

6. The process is repeated until the loss below a set threshold

Below Figure (2.13) describes a basic outline of the training model.

24

Figure 2.13: Basic outline of training a model with backpropagation45. Here j is the jth neuron of
the neural network.

During CNN training, multiple forward and backward passes are performed to optimize network

parameters. The following paragraphs briefly describe the computational method of the forward

and backward pass.

Forward pass

In the forward pass, an image is input into the first network layer and an activation map is

produced. This activation map is the input to the first hidden layer and the next activation map is

generated. The process continues through many hidden layers until the final network output is

computed.

Backward pass

In this phase, the gradient of the loss function with respect to the parameters is computed through

backpropagation and the gradient decent method is used to update the weights to minimize the

loss. The loss function is usually a predefined function of the network.

During neural network training, an epoch elapses when the complete dataset goes through the

forward and backward processes of the network.

25

Example: Backpropagation algorithm for training a single and multi-layer network

The mathematical foundation26,27,29,46 in backpropagation for weight updating is an important

concept in neural networks. The following derivation refers to the example network depicted

below.

Figure 2.14: A single layer perceptron. &P ……&" are the inputs, the weights are %Ü" and bias is
AÜ = 0. The activation function is given by f and CÜ = &"%Ü"" is the net neuron activation.
!Ü, DÜ, and	;Ü are the output, error and desired output of the training network46.

The diagram shows the situation for a single training set x composed of components xi. To allow

for further discussion, let xn represent the training set n composed of components xn
i. The sample

&
u is sent to the neural network to produce the output of the jth neuron, !Üu . The desired output is

;Ü
u. Bias is considered to be 0 and has thus been removed from the derivation.

The net activation is

CÜ
u
= %"Ü&"

u
" (2.10)

and the output is

 !Üu = $(CÜ
u
) (2.11)

26

To update the weights, the error, DÜu	of the prediction should be evaluated. The error is the

difference between the desired output, ;Üuand the predicted output, !Üu.

DÜ
u
= ;Ü

u
− !Ü

u (2.12)

The sum of squared errors of each output is considered as the total loss for this derivation. The

division by 2 is used to make the derivation simpler:47.

 r
u
=

N

R
DÜ
u

R

Ü =
N

R
(!Ü

u
− ;Ü

u
)
R

Ü (2.13)

Now the chain rule may be used to determine the gradient of the error with respect to each

weight, %"Ü

 áx
M

áyL@

=
áx

M

áa
@

M

áa
@

M

á.
@

M

á.
@

M

áà
@

M

áà
@

M

áyL@

 (2.14)

Since áx
M

áa
@

M
= DÜ

u,
áa

@

M

á.
@

M
= −1,

á.
@

M

áà
@

M
= $

v
(CÜ

u
), and

áà
@

M

áyL@

= &"
u the Jacobian of the output layer can

be now represented as

 áx
M

áyL@

= −&"
u
DÜ
u
$
v
(CÜ

u
) (2.15)

To simplify changes in synaptic weights, we define the local gradient, âÜu as:

âÜ
u
=

áx
M

áà
@

M
=

áx
M

áa
@

M

áa
@

M

á.
@

M

á.
@

M

áà
@

M
= −DÜ

u
$
v
(CÜ

u
) (2.16)

Hence equation (2.15) can be written as

áx
M

áyL@

= âÜ
u
&"
u (2.17)

The correction factor applied to %"Ü is thus

27

∆%"Ü = −�
áx

M

áyL@

= −�âÜ
u
&"
u (2.18)

where � is learning rate.

 The above equation updates the weights in the training dataset to minimize the loss function

for a single layer perceptron. The following is an extension to the network with a single hidden

layer shown in Figure (2.15). Further extension to multiple hidden layers would follow a similar

process.

Figure 2.15: Single hidden layer perceptron. The output neurons have weights %6Ü and the
hidden neurons have weights %Ü"

46.

The output layer’s weights can be found easily using equation (2.18) because of the similar single-

layer network structure. Hence, using the same delta rule error analysis, we obtain:

áx
M

áyã@

=
áx

M

áà
ã

M

áàã
M

áyã@

=
áx

M

áa
ã

M

áaã
M

á.
ã

M

á.ã
M

áà
ã

M
!Ü
u
= â6

u
!Ü
u (2.19)

The hidden neuron does not have a direct relation to the error signal, hence the error calculation is

obtained by working backwards with respect to the error signal obtained from all the neurons to

which the particular hidden neuron is directly connected. Here the hidden layer is connected to

output neuron layer (!6). This is the main principle of back-propagation.

28

Hence to derive the weight update for the hidden layer, the partial derivative of error, ru with

respect to hidden weight, %Ü" is

áx
M

áy@L

=
áx

M

áa
ã

M6

áaã
M

á.
ã

M

á.ã
M

áà
ã

M

áàã
M

á.
@

M

á.
@

M

áà
@

M

áà
@

M

áy@L

 (2.20)

In equation (2.20), the term in the first bracket is for the output neuron and the second term is for

the hidden neuron.

From equation (2.19), we can rewrite equation (2.20) as

áx
M

áy@L

= â6
u
!Ü
u áàã

M

á.
@

M6

á.
@

M

áà
@

M

áà
@

M

áy@L

 (2.21)

Using equation (2.10), the net activation of the hidden layer is C6u = %6Ü!Ü
u
.Ü and da/dy = %6Ü.

Also ,
á.

@

M

áà
@

M
= $

v
(CÜ

u
), and

áà
@

M

áyL@

= &", hence equation (2.21) can be given as

áx
M

áy@L

= â6
u
!Ü
u
%6Ü6 $

v
(CÜ

u
)&" (2.22)

Using the local gradient definition to hidden layer from equation (2.18)

âÜ
u
=

áx
M

áà
ã

M
=

áx
M

áa
ã

M

áaã
M

á.
ã

M6

á.ã
M

áà
ã

M
= â6

u
!Ü
u
%6Ü6 $

v
(CÜ

u
) (2.23)

Hence, áx
M

áy@L

= âÜ
u
&" (2.24)

2.7 Loss function:

Loss functions quantify the difference between the predicted output and the desired output. The

lower the loss function the more accurate the model. For successful training it is important that

29

the loss function sufficiently quantifies the differences between the predictions and desired output.

Typical loss functions used in neural networks are the mean absolute error (MAE) and mean

squared error (MSE).

MAE = r &, & =
N

s
& − &

s

"OP (2.25)

MSE = r &, & =

N

s
& − &

Rs

"OP (2.26)

Of the two, MSE may be more effective at training models that are able to reproduce a more varied

output due to the presence of the squared term. On the other hand, MAE may be more effective at

avoiding overfitting and the production of models that are more resistant to outliers.

2.8 Hyperparameters and training

As discussed before, backpropagation plays a major role in the training process of the network.

Another component of network training is the setting of hyperparameters, the values in the network

structure that are manually set before training begins. The learning rate, choice of optimizer, and

selecting appropriate batch size before the training process are a few of the hyperparameters that

need to be adjusted before the training process. The learning rate regulates the changes in network

weights with respect to the loss gradient. A small rate may lead to longer optimization of the

network while larger value may lead the training to converge or diverge too soon leading to

incorrect trained model.

Batch size is defined as the number of training examples used in one epoch of model

training. Batch size can be chosen from one of three options; batch mode where batch size is equal

to total number of training cases, mini-batch mode where batch size is greater than one but less

than the total number of cases, and stochastic mode where batch size is one. In batch mode, the

30

number of gradient decent iterations over the entire dataset and the number of epochs are equal, in

mini-batch mode there will be multiple optimization iterations in one epoch and in stochastic

mode, the number of iterations in one epoch is equivalent to the length of dataset. Very similar to

the learning rate, choosing the appropriate batch size is imperative because a small batch size will

converge or diverge faster but a large batch will attain global minima faster. The type of dataset

also contributes to the decision of the batch size.

There are hyperparameters which are used for a particular network architecture. Among

them are the size of convolutional kernel, type of activation functions and loss functions, et cetera.

Convolutional kernel size establishes the size of receptive field in the CNN. Kernel size of (3×3)

and (5×5) are common in CNNs that analyze medical images48.

Another parameter to select is the number of training epochs. A large number of epochs

may lead to model overfitting while insufficient iteration leads to underfitting. In either case, the

model will not be effective in real world applications.

Setting hyperparameter is complex process in network training. The most appropriate

choice is often discovered through careful observation of results rather than through theoretical

knowledge of the model

2.9 U-Net architecture

U-Net is a CNN architecture purposed in 2015 by Ronneberger et al.49. It was specifically designed

for biomedical image segmentation. In the original work, the input50 consisted of 30 sections from

a serial section Transmission Electron Microscopy (ssTEM) data set of the Drosophila first instar

larva ventral nerve cord (VNC). Each image was accompanied with its segmentation map in black

and white corresponding to membranes and cells respectively. The output image was the

segmentation map of the input. It was divided into two classes, (cells) foreground and (membrane)

31

background class (black and white respectively). The network is very effective in providing

accurate localized lesions and segmentation outputs can be obtained with a small training dataset.

The training dataset can have different scales and resolutions. As presented in Figure (2.16), the

name U-Net is given for its U-shape in which layers are sequenced.

Figure 2.16: Original U-Net architecture described by Ronneberger et al.49

The U-Net architecture consists of an encoder and decoder and has 23 convolutional layers.

The encoder, also known as the contracting path, is the part where sequential convolutions are

performed to perceive detailed features. The size of input image is (572X572X1) and after four

blocks of two (3X3) convolution layers and (2X2) max pooling we obtain image of size of

32

(64X64X512). After the encoder path, high features are obtained however spatial information is

lost due to repeated convolution. Hence, the decoder is the expansive path is introduced where

transposed convolutions are performed to restore the spatial information. However, before the

decoder path, bottleneck part is performed, where two convolutions of (3X3) is performed without

any max pooling and the size of image obtained is (28X28X1024). This bottom part allows

compression of the input data to extract the useful high feature map which can be later used to

reconstruct the segmentation map. In the decoder path, features along with spatial information are

combined using skip connections. Skip connections are links between convolutional and

transposed convolution layers. As in the above Figure (2.16), each block in the expansion path,

consists of (3X3) convolutional layer followed by (2X2) up-convolutional layer. The following

layer appends half of the feature map with the half of the corresponding contraction path. Though

there is lack of theoretical evidence, U-Net has been able to obtain the spatial information of the

high-level features to output the predicted image from skip connections. The last uppermost

section of U-Net was to reshape the image to obtain the desired output. The softmax function is

used to obtain the prediction. Sigmoid was the right choice in this scenario because the desired

image was the segmentation map into two classes, background and foreground of the input image.

Hence, U-Net architecture has proven to be successful in the segmentation task in the biomedical

imaging field.

Dose prediction using U-Net

U-Net architecture has been used to predict dose for prostate cancer patients, planned with seven

IMRT fields using contours of the planning target volume and organs at risk22. The U-Net

architecture consisted of seven blocks of both contraction path and expansion path and a bottle-

neck at the very bottom part. Below is the Figure (2.17) of the U-Net architecture used:

33

Figure 2.17: U-Net architecture used for dose prediction for IMRT of prostate cancer22.

The input image consisted of six contours (planning target volume, bladder, body, left

femoral head, right femoral head and rectum) of each patient. Single slices of each contour were

used to train the model. The size of input image was (256X256) with one channel per contour for

a total of 6 channels. Another important aspect is the block of seven convolutions. The operation

of seven block of two (3X3) convolutions and (2X2) max pooling allows the reduction of input

image to (4X4). The reduced (4X4) image at the bottleneck allows two (3X3) convolution to attain

the knowledge of connection between the center of the tumor and the edge of the patient’s body.

The expansion path followed the similar concept as the original U-Net paper49. Padding was set

to zero to maintain the size of the feature. This process will allow high precision of dose

distribution. Dropout, a process in which randomly neurons are not trained, was performed to avoid

34

overfitting due to large valued dataset and the dropout parameters were chosen such that validation

and training loss were close. The training model was implemented in the Keras with Tensorflow

framework.

The next step was to train the architecture for the dose prediction of prostate cancer treated using

a seven beam IMRT approach. For training and testing purpose, the dataset was divided into three

groups, train set, validation set and test set. The training datasets is the one which updates the

weight, validation dataset tests how the trained model generalizes the dataset which is not a training

set and test dataset is used to perform an unbiased evaluation of the final model. The total of 88

patients, six contours were used for the study. The test set comprised data from patient 1 to 8. For

the first run, the validation set comprised data from patient 9 to 16 with remaining data used to

train the model. In the second run, the validation set comprised data from patient 17 to 24 with

remaining data used to train. Thus a 10 fold validation was performed. . MSE loss function was

considered to calculate the loss between the actual dose and predicted dose. Adam optimizer with

parameters ÑN = 0.9, ÑR = 0.99	and	decay = 0 	was used. With this implementation, Nyugen

et.al22 were able to predict the dose distribution for prostate cancer patients within 5% of that

obtained clinically.

35

Chapter 3

Methods

Chapter 3 describes the method use to predict dose distributions given CT images used in

radiotherapy treatment planning for advanced stage lung cancer patients. The beginning of the

chapter describes the dataset and its processing. The next section gives detail about the training

of the model.

3.1 Dataset details:

The data used in this thesis comprises 3D CT images and their corresponding dose grids generated

for 22 advanced stage, lung cancer patients at the Juravinski Cancer Centre between March and

June of 2020. The CT images were acquired using either the Brilliance Big Bore (Philips N.V.,

Amsterdam, Netherlands) or the Somatom (Siemens Healthineers AG, Erlangen, Germany)

scanners. Slice thickness of 3mm was reconstructed on a (512 X 512) matrix with a pixel size of

about 1.17mm. All patients were planned with radical intent to a prescription of 63 Gy in 30

fractions. The plans were developed using the v9.10 Pinnacle Treatment Planning System (Philips

N.V., Amsterdam, Netherlands). Four to five coplanar beams were used, predominantly on the

ipsilateral side of the target. The beam angles were standard but were modified by the planner to

accommodate the anatomy of the patient. The target was contoured using PET and CT images.

Very similar dose objectives were used in IMRT optimization although each case was tweaked by

the planning team to achieve patient-specific dose goals. Final dose computation was performed

with the Adaptive Convolve Algorithm on a dose grid with 2.5 mm voxels. To improve

computational efficiency yet maintain some 3D capabilities, the dose prediction model was trained

36

with 3, 2D slices extracted from each patient’s set. The 3 slices were obtained using nearest

neighbor interpolation and coincided with the location of the prescription point ±2	cm in the

superior/inferior direction.

The dataset was divided into two groups. The training set was utilized to train the dose prediction

model and the validation set was used to test the effectiveness and to quantify the developed model.

The data was divided such that 45 image/dose pairs (15 patients) formed the training set and 21

image/dose pairs (7 patients) formed the validation set.

 Computational Environment

This work was performed on a Dell laptop equipped with 16 GB of RAM, i7 processor (US Intel

Corporation, Santa Clara, California, United States) and a GeForce GTX 1050 Ti graphics card

(Nvidia, Santa Clara, USA). Software was developed using the Jupyter environment (Project

Jupyter) making use of the PyTorch framework (Facebook’s AI research lab, Cupertino, USA).

 Preprocessing of datasets

The pixel size of the original CT images was 1.17mm in-plane with 3mm slices. The voxel size

in the dose images was 2.5mm in all three dimensions. Each CT slice spanned an area of 60 cm

by 60 cm while the dose grids were smaller, corresponding only to the relevant anatomy (e.g. 38

by 20 cm).

Early in the work it became apparent that processing (512 X 512) datasets required

significantly more RAM than available in the computational environment. Thus, the CT images

were downsampled to a matrix size of (256 X 256) comprising of 2.34 X 2.34 X 3 mm voxels

using nearest neighbor interpolation.

37

U-Net requires that the input and output data be on the same matrix with a 1:1 pixel spatial

correspondence. Thus, the dose grids were resampled to match the (256 X 256) CT images.

Resampling was performed by computing the world coordinate for every CT pixel (in mm) using:

BëCEDí=ìw = BëCED"uwa+ ∗ BëCEDï"+w"ñ + BëCED7?àì?, (3.1)

where BëCED"uwa+ is the pixel number in the CT image, BëCEDï"+w"ñ is the pixel size of the CT

image (mm), and BëCED7?àì? is the coordinate of the first pixel in the CT image (mm). This CT

pixel coordinate was then converted to a matrix index in the dose grid using:

óe2D"uwa+ =
"ñàòaôöõú5w=7aùûüõû

w=7a†L4úL°

, (3.2)

where óe2D7?àì? is the coordinate of the first pixel in the dose image (mm), and óe2Dï"+w"ñ		is the

pixel size in the dose grid (mm).

Finally, bilinear interpolation is performed in the original dose grid to obtain the dose at

the CT image pixel location. Bilinear interpolation involves computing the weighted average of

the intensities at the four nearest neighbors. As shown in Figure (3.1), if the four nearest neighbors

co-ordinates are &N, !N , &R, !N , &N, !R 	and	 &R, !R and the unknown pixel is at &, ! , then the

intensity at (x,y) is determined using equation (3.3).

Figure 3.1: Four neighboring pixels of (x,y) pixel.

38

0 &, ! =
3

+¢5+l .¢5.l

&R − &				& − &N
0 &N, !N 0 &N, !R

0 &R, !N 0 &R, !R

!R − !

! − !N
 (3.3)

The last step was to further reduce the image size by removing the outer border of the image

as it was normally filled with zero valued pixels. This was done by removing 32 pixels around the

CT images and the resampled dose grids to obtain a final data matrix size of (192 X 192).

Data standardization

Standardization in this case refers to rescaling of data intensities across the available cases.

Standardization of data is used during DL to reduce the impact of variability in specific cases on

the final model51. An often used method attempts to rescale the pixel values to achieve a zero mean

and unit standard deviation across all cases. In a regular analysis, each pixel intensity would thus

be standardized by subtracting the mean dividing by the standard deviation. However, since the

data was fed in batches in this work, the regular method would only compute the mean and standard

deviation for one batch. This would have to be saved and re-applied to the data before training the

model. To avoid this, the running mean and standard deviation52 may be updated recursively as

the data are loaded.

Mean: £ñaàu =
ñ

u`ñ
£=§w +

u

u`ñ
£uay

Standard deviation: •7?w¶ =
ñ

u`ñ
•ñ
R
+

u

u`ñ
•u
R
+

ñu

ñ`u ¢
£=§w − £uay

R

where m is the number of previous observations, n is the number of new observations, £=§w and

£uay are the means for the old and new observations, respectively, and •ñ and •u are the standard

deviations for the old and new observations, respectively.

39

Once all the data were loaded and the mean and standard deviation computed as shown

above, each image or dose grid intensity was modified by subtracting the mean and dividing by

the standard deviation. The mean and standard deviation were stored in a file for later recovery of

the standardized data into their original form.

3.2 Training methods

Model parameters

The U-Net model was trained to predict the dose distribution given the CT image. The U-Net

architecture code was downloaded from github.com53 and implemented as a class in the Jupyter

application. Jupyter is a web developer tool used to access Python and PyTorch environments. The

Anaconda54 package manager was used to install Python 3.7.3, PyTorch 1.3.0 and Jupyter. The

gold standard dose distribution for each CT image was the resampled dose grid from treatment

planning. U-Net has the following hyperparameters: in_channels, n_classes, depth, wf and

padding. In_channels defines the number of input channels for the input image, n_classes is the

number of channels in the output, depth defines the level of feature extraction, wf is the number

of filters applied and padding ensures that the matrix size in the input is maintained in the output.

All convolutions are performed using a (3 X 3) kernel. The two most important parameters in

U-Net are depth and wf. Both parameters control the architecture of U-Net. The value of depth

determines how many convolutions/deconvolutions will take place that reduce/increase the matrix

size of the feature map. Simultaneously, wf controls the number of channels produced/reduced

during convolutions/deconvolutions. The number of channels at a particular depth is given by

2
(y{`waï?ß). For example: at the first depth with wf = 6 the number of channels for feature

detection will be 2(N`®) = 128. Increasing the depth of U-Net allows the extraction of features at

40

a particular image resolution while increasing wf improves the ability to extract those features.

The default values for U-Net parameters were in_channels=1, n_classes=2, wf=5, depth=5, and

padding was False. For simplicity, wf will be referred to as kernel in the remainder of the thesis.

For lung dose prediction training, the U-Net model was set with following parameters:

n_channels=1 (input is a single channel CT image), n_classes=1 (output is a single channel dose

grid) and padding = True (same output matrix as input was desired). The depth and kernel were

the primary hyperparameters in the U-Net model which required optimization to obtain the

predicted dose. Initially, the optimizer was SGD and the loss function was MSE. The number of

parameters and the estimated memory needed to store the parameters were observed form the U-

Net model to help decide the experimental parameters. The most obvious benefit of choosing more

trainable parameters was the potential to extract more complex features. Hence, initial

experimentation evaluated the effect of changing depth and kernel values for a single case. For

this case, the predicted dose grids appeared to approach the computed dose after depth=5 and

kernel=5. With a depth of 6 and kernel of 6 an even lower loss value was obtained with improved

predicted dose appearance compared to the computed. With this knowledge, training of all 45

images was performed. To study the loss value for various kernel and depth values, the depth was

initialized at 6 and kernel was changed from 1 to 6. Later to observe the depth effect on the training

model, the kernel was kept at 6 and the depth was changed from 1 to 6. The depth and kernel could

not be increased beyond 6 due to limited RAM in the computational environment.

The training was performed with different layers of convolutions, transposed convolutions and

skip connections throughout the experiment. The contraction and expansion path structure were

not changed from the original. Below is the final U-Net architecture.

41

Figure 3.2: U-Net architecture.

Optimizer

The model was trained using SGD, AdaGrad, AdaDelta and ADAM optimizers. The optimizer can

be changed using the torch.optim package. Below is the illustration with code to show the

implementation of the four optimizers. The hyperparameters of the optimizer have already being

explained in chapter 2.

SGD optimizer:

optimizer = optim.SGD(unet.parameters(), lr=0.0001)

42

AdaGrad optimizer:

optimizer=optim.Adagrad(unet.parameters(), lr=0.0001, lr_decay=0, weight_decay=0, initial _
 accumulato_value=0)

AdaDelta optimizer:

optimizer=optim.Adadelta(unet.parameters(), lr=0.0001, rho=0.9, eps=1e-06,weight_decay=0)

Adam Optimizer:

optimizer = optim.Adam(unet.parameters(), betas=(0.9, 0.999),lr=0.0001,weight_decay=0)

Loss Function

The MSE loss function was used to compute the loss of the model. The MSE loss was computed

between the predicted and the computed dose distributions.

Batch Size:

As discussed in Chapter 2, batch size is also a hyperparameter. Previous studies55 have found that

larger batch sizes converge faster and provide better accuracy. The number of training datasets

was 45 but training with such a large batch was impossible due to limited RAM availability. In

fact, a batch size of four was the maximum possible so all training was performed with a batch of

four.

Model Training

The U-Net model was trained by back propagation method. The following pseudo-code was used

for training the model:

43

Validity of dose prediction

The accuracy of the predicted dose was assessed visually and quantitatively using gamma analysis.

Gamma analysis involves computing the dose difference to compare predicted and target dose

distributions. It encompasses discrepancy in both the dose and spatial position of the dose. The

minimum value of gamma index,Ä56 is given as

Ä Åì, Åa = ëBI
ìõ5ì™

¢

∆w¢
+

´õ ìõ 5´™ ì™
¢

∆´¢
 (3.4)

where, Åì − Åa is the distance between the position Åì in the reference dose grid and the position

Åa in the evaluation dose grid; ì̈ Åì − ä Åa is the absolute difference between doses at Åì and

Åa; ∆ó is the distance to agreement criterion, ∆¨ is the dose difference criterion, and min indicates

44

that for each reference dose grid location, the location in the evaluation dose grid that results in

the minimum gamma is sought.

 Gamma analysis was performed using the Python class available on Github57. 	

Implementation of this in the computational environment was as simple as including the class in

the main code. Gamma evaluation was performed with tolerances of 3mm and 3% of the

prescribed dose. Pixels below 20% of the maximum true dose were not analyzed.

45

Chapter 4
Results and Discussion

Model performance was highly dependent on the choice of hyperparameters. The first three

sections of this chapter discuss the performance of the model due to changes in depth, kernel,

optimizer and epochs. The chapter ends with results and conclusions.

4.1 Assessment of depth and kernel:

The training of U-Net was performed with different depths, kernels, and optimizers. Table (4.1)

and Table (4.2) below show the loss obtained, number of trainable parameters and estimated size

of parameters.

Table 4.1: Loss, number of trainable parameters and estimated total size of parameters
obtained with kernel 6 and various depths over 1000 epochs

Depth

Loss

No of trainable
parameters

Estimated total
size of parameters

(MB)
1 5.37X10-1 3.76X104 36.7
2 1.83X10-1 4.02105 73.9
3 1.60X10-2 1.86106 98.0
4 6.39X10-3 7.70X106 129
5 2.25X10-3 3.10X107 222
6 2.00X10-3 1.24X108 580

Table 4.2: Loss, number of trainable parameters and estimated total size of parameters
obtained with depth 6 and various kernel over 500 epochs

Kernel

Loss

No of trainable
parameters

Estimated total
size of

parameters(MB
1 1.18X10-1 1.2 X105 4.19
2 6.64X10-1 4.87 X105 8.89
3 6.78 X10-1 1.94 X106 21.1
4 1.31 X10-2 7.78 X106 56.5
5 7.41 X10-3 3.11 X107 118
6 3.73 X10-3 1.24 X108 580

46

The above results confirm that loss decreases as depth and kernel increase. The two experiments

were performed with a different number of epochs due to a hardware failure in the laptop’s GPU.

Training with 1000 epochs was performed before the failure, employing the GPU. After the

failure, only 500 epochs were ran on the CPU. The epoch number could not be increased on the

CPU because one epoch took about 50 minutes at full depth compared to approximately 10 seconds

needed on the GPU. Below Figure (4.1) shows an approximate exponential trend for trainable

parameters (and thus, memory required) for computation during model training.

Figure 4.1: Trainable parameter number versus depth for kernel set to 6.

As shown in Figure (4.2), we can conclude that as training with more parameters reduces the loss.

Figure 4.2: Loss vs. depth for kernel set to 6.

47

The decrease in loss with increase in kernel and depth means the model is converging and is able

to learn from training data. This behavior of model confirms a better performance.

4.2 Assessment of the optimizer:

The choice of optimizer is another hyperparameter that affects model convergence. The optimizers

used for testing were SGD, AdaGrad, AdaDelta, and Adam. A total of 1000 epochs were ran with

each optimizer. Below are the graphs and table of Log(loss) vs. epochs for the four optimizers:

 (a) SGD

 (b) AdaGrad

 (c): AdaDelta

 (d) Adam

Figure 4.3: Loss vs. epoch obtained during training with depth 6, kernel 6 with various optimizers

48

Table 4.3: Loss obtained after 1000 epochs of training
with various optimizers and depth 6, kernel 6.

Optimizer Loss
SGD 6.65X10-1

AdaGrad 1.59X10-1
AdaDelta 8.31X10-1

Adam 2.93X10-3

The Adam optimizer achieved the lowest loss. AdaDelta looked like it was continuing to converge

after 1000 epochs but another training run with 3000 epochs did not reduce the loss further. From

the Figure(4.3) and Table (4.3) it was confirmed that Adam converged the fastest and to the lowest

loss value. The noisy trend observed in Adam optimization is discussed in the next section.

4.3 Assessment of epochs:

The Adam optimizer achieved the lowest loss and so was used to assess the training for overfitting

and underfitting. The training was performed for depth 6 and kernel 6 for 1000 epochs and the

following loss was measured:

Figure 4.4: Loss observed with Adam over 1000 epochs

49

The increased loss near epochs 400 and 800 along with the various spikes are caused by the batch

size parameter58. Jeffrey. M. Ede et. al 1, have studied this phenomenon and concluded that low

batch number is the primary cause. Given the backpropagation gradient equation, they conclude

that a change in loss is directly proportional to a change in parameters. Hence, if a high loss is

observed by the optimizer, a large change in parameter is experienced, causing a disturbance in

the learning process. At this point, the optimizer again has to re-train the parameter to achieve a

better model. This is attained after few iterations of training. The loss then declines after the spike

because the parameters are updated again.

4.4 Dose prediction accuracy

Dose prediction was performed using the model trained with depth 6, kernel 6, MSE loss, Adam

optimizer, 1000 epochs, and a batch size of 4. While training, it was determined that absolute dose

prediction was not possible due to various limitations in the model as discussed in the conclusion

section. Hence, the predicted dose was rescaled for gamma analysis to quantify accuracy. For

rescaling, pixels where true dose exceeds 50% of the max true dose were located and the average

true dose for those pixels was computed. These locations were then used to compute the

corresponding average in the predicted dose. Then, the ratio of the average true dose to the average

predicted dose was used to rescale the predicted dose before gamma evaluation. Accuracy of the

renormalized predicted dose was quantified using gamma analysis with a 3mm, 3% dose tolerance.

The gamma maps showed the regions where the model failed. The percentage of pixels passing

the dose criteria is given in the table below

50

Table 4.4: Predicted vs. true dose gamma analysis pass rate for the training dataset.

Patient Number

Gamma Pass Percentage
+2cm from
prescription

position

At prescription
position

-2 cm from
prescription

position
1 97.2 95.7 94.9
2 96.6 97.7 97.6
3 96.3 96.2 96.1
4 95.1 96.7 97.2
5 97.3 95.4 95.7
6 96.9 96.6 96.4
7 98.1 98.6 99.1
8 97.4 97.5 97.5
9 96.9 98.2 97.9
10 99.2 98.9 99.0
11 98.2 98.1 98.3
12 97.9 94.9 96.6
13 98.2 98.2 98.7
14 99.5 98.6 98.7
15 98.2 98.6 99.1

Overall Mean 97.5
Standard Deviation 1.24

Min, Max 94.9, 99.5

From the training dataset result, we observe that the gamma pass percentage was relatively high

(mean 97.5% and standard deviation of 1.24%). From this it can be concluded that the training

process was successful as an almost perfect match of true dose and predicted dose was observed.

Below are the gamma maps for the patients with the highest and lowest gamma pass percentages.

51

Figure 4.5(a): Gamma map with the highest gamma passing percentage of 99.0±1.0. The CT scans,
true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices of true dose
+2cm from prescription position, at prescription position and -2cm from prescription position are
in column 1,2 and 3 respectively.

52

Figure 4.5(b): Gamma map with the lowest gamma passing percentage of 96.6±1.0. The CT scans,
true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices of true dose
+2cm from prescription position, at prescription position and -2cm from prescription position are
in column 1,2 and 3 respectively.

53

From the validation dataset, the predicted dose was not a good representation of the true dose. The

table below shows the obtained gamma percentages. Further below are the dose grids and gamma

maps.

 Table 4.5:Gamma percentage for validation dataset with 3mm, 3% dose tolerance

Patient Number

Gamma Pass Percentage
+2cm from
prescription

position

At prescription
position

-2 cm from
prescription

position
16 11.6 9.86 9.07
17 14.4 14.2 11.9
18 17.7 22.8 16.6
19 19.4 18.6 14.6
20 7.62 4.78 61.4
21 18.9 15.9 15.8
22 18.5 15.1 13.7

Mean 14.2
Standard
Deviation

4.69

Min,Max 18.9 ,4.78

54

Figure 4.6(a): Gamma map of patient number 16 with gamma passing percentage of 10.2±1.0. The
CT scans, true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices of
true dose +2cm from prescription position, at prescription position and -2cm from prescription
position are in column 1,2 and 3 respectively.

55

Figure 4.6(b): Gamma map of patient number 17 with gamma passing percentage of 13.5±1.0.
The CT scans, true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices
of true dose +2cm from prescription position, at prescription position and -2cm from prescription
position are in column 1,2 and 3 respectively.

56

Figure 4.6(c): Gamma map of patient number 18 with gamma passing percentage of 19.0±3.0. The
CT scans, true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices of
true dose +2cm from prescription position, at prescription position and -2cm from prescription
position are in column 1,2 and 3 respectively.

57

Figure 4.6(d): Gamma map of patient number 19 with gamma passing percentage of 17.5±2.0.
The CT scans, true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices
of true dose +2cm from prescription position, at prescription position and -2cm from prescription
position are in column 1,2 and 3 respectively.

58

Figure 4.6(e): Gamma map of patient number 20 with gamma passing percentage of 6.18±1.0. The
CT scans, true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices of
true dose +2cm from prescription position, at prescription position and -2cm from prescription
position are in column 1,2 and 3 respectively.

59

Figure 4.6(f): Gamma map of patient number 21 with gamma passing percentage of 16.8±2.0. The
CT scans, true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices of
true dose +2cm from prescription position, at prescription position and -2cm from prescription
position are in column 1,2 and 3 respectively.

60

Figure 4.6(g): Gamma map of patient number 22 with gamma passing percentage of 15.7±2.0.
The CT scans, true dose, predicted dose and gamma map are in row 1,2,3,4 respectively. The slices
of true dose +2cm from prescription position, at prescription position and -2cm from prescription
position are in column 1,2 and 3 respectively.

61

The percentage of pixels passing the dose criteria is very low for the validation dataset. Visually,

many hotspots are observed on the gamma map. These are the regions where the dose prediction

has failed. From current gamma map, the dose prediction is not acceptable for clinical purpose,

however it is promising as the model was able to predict the approximate highest dose region. The

main reason could be that more datasets are needed to learn all possible image patterns and

generalize for better predictions on new datasets.

To test the the level of discrepancy between the predicted and true dose in the validation set, a

gamma analysis with a 5mm, 5% dose tolerance was performed. The table below shows the

obtained gamma percentages.

 Table 4.6:Gamma percentage for validation dataset with 5mm, 5% dose tolerance

 Patient Number

Gamma Pass Percentage
+2cm from
prescription

position

At prescription
position

-2 cm from
prescription

position
16 22.9 21.0 17.2
17 27.4 25.8 24.6
18 32.1 39.8 29.1
19 34.9 32.9 26.9
20 14.4 11.3 13.6
21 34.4 29.7 26.7
22 32.7 26.9 24.9

Mean 26.2
Standard Deviation 7.47

Max,Min 11.3,39.9

From Table (4.6) the percentage of pixels passing the dose criteria for validation is slightly better

than the validation dataset with 3mm, 3% dose tolerance. This demonstrates the discrepancy

between the predicted and true dose in the validation set is more than at the level of 5% and 5mm.

62

4.5 Conclusions:

A dose prediction model for treatment planning of advanced stage lung cancer patients was

generated using the U-Net architecture. The gamma distribution map was created to observe the

regions where dose distributions failed (gamma > 1). With the U-Net architecture with depth=6

and kernel=6, the feature map was reduced from (192X192) to (6X6) which helped extract the low

level features. The obtained gamma percentage values on the training set were acceptable, however

the gamma map values obtained on the validation dataset were not in agreement within the distance

and threshold. Visually we observe a dose distribution very similar to true dose on training set of

the data and a relative dose obtained was within the true dose range. However, for validation set,

the highest dose region was located, but the overall performance was unacceptable.

There are several reasons for the poor performance of the model with the validation set.

The training model was limited to depth/kernel=6. If depth=7 was possible, the feature map would

have been reduced to (3X3), which would have allowed extraction of dose distribution at the core

level of the true dose, giving a better prediction of the dose distribution. The increase of kernel

would have also helped to extract a more accurate dose result. The data was trained only on 45

training samples, representative of 15 patients (3 slices of each image). The number of datasets

was very small, limited to what was easily available during the work. It was promising however

to see that the model was trained sufficiently to be able to extract accurate dose for the training set

itself. It is quite possible that additional training cases would have improved the overall

performance of the model. Another limitation was the reduction of the original image data from

(512X512) to (192X192) to reduce RAM requirements and improve computational speed. Using

the full data may have improved the dose prediction resolution. Another method to improve results

63

would have been to provide the model with additional input such as contours from the treatment

planning system as was done in the work of Nyugen et. al22.

Finally, the dose prediction results may be improved with the use of other network

architectures. For example, the GAN (Generative Adversarial Network) has shown outstanding

results in producing precise images from arbitrary inputs59,60,61.

64

References

1 High, Peter. “Carnegie Mellon Dean Of Computer Science On The Future Of AI.” Forbes,
Forbes Magazine, 30 Oct. 2017, www.forbes.com/sites/peterhigh/2017/10/30/carnegie-mellon-
dean-of-computer-science-on-the-future-of-ai/#343cfb022197.

2 Brownlee, Jason. “What Is Deep Learning?” Machine Learning Mastery, 19 Dec. 2019,
machinelearningmastery.com/what-is-deep-learning/.

3 Learning Deep Architectures for AI - Université De Montréal.
www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf.

4 Nilsson, Nils J. Artificial Intelligence: a New Synthesis. Kaufmann, 2003.

5 Jackson, Philip C. Introduction to Artificial Intelligence. Dover Publications, Inc., 2019.

6 Aizenberg, Igor N., et al. Multi-Valued and Universal Binary Neurons: Theory, Learning and
Applications. Springer, 2011.

7 “Artificial Intelligence vs. Machine Learning vs. Deep Learning: What's the Difference?” Sumo
Logic, www.sumologic.com/blog/machine-learning-deep-learning/.

8 “Neural Network Terminology¶.” Terms,
www.cs.toronto.edu/~lczhang/360/lec/w02/terms.html.

9 Lecun, Y., et al. “Gradient-Based Learning Applied to Document Recognition.” Proceedings of
the IEEE, vol. 86, no. 11, 1998, pp. 2278–2324., doi:10.1109/5.726791.

10 Krizhevsky, Alex E., et al. “ImageNet Classification with Deep Convolutional Neural
Networks.” Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.,
doi:http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-
networks.pdf.

11 “Large Scale Visual Recognition Challenge 2012 (ILSVRC2012).” ImageNet Large Scale
Visual Recognition Competition 2012 (ILSVRC2012), www.image-
net.org/challenges/LSVRC/2012/.

12 Hao, Karen. “We Analyzed 16,625 Papers to Figure out Where AI Is Headed Next.” MIT
Technology Review, MIT Technology Review, 2 Apr. 2020,
www.technologyreview.com/2019/01/25/1436/we-analyzed-16625-papers-to-figure-out-where-
ai-is-headed-next/.

13TensorFlow: Large-Scale Machine Learning on Heterogeneous
...download.tensorflow.org/paper/whitepaper2015.pdf.

65

14 A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L.
Ant-
 iga and A. Lerer, ‘Automatic differerentiation in pytorch’, in Conference on Neural
 Information Processing System, 2017.

15 Seide, Frank, and Amit Agarwal. “Cntk.” Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2016,
doi:10.1145/2939672.2945397.

16 Team, Keras. “Keras Documentation: Developer Guides.” Keras, keras.io/guides/.

17“CUDA C Programming Guide.” NVIDIA Developer Documentation,
docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

18 Stevens, Eli. Deep Learning with Pytorch. Oreilly Media, 2019.

19 “PyTorch Documentation¶.” PyTorch Documentation - PyTorch 1.6.0 Documentation,
pytorch.org/docs/stable/index.html.

20 Roach, Michael C et al. “Optimizing radiation dose and fractionation for the definitive
treatment of locally advanced non-small cell lung cancer.” Journal of thoracic disease vol.
10,Suppl 21 (2018): S2465-S2473. doi:10.21037/jtd.2018.01.153

21 Diamant, A., Chatterjee, A., Vallières, M. et al. Deep learning in head & neck cancer outcome
prediction. Sci Rep 9, 2764 (2019). https://doi.org/10.1038/s41598-019-39206-1

22 Nguyen, Dan, et al. “A Feasibility Study for Predicting Optimal Radiation Therapy Dose
Distributions of Prostate Cancer Patients from Patient Anatomy Using Deep Learning.” Scientific
Reports, vol. 9, no. 1, 2019, doi:10.1038/s41598-018-37741-x.

23 “Data Science Bowl 2017.” Kaggle, www.kaggle.com/c/data-science-bowl-
2017/overview/description.

24 Li, Yun et al. Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health
sciences vol. 43,3 (2011): 450-4.

25 Forecasting Lung Cancer Diagnoses with Deep Learning.
raw.githubusercontent.com/dhammack/DSB2017/master/dsb_2017_daniel_hammack.pdf.

26 Nielsen, Michael A. “Neural Networks and Deep Learning.” Neural Networks and Deep
Learning, Determination Press, 1 Jan. 1970, neuralnetworksanddeeplearning.com/.

27 Haykin, Simon S. Neural Networks and Learning Machines. Pearson, 2016.

28 Lecun, Y., et al. “Gradient-Based Learning Applied to Document Recognition.” Proceedings
of the IEEE, vol. 86, no. 11, 1998, pp. 2278–2324., doi:10.1109/5.726791.

66

29 Goodfellow, Ian, et al. Deep Learning. MIT Press,
2016. url{http://www.deeplearningbook.org

30 Islam, M. M. Manjurul, and Jong-Myon Kim. “Vision-Based Autonomous Crack Detection of
Concrete Structures Using a Fully Convolutional Encoder–Decoder Network.” Sensors, vol. 19,
no. 19, 2019, p. 4251., doi:10.3390/s19194251.

31 “Conv2d¶.” Conv2d - PyTorch 1.6.0 Documentation,
pytorch.org/docs/stable/generated/torch.nn.Conv2d.html.

32 “Building a Neural Network.” Data Warehousing, BI and Data Science, 13 July 2020,
dwbi1.wordpress.com/2018/02/07/building-a-neural-network/.

33 Nwankpa, Chigozie et al. “Activation Functions: Comparison of trends in Practice and
Research for Deep Learning.” ArXiv abs/1811.03378 (2018): n. pag.

34 Recti Er Nonlinearities Improve Neural Network Acoustic Models.
ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf.

35 “Modified Convolutional Neural Network Based on Dropout and the Stochastic Gradient
Descent Optimizer.” Algorithms, vol. 11, no. 3, 2018, p. 28., doi:10.3390/a11030028.

36 “Softmax Function.” DeepAI, 17 May 2019, deepai.org/machine-learning-glossary-and-
terms/softmax-layer.

37Pokhrel, Sabina. “Beginners Guide to Understanding Convolutional Neural
Networks.” Medium, Towards Data Science, 20 Sept. 2019, towardsdatascience.com/beginners-
guide-to-understanding-convolutional-neural- networks-ae9ed58bb17d.

38 Mahmood, Hamza. “Gradient Descent.” Medium, Towards Data Science, 3 Jan. 2019,
towardsdatascience.com/gradient-descent-3a7db7520711.

39 “Gradient Descent¶.” Gradient Descent - ML Glossary Documentation, ml-
cheatsheet.readthedocs.io/en/latest/gradient_descent.html.

40 Duchi, J, et al. “Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization.” Journal of Machine Learning Research, vol. 12, 2011, pp. 2121–2159.

41 Zeiler, D. Matthew. “Adadelta: An adaptive learning rate method.” CoRR, vol. 1212, no. 5701,
Dec. 2012, pp. 5701–5707.

42 Hinton, Geoffrey, et
al. Http://Www.cs.toronto.edu/~Tijmen/csc321/Slides/lecture_slides_lec6.Pdf.

67

43 Kingma, Diederik P., and Jimmy Ba. “Adam: A Method for Stochastic
Optimization.” ArXiv.org, 30 Jan. 2017, arxiv.org/abs/1412.6980.

44 Sebastian Ruder. “An Overview of Gradient Descent Optimization Algorithms.” Sebastian
Ruder, Sebastian Ruder, 20 Mar. 2020, ruder.io/optimizing-gradient-descent/.

45 TORRES.AI, Jordi. “Learning Process of a Neural Network.” Medium, Towards Data Science,
28 Apr. 2020, towardsdatascience.com/how-do-artificial-neural-networks-learn-773e46399fc7.

46 Ioannou, Yani. “Backpropagation Derivation - Delta Rule.” A Shallow Blog about Deep
Learning, 16 Mar. 2018, blog.yani.io/deltarule/.

47 Bishop, Christopher M. Neural Networks for Pattern Recognition. Oxford University Press,
1995.

48 Chazareix, Arnault. “About Convolutional Layer and Convolution Kernel.” Sicara,
www.sicara.ai/blog/2019-10-31-convolutional-layer-convolution-kernel.

49 Ronneberger, Olaf, et al. “U-Net: Convolutional Networks for Biomedical Image
Segmentation.” Lecture Notes in Computer Science Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, 2015, pp. 234–241., doi:10.1007/978-3-319-24574-4_28.

50 “ISBI Challenge: Segmentation of Neuronal Structures in EM Stacks.” About the 2D EM
Segmentation Challenge | ISBI Challenge: Segmentation of Neuronal Structures in EM Stacks,
brainiac2.mit.edu/isbi_challenge/.

51 Gal, Michal and Rubinfeld, Daniel L., Data Standardization (June 2019). 94 NYU Law
Review (2019) Forthcoming, NYU Law and Economics Research Paper No. 19-17, Available at
SSRN: https://ssrn.com/abstract=3326377 or http://dx.doi.org/10.2139/ssrn.3326377

52 Hancock, Matt. Batch Updates for Simple Statistics,
notmatthancock.github.io/2017/03/23/simple-batch-stat-updates.html.

53 Jvanvugt. “Jvanvugt/Pytorch-Unet.” GitHub, 18 Apr. 2019, github.com/jvanvugt/pytorch-
unet/blob/master/unet.py.

54 “Individual Edition.” Anaconda, www.anaconda.com/products/individual.

55 Liu, Rui, et al. “Understanding and Optimizing Packed Neural Network Training for Hyper-
Parameter Tuning.” NASA/ADS, ui.adsabs.harvard.edu/abs/2020arXiv200202885L/abstract

56 Low, Daniel A., and James F. Dempsey. “Evaluation of the Gamma Dose Distribution
Comparison Method.” Medical Physics, vol. 30, no. 9, 2003, pp. 2455–2464.,
doi:10.1118/1.1598711.

68

57 Christopherpoole. “Christopherpoole/Pygamma.” GitHub,
github.com/christopherpoole/pygamma.

58Ede, Jeffrey M, and Richard Beanland. “Adaptive Learning Rate Clipping Stabilizes
Learning.” Machine Learning: Science and Technology, vol. 1, no. 1, 2020, p. 015011.,
doi:10.1088/2632-2153/ab81e2.

59 Rmahmood. “Automated Treatment Planning in Radiation Therapy Using Generative
Adversarial Networks.” GroundAI, GroundAI, 17 July 2018,
www.groundai.com/project/automated-treatment-planning-in-radiation-therapy-using-
generative-adversarial-networks/1.

60 Kearney, Vasant, et al. “DoseGAN: a Generative Adversarial Network for Synthetic Dose
Prediction Using Attention-Gated Discrimination and Generation.” Scientific Reports, vol. 10,
no. 1, 2020, doi:10.1038/s41598-020-68062-7.

61 Babier, Aaron, et al. “Knowledge-Based Automated Planning with Three-Dimensional
Generative Adversarial Networks.” Medical Physics, vol. 47, no. 2, 2019, pp. 297–306.,
doi:10.1002/mp.13896.
	

