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     Lay Abstract 

Individuals end up in the forensic mental health system when they commit crimes and are 

found to be not criminality responsible because of a mental disorder. They are released 

back into the community when deemed to be low risk. However, it is important to consider 

the accuracy of the method we use to determine risk at the level of an individual person. 

Currently, we use group average to assess individual risk, which does not work very well. 

The range of our predictions become so large, that they are virtually meaningless. In other 

words, the average of a group is meaningless with respect to you.  

Instead, statistical models can be developed that can make predictions accurately, and 

at an individual level. Therefore, the current work sought to predict the types of criminal 

offences committed, among 1240 forensic patients. Making accurate predictions of the 

crimes people may commit in the future is urgently needed to identify better strategies to 

prevent these crimes from occurring in the first place.  

Here, we show that it is possible to predict the type of criminal offense an individual will 

later commit, using data that is readily available by clinicians. These models perform 

similarly to the best risk assessment tools available, but unlike these risk assessment 

tools, can make predictions at an individual level. It is suggested that similar approaches 

to the ones outlined in this paper could be used to improve risk prediction models, and 

aid crime prevention strategies.  
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Abstract 

Background: Actuarial risk estimates are considered the gold-standard way to assess 

whether forensic psychiatry patients are likely to commit prospective criminal offences. 

However, these risk estimates cannot individually predict the type of criminal offence a 

patient will subsequently commit, and often simply assess the general likelihood of crime 

occurring in a group sample. In order to advance the predictive utility of risk assessments, 

better statistical strategies are required. 

Aim: To develop a machine learning model to predict the type of criminal offense 

committed in forensic psychiatry patients, at an individual level. 

Method: Machine learning algorithms (Random Forest, Elastic Net, SVM), were applied 

to a representative and diverse sample of 1240 patients in the forensic mental health 

system. Clinical, historical, and sociodemographic variables were considered as potential 

predictors and assessed in a data-driven way. Separate models were created for each 

type of criminal offence, and feature selection methods were used to improve the 

interpretability and generalizability of our findings.   

Results: Sexual and violent crimes can be predicted at an individual level with 83.26% 

sensitivity and 77.42% specificity using only 20 clinical variables. Likewise, nonviolent, 

and sexual crimes can be individually predicted with 74.60% sensitivity and 80.65% 

specificity using 30 clinical variables.  

Conclusion: The current results suggest that machine learning models have accuracy 

comparable to existing risk assessment tools (AUCs .70-.80). However, unlike existing 

risk tools, this approach allows for the prediction of cases at an individual level, which is 
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more clinically useful. The accuracy of prospective models is expected to only improve 

with further refinement.  
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CHAPTER 1 

General Introduction 

Forensic psychiatry is a multidisciplinary field comprising elements of criminology, law, 

and the diagnosis and treatment of complex and serious mental disorders 1. Primarily, 

this involves navigating between justice, correctional and mental health services, given 

its focus on individuals with mental illness facing criminal convictions 2. The field of 

forensic psychiatry largely emerged as a consequence of the interaction between legal, 

social and medical institutions, and the challenges faced when navigating their 

convergence 2.  

With the integration of psychiatry into a field of medicine in the early 20th century, came 

the inevitable complication of addressing crimes committed by individuals as a result of 

their mental illness, and difficulties in determining what constitutes criminal culpability 3.  

Additionally, changes in the legal system resulted from the emergence of psychiatry, as 

medical professionals could be called on to participate in legal decisions and provide their 

expertise on the mental health and competency of criminal defendants 4. Forensic 

psychiatrists are tasked with assessing criminal responsibility, providing expert witness 

testimony, evaluating patients for prospective criminal risk, determining fitness to stand 

trial, appraising patient capacity and potential malingering, as well as possessing 

responsibility in civil actions and legal decision making 2. Concurrently, primitive tests of 

cognitive or moral knowledge to determine criminal responsibility became slowly replaced 

by assessing illness progression and the presence of deranged mental states. This 

shifted the focus from disease of the intellect to disease of the mind 3. 
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Given the complexity of balancing both jurisprudence and the appropriate care for an 

individual patient suffering from mental illness, the field of forensic psychiatry faces 

several longstanding hurdles 1. Namely, this involves assessing the fitness of a patient to 

stand trial, accurately determining whether an individual was competent at the time a 

crime was committed and judging the likelihood of each patient’s prospective risk 

following their release 5.  

 

Prevalence of criminality among the mentally ill 

Considering the importance of identifying the risk that forensic patients pose to 

themselves and broader society, there is a longstanding and well-established body of 

literature examining criminality among psychiatric patients. Among the pioneers in the 

field, Zitrin et al. (1976) examined prospective criminal offenses in 876 inpatients 

discharged from a psychiatric facility. They found higher rates of subsequent arrest 

among psychiatric patients than those in the general population both in the same 

geographic region and among 4,601 cities in the United States 6. Similarly, Klassen & 

O'Connor (1988) examined the relationship between arrests, hospitalization, and violence 

among 304 adult male inpatients at a community mental health centre, with 1-year of 

follow-up. They found higher rates of arrest and violent crimes among substance abusers, 

and notably larger violent readmission rates in patients with schizophrenia. Of note, they 

reported that a significant subset of patients in their sample showed a history of fluctuating 

between reimprisonment and rehospitalization in psychiatric facilities, highlighting the 

difficulty of appropriately managing such patients in legal and medical settings 7.  



                                           M.Sc. Thesis: D. Watts, McMaster University - Neuroscience 

xiii 
 

Following early work highlighting notable rates of criminality among those with serious 

mental illness, more recent efforts have largely focused on characterizing this from an 

epidemiological framework. For instance, in a systematic review of prevalence studies of 

serious mental illness among prisoners, comprising 33,588 individuals from 24 different 

countries, and 109 datasets, high rates of mental illness in prisoners were found in both 

high- and low-income countries over the timespan of four decades. Specifically, they 

reported a pooled prevalence of 3.6% (95% CI 3.1-4.2) in male prisoners with psychosis 

and 3.9% (95% CI 2.7-5.0) among female prisoners. With respect to major depression, 

the pooled prevalence was 10.2% (95% CI 8.8-11.7) in male prisoners, and 14.1% (95% 

CI 10.2-18.1) in female prisoners. Of note, they found that although rates of mental illness 

were high among prisoners, there is little evidence of an acceleration in prevalence over 

time 8. 

Furthermore, in a study by Mullen et al, 2000, 10-years of hospital records and lifetime 

criminal records were assessed in 6130 patients with schizophrenia, and 6130 controls 

matched for age, sex, and place of residence. Here, the patient group involved records 

from two cohorts, with 3719 patients from a 1975 sample, and 2411 patients from a 1985 

sample, respectively, to account for potential generational effects. In the 1975 sample, 

they found that those with schizophrenia showed a 3.5 relative risk of reoffending [95% 

CI 2.0-5.5], p=0.001, for all categories of crimes, apart from sexual offenses. A similar 

finding was observed in the 1985 sample, where a 3.0 relative risk of reoffending was 

reported [95% CI 1.9-4.9, p=0.001] 9. 

Likewise, Simpson et al (2004) found that in a sample of 1498 homicides, 8.7% were 

conducted by those with a serious mental illness. Among them, 29% of those with a 
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serious mental illness showed no history of hospitalization, and of those were admitted, 

most were only hospitalized on one or two occasions over the last five years. This is 

suggestive that capital offenses such as murder are not isolated to a subset of the most 

severe cases who inevitably become repeat offenders. Rather, only 10% of the 

perpetrators were admitted to the hospital in the month prior to their offense 10. 

Additionally, in a sample of 295 inpatients with serious mental illness, 49% of men and 

39% of women were found to have committed a form of assault in the past 6 months. 

Further, rates of crime were found to be higher than the general population. This suggests 

that aggressive behaviour is a prevalent problem among patients with severe mental 

illness who require hospitalization 11. Cumulatively, this work has helped elucidate the 

societal implications of criminality among a significant minority of patients with serious 

mental illness, and the importance of developing proactive and accurate ways to assess 

patient risk of subsequent crime.  

 

Reoffending: prevalence and assessment tools 

Although the rates of reoffending in the forensic population remain relatively constant 12–

14, available evidence suggests that one in eight men, and one in sixteen women will 

subsequently commit a grave offense after release from a psychiatric facility 15.  

Similarly, a recent study from the National Epidemiologic Survey on Alcohol and Related 

Conditions (NESARC) involving 35,306 individuals showed that the presence of mental 

illness, irrespective of the specific disorder, was associated with a 4 to 5 times greater 

risk of criminal outcomes 16. Of note, 28.5% of the participants with mental illness reported 

a history of criminal behaviour, while a substantial subset, 11.4%, reported a history of 
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incarceration 16. Additionally, results from a large Swedish registry study comprising 

98,082 individuals with a history of hospitalization suggests that those with severe mental 

illness commit one in every twenty violent crimes 17. Given the high prevalence of criminal 

reoffending across cultures in individuals with severe mental illness, there has been a 

concerted effort to identify predictors of prospective criminal risk following release from 

psychiatric facilities.  

Prior to the development of any standardized tools, clinical judgement was the gold-

standard measure to assess prospective patient risk 18. However, this presented a 

number of clear limitations, including poor inter-rater reliability between clinicians, 

confirmation bias, and the propensity for human error 19. Importantly, clinical judgement 

alone has not provided a more valid metric by which to identify individuals with mental 

illness who will prospectively commit serious crime 19. 

In response to this, actuarial assessments became increasingly widespread, which 

concentrated on statistical models, while largely disavowing clinical judgement 20. This 

involved using explicit statistical algorithms to identify prospective patient risk, usually at 

the group level 21. For instance, the Violence Risk Appraisal Guide (VRAG) is an actuarial 

assessment of prospective violent risk, developed at the University of Toronto, in Ontario, 

Canada 22. This 12-item scale is based solely on historical and relatively static factors for 

individuals who have committed previous violent offenses 16. More specifically, the VRAG 

considers items such as age, marital status, criminal history, psychopathy, previous 

diagnoses and prior separation from parents.  
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Validation studies 22–25 have shown that the VRAG identified  prospective risk of violent 

recidivism with an Area Under the Curve (AUC) of 0.73-0.75. However, this metric has 

been criticized both for being overly simplistic and for its inability to detect prospective 

violent crime in individuals without prior offenses 22. Given these clear limitations, the 

authors of the VRAG recommend supplementing this assessment with clinical judgement 

23.  

Likewise, other methods available to detect prospective violent recidivism show similar 

limitations. For instance, the Historical, Clinical and Risk Management Scales (HCR-20) 

is a structured actuarial assessment that uses pre-discharge information to identify those 

at risk for committing prospective violent offenses. This comprises 20 items, 10 of which 

are related to historical factors (e.g. history of mental illness), 5 are related to current 

clinical presentation (e.g. current symptoms of mental illness), and 5 are related to future 

risk (e.g. non-compliance with medication). Each item is scored as 0 (not present), 1 

(partially/possibly present), or 2 (present), leading to a maximum score of 40, with 

maximum sub-scores of 20 for the historical scale, and 10 for clinical and risk scales, 

respectively 26.  

In a study comprising 887 male patients discharged from a medium security unit with a 2-

year follow-up, the HCR-20 was found to be a good predictor of prospective violent 

offenses at the group level, with AUCs in the 0.70-0.76 range. Nonetheless, the HCL-20 

evaluates clinical risk by stratifying individuals into low, moderate, or high-risk categories, 

which can lead to an ambiguous prognosis if an individual is identified to be of a moderate 

risk 19. Further, while this assessment has been shown to identify prospective violent 
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recidivism with high AUCs, among those identified as high risk, false positive rates 

between 70-80% have been reported 27.   

Moreover, the accuracy of these risk assessment tools varies as a function of the clinical 

population they are administered to. For example, in a study assessing the predictive 

validity of the VRAG, the H-10 scale of the HCR-20 and the Psychopathy Checklist 

Revised (PCL-R) among 169 inpatients with schizophrenia, all risk assessment scales 

showed poor predictive capabilities in identifying those who would subsequently commit 

violent crime. Of note, the performance of these instruments in identifying recidivism were 

similar to simply identifying patients with greater symptom severity and chronicity 28.  

Considering the clear limitations of current strategies in detecting which patients will 

subsequently commit violent crime, there is a major unmet need for an actuarial tool that 

can be used at an individual level. In the absence of this, given the high false positive and 

false negative rate of gold-standard actuarial tools, a substantial number of patients will 

be mischaracterized as either high or low risk for committing violent crime if released from 

psychiatric care. As such, this precipitates unnecessarily denying civil liberties of patients 

who will not subsequently reoffend on the one hand and endangering the lives of those 

in the community when they do, on the other hand.  

 

Actuarial Methods: sexual risk prediction 

Apart from screening patients for subsequent violent crime risk, several actuarial risk 

assessments have focused on the challenging goal of identifying the likelihood of 

prospective sex offences. While there are a number of actuarial methods, as described 
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elsewhere 29,30, the most replicated assessments include the Static-99, Rapid Risk 

Assessment for Sex Offense Recidivism (RRASOR), Sex Offender Risk Appraisal Guide 

(SORAG), the Risk-Matrix 2000 (RM2000/S) and the Static-2002 31.  

 

Sex Offender Risk Appraisal Guide (SORAG)  

The SORAG is a modification of the VRAG, indicated for evaluating the risk of sexual 

offences. The primary difference between these two assessments involves the addition 

of questions on the number of previous sexual offences, and phallometric test results 

indicating sexual deviance 32. In a validation study assessing the psychometric properties 

of this assessment in 1104 sexual offenders released from an Australian prison, the 

SORAG showed an AUC of 0.66 in identifying sexual recidivism, with a 95% Confidence 

Interval (CI) of 0.61-0.72 33. Of note, the SORAG demonstrated better performance in 

identifying violent and general recidivism with an AUC of 0.74 34. 

 

Risk Matrix 2000 (RM2000/S) 

The Risk Matrix 2000 was developed as an easy to score actuarial assessment in 

identifying violent and sexual recidivism among adult males who have been convicted of 

sexual crimes 35,36. This tool involves subscales that assess the risk of sexual recidivism, 

non-sexual violent recidivism, and sexual violent recidivism, respectively 37. Previous 

research has found that each subscale demonstrates a moderate effect size in identifying 

prospective recidivism (Cohen’s d= 0.50-0.64), defined as the difference between two 

group means divided by the pooled standard deviation 37. However, significant variability 
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in this effect has been observed across studies 37,38. Intuitively, the sex subscale showed 

a larger effect size in sexual recidivism, with a Cohen’s d of 0.74 37. 

Static-99 

The Static-99 was developed using fixed variables that correlate with sexual reconviction 

among adult males 39. This involves an amalgamation of two risk assessments, including 

the 4-item Rapid Risk Assessment of Sex Offender Recidivism (RRASOR), and the 9-

item Structured Anchored Clinical Judgement - Minimum (SACJ-Min). Combined, this 

assessment incorporates age, the sex of the victim, relationship with the victim, prior 

offences, prior convictions, victim characteristics and marital status 40. In previous studies, 

the Static-99 was found to show moderate predictive accuracy (AUC 0.71) in identifying 

sexual recidivism 41.  

Static-2002 

The Static-2002 emerged as a revision to the Static-99 to improve both consistency in 

scoring, and the performance of the metric. It was developed to identify risk of sexual 

recidivism among adult males who have committed previous sexual offences. This 

involves 13 items in five separate categories, which includes age at release, persistence 

of sexual offences, deviant sexual interests, victim characteristics, and questions 

pertaining to general criminality 29. In a validation study comprising 10 datasets with a 

total of 4596 offenders, the Static-2002 showed an AUC of 0.71 for sexual recidivism 

(N=2142) and 0.71 for any violent recidivism (N=2143) 37,42. However, in a follow-up study 

comprising 468 sex offenders followed for an average of 5.9 years, the Static-2002 

showed an AUC of 0.69 (95% CI: 0.59-0.78) in identifying serious violent recidivism, and 
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an AUC of 0.67 (95% CI: 0.51-0.81) in identifying sexual recidivism 29. Altogether, this 

suggests high variability in the performance accuracy of identifying recidivism.  

Similarly, in a systematic review assessing the effectiveness of sexual offender risk 

assessments, a large degree of variability was observed both within and across 

instruments. For instance, the Static-99, which is among the most replicated actuarial 

tools, shows an average AUC of 0.692 with a range between 0.570 to 0.920 depending 

on the study 31. Overall, the performance of actuarial tools ranged from an average of 

0.692 to 0.737, with less replicated studies showing generally greater accuracy 31. This 

suggests that many instruments may present with over-optimistic performance metrics. 

 

Limitations of actuarial assessments  

Although actuarial methods have helped shift the focus of risk assessment in forensic 

psychiatry toward objectivity and reproducibility, there are a number of limitations to their 

widespread use in making clinical decisions. Namely, there is little evidence that actuarial 

methods perform any better than clinical judgement in identifying which individual patients 

will subsequently reoffend 43. This is largely because most actuarial instruments have 

been developed psychometrically to assess group-based risk and perform poorly when 

making individualized predictions 34.  

This phenomenon is related to the difference in calculating CIs between a group effect 

and an individualized prediction, with the latter showing a wider prediction interval 34. Of 

note, this higher variability in the prediction interval when making individualized 

predictions is to a great extent independent of the sample size. This is because while 
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increasing sample size can result in a narrower confidence interval around a regression 

line in a group-based analysis, this does not translate into a narrower prediction interval 

in an individual case 44. Importantly, this is a problem not specific to any individual 

actuarial assessment, but a result of the high variability in group-based assessments 

when dealing with individualized predictions 33. Given the high degree of error using 

available methods, it is difficult to determine the risk of any individual patient relative to 

another 21.  

 

Statistical methods used to assess performance 

In a similar vein, it is important to appropriately characterize the strengths and limitations 

of the statistical methods used to evaluate the performance of any given actuarial tool. 

Most studies thus far have focused on receiver operating characteristics (ROC) curve 

analyses. A ROC curve is a plot of sensitivity versus 1-specificity (often called the false-

positive rate) that offers a summary of sensitivity and specificity across a range of cut 

points for a continuous predictor 21. It is created by plotting the true positive rate (TPR) 

against the false positive rate (FPR). The TPR, also known as sensitivity, is the proportion 

of actual positive cases that are correctly identified. Conversely, the FPR, or specificity, 

is the proportion of actual negative cases that are correctly identified 44.  

Therefore, the sensitivity and specificity for a given cut-point are the probabilities of 

correctly identifying a person's group status (i.e. identifying true positives and true 

negatives) 45. For instance, if a clinician predicts that a given patient will commit a violent 

offence within one year after release from a psychiatric facility, and that assessment is 

found to be correct, this represents a true positive. Conversely, if a clinician predicts that 
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a person will act violently within a year following release and this does not occur, this 

represents a false positive. In general, an AUC of 0.5 suggests that the model has no 

discriminative capabilities above chance (approximately 50% correctly classified), while 

0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is considered excellent, and more than 0.9 

is considered exceptional, respectively 46. When discrete variables are used, for example, 

the number of previous violent offences, and when ROC curves are assumed to be based 

on two underlying Gaussian distributions, a maximum likelihood estimation can be used 

to fit the data to a smooth curve. This provides a metric to calculate the area under the 

fitted curve and its associated standard error 47.  

The first study in forensic psychiatry to use a ROC curve within an actuarial analysis was 

Mossman (1994), who attempted to address challenges in conceptualizing accuracy 

without accounting for base rates or biasing certain outcomes over others. This involved 

reanalyzing 58 datasets from 45 published studies on violent risk prediction, and this 

seminal paper established past behaviours as better predictors than clinical judgement in 

violent risk 48. Since this point, AUC has become the standard metric to evaluate the 

performance of risk assessment tools.  

 

What does AUC mean statistically?  

Given that AUC has become a ubiquitous measure to assess performance of risk 

assessment tools, there are several longstanding misconceptions surrounding its use. 

AUC is not the probability that individuals are classified correctly, or that a person with a 

high-test score will eventually become a case. Instead, it is a plotting of the positive 
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prediction rate as a function of the negative predictive rate 49. In other words, it is a 

mapping of the sensitivity by 1 minus specificity 44,45. In contrast, the predictive value more 

closely parallels correctly identified cases, as it is the probability that subjects with a 

positive screening test truly have the condition 40. As such, AUC describes how well 

models can rank order cases and non-cases but is not a measure of the actual predicted 

probabilities 44.  

 

Why AUC and not another metric? 

Effect size relates to the estimated magnitude of an effect. Essentially, this provides a 

way to evaluate the practical or clinical importance of a statistically significant finding. A 

common way of assessing effect size, apart from AUC, involves Cohen’s d, which 

indicates the standardized difference between two means 41. A d of 1 indicates that two 

groups differ by one standard deviation, and larger numbers of d are proportional to the 

number of standard deviations of difference between groups. For instance, a d of 2 

reflects that two groups differ by two standard deviations, and so on 41. In his original 

work, Cohen suggested that d=0.2 could be considered as a ‘small’ effect size, with 0.5 

representing a ‘medium’ effect and 0.8 representing a large effect 42,43. Essentially, a 

lower Cohen’s d indicates the necessity of generating larger sample sizes. Of note, there 

are a number of alternative methods available to assess effect sizes, apart from AUC as 

described elsewhere 44–46.   

However, AUC is more commonly used in forensic psychiatry for a number of reasons. 

Namely, Cohen’s d was designed for situations where scores were compared between 
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two continuous and normally distributed populations, a circumstance that is seldom the 

case when dealing with prospective criminal risk 47. Similarly, with Cohen’s d, the effect 

size is dependent upon both the base rate of the variable in question, and the given 

correlation coefficient. Moreover, although the coefficient of determination, colloquially 

referred to as R-squared, provides another metric to evaluate effect size, in certain 

circumstances, it can substantially mischaracterize the importance of a finding, especially 

in situations where one of the variables is dichotomous 47. In summary, AUC provides a 

reasonable metric to assess the relevance of an effect. 

 

Need for confidence intervals  

Given that AUC does not inherently assess whether any given patient was correctly 

classified by a model, and the real-world implications of risk assessment tools in the lives 

and liberty of individuals, supplementary statistical approaches are warranted. Namely, a 

number of authors have recommended the use of CIs and corrections for measurement 

error to be used in conjunction with ROC curves 49–51. Confidence interval testing relies 

on proportions and involves two main types. The first involves exact 95% CIs, which use 

a binomial distribution to reach an exact estimate. The latter assumes a given dataset 

shows a normal approximation of the sampling distribution. However, when the number 

of outcomes is small, or the sample size is small, this assumption of normality cannot be 

met, and CIs are required 48.  

Confidence intervals are usually interpreted as a range of values encompassing the 

population or ‘true’ value estimated by a certain statistic, with a given probability. In the 
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case of 95% CIs, the range provided would be expected to include the true value of the 

variable or outcome of interest, with a 5% chance of being incorrect 49. The standard 

deviation of effect size is particularly important, as it provides a way to assess the level 

of uncertainty within a given measurement. In cases where the standard deviation is too 

large, the measurement is rendered virtually worthless 52. 

Therefore, to derive a more realistic framework when evaluating the performance of a 

given model, CIs should be considered. For example, in a systematic review evaluating 

the effectiveness of sex offender risk assessment tools in predicting sexual recidivism of 

adult male sex offenders, the mean AUC, the number of studies used to derive the mean 

AUC, and 95% CIs were reported for each actuarial tool. While more replicated 

assessments showed moderate AUCs ranging from 0.666-0.692, the 95% CIs indicated 

large disparities, with a range from 0.420-0.920 for the Static-99, RRASOR, SORAG, and 

Risk Matrix-2000 31.  

Similarly, in a study by Hart et al. (2007), the precision of two commonly used actuarial 

tools, comprising the Static-99 and VRAG, were evaluated using 95% confidence 

intervals for group and individual risk assessments. They found large confidence intervals 

for risk estimates at the group level, whereas at the individual level the margin of error of 

CIs were so high that the risk estimates imparted little clinical utility 21. Indeed, in an 

analysis of the predictive accuracy of the PCL-R in identifying criminal recidivism at both 

the group and individual level, the range of 95% CIs grew the further the individual patient 

scores were from the group average. When estimating the CIs for the likelihood of 

reoffence at an individual level, the CIs showed high variability (0-98%), to the point that 
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they were essentially meaningless. The authors noted that clinicians should derive little 

confidence in actuarial scales to determine an individual's likelihood of reoffending 34.   

Limitations of AUC 

Importantly, when assessing the performance of clinical tools using ROC curves, the 

balance between sensitivity and specificity should be considered of equal importance to 

the AUC overall. This is because a test can be very sensitive without being specific, or 

very specific without being sensitive, while still showing a reasonable result 53. As such, 

a useful clinical tool will show both a good balance between sensitivity and specificity. 

Furthermore, the accuracy of an assessment is also determined by how common the 

outcome or target variable is in the sample. For instance, in situations where the base 

rate of an outcome is low, such as recidivism only occurring within a small proportion of 

cases, it is possible to make a better prediction by automatically assuming in each 

instance that the phenomenon will not occur, rather than trying to ascertain the actual 

probability of the event 41. Considering this, the use of a single measure of model fit such 

as AUC can erroneously eliminate important clinical risk predictors for consideration in 

scoring algorithms 44. Given this, ROC curves alone may not be an optimal evaluation 

metric for models that predict prospective risk or ascertain the risk profile of an individual 

44.  

Variable selection  

Furthermore, concerns have been raised as to the specific variables used to derive 

actuarial based risk assessments in forensic psychiatry. In general, actuarial methods 

place a strong emphasis on static risk factors, which are features largely unamenable to 

change, such as prior offenses, and childhood experiences 54. However, this largely 
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discounts transient risk factors that may be of importance and potentially modifiable, such 

as drug abuse, poverty and housing instability. Therefore, by overemphasizing static risk 

factors without identifying risk factors that are malleable, we run the risk of stigmatizing 

patients based on their past, without identifying new strategies to improve rehabilitation 

efforts and decrease prospective recidivism.  

 

Assumption of a linear and additive relationship between risk factors 

Apart from the ethical concerns related to the use of actuarial tools in clinical practice, 

there is the important consideration of the statistical relationship between risk factors used 

to derive these tools. Most actuarial assessments assume that there is a linear 

relationship between dependent variables, while others also assume an equal correlation 

strength between each item and the target outcome. For instance, the HCR-20 

determines prospective risk by assessing whether each risk factor is deemed to be absent 

(score of 0), possibly/partially present (score of 1), or present (score of 2) 26. As such, 

each item is inherently assumed to possess the same linear relationship with the 

outcome, and any interaction effects that exist between variables are ignored.  

Additionally, other actuarial strategies, such as the VRAG are posited to reduce such bias 

by applying a weighting to certain items based on the Pearson Correlation Coefficient, a 

method that uses covariance to examine the association between variables of interest. 

Therefore, items with a higher correlation to the outcome, such as a history of bank 

robbery, have greater weighting relative to other items with a lower correlation such as 

history of indecent exposure. However, this approach can be susceptible to bias related 

to the base rate of each dependent variable 55. 
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Base rates refer to the percentage of a population that demonstrates some 

characteristics. In this case, certain items may have less weighting simply as a function 

of being infrequent within the population sample, rather than their actual relative 

contribution to the outcome 56. Using the previous example, a history of indecent exposure 

may be a very important variable in predicting prospective recidivism, but given the rarity 

of this in clinical populations, it may perhaps be overshadowed by more common factors, 

such as previous violent behaviour.  While it has been argued that such risk assessment 

tools should be readily interpretable and easy to score by clinicians, it is unlikely that 

complex phenomena such as predicting criminal recidivism at an individual level can be 

appropriately modeled using simple linear equations. Altogether this highlights the need 

for caution in using actuarial assessments to determine prospective clinical risk and the 

necessity for new tools. 

 

Potential new approaches - Artificial intelligence tools  

Given the ethical, psychiatric and legal ramifications of inappropriately mischaracterizing 

the prospective risk of any given patient, and the resulting consequences to the individual, 

their families, and broader society, there is a growing interest in the use of artificial 

intelligence and predictive analytics to facilitate greater accuracy in clinical decision 

making.  

A possible solution to these limitations may lie in the use of machine learning, a field of 

artificial intelligence that focuses on extracting value from datasets using computational 

algorithms. These algorithms can detect patterns within a dataset and then apply what 



                                           M.Sc. Thesis: D. Watts, McMaster University - Neuroscience 

xxix 
 

they learned to make predictions in unseen data 57. Unlike traditional statistical 

approaches that evaluate average differences in outcomes between groups, machine 

learning methods provide a more straightforward way to predict outcomes at the individual 

level 56. This can potentially pave the way for tailor-made tools for the diagnosis, 

assessment, and treatment of patients 58,59.  

Furthermore, machine learning can deal with complex data containing a large volume of 

information that can be created at a high velocity, and in a wide variety of types, three 

essential characteristics found in big data60. Given the inherent challenges with current 

actuarial strategies, there is also a growing interest in developing more objective and 

reliable tools to assess forensic populations61.  Although these techniques have shown 

promising results in other fields of science and medicine 62–68, their value for forensic 

psychiatry has yet to be fully explored.  

 

Differences between actuarial and machine learning approaches 

To understand the differences between actuarial and data-driven machine learning 

approaches to risk management, it is important to briefly discuss where they diverge 

philosophically and statistically. While both attempt to capture relationships between 

dependent variables to model an underlying phenomenon and use information from past 

occurrences to predict future outcomes, there are noteworthy differences in how this is 

achieved.  

Namely, actuarial science is concerned with the probability of certain events occurring, 

using a group-average aggregate of risk predictors 69. As such, the primary consideration 
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is risk management, and identifying relevant factors that precipitate higher risk among 

individuals. This involves a large degree of statistical approaches, including Bayesian 

inference and generalized linear modelling. While these approaches can also be used in 

a machine learning context, actuarial science uses domain knowledge to select relevant 

variables and is oriented toward understanding the underlying phenomenon of interest. 

As such, actuarial methods statistically analyze patterns of data in stochastic and 

deterministic scenarios to explain an outcome, placing less of a focus on making precise 

predictions 70.  

Machine learning classification models, on the other hand, are more concerned with 

predicting a phenomenon of interest with the highest possible accuracy 71. Indeed, model 

optimization represents an entire subfield within machine learning 72 . However, in 

machine learning, interpretability can become a difficult problem 73, especially when using 

more sophisticated algorithms. Despite this trade-off, machine learning methods provide 

the benefits of an exploratory approach to selecting relevant variables in classification 

problems, based on a data-driven, rather than a hypothesis-driven framework 74. As such, 

this provides a greater degree of flexibility in feature selection 75, which is an integral 

component of model development. This is especially important if there are latent or 

unexamined variables within a given dataset that are useful risk factors but have not yet 

been identified in previous literature.  

Similarly, this approach is often more conducive to novel discoveries, which may be better 

suited to capturing the idiosyncrasies of a specific population. For instance, a common 

problem highlighted among actuarial risk assessment tools is the difference in 

performance accuracy in predicting sexual recidivism between subpopulations of sexual 
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offenders 76. This suggests that the relationship between risk factors may not be linear 

across these populations. By disregarding the assumption that each risk factor is related 

in a linear fashion, machine learning methods can more easily examine the complex 

interactions between variables to make individualized predictions.  

 

Interpretability in machine learning  

Generally speaking, more sophisticated algorithms tend to lead to higher performance in 

predicting outcomes. This provides a unique avenue to address problems where more 

traditional statistical analysis techniques have struggled, such as individualized risk 

prediction. However, as models grow in complexity, this carries the trade-off of greater 

difficulty in model interpretability and explainability 77. This is especially the case for non-

linear classification models, which use a nonlinear combination of model parameters to 

predict a specified outcome. 

Complex machine learning models have been commonly referred to as ‘black-box’ 

methods, since we have information about the input and output of the model but lack 

detailed knowledge about the specific decision-making process 78. As such, some authors 

have expressed concerns about applying predictive models in real clinical scenarios if we 

do not fully understand the functioning of such models60,61. This argument follows that 

opaque models bring forth several concerns, especially when dealing with applications in 

law and healthcare. Moreover, others have called for an end to using black-box models 

for high-stakes decisions, and instead advocate for the use of readily interpretable models 

such as decision trees 79.  
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Decision trees are non-parametric, since they make no assumptions on the distribution 

of the data, and are highly structured, and therefore are the most interpretable machine 

learning model 80. However, methods such as these are prone to several limitations. For 

instance, a small change in the data can precipitate a large change in the structure of an 

optimal decision tree. This presents challenges in performance when applying a model to 

an independent dataset 81. Furthermore, decision trees tend to show poor performance 

against more sophisticated algorithms 82. There are various ways to substantially improve 

the performance of decision trees, such as bagging and boosting, but this performance 

increase occurs at the expense of ready interpretability 83. 

However, the dichotomy between interpretable and black-box methods in a strict sense 

may not be entirely accurate. While the definition and standards of interpretability largely 

vary between applications, there are a number of standardized interpretability metrics 

available to assess our models quantitatively. As such, it is possible in some capacity to 

peer into the black box. Indeed, explainable artificial intelligence (XAI) is a growing field 

which aims to better understand how black-box methods make key decisions, in order to 

improve trust and transparency in machine learning applications 84. In line with this effort, 

there are a number of ways to improve model interpretability among so-called black box 

methods 77,85. For instance, feature relevance and model visualization play a key role as 

the intermediary between a black box model and the human expert 86. Likewise, methods 

such as variable importance plots can be shown, which lists the most significant variables 

in descending order. The more a model relies on a variable to make predictions, the 

greater importance of the given variable 87. By showcasing which features were most 

important for a given model, and visualizing this with several available methods as 
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described elsewhere 87,88,89, such approaches can serve as useful tools to assist in the 

interpretation and comprehension of a model’s decision making process 90. 

Generalizability in machine learning  

Another important consideration in the use of machine learning for classification problems 

is that of the generalizability of the model. A model that has the highest accuracy in a 

testing dataset may not necessarily show the highest accuracy in an independent dataset. 

This is especially a problem when dealing with high-dimensional data, when the number 

of features exceeds the number of instances 91. In other words, when there are more 

predictor variables than there are patients in a sample, there may be redundant variables 

that harm the model performance 91. Additionally, redundant variables run the risk of a 

model learning based on irrelevant features, which can notably decrease its performance 

in an independent dataset 92. 

Feature selection and feature extraction provide two notable ways to address the problem 

of irrelevant features and dimensionality in a dataset. Briefly, feature selection involves 

obtaining an important subset of the original features according to a specified selection 

criterion. Thus, feature selection removes redundant and irrelevant features from a 

dataset, prior to running the model 92. There are a number of feature selection methods, 

with varying degrees of appropriateness depending on the application, as described 

elsewhere 93,94,95. Of note, limiting the number of features tends to improve the 

generalizability of a model when applied in independent datasets 96.  

Conversely, feature engineering refers to creating new input variables from existing ones 

97. This, understandably, requires a degree of domain knowledge about the data itself. 
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Among the important considerations of feature engineering are imputation methods and 

feature splitting. Imputation methods are required to deal with missing data, as a majority 

of algorithms cannot be used on columns containing missing values. Further, feature 

splitting uses parts of a column to create new features. This helps uncover information 

that may be useful to the performance of a given model 97. 

 

Assessing the performance of classification models   

Confusion Matrix 

This leads into the question of how model performance is assessed when dealing with 

classification problems. Commonly, a confusion matrix is used, which is a table layout 

that provides a visualization of the performance of the model. This includes the number 

of correct and incorrect predictions, which are summarized with count values and broken 

down by each class. For instance, a confusion matrix contains information about overall 

accuracy, misclassification rate as well as true and false positive and negative 

predictions. A more detailed explanation of confusion matrices, as well as how they differ 

between binary and multiclass predictions can be found elsewhere 98. 

 

Cross-validation  

Importantly, no single algorithm is necessarily superior across classification problems. 

Although certain algorithms may be more or less appropriate depending on the nature of 

the problem, this still necessitates a comparison of multiple algorithms 99. Moreover, each 

algorithm has its own set of hyperparameters, which are used to control the learning 
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process, that must be set prior to running the model 100. In order to evaluate the optimal 

set of hyperparameters for any given model, cross-validation can be used. Cross-

validation is a resampling procedure, where data is divided into k subsets or folds 101. This 

holdout method is repeated several times, where one of the k subsets is used as the test 

or validation set, while the other k-1 subsets are used to form a training set. The error 

estimation is averaged over all k trials to receive a metric on the set of hyperparameters 

that are optimal for our model 102. 

 

Previous machine learning studies in risk prediction  

Considering the benefits of using machine learning algorithms to model complex 

phenomena and in making individualized predictions, there have been a handful of groups 

that have pioneered its introduction in a forensic risk prediction context. For instance, 

Falconer et al., assessed predictors of rearrests within the first 90 days of release from 

jail, among 2100 adults involved in the criminal justice system, using clinical and 

demographic variables48. The authors reported an AUC of 0.67 using a generalized linear 

model within a hold-out testing dataset. Similarly, Caulkins et al. assessed predictors of 

criminal recidivism, among 3508 offenders, within a two-year period following release 

from federal prison using clinical and administrative data. The authors compared the 

performance of logistic regression and Artificial Neural Network (ANN) models using 

either eight, eleven or eighteen predictive variables. The best performance was observed 

in the model with 18 variables, with an AUC of 0.689 using logistic regression, and 0.699 

using ANN 103.  
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In another study using big data analytics, Palocsay et al. assessed predictors of criminal 

recidivism among 19,136 individuals released from federal prison using nine clinical and 

demographic variables. The authors compared the performance of linear regression and 

artificial neural networks and split the dataset into training (9457 prisoners) and testing 

(9679) sets. The highest performance was observed using ANNs with an accuracy of 

69.23%. However, the sensitivity of all models was poor, with 30.41-41.26% of recidivists 

correctly identified, and approximately 81.07-88.43% non-recidivists correctly identified. 

While the performance accuracy overall was similar between models, ANN showed a 

modest improvement over logistic regression 104.  

Moreover, Pflueger et al. used demographic and clinical data to identify predictors of 

general recidivism in a sample of 365 offenders with a history of mental illness, from which 

128 were re-offenders44. The authors used a random forest algorithm and performed 

feature selection according to a CART criterion, by excluding the variables with the least 

importance to the model. Using six variables, they developed three models with pre-

specified sensitivity and specificity weightings. The first model was equally weighted and 

showed an accuracy of 85%, with 84% sensitivity, and 86% specificity, respectively. The 

second model used a 95% sensitivity cut-off and achieved a specificity of 0.60 for an 

overall accuracy of 77%. The third, and final model, used a 95% specificity cut-off and 

achieved a sensitivity of 0.58, with an overall accuracy of 77% 105.  

Among the few available machine learning studies predicting criminal behaviour in 

forensic patients with mental illness, Linaker et al. investigated the predictors of imminent 

physical violence requiring restraints in 92 inpatients. Within this sample, 48 incidents of 

violence occurred in 32 patients. Using factor analysis as a feature selection method, they 
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identified six behavioral variables that were common before violence. Subsequently, 

these six variables were used to build a logistic regression model, where they obtained 

an accuracy of 92.1%, with a sensitivity of 81.3% and a specificity of 100% in the testing 

set35. While these results seem quite promising, it is important to note the low prevalence 

of the outcome event with only 15 patients in the training set, and 17 patients in the testing 

set displaying violent behavior. Moreover, only a few instances of each behavior were 

observed among a small subset of patients. Altogether, this suggests that the model 

accuracy reported is likely to be over-optimistic. 

Similarly, Monahan et al. monitored a sample of 939 psychiatric inpatients for violence, 

assessing 106 risk factors37. Using an iterative classification tree (ICT) approach, 72.6% 

of the sample was classified as either low or high risk. Instead of using a cross-validation 

procedure, however, the authors used a bootstrapping approach, which is less reliable in 

estimating model generalizability37. In another study using the same sample, the authors 

obtained an AUC of 0.81 with the ICT and 0.79 with a standard classification tree to 

classify patients as high or low risk using clinical assessments76. Additionally, Soini et al. 

used a Naive Bayes classifier coupled with clinical variables to predict forensic admission 

in a sample with 308 psychiatric patients106. Of note, the authors used independent data 

sets from four different countries to train and test the predictive model. They achieved 

accuracies between 86.1 to 91% in the training sets, and between 82.5 to 87.1% in the 

testing sets106. 

 

Aim of the current thesis  
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Although a limited number of prior studies have assessed the use of machine learning 

applications to predict criminal recidivism, there are several limitations in available 

studies. Namely, prior studies have only assessed the presence or absence of recidivism, 

rather than analyzing the type of crime and whether this varies as a function of the patient 

population. No studies thus far have used machine learning models to predict the type of 

crime that an individual would subsequently commit. Such an approach would be more 

suited to a tailored intervention at an individual level.  

Moreover, many previous studies suffer from a substantial class imbalance problem. This 

occurs when the total number of a class of data is far less than the total number of another 

class of data. For instance, in a study predicting patient aggressive events in a psychiatric 

hospital, as little as the data set presented with the outcome of interest (Suchting 2018). 

Additionally, a majority of studies present a lack of transparency in the exact features 

used in the model and lack a representation of feature relevance or model visualization 

when presenting their results. This limits the interpretability and replicability of risk 

prediction models in the field. Therefore, the current study attempts to address these 

drawbacks, by analyzing the type of crime committed among recidivists, building separate 

models on the basis of gender, and mental status, as well as using feature selection, 

feature relevance and model visualization techniques to facilitate the replicability of its 

findings.  
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Background: Actuarial risk estimates are considered the gold-standard way to assess 

whether forensic psychiatry patients are likely to commit prospective criminal offences. 

However, these risk estimates cannot individually predict the type of criminal offence a 

patient will subsequently commit, and often simply assess the general likelihood of crime 

occurring in a group sample. In order to advance the predictive utility of risk assessments, 

better statistical strategies are required. 
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Aim: To develop a machine learning model to predict the type of criminal offense 

committed in forensic psychiatry patients, at an individual level. 

Method: Machine learning algorithms (Random Forest, Elastic Net, SVM), were applied 

to a representative and diverse sample of 1240 patients in the forensic mental health 

system. Clinical, historical, and sociodemographic variables were considered as potential 

predictors and assessed in a data-driven way. Separate models were created for each 

type of criminal offence, and feature selection methods were used to improve the 

interpretability and generalizability of our findings.   

Results: Sexual and violent crimes can be predicted at an individual level with 83.26% 

sensitivity and 77.42% specificity using only 20 clinical variables. Likewise, nonviolent 

and sexual crimes can be individually predicted with 74.60% sensitivity and 80.65% 

specificity using 30 clinical variables.  

Conclusion: The current results suggest that machine learning models have accuracy 

comparable to existing risk assessment tools (AUCs .70-.80). However, unlike existing 

risk tools, this approach allows for the prediction of cases at an individual level, which is 

more clinically useful. The accuracy of prospective models is expected to only improve 

with further refinement.  

 

Keywords: 

machine learning; big data; computational psychiatry; psychiatric disorders; predictive 

psychiatry; precision medicine; predictive analysis; pattern recognition; forensic 

psychiatry; violence; violent behavior; crime; criminality 
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Introduction: 

Predictors of criminal risk: trials and tribulations  

Prior to the development of any standardized tools, clinical judgement was the gold-

standard measure to assess a patient’s prospective risk of criminal reoffending (1). 

However, this presented a number of clear limitations, including poor inter-rater reliability 

between clinicians, confirmation bias, and the propensity for human error (2). Importantly, 

clinical judgement alone has not provided a valid metric by which to identify individuals 

with mental illness who will prospectively commit serious criminal offenses (3). In 

response to this, actuarial risk estimates became increasingly widespread, which 

concentrated on statistical models, while largely disavowing clinical judgement (4). 

Broadly speaking, risk estimates attempt to quantify the probability that an event will occur 

in the future (5). As discussed elsewhere, these risk estimates have demonstrated 

moderate to high predictive validity in quantifying group-based risk of  

of general recidivism(6), as well as violent(7) and sexual recidivism(8). 

 

The ethics of predictors: a question of fairness  
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Nonetheless, concerns have been raised as to the specific variables used in risk 

estimates within forensic psychiatry (2). In general, these tools place a strong emphasis 

on static risk factors, which are patient characteristics largely unamenable to change, 

such as prior offenses, and childhood experiences (9). This, as a consequence, discounts 

modifiable risk factors that may be of importance, such as drug abuse, poverty and 

housing instability(10). Therefore, by overemphasizing static risk factors, we run the risk 

of stigmatizing patients based on their past, without identifying new strategies to improve 

rehabilitation efforts and thus decrease prospective recidivism.  

 

Statistical challenges in group-based risk assessment  

Although risk estimates have helped shift the focus of risk assessment in forensic 

psychiatry toward a reproducible and statistical framework, there are important caveats 

to their use. Namely, there is little evidence that actuary risk estimates perform any better 

than clinical judgement in determining whether a specific patient will reoffend (11). This 

is largely because most risk estimates have been developed statistically to assess group-

based risk, and perform poorly when making individualized predictions (12).  

This phenomenon is partly related to the difference in calculating 95% Confidence 

Intervals (CIs) between a group effect and an individualized prediction, with the latter 

showing higher variability (12). Of note, this phenomenon of high variability in prediction 

intervals occurs largely independent of sample size consideration (12). This is because 

while increasing sample size can result in a more narrow confidence interval around a 

regression line in a group-based analysis, this does not translate into a more narrow 
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prediction interval in an individual case (12). While it has been argued that such risk 

estimates should be readily interpretable and easy to score by clinicians, it is unlikely that 

complex phenomena such as predicting criminal recidivism at an individual level can be 

appropriately modeled using simple statistical approaches(5). Altogether this highlights 

the need for caution in using actuarial risk estimates to determine prospective clinical risk 

and the necessity for new approaches. 

 

The age of artificial intelligence. A path forward?  

Given the ethical, psychiatric and legal ramifications of mischaracterizing the prospective 

risk of any given patient, and the resulting consequences to the individual, their families, 

and broader society, there is a growing interest in the use of artificial intelligence and 

predictive analytics to improve accuracy in clinical decision making. A possible solution 

to these challenges may lie in the use of machine learning, which broadly speaking, 

focuses on extracting value from datasets using computational algorithms (13). These 

algorithms can detect patterns within a dataset and then apply what they learned to make 

predictions in new, unseen data (14). Unlike traditional statistical approaches that 

evaluate average differences in outcomes between groups, machine learning methods 

provide a more straightforward way to predict outcomes at an individual level (15). This 

can potentially pave the way for tailor-made tools for the diagnosis, assessment, and 

treatment of patients(16,17). Although these techniques have shown promise in other 

fields of science and medicine, their value in forensic psychiatry has yet to be fully 

explored.  
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The urgent need for individualized risk assessment 

While few studies have assessed the risk of subsequent violence(18,19) and criminal 

recidivism(20,21) among psychiatric patients, no studies thus far have focused on 

predicting the type of crime committed at an individual level. Knowing the type of crime 

an individual is likely to commit, before the offence occurs, is urgently needed in order to 

guide more targeted and precise risk assessment strategies and frontline therapeutic 

interventions(1). Furthermore, the vast majority of work thus far has focused on predicting 

recidivism in non-psychiatric prison populations (22–25). Importantly, it is largely unclear 

whether such models can be appropriately extrapolated to offences committed by those 

with severe mental illness.  

In the present study, we used machine learning models to predict the type of criminal 

offense committed at an individual level. That was carried out in a representative sample 

of 1240 forensic inpatients from 10 psychiatric institutions, found unfit to stand trial (UST), 

or not criminally responsible (NCR). 

 

2. Methods  

The authors assert that all procedures contributing to this work comply with the ethical 

standards of the relevant national and institutional committees on human experimentation 

and with the Helsinki Declaration of 1975, as revised in 2008. All procedures involving 

human subjects/patients were approved by the Hamilton Integrated Research Ethics 
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Board #0538 and # 10529, in affiliation with McMaster University. Every participant in the 

sample was found not criminally responsible or unfit to stand trial for criminal offenses, 

between 2014-2015. Explicit written consent was not required from participants for ethical 

approval of the study, given the inherent challenges of obtaining consent from a large 

sample of patients from multiple psychiatric facilities. However, patient data was 

anonymized with digital identifiers removed, in line with ethical standards.   

2.1. Study population  

The present study consisted of 1240 individuals charged with a criminal offense, and 

subsequently deemed either Unfit to Stand Trial (UST) or Not Criminally Responsible 

(NCR) as a result of serious mental illness. That comprised a diverse sample of patients 

from 10 forensic psychiatry facilities, representing patients who were subject to oversight 

by the Ontario Review Board (ORB) between 2014-2015. The ORB is an independent 

tribunal established under the Criminal Code of Canada that reviews the status of every 

person who has been found to be NCR or UST for criminal offences on account of a 

mental disorder.  

2.2. Variables 

The ORB database comprised 1100 clinical, demographic, administrative and behavioral 

variables. Among them, 246 variables were extracted from ORB files. This involved a 

diverse set of factors, such as adverse events in childhood, income, housing, 

comorbidities, family history, prescribed medications, substance use, and presumed 

indicators of risk.  

2.3. Feature selection  
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Within machine learning applications, feature selection provides an important way to 

reduce the dimensionality of a dataset by removing irrelevant features (26). There are 

several available feature selection methods, with varying degrees of appropriateness 

depending on the application, as described elsewhere (27). Of note, limiting the number 

of features tends to improve the generalizability of a model when applied in independent 

datasets (28). In the present study, a data-driven approach to feature selection was used. 

This encompasses a series of feature selection methods that do not rely on preconceived 

notions as to which variables will be the most important in the model (29). Specifically, 

three methods were compared. This included Recursive Feature Elimination (RFE), 

Ensemble Feature Selection (EFS), and selecting the top 20 weighting factors using 

variable importance plots. 

 

Briefly, RFE is a method that removes features that have the least impact on training 

error. This tends to remove redundant features, while retaining independent features(30). 

However, each feature selection method is prone to a set of biases. Considering this, 

EFS was used, which comprises eight feature selection methods, and linearly combines 

their normalized outputs to derive a quantitative feature importance metric(31). 

Furthermore, a straightforward and visually interpretable feature selection method was 

used as a point of comparison, where a subset of the data with all predictors were used 

to build a model, and the top 20 variables were identified using a variable importance plot. 

These 20 variables were then used as the sole predictors within the respective model.  
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Importantly, only variables occurring prior to the index offense were considered as 

potential predictors. Variables with 15% or more missing data were excluded, considering 

both the impact of missing values in model performance, and the limitations of available 

imputation strategies (32,33). Imputation was performed using the mean and mode, for 

numerical and categorical variables, respectively.  

2.4. Machine Learning Algorithms 

Three machine learning algorithms (Elastic Net, Support Vector Machines (SVM) and 

Random Forest) were implemented in R using various packages (34–36). Predictor 

variables were centered and scaled using the preProcess function available in Caret (37). 

Zero and near-zero variance predictors were removed using the nearZeroVar function 

available in Caret (37). All categorical variables were transformed into dichotomous, 

quantitative variables, colloquially known as dummy variables. A thorough explanation as 

to the strengths and technicalities of these machine learning algorithms can be found 

elsewhere (38–40).  

Fundamentally, elastic net is a regularized method of logistic regression that linearly 

combines the L1 and L2 penalties of lasso and ridge methods (38). Elastic net is both 

computationally efficient, and well suited to cases of highly correlated predictors (38). 

Random Forest is an ensemble method that builds a number of decision trees, with each 

node split using the best of a subset of randomly chosen predictors (36). By averaging a 

set of observations using random sampling when building trees and nodes, random forest 

notably reduces variance, and tends to perform very well in classification problems (40). 

SVM is an extension of the maximal margin classifier that can accommodate non-linear 
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class boundaries (40). SVM attempts to find a maximal margin hyperplane that directly 

depends on a series of support vectors, rather than relying on all observations in the 

dataset (39). SVM does not require a hyperplane that perfectly separates hyperplanes, 

and allows some observations to be incorrect, in the interest of better classifying 

observations overall (39). This algorithm is computationally efficient and allows for a 

number of potential non-linear boundaries between classes, by incorporating various 

possible kernel functions (41). 

2.4. Addressing the class imbalance problem  

A common challenge in machine learning classifiers is that of class imbalance (42,43). 

This occurs when the number of one class (e.g. nonviolent crimes) is far less than the 

total number of another class of data (e.g. violent crimes). In the current study, as detailed 

in Table 1, 863 patients were charged for violent crimes, 253 patients for non-violent 

crime, and 124 for sexual crimes, respectively. Three separate approaches were 

compared to address the imbalance between these classes. Namely, under-sampling of 

the majority class was used, which involves randomly eliminating elements of the majority 

class until it matches the size of the minority class (43). Conversely, the minority class 

was oversampled at random until it contained as many examples as the majority class 

(43). This was achieved in both instances by setting their respective arguments in the 

trainControl function in Caret (37). Furthermore, class weighting was used, which 

modifies the relative cost of misclassifying the majority and minority classes to 

compensate for their unbalanced ratio (43).  

2.5. Model testing and validation  
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The ORB dataset was divided into training and testing sets, comprising 70% and 30% of 

the data, respectively. In order to estimate prediction error, 10-fold cross-validation was 

used, as described elsewhere (44). This involves a form of out-of-sample testing where 

data is partitioned into 10-folds, where a single subsample is retained as validation data 

to test the model, and the remaining k-1 folds are used as training data (44). This process 

was repeated 10 times, where the results were combined to produce a single estimation.  

Another important consideration is hyperparameter optimization (45). Various parameters 

within machine learning models can be tuned to minimize a given loss function on 

independent data. This largely involves adjusting the learning rate of the model in order 

to improve model performance (45). In the present study, both grid and random search 

strategies were employed. In the present study, model performance was assessed using 

the confusionMatrix function in R (37). A confusion matrix is a table layout that provides 

an overview of model accuracy, misclassification rate, sensitivity, specificity, as well as 

true and false predictive values. This includes the number of correct and incorrect 

predictions, which are summarized with count values and broken down by each class. A 

more detailed explanation of confusion matrices, as well as how they differ in binary and 

multiclass prediction problems can be found elsewhere (46).   

 

Results 

The present study included a total of 1240 patients with mental illness who were found 

either Not Criminally Responsible, or Unfit to Stand Trial by the ORB between 2014-2015 

for a criminal offense. This comprised 863 violent, 253 nonviolent, and 124 sexual 
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offenses, respectively. All algorithms (Random Forest, SVM, and Elastic Net) were used 

to train binary classifiers. A summary of patient demographics is presented in Table 1.  

Random Forest and Elastic Net identified patients who would subsequently commit 

sexual crime, from nonviolent and violent crimes, with predictive accuracy ranging from 

61.5-80.3% in the total model. In particular, the Elastic Net algorithm correctly identified 

patients who would subsequently commit nonviolent or sexual crimes at an individual 

level, with a sensitivity of 71.4% and specificity of 70.9%. Furthermore, an Elastic Net 

algorithm correctly identified which patients would prospectively commit sexual or violent 

crimes with a sensitivity of 85.1% and specificity of 74.1% in the total model. A receiver 

operating characteristic (ROC) curve and ‘confusion matrix’ were used to calculate the 

sensitivity, specificity, balanced accuracy, AUC, and 95% confidence intervals of each of 

these models, as detailed in Tables 2 and 3.  
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Table 1. Summary of Demographic Variables 

  Violent  
(n= 863) 

Non-violent 
(n=253) 

Sexual                             p-Value 
(n=124) 

Age (years) 34.39±12.30 36.30 ±11.96 34.90 ±14.16                  0.0995 
Education                                               0.1715 
    Primary 91 (10.1%) 25 (9.8%) 19 (15.3%)                       
    Secondary 639 (70.6%) 180 (70.3%) 90 (72.6%)                      
    University 175 (19.3%) 51 (19.9%) 15 (12.1%)                      
Gender                                             0.0035 
    Male 798 (86.5%) 209 (74.1%) 118 (95.9%) 
    Female 124 (13.5%) 41 (14.5%) 5 (4.1%) 
Currently Employed                                              0.0862 
    Unemployed 534 (84.8%) 170 (89.4%) 71 (79.7%) 
    Employed 95 (15.2%) 20 (10.6%) 18 (18.5%) 
Race                                              0.0442 
    Caucasian 156 (35.7%) 48 (39.1%) 23 (33.8%) 
    Aboriginal 46 (10.2%) 15 (13.5%) 9 (11.7%) 
    Black 116 (25.3%) 20 (16.5%) 17 (23.4%) 
    Asian 60 (13.8%) 25 (18.8%) 18 (26%) 
    Hispanic 17 (3.6%) 3 (2.3%) 2 (2.6%) 
    Other 48 (11.3%) 13 (9.8%) 2 (2.6%) 
Marital Status                                               0.4586 
    Single 576 (70.6%) 166 (67.7%) 82 (69.4%) 
    Married/Common Law 35 (4.2%) 7 (2.8%) 7 (5.9%) 
    Other 204 (25.0%) 72 (29.3%) 29 (24.5%) 
History of Substance Abuse                                              0.5297 
    No history 234 (27.1%) 74 (29.6%) 37 (30.0%) 
    Yes – alcohol and drugs 374 (43.3%) 104 (41.6%) 49 (39.8%) 
    Yes – alcohol only 68 (7.8%) 26 (10.4%) 14 (50.9%) 
Diagnosis                                              <0.001 
    Schizophrenia 516 (59.8%) 135 (54.0%) 63 (51.2%) 
    Schizoaffective 148 (17.1%) 62 (24.8%) 9 (7.3%) 
    Delusional Disorder 25 (2.9%) 15 (6.0%) 4 (3.2%) 
    Psychosis NOS   48 (5.5%) 11 (4.4%) 5 (4.1%) 
    Bipolar Disorder 57 (6.6%) 20 (8.0%) 7 (5.6%) 
    Paraphilia  19 (2.2%) 7 (2.8%) 34 (27.6%) 
    Dementia/Cognitive   
    Impairment  

28 (3.2%) 8 (3.2%) 19 (15.4%) 
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Chi-Square test with Yates correction used for categorical variables. One-way ANOVA used for numeric 

variables 

Table 2: Model Performance: Nonviolent vs. Sexual Offences 

 Elastic Net Random Forest Support Vector Machine 
(Radial Kernel) 

Full Model 
(156 variables)  

95% CI (61.02, 80.14) 
Specificity: 70.90 
Sensitivity: 71.40 
PPV: 83.30 
NPV 55.00 
Balanced Accuracy:  
71.20 

95% CI (61.02, 80.14) 
Sensitivity: 71.43 
Specificity: 70.97 
PPV: 83.33 
NPV: 55.00 
Balanced Accuracy: 
71.20 

95% CI (47.88, 68.59) 
Sensitivity: 74.60 
Specificity: 48.39 
PPV: 74.60 
NPV: 48.39 
Balanced Accuracy: 
61.50 

Recursive Feature 
Elimination            
(29 variables)  

95% CI (56.56, 76.38) 
Sensitivity: 69.84 
Specificity: 61.29 
PPV: 78.57 
NPV: 50.00 
Balanced Accuracy: 
65.57 

95% CI (65.58, 83.81) 
Sensitivity: 85.71 
Specificity: 54.84 
PPV: 79.41 
NPV: 65.38 
Balanced Accuracy: 
70.28 

95% CI (56.56, 76.38) 
Sensitivity: 77.78 
Specificity: 45.16 
PPV: 74.24 
NPV: 50.00 
Balanced Accuracy: 
61.47 

Ensemble Feature 
Selection  
(30 variables)  

95% CI (65.58, 83.81) 
Sensitivity: 79.37 
Specificity: 67.74 
PPV: 83.33 
NPV: 61.76 
Balanced Accuracy: 
73.55 

95% CI (66.74, 84.71) 
Sensitivity: 74.60 
Specificity: 80.65 
PPV: 80.65 
NPV: 60.98 
Balanced Accuracy: 
77.62 

95% CI (40.54, 61.52) 
Sensitivity: 53.97 
Specificity: 45.16 
PPV: 66.67 
NPV: 32.56 
Balanced Accuracy: 
49.56 
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Table 3: Model Performance - Sexual vs. Violent Offences 

 Elastic Net 
(Logistic Regression with 
L1 and L2 regularization) 

Random Forest 
(Ensembles of decision trees) 

Support Vector Machine 
(Radial Kernel) 

Full Model 
(156 variables)  

95% CI (78.52, 88.12) 
Sensitivity: 85.12 
Specificity: 74.19 
Pos Pred Value: 95.81 
Neg Pred Value: 41.82 
Balanced Accuracy: 79.65 

95% CI (71.91, 82.69) 
Sensitivity:76.74 
Specificity: 83.87 
Pos Pred Value: 97.06 
Neg Pred Value 34.21 
Balanced Accuracy: 80.31 
 

95% CI (58.31, 70.06) 
Sensitivity: 62.79 
Specificity: 67.74 
Pos Pred Value: 93.10 
Neg Pred Value: 20.79 
Balanced Accuracy: 65.27 
 

Recursive Feature 
Elimination            
(45 variables)  

95% CI (72.35, 83.06) 
Sensitivity: 80.47 
Specificity: 61.29 
Pos Pred Value: 93.51 
Neg Pred Value: 31.15 
Balanced Accuracy: 70.88 
 

95% CI (68.03, 79.35) 
Sensitivity: 75.35 
Specificity: 64.52 
Pos Pred Value: 93.64 
Neg Pred Value: 27.40 
Balanced Accuracy: 69.93 
 

95% CI (70.18, 81.21) 
Sensitivity: 78.14 
Specificity: 61.29 
Pos Pred Value: 93.33 
Neg Pred Value: 28.79 
Balanced Accuracy:  69.71 
 

Ensemble Feature 
Selection  
(30 variables) 

95% CI (76.74, 86.69) 
Sensitivity: 83.72 
Specificity: 70.97 
Pos Pred Value: 95.24 
Neg Pred Value: 38.60 
Balanced Accuracy: 77.34 
 

95% CI (71.91, 82.69) 
Sensitivity: 79.53 
Specificity: 64.52 
Pos Pred Value: 93.96 
Neg Pred Value: 31.25 
Balanced Accuracy: 72.03 
 

95% CI (76.3, 86.33) 
Sensitivity: 83.26 
Specificity: 70.97 
Pos Pred Value: 95.21 
Neg Pred Value: 37.93  
Balanced Accuracy: 77.11 
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The most relevant predictor variables to distinguish between sexual and violent criminal 

offences were identified with a variable importance plot, using the ‘caret’ package 

available in R, as detailed in Figure 1. Of note, relevant variables in the model included 

paraphilia, previous charges for indecent acts, current impulse control disorders, currently 

medicated for substance abuse, and previously deemed incapable of consenting to 

medication.  

Similarly, the most relevant predictor variables to distinguish between sexual and 

nonviolent criminal offences were identified using a variable importance plot with the 

‘rminer’ package in R, as detailed in Figure 2. The most important variables to differentiate 

between sexual and nonviolent crimes at an individual level included schizoaffective 

disorder, personality disorders characterized by odd, eccentric thinking, or behaviour, as 

well as a caregiver with mental illness during childhood, and the presence of dementia or 

cognitive disorders. Importantly, in predicting sexual, violent and nonviolent crime, model 

accuracy was largely preserved following various feature selection methods, as detailed 

in Tables 2 and 3.  
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Figure 1: Variable Importance - Sexual vs. Violent Offences  

 

A visual depiction of important features for the model. A variable importance plot was 

generated using the VarImp() function available in the Caret Package in R Studio.  
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Figure 2: Variable Importance - Sexual vs. Nonviolent Offences  

 

A visual depiction of important features for the model. A variable importance plot was 

generated using the VarImp() function available in the Caret Package in R Studio.  
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DISCUSSION 

Available risk assessment tools in forensic psychiatry perform poorly when making 

individualized predictions. The current study is the first to demonstrate that violent and 

sexual crimes can be predicted at an individual level based on clinical and demographic 

variables occurring prior to the event. Moreover, we were able to predict whether an 

individual will commit a sexual or nonviolent offense. This was found in a representative 

sample of forensic patients, both with and without psychosis. Model performance was 

also largely preserved after drastically reducing the number of predictor variables, which 

aid in the generalizability and replicability of these findings. However, our models were 

not able to distinguish violent from nonviolent crimes using the same data and 

preprocessing pipeline. While the clinical implications of these findings need to be refined 

with prospective studies, the possibility of using machine learning to predict crime related 

behaviours is clearly demonstrated in this paper.  

Here, static and malleable risk factors, alongside other clinical and demographic 

variables, were assessed in a data-driven way to determine their relative importance in 

predicting the type of crime committed. This represents a significant departure from prior 

methodologies(22–25), which largely involved selecting variables using domain 

knowledge. This data-driven approach to feature selection, however, can potentially 

identify novel variables that are salient, but unexpected. For instance, in predicting 

nonviolent and sexual crimes, impulse control disorders, and the absence of financial 

income were much more important than commonly cited risk factors(47) such as the 
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number of prior criminal charges, or the presence of childhood abuse. Although static risk 

factors were relevant in all machine learning models, our results suggest that there are 

important malleable risk factors that may be useful targets to improve patient rehabilitation 

and decrease criminal recidivism.  

As mentioned previously, a major thrust of machine learning models in recidivism 

prediction have focused on non-psychiatric prison populations, with no studies thus far 

predicting the type of crime at an individual level. Therefore, the present study represents 

an initial effort to predict likely offenses before they occur and move the field toward 

individualized risk assessment. Based on our results, it has been demonstrated that it is 

possible to make such individualized predictions with a reasonable degree of accuracy. 

However, it is interesting to note that our model was unable to differentiate non-violent 

from violent crime. This was found even after running separate models based on 

biological sex, for men (n=1065), and women (n=170), respectively. While this could 

occur for a variety of reasons, it suggests that those who commit sexual crimes may 

represent a distinct clinical profile that was adequately modeled using our algorithms. 

Conversely, individuals who commit violent and nonviolent crimes may represent a similar 

profile, that may not be adequately differentiated using clinical and demographic 

information alone.  

With respect to algorithm performance, Elastic Net and Random Forest tended to show 

similar AUC and accuracy. Although both algorithms performed very similar in the full 

model, Random Forest showed a notable improvement over Elastic Net following RFE 

and EFS feature selection methods. As such, Random Forest presented with a preferable 

balance between sensitivity and specificity. This is an important consideration when 
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dealing with prognostications that have real life consequences, such as crime prediction. 

Moreover, in all models, SVM showed a substantially poorer performance relative to 

random forest or elastic net. Since a favourable linear decision boundary was observed 

with Elastic Net, it is possible that this decrease in performance with SVM was due to the 

radial kernel used, which creates a nonlinear decision boundary. Moreover, altering cost 

and gamma hyperparameters using a grid search did not significantly improve 

performance.  

In summary, the current results suggest that machine learning models have accuracy 

comparable to existing risk assessment tools (AUCs .70-.80). However, unlike existing 

risk tools, this approach allows for the prediction of cases at an individual level, which is 

more clinically useful. Moreover, this represents a first attempt to predict the type of crime 

an individual will commit, using variables occurring prior to the offense. The accuracy of 

prospective models is expected to only improve with further refinement.  

 

Limitations 

The current study has some potential limitations. While a representative sample of 1240 

forensic inpatients were used from 10 psychiatric institutions across Ontario, Canada, this 

may not be representative of patients in other countries, or jurisdictions. Furthermore, 

while reasonable performance accuracy was observed in the present study, further 

refinement of risk prediction models is needed. Similarly, a much smaller error rate is 

required to implement such predictive models as clinical tools. Additionally, variables with 

missing data were excluded from the analysis. While some of these excluded variables 
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may have proven to be useful, increasing the imputation threshold from 15% to 30% did 

not result in a significant change in accuracy in any of the models. Likewise, other 

imputation strategies, such as k-nearest neighbours(48), may be a useful alternative in 

the case of missing data. However, it is important to note that each imputation strategy 

has its own set of limitations(32,33). Apart from this, the current study used binary 

classifiers to distinguish between types of crime at an individual level. Other studies may 

benefit from using one-vs-one and one-vs-rest classifiers (49). Also, other algorithms, and 

preprocessing pipelines may lead to different performance metrics.  

 

Perspectives 

Moving forward, a further refinement of predictive models in forensic risk prediction is 

required. Potentially, this may be facilitated by using a wider framework when selecting 

the input data in our models. Considering that our model performance is directly 

dependent on the available input data, an exploratory data-driven approach may be 

warranted in risk prediction studies. Moreover, unstructured data such as neuroimaging 

and neurophysiology, may prove useful to facilitate model performance, when used in 

combination with structured clinical data.  
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CHAPTER 3: 

DISCUSSION 

Available risk assessment tools in forensic psychiatry perform poorly when making 

individualized predictions1. The current study is the first to demonstrate that violent and 

sexual crimes can be predicted at an individual level based on clinical and demographic 

variables occurring prior to the event. Moreover, we were able to predict whether an 

individual will commit a sexual or nonviolent offense. This was found in a representative 

sample of forensic patients, both with and without psychosis. Model performance was 

also largely preserved after drastically reducing the number of predictor variables, which 

aid in the generalizability and replicability of these findings. However, our models were 

not able to distinguish violent from nonviolent crimes using the same data and 

preprocessing pipeline. While the clinical implications of these findings need to be refined 

with prospective studies, the possibility of using machine learning to predict crime related 

behaviours is clearly demonstrated in this paper.  

 

Data-driven approach to feature selection  

Here, static and malleable risk factors, alongside other clinical and demographic 

variables, were assessed in a data-driven way to determine their relative importance in 

predicting the type of crime committed. This represents a significant departure from prior 

methodologies2–5, which largely involved selecting variables using domain knowledge. A 

data-driven approach to feature selection, however, can potentially identify novel 
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variables that are salient, but unexpected. For instance, in predicting nonviolent and 

sexual crimes, impulse control disorders, and the absence of financial income were much 

more important than commonly cited risk factors6 such as the number of prior criminal 

charges, or the presence of childhood abuse. Although static risk factors were relevant in 

all machine learning models, our results suggest that there are important malleable risk 

factors that may be useful targets to improve patient rehabilitation and decrease criminal 

recidivism.  

 

Feature selection strategies 

An important consideration in classification tasks in machine learning is feature selection, 

since irrelevant input features can impair model accuracy, and unnecessarily increase 

model complexity. As such, feature selection is a useful strategy to improve model 

generalizability 7. Generally speaking, feature selection methods in classification tasks 

seek to identify a minimal number of features that does not result in a significant decrease 

in classification accuracy, while retaining the class distribution to be as close as possible 

to that observed in the full feature set 8. Though several approaches exist, broadly 

speaking, they can be conceptualized as unsupervised, semi-supervised, and supervised 

approaches 9. 

While unsupervised feature selection methods can work well with unlabeled data, it is 

inherently difficult to evaluate the relevance of features using these approaches 10. 

Moreover, depending on how clustering performance is assessed, several equally valid 

feature subsets can be identified. Semi-supervised feature selection methods learn from 
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a small number of labeled data, and a large number of unlabeled data 11. Although they 

can be worthwhile in several applications, semi-and unsupervised feature selection 

methods were not used in the current work.  

In the overarching category of supervised feature selection methods, exists filter, wrapper 

and embedded models 12. Filter based models separate feature selection from classifier 

learning, so the bias of a learning algorithm does not interact with the bias of a feature 

selection algorithm. This relies on measures of the general characteristics of the training 

data, such as dependency, information, distance, consistency, and correlation 13. 

Wrapper models use the predictive accuracy of a prespecified learning algorithm to 

determine the quality of selected features 14 . Embedded models, on the other hand, serve 

as a bridge between filter and wrapper models, by fitting a model and performing feature 

selection simultaneously 7. This approach usually achieves comparable accuracy to the 

wrapper method, and comparable efficiency to the filter method 7.  

In feature selection applications, the combination of individually important features does 

not necessarily translate into optimal classification performance 15. Moreover, including a 

certain number of redundant features can help improve the robustness of a given 

predictor, which may involve a number of highly correlated variables 16. One such strategy 

to address this is to simultaneously minimize the redundancy of irrelevant features, while 

maximizing the relevance of important ones. This leads to a compact subset of superior 

features at a low computational cost. Collectively, such approaches are referred to as 

mutual-information-based feature selection algorithms 17. Among them, minimum-

redundancy maximal-relevance (mRMR) is a popular feature selection method that 

adopts a greedy search to incrementally select a candidate feature set. As such, mRMR 
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finds an optimal solution using a local minimum. Moreover, cross-validation is used to 

identify the classification error for a large number of features, and to find a relatively stable 

range of features with a small error 18. Although mRMR was not used in the current work, 

it presents as a promising feature selection method in similar applications.  

Additionally, Localized Feature Selection (LFS) offers an alternative to conventional 

feature selection methods that identify a shared feature set to characterize all cases in 

the sample space19. While other algorithms consider local sample behavior during feature 

selection, they require the entire sample space to be modeled by a common feature set. 

Instead, LFS considers each training sample as a point relative to its neighboring region 

and selects an optimal feature set for that region19. Essentially, this involves minimizing 

the local within class distances, and maximizing the between class distances 19. Future 

work may serve to benefit from the use of more sophisticated methods of feature 

selection, such as mRMR and LFS. However, this is by no means an exhaustive list, and 

the appropriate feature selection method may vary as a function of the specific dataset 

and task.  

 

Predictive models in forensic psychiatry 

As mentioned previously, a major thrust of machine learning models in recidivism 

prediction have focused on non-psychiatric prison populations, with no studies thus far 

predicting the type of crime at an individual level. Therefore, the present study represents 

an initial effort to predict likely offenses before they occur and move the field toward 

individualized risk assessment. Based on our results, it has been demonstrated that it is 
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possible to make such individualized predictions with a reasonable degree of accuracy. 

However, it is interesting to note that our model was unable to differentiate non-violent 

from violent crime. This was found even after running separate models based on 

biological sex, for men (n=1065), and women (n=170), respectively. While this could 

occur for a variety of reasons, it suggests that those who commit sexual crimes may 

represent a distinct clinical profile that was adequately modeled using our algorithms. 

Conversely, individuals who commit violent and nonviolent crimes may represent a similar 

profile, that may not be adequately differentiated using clinical and demographic 

information alone. It is possible that applying feature selection such as mRMR or LFS  

prior to training the violent and nonviolent binary classifier may improve performance.  

 

Model performance and data modalities  

With respect to algorithm performance, Elastic Net and Random Forest tended to show 

similar AUC and balanced accuracy. Although both algorithms performed very similar in 

the full model, Random Forest showed a notable improvement over Elastic Net following 

RFE and EFS feature selection methods. As such, Random Forest presented with a 

preferable balance between sensitivity and specificity. This is an important consideration 

when dealing with prognostications that have real life consequences, such as crime 

prediction. Moreover, in all models, SVM showed a substantially poorer performance 

relative to random forest or elastic net. Since a favourable linear decision boundary was 

observed with Elastic Net, it is possible that this decrease in performance with SVM was 

due to the radial kernel used, which creates a nonlinear decision boundary 20. Moreover, 
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altering cost and gamma hyperparameters using a grid search did not significantly 

improve performance.  

 

Algorithms for classification tasks 

As mentioned previously, the current study used Elastic Net, Random Forest, and SVM 

algorithms to fit classifiers. However, there are several other algorithms useful in 

classification problems, such as various boosting algorithms (AdaBoost21 and 

XGBoost22), as well as deep learning 23. In brevity, AdaBoost uses a weak learning 

condition to derive a boosting algorithm that produces a final classifier with an arbitrarily 

small generalization error. It tends to perform well in classification problems 21. 

Furthermore, extreme gradient boosting (XGBoost), also involves an ensemble of weak 

prediction models, and can be used with tree or linear algorithms 24. The primary 

difference between these two forms of boosting algorithms is that XGBoost introduces a 

more regularized model to control overfitting, which has been demonstrated to enhance 

performance in many applications 22. This also lends itself to the question as to the main 

difference between Random Forest and various gradient boosted trees. Primarily, this 

relates to how trees are built, with random forest building each tree independently, while 

gradient boosting builds one tree at a time 25. In addition, various forms of deep learning 

have been shown to achieve state-of-the-art performance in applications such as image 

and speech recognition tasks 26. However, tree-based models have been found to 

generally outperform deep learning on tabular-style datasets, that lack strong multiscale 

temporal or spatial structures, such as the dataset in the current project 27.  
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Explainable AI 

Although more sophisticated classifiers generally result in better performance, 

interpretability can become a challenge 28. For instance, decision trees are a highly 

interpretable method, but are generally inaccurate and prone to large changes in tree 

structure as a result of small changes in the training set 29. However, random forest, which 

involves an ensemble of decision trees, generally shows high performance, but is difficult 

to interpret 30. Although methods such as variable importance plots allow for a global 

interpretation of the relative weight of features within the model, this largely neglects the 

impact of input features in predicting single samples 31. Recently, new local explanation 

methods have been developed, including Tree Explainer 27, which uses a similar strategy 

as the concept of the explanation space 32. Tree Explainer uses the internal structure of 

tree-based models to efficiently compute local explanations using Shapley values, a 

concept from cooperative game theory that distributes gains and costs to players working 

together to obtain a payoff 27. Moreover, this method captures interaction effects between 

features, and allows for directly monitoring the impact of individual features on model loss 

27. 

Both methods can be conceptualized as a form of supervised clustering, where samples 

are grouped based on their explanations 27,32, which may prove useful in facilitating further 

transparency and interpretability in models with high-stakes decisions. Furthermore, 

these methods have the potential of uncovering clusters, or phenotypes, in binary 
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classifiers 27,32. While this falls outside of the scope of the current work, methods such as 

Tree Explainer may be useful to identify phenotypes of criminal recidivism and forensic 

outcomes in prospective studies. 

Binary vs Multiclass Machine Learning 

Of additional note, it is possible to train a classifier using either supervised or semi-

supervised algorithms in multiclass problems 33,34. In other words, models can be 

designed to distinguish between more than two classes. Depending on the specific task, 

binary or multiclass classification may be more suitable. Briefly, one-vs-one and one-vs-

all classifiers are among the available options to achieve this 35, 36. One-vs-one classifiers 

selects two classes at a time, where a binary classifier is trained for each. This is 

performed for each pair of classes, with a maximum of n(n-1)/2 classes in total. During 

the classification task, all binary classifiers are trained. However, in one-vs-one 

classifiers, interpretability of performance metrics become more of a challenge 36. 

Similarly, one-vs-all classifiers involve training a classifier, where each class is fitted 

against other classes. In this case, each class is represented by only one classifier, which 

improves the interpretability of this approach, relative to one-vs-one classifiers. As such, 

it is a commonly used strategy in multiclass scenarios 37.  

The current work involved binary classification only. This was done in the interest of 

improving model interpretability, as important features between two classes may be 

obfuscated in multiclass scenarios. Despite this rationale, one-vs-all classifiers can still 

provide valuable insight in identifying important features specific to the individual class 37. 

Moreover, it is argued that multiclass classifiers may provide better utility in several 
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healthcare applications, and future work may benefit from their use 38. Experimental 

designs that encompass both multiclass classifiers, and binary classifiers with improved 

interpretability, such as Tree Explainer, may be useful as a compromise between the 

interests of interpretability and clinical utility. 

Limitations 

The current work has some potential limitations. While a representative sample of 1240 

forensic inpatients were used from 10 psychiatric institutions across Ontario, Canada, this 

may not be representative of patients in other countries, or jurisdictions. Furthermore, 

while reasonable performance accuracy was observed in the present study, further 

refinement of risk prediction models is needed. Similarly, a much smaller error rate is 

required to implement such predictive models as clinical tools. Additionally, variables with 

missing data were excluded from the analysis. While some of these excluded variables 

may have proven to be useful, increasing the imputation threshold from 15% to 30% did 

not result in a significant change in accuracy in any of the models. Likewise, other 

imputation strategies, such as k-nearest neighbours39, may be a useful alternative in the 

case of missing data. However, it is important to note that each imputation strategy has 

its own set of limitations40,41. Apart from this, the current study used binary classifiers to 

distinguish between types of crime at an individual level. Other studies may benefit from 

using one-vs-one and one-vs-rest classifiers 36. Also, other algorithms, and preprocessing 

pipelines may lead to different performance metrics.  

 

Summary  
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In summary, the present results suggest that machine learning models have accuracy 

comparable to existing risk assessment tools (AUCs .70-.80). However, unlike existing 

risk tools, this approach allows for the prediction of cases at an individual level, which is 

more clinically useful. Moreover, this represents a first attempt to predict the type of crime 

an individual will commit, using variables occurring prior to the offense. The accuracy of 

prospective models is expected to only improve with further refinement.  

 

Perspectives 

Moving forward, a further refinement of predictive models in forensic risk prediction is 

required. Potentially, this may be facilitated by using a wider framework when selecting 

the input data in our models. Considering that our model performance is directly 

dependent on the available input data, an exploratory data-driven approach may be 

warranted in risk prediction studies.  

The vast majority of ML studies in forensic psychiatry thus far focus purely on clinical and 

administrative data, given the widespread availability of such data. However, other 

modalities, such as neuroimaging (MRI, fMRI, DTI), electrophysiology (EEG, MEG, ERG) 

and various sensors (actigraphy, heart rate variability), may prove to facilitate model 

performance, when used in conjunction with clinical data. Moreover, longitudinal studies 

with larger multicentric samples and adequate external validation are needed to translate 

proof-of-concept predictive models into applications to be used in clinical and legal 

settings. We hypothesize that such models may facilitate a more personalized approach 

to patient evaluation and risk management, provide greater precision in deriving a tailored 
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treatment plan, and aid clinicians and the legal system in the decision-making process as 

it pertains to mentally disordered offenders. Ultimately, they may become critical tools to 

assist in prison sentencing, to determine fitness to stand trial, and to optimize the progress 

of individuals in the forensic system towards rehabilitation. 
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Appendix 1: ROC Curve: Violent vs. Sexual Offences 
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ROC curve is a plot of sensitivity versus 1-specificity (often called the false-positive rate) 

that offers a summary of sensitivity and specificity across a range of cut points for a 

continuous predictor. 

 

 

 

Appendix 2: ROC Curve: Nonviolent vs. Sexual Offences 
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that offers a summary of sensitivity and specificity across a range of cut points for a 

continuous predictor. 
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