Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25691
Title: Risk Prediction in Forensic Psychiatry: A Path Forward
Authors: Watts, Devon
Advisor: Kapczinski, Flavio
Department: Neuroscience
Keywords: Artificial Intelligence;Crime Prediction;Machine Learning;Precision Psychiatry;Forensics
Publication Date: 2020
Abstract: Background: Actuarial risk estimates are considered the gold-standard way to assess whether forensic psychiatry patients are likely to commit prospective criminal offences. However, these risk estimates cannot individually predict the type of criminal offence a patient will subsequently commit, and often simply assess the general likelihood of crime occurring in a group sample. In order to advance the predictive utility of risk assessments, better statistical strategies are required. Aim: To develop a machine learning model to predict the type of criminal offense committed in forensic psychiatry patients, at an individual level. Method: Machine learning algorithms (Random Forest, Elastic Net, SVM), were applied to a representative and diverse sample of 1240 patients in the forensic mental health system. Clinical, historical, and sociodemographic variables were considered as potential predictors and assessed in a data-driven way. Separate models were created for each type of criminal offence, and feature selection methods were used to improve the interpretability and generalizability of our findings. Results: Sexual and violent crimes can be predicted at an individual level with 83.26% sensitivity and 77.42% specificity using only 20 clinical variables. Likewise, nonviolent, and sexual crimes can be individually predicted with 74.60% sensitivity and 80.65% specificity using 30 clinical variables. Conclusion: The current results suggest that machine learning models have accuracy comparable to existing risk assessment tools (AUCs .70-.80). However, unlike existing risk tools, this approach allows for the prediction of cases at an individual level, which is more clinically useful. The accuracy of prospective models is expected to only improve with further refinement.
URI: http://hdl.handle.net/11375/25691
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Watts_Devon_P_finalsubmission-2020-08-MSc.pdf
Open Access
1.02 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue