Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25558
Title: Framework for a Virtual Material Testing Laboratory
Authors: Gao, Huanchun
Advisor: Smith, Spencer
Department: Software Engineering
Keywords: virtual material testing laboratory;material testing laboratory
Publication Date: Mar-2004
Abstract: This thesis presents a framework for a virtual laboratory for material testing, called Virlab. A virtual laboratory is an open and flexible environment that is used to simulate a set of experiments using a computer. It is beneficial and valuable for researcher and educators to simulate real problems and to conquer some challenges such as a weightless body. The virtual laboratory for material testing contributes both to the field of mechanics of materials and the field of software engineering. In the field of material mechanics Virlab can be used for material testing education and research. Students can rapidly investigate many experiments for materials and the difference between kinematics quantities and stress measures. Virlab also offers a convenient platform for researchers to investigate and test new constitutive equation and implement their new algorithms. Virlab also encourages unambiguous definitions of mechanics terms and principles. In the field of software engineering the contribution is to provide an example of the application of software engineering approaches to an important scientific computing problem. By showing the successful application of software engineer­ing methodologies for a virtual laboratory, it is hoped that software engineering ideas will spread to other scientific applications. In terms of software engineering methodologies, this thesis presents a component-based design for the virtual laboratory for material testing. In this thesis we conduct a commonality analysis for material testing, decompose the system into modules with the information hiding principle, provide an easy way to identify components from the module decompo­sition, and build the component-based system architecture. In this procedure we apply the concept of design through documentation at each stage.
URI: http://hdl.handle.net/11375/25558
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Gao_Huanchun_2004Mar_masters.pdf
Open Access
15.69 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue