
A FRAMEWORK FOR A VIRTUAL MATERIAL

TESTING LABORATORY

A FRAMEWORK FOR A VIRTUAL MATERIAL
TESTING LABORATORY

By
HUANCHUN GAO, M.ENG B.ENG

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Dregree

Master of Applied Science

McMaster University

©Copyright by HuanChun Gao, March 2004

ii

MASTER OF APPLIED SCIENCE (2004) McMaster University
(Software Engineering) Hamilton, Ontario

TITLE: A Framework for A Virtual Material Testing Laboratory

AUTHOR: HuanChun Gao, M.Eng B.Eng (JiLin University of Technology)

SUPERVISOR: Dr. Spencer Smith

NUMBER OF PAGES: xii, 261

Abstract

This thesis presents a framework for a virtual laboratory for material testing,
called Virlab. A virtual laboratory is an open and flexible environment that
is used to simulate a set of experiments using a computer. It is beneficial and
valuable for researcher and educators to simulate real problems and to conquer
some challenges such as a weightless body. The virtual laboratory for material
testing contributes both to the field of mechanics of materials and the field of

software engineering.

In the field of material mechanics Virlab can be used for material testing
education and research. Students can rapidly investigate many experiments for
materials and the difference between kinematics quantities and stress measures.
Virlab also offers a convenient platform for researchers to investigate and test new
constitutive equation and implement their new algorithms. Virlab also encourages
unambiguous definitions of mechanics terms and principles.

In the field of software engineering the contribution is to provide an example
of the application of software engineering approaches to an important scientific

computing problem. By showing the successful application of software engineer­
ing methodologies for a virtual laboratory, it is hoped that software engineering
ideas will spread to other scientific applications. In terms of software engineering
methodologies, this thesis presents a component-based design for the virtual lab­
oratory for material testing. In this thesis we conduct a commonality analysis for
material testing, decompose the system into modules with the information hiding

iii

iv

principle, provide an easy way to identify components from the module decompo­
sition, and build the component-based system architecture. In this procedure we
apply the concept of design through documentation at each stage.

Acknowledgements

I would like to express my sincere appreciation to my supervisor. Dr. Spencer
Smith, fue the runsiderabte effort he exerted un my behalf theuughuut the research
uf thlt theslt, and fue providing a guud example fue a dedicated peufessur. After I
had my sun during my graduate studtes, I and my husband named my sun Spencer
and hupe he wuuld be a nice, smart and dedtcated persun ttke Dr. Spencer Smith.

Thoughtful cumments feum De. Atan Wassyng and De. Antonie Deza have

hetped tu ctaetfy the Meas expressed tn thts wurk.

I appredate very much the finandal suppurt frum my supervlsor and the De­
partment uf Computlng and Suftwaec.

1 am grateful .to my Mum and Dad fue thetr care, espedatty they gave me
strung suppurts after I had my sun su 1 can cQncentrate un my research.

Fmally, I wuuld ttke to thank my husband Wentt and my sun Spencer fur thetr

Iuvc and encouragement.

V

Table of Contents

Abstract iii

Acknowledgements v

Table of Contents vi

List of Figures vii

List of Tables ix

List of Symbols x

1 Introduction 1
1.1 What is a virtual laboratory?.. 4
1.2 Why is a virtual laboratory needed?... 5
1.3 An overview of real material eesting.. 7
1.4 Thesis motiovtion... ■............................... 10
1.5 Thesis scoor.. 12
1.6 Thesis organization.. 13

2 Commonality analysis of material experiments 15
2.1 Termindooo.. 16
2.2 Commonalities .. 25
2.3 A oase stu?y: a uniaxial displacement-controller? experiment for a

visooelastio material .. 30
2.4 Oonclusioos... 37

3 Component-based design 44
3.1 What is a compodent?... 44
3.2 Why use component-based system desissi..................................... 47
3.3 Modularity ... 51

vi

vii

3.3.1 System decomppsition... 51
3.3.2 Hierarchical ttructure.. 57

3.4 Identifying the oomponeett... 63
3.5 Component-based system architecture.. 68
3.6 Documeneation 71

3.6.1 Documenting modules... 72
3.6.2 Documenting the module interface tceoificatioe 75
3.6.3 Documenting the component descriptiOn............................ 84

4 An overview of the Virlab software 90
4.1 An introduction to the Virlab sofowwer... 91

4. 1.1 The main window.. 92
4 .1.2 The setup window ... 94
4 .1.3 The output window... 95

4.2 An example experiment in Virlab for a uniaxial displacement-controlled
experiment for a viscoelastic material.. . 99

5 Conclusions, contributions and future work 106
5.1 Uoneturiocs... 106
5.2 Ccneribbtidns.. 108
5.3 Future Woto... Ill

Bibliography 114

A Relationship among kinematics quantities 120

B The solution for the uniaxial extension displacement-controlled
experiment 124

C The module guide for Virlab 127

D The module interface specification for Virlab 147

E Component description for Virlab 254

F The procedure for adding a new constitutive equation 259

List of Figures

1.1 A tensile testing machine from the Instron Corpcoatton............... 9
1.2 Schematic illustration of the tensile machine shown in Figure 1.1 . 10

2.1 Coordinate system [Maz70].. 17
2.2 A displacement-controlled e^j^f^e^ii^enn.. 19

2.3 A load-controlled experiment... 19
2.4 A biaxial ... 20
2.5 A multiaxial expceimene... 21
2.6 Elongation of a rod subjected to a uniaxial tensile foo-re............... 23
2.7 A multiaxial experiment for the commonality analysis.................. 27
2.8 A uniaxial displacement-controlled txpceiment.............................. 30
2.9 Comparison of data for the correct and incorrect experiment ... 33

3 .1 Module Mee^che... 53
3.2 Use relation in the kinematics module . . .'...................................... 59
3.3 Use relation in the stress n^o^r^l^e ... 60
3.4 Use relation of the system... 61
3.5 The data flow chart for an experiment .. 62
3.6 System architectural lajar.. 65
3.7 Component architecture of the Virlab tyseern.............................. 70

4.1 The window for the experiment type teleetion............................... 93
4.2 Experiment window... 94

4.3 Setup window...■............................... 95

viii

ix

4.4 The Specif'ySpecimenGeometry window..................... 96
4.5 The SpecifyTimeSetup window .. 96
4.6 The CcestitutiveEquatice window.. 97
4.7 The SpecifyLoadOrDisplacement window.. 97

4.8 The output window... 98
4 . 9 The selection of a uniaxial displacement-controlled experiment . . 99
4.10 Experimptn wiidow foo a uniaxiid diaplacomene-cocnroSled eexprii

ment... 100
4. 11 Input the function an0orma0ion.. 100
4.12 Input the geometry informatioo... 101
4.13 Specify the constitutive equation .. 102

4.14 Specify the time icoeeuratioo.. 102
4.15 Select the function type for displacement vaniHe......................... 103

4.16 The output for the txpetimene.. 104

List of Tables

2.1 A comparison of different material models.............. •...................... 26
2.2 The specification of the displacement function in the uniaxial ex­

periment ... 31
2.3 The specification of Maxwell’s e^i^u^tic^o... 31

2.4 Assumed parameters for the Maxwell’s equation............................ 32
2.5 Visualizing the Virlab systtm... 38
2.6 The list of unlikely changes ... 40
2.7 The list of anticipated changee... 43

3.1 The comparison between the five layers in the Virlab.................... 67

3.2 Component categories in the Virlab... 68
3.3 Experiment definition module....................................'.................... 73
3.4 The order for the initiaticatiod.. 80
3.5 An example for an event table... 82
3.6 A component description for the kinematics compooeet................. 87
3.7 Output for kc._kewnquqntity... 88

3.8 Output for kc_^«^<^i^<^ttry .. 88

x

List of Symbols

xi

ox^x?, Eulerian coordinate system

Xi, X2, X3 ■ Axes in Eulerian coordinate system

OX1X2X3 Lagrangian coordinate system

Xi, X2, X3 Axes in Lagrangian coordinate system

t Time

Xt Time step

Lo, Wo, Ho . The original length, width and height of a test specimen, respec­
tively

L, W, H The updated length, width and height of a test specimen, respec­

tively

u, v, w or Ui, U2, u3 The displacements of the test specimen in the x1; X2, X3 axial di­
rection, respectively

Ui, U2, U3 . The displacements at the end of the test specimen in the a;1; X2, X3
axial direction, respectively

F Load

Ao The original cross-sectional area of the specimen

A The updated cross-sectional area of the specimen

a Stress

e Strain

ax The srress in the tp direction

ex The strain in the as dircetion

£y The sham in the rr2 direction

ez The strain in the Z3 direction

u Poisson's ratio

d The rate of the change of the stress

d The rate of the ehange of the strain

f A load funeiion of iimc

u A vcloeiiy funetion of iimc

f = {fi, fz-fo) A vcetor reprcscnting ihc forecs applicd io ihc sidcs of ihc icsi
spceimcn

u = (h,U2,U3) A vcctor rcprescnting ihc displaccmcnt ai ihc cnd of ihc spcrnimm

u(i) Thc displaecmcnt funeiion

u(i) A vcloeiiy funeiion of iimc in ihc ditplaermrnt-s;ontrollrd cxpcri-

mcni

u(t) An aeeclcraiion funeiion of iimc in ihc displaccplcnt-eoniroeecd cx-
pcnmcni

f(t) A forec funeiion of timc

/(i) The first time derivative of forec in the load-eontrolled!

f(t) The seeond time derivative (ft force

A Reaaxation imw

■ V’scostty

E Young’s Modulus orr caustic modulus

t -The in the dcseription of a viseous material

D Thc rah of dcformaiion in ihc dcseription of a viseous material

xii

Chapter 1

Introduction

Scientists and engineers face diverse and complex challenges when designing and

developing advanced experiments. For example, a tensile test is challenging in

part because of the wide range of materials that are tested, such as linear elastic

materials, hyperelastic materials, hypoelastic materials and viscoplastic materials

etc. Another challenge in material testing is how to describe different materials.

For some materials, such as linearly elastic materials, the description is a simple

linear state equation relating stress and strain, but for other materials, such as

elasto-viscoplastic materials, the description is complex with several nonlinear

equations, multiple parameters and a nontrivial relationship between the stress

and the deformation history.

A significant source of problems with the real experiment is ambiguous def­

initions of the requirements. In material testing scientists and engineers often

struggle to find ways to describe the materials and the material tests in an unam­

biguous way. One problem, for instance, is the definition of strain. Should it be

defined relative to the new or the old configuration, or to some other configura­

tion? The interpretation of the experimental results in terms of a material model

1

requires a clear definition. The solution to this problem is to use mathematical

techniques and notations to unambiguously specify the requirements. This means

a formal approach, which can be supported by a virtual laboratory. A virtual lab­

oratory is a software environment that simulates real world experiments. Ideally,

a virtual laboratory will unambiguously present all the required definitions and

calculate values for the quantities of interest, such as stress and strain. The users

will be able to use this information to determine the best material model for their

situation. Moreover, a virtual laboratory has the advantage that it can force the

users to think about the inappropriateness of mixing incompatible quantities in

their material models.

Another source of problems in material testing is the technical difficulty of

setting-up an experimental environment that matches the assumptions used to

model the experiment. For example, the theoretical model of many experiments

ignores the effect of the material’s self-weight. In a real experiment it is impossible

to have a weightless material, but in the virtual laboratory it is easy to simulate

a weightless specimen and moreover, the set-up of the experiment is simple as it

only requires entering some data and clicking a few buttons.

Not only researchers and engineers are confronted with challenges. Educators

also have faced difficulties when teaching students the rules of mechanics. If the

teachers had access to a frictionless environment, this would simplify teaching

students such principles as Newton’s laws of motion. It is impossible however, to

set up a perfect experimental environment where there is no friction. However, in

a virtual laboratory it is easy to model a friction free environment.

2

Some dLffficulties from real experiments can be conquered by sacrificing consid­

erable time and expense, while others can never be overcome. These difficulties

together with the needs of scientific discovery motivate researchers to build virtual

laboratories. Ongoing work in the area of virtual laboratories is mostly focused

on research on different problems in a variety of fields. For instance, people who

work on education and training contribute to virtual laboratories for education.

One area of contribution is related to the remote education based on the World

Wide Web [KCZ+01][GAP+02][Bud01][Sch99]. Other contributions from the lit­

erature are related to virtual laboratories for different disciplines. Some exam­

ples of virtual laboratories include, a virtual geotechnical laboratory for soil tests

and triaxial tests [PZFOO], a virtual chemical lab for inorganic chemical reactions

[REG+00], a virtual lab for mechanics and materials science [KJR02] [WSS90]

and a virtual laboratory for biology [Mer91].

The concept of a virtual laboratory changes as the field of application changes.

In the area of education, the virtual laboratory can be imagined to verify the me­

chanics rules at work by performing a virtual physical experiment iWebmiecdV

[Web_Jhu_02] [Web_phy_02]. Sometimes virtual laboratories for education have

additional features, such as a search engine to look for the related information

from a textbook [Web_mec_0l]. Virtual laboratories also provide an environment

to analyze experimental ' data and output the result data [KJR02][WSS90]. In

other areas such as aerospace engineering, deep ocean engineering and nuclear

engineering, virtual laboratories are used as a simulator to study dangerous sit­

uations [AKB+]. Given the range of application of the term virtual labnraiorv,

the question remains what is a virtual laboratory? This question is addressed in

3

this chapter .

Section 1.1 gives the definition of a virtual laboratory. Section 1.2 describes

the reasons that a virtual laboratory is needed. As the virtual lab of interest in

our current studies will focus on material testing, Section 1.3 provides an overview

of real material testing. Section 1.4 summarizes the difficulties from real material

testing and gives the motivations for the virtual laboratory. Section 1.5 discusses

the scope for the virtual laboratory system and this thesis. Finally, Section 1.6

provides an overview of the thesis.

1.1 What is a virtual laboratory?

Although some virtual ' laboratories are ■. limited in the sense that they provide a

solution to certain specific problems in a given field, some commonalities exist

among virtual laboratories. The most obvious commonality is that they provide

a software environment. Therefore, in this thesis a virtual laboratory is defined

as an open and flexible software environment that is used to simulate a set of

experiments using a computer. In the virtual laboratory each virtual experiment

is added in a similar sense as adding new equipment and experimental methods

to a real laboratory.

A significant benefit of giving a definition of the term virtual laboratory is

that researchers, engineers and educators need a common definition if they are to

communicate effectively about the idea of a virtual laboratory.

4

1.2 Why is a virtual laboratory needed?

Most currently existing virtual laboratories are focused on educational purposes

either for conducting detailed experiments, such as physics experiments, or for

implementing distance education on the World Wide Web. There are also a few

virtual laboratories that emphasize scientific research on a specific domain. How­

ever, sometimes a good educational virtual laboratory can also be used for re­

search. For example, a virtual laboratory [KCZ+01] for control experiments on a

coupled tank apparatus is being utilized in the teaching of undergraduate courses.

In this virtual laboratory students learn to identify a physical model for the cou­

pled tank system based on input-output data and design a PID controller and

different fuzzy logic controllers for the system. Postgraduates also use this virtual

laboratory to solve both classical optimal control system design problems and ad­

vanced robust control problems. This virtual laboratory also offers an excellent

and convenient platform for researchers to test and implement their new algo­

rithms. No matter the purpose of a virtual laboratory, the reasons that a virtual

laboratory is needed are as follows:

• Budget

Building a real laboratory with a sufficient number of adequate training

and/or research experiments may be very expensive. However in a virtual

lab, a set of specific experiments are inexpensively integrated in the software.

The cost of a virtual laboratory is much • lower than for a real laboratory.

• Space

A real laboratory needs enough space to accommodate the equipment and

5

people who will use the laboratory. The concept of a virtual laboratory

requires no real space, other than space for the computer equipment.

• Time

To researchers, it is time consuming to set up a scientific research . laboratory.

However in a well-designed virtual laboratory, it is easy to simulate scientific

problems. To students, a virtual laboratory based on WWW environment

means that students have a flexible lab time to finish their experiments by

choosing to do experiments at home or at school. . In particular, a virtual

laboratory is more convenient for part-time students holding full-time em­

ployment in industry.

• Hands-on experiences in what-if ■ scenarios

In a virtual laboratory, students can do experiments under a variety of condi­

tions, including extreme conditions. This experience will benefit them when

they take part in designing for industry. Furthermore, researchers on the­

oretical analysis and numerical simulation can consider building novel and

highly experimental designs, without the risk of actually physically building

them. Furthermore, a virtual laboratory [KCZ+01] provides a convenient,

platform for researchers to test and implement their new algorithms.

• Danger

Some experiments such as an underwater experiment or a nuclear experiment

are dangerous. A minor error might result in loss of life. However in the

virtual laboratory detailed experiments can be done exhaustively. If a real

experiment is still necessary, the preliminary virtual experiment can greatly

6

deercasc thc pusstbtltOy uf an aeetdent.

• Pultoteal, eultural ue gu'^<^i^i^:^w^ntal eunsidera0lon

Sumcttmcs bceausc of pGltOteal, eultural ue governmental reasons, some real

experiments arc net allowed Oq bc eundueOcd. As an example, thc Sandta

NattQnal Laboratortcs arc rcqutecd to du all uf then nuelcar experiments

with eomputcr stmulattun, as thc U.S. government has banncd aetual nu­

elcar tcsttng [Web_Sandta_03]. Thc only uptton fue thc lab to eunttnuc thctr

rescaeeh ts to use a numeeteal stmulatton.

• Teehmeal dtffieulttcs

In ecal experimcnts, tt ts tmpusslble to get a pcrfcet environment that cxaetly

matehcs thc model betng used, but tn thc vtrtual laboratory tt ts easy to set

up a perfcet envtronment. Fue tnstanec, tn thc virtual laboratory tt ts easy

to butld an envtronment without frtettun, but tn a real experiment some

frtetton ts always present. Weightless parts are also pusstblc tn a vtrtual

laboratory.

Thc above benefits peuvtde thc justlfteaOton fue thc vtrtual approaeh when eunsid-

ertng research on materials tcsOtng. Bcfuee dtseusstng a virtual materials testing

laboratury, we need to revtew thc test that arc dune tn a real laboratory.

1.3 An overview of real material testing

Thts seetton ts intcndrd to generally deserve material testtng. The tn-depth

dctatls and Oermtnolugv uf matcrtal testing wtll bc explatned tn Chapter 2. Tu

7

give an overview of material testing, we have to mention a few necessary terms,

which will be written in italics.

In industry, important factors for the improvement in the performance and

reliability of products are the development of new materials, the novel use of

existing materials, better understanding of the structure-property relationships

and incorporation of both mechanics and material science in the design of struc­

tures [KJR02]. It is obvious that correct understanding of materials properties

is necessary, regardless of whether new materials or existing materials are being

considered. A correct understanding of materials comes from exhaustive testing

of materials. As far as testing is concerned, there are many tests, such as engi­

neering tensile testing, hardness testing, ductility testing, shear testing and so on.

Different tests are used to determine different material properties. For example,

in an engineering tensile test the material properties that can be obtained are as

follows: modulus of elasticity, yield strength, ultimate tensile strength, percent

elongation at fracture and percent reduction in area at fracture [Smi93].

Since material testing is a broad and deep topic, we have to restrict, our fo­

cus. In material testing we are interested in kinematics quantities, stress and

constitutive equations. Kinematics quantities are used to describe the defor­

mation of the material in response to the external forces acting on the material

body. ■ Stress is the internal resistance in the material to external forces or reac­

tions acting on the material [Pet69j. Constitutive equations are a mathematical

relationship among internal attributes of the material and describe the possible

deformation history dependent relationship between stress and kinematics quan­

tities. In material testing we want to precisely specify the constitutive equations,

8

obtain experimental data such as kinematics quantities and stress, plot the data,

and analyze the data to obtain the relationship between kinematics quantities

and stress. In the real laboratory the materials tests are conducted by profes­

sional material testing equipment.

Figure 1.1 shows a picture of a modern tensile testing machine [Smi93]. The force

(load) on the test specimen is recorded on the chart paper in the drawer on the

left. The strain, which describes the deformation in the dimension or shape of the

material [BJ81] that the test specimen undergoes, is also recorded on the chart.

The signal for the strain is obtained from the extensometer attached to the test

specimen.

Figure 1.1: A tensile testing machine from the Instron Corporation

Figure 1.2 illustrates schematically how the test specimen is tested in tension

[Smi93]. In this figure the external load or displacement on the moving crosshead

causes the test specimen to deform. The deformation information is helpful to

9

Figure 1.2: Schematic illustration of the tensile machine shown in Figure 1.1

research the material. There are two classes of experiments: load-controlled ex­

periments and displacement-controlled experiments. In the load-controlled exper­

iment, the test specimen is extended or compressed by an applied load and the

load is the independent variable. Compared with the load-controlled experiment

the test specimen in the displacement-controlled experiment is extended or com­

pressed by a displacement and the displacement is the independent variable.

1.4 Thesis motivation

After an overview of real material testing was introduced in Section 1.3, some

difficulties of real material testing become clear.

• Hard to overcome technical difficulties

The weight, of the test specimen and constraints on the boundary conditions

cannot be ignored. They are involved in the test and make the analysis of

10

the test more complicated. Also precise control of the deformation velocity

or load can be challenging.

• Limited experiments

A real test machine is shown in Figure 1.1. With a real machine, people

should follow the fixed instructions to do the experiment. It is impossible to

do exhaustive experiments and provide what-if scenarios because some func­

tions might not be implemented on the real machine. Limited experiments

are not always enough for a researcher to completely test and understand a

new material.

• The considerations of space, money and time

To do a real material test on the coirresponding test machine, we need money

for the machine, space to place the machine and we need considerable time

to set up the experimental environment.

The above technical difficulties, financial requirements and operational incon­

veniences motivate us to develop a virtual laboratory for material testing. In the

virtual laboratory, it is easy to set up perfect boundaries, implement a weightless

test body and control the deformation velocity, implement and test new constitu­

tive theories and algorithms. Our purpose is not to provide anything that cannot

be done by a general purpose simulation package. Our focus is that the system will

provide benefits for researchers and educators. Additionally during our research

on the virtual laboratory we found that there are few existing virtual laboratories

designed for material testing, except for a tensile test that was implemented in

[K JR02]. This deficiency motivates us to develop a virtual laboratory for material

11

testing, that is not for testing real material but for providing a software environ­

ment to simulate a set of experiments.

From the papers describing existing virtual laboratories we found that existing

virtual laboratories were seldom designed with a software engineering approach.

For instance, the systems are not developed using modular decomposition, compo­

nent composition, or the corresponding documentation system. This deficiency in

the research of material testing obviously indicates a gap between the mechanics

field and software engineering field. The developers and engineers in the field of

mechanics lack the knowledge of software engineering approaches and the devel­

opers in the field of software engineering have not applied their approaches to the

practical application of material testing. This gap also motivates us to present

an example on how to apply software engineering approaches to design a virtual

laboratory for material testing, which is named Virlab.

1.5 Thesis scope

Having identified the difficulties for real material tests, we propose a virtual lab­

oratory for material testing. However, it is unrealistic that a virtual laboratory

can be quickly developed for all material tests. So first we have to restrict the

scope for the experiments in the Virlab.

The experiments that can be done in the virtual laboratory will be limited to

the displacement-controlled experiments and load-controlled experiments. In each

of these types, the experiment can be a uniaxial experiment, which is conducted

just from one axial direction, a biaxial experiment, which is conducted from two

12

axial directions, or a multiaxial experiment, which is conducted for all three axial

directions. In all experiments, we are after kinematics quantities, stresses and the

relationship between kinematics quantities and stress through using a precisely

specified ■ constitutive equation.

Our focus is on providing a framework for virtual material testing so that

new kinds of experiments can be built or existing experiments can be extended

in the future. We present our solution for the Virlab by applying software engi­

neering approaches toward its development. In this thesis, we will demonstrate

how software engineering approaches can be applied to building a component­

based application for the Virlab system. Commonality analysis is one approach

to identifying commonalities and variabilites for the system. The commonality

analysis provides what we need for the design stage, so we do not go through the

stage of software requirement gathering and analysis. Based on commonalities and

variabilities summarized in the commonality analysis, we develop the system ar­

chitecture design and propose a component-based design. From the software side,

the thesis scope is from the commonality analysis stage, the design stage to the

implementation stage. Each stage is documented and attached as an appendix.

These appendices include a module guide, a module interface specification and a

component description.

1.6 Thesis organization

Chapter 2 presents the commonality analysis for the real material experiments.

It provides the terminology related to material experiments and also provides the

13

termtnology foe eonstttuttvc equattuns and then summaetzes the eummunaltttes

and vartabtltoles. Chapter 3 presents huw software engineeeing appruaehes ean bc

applted to butldtng a eumponcnt-bascd applteatton for the Virlab system. Thts

ehapter also presents eaeh type uf dueument prudueed duetng thc destgn phase.

Chapter 4 pruvtdes an oveevtew and examples of thc aetual Virlab system. Chap­

ter 5 presents eunelustuns and eontrtbuttuns uf thts work and gtves suggestions fue

future work. The doeumcnts that were prudueed duetng the destgn phases ean be

found tn thc appendtees.

14

Chapter 2

Commonality analysis of material
experiments

In Chapter 1, we provided an overview of material testing and decided that there

are so many material tests that we needed to reduce the scope of the thesis. We

narrowed our interests to displacement-controlled experiments and load-controlled

experiments. In each experiment we are interested in applying the precise spec­

ification of the constitutive equation to the material, obtaining the kinematics

quantities and stress, and plotting and analyzing the experimental data.

To develop a virtual laboratory for material testing, a close examination of real

experiments is required. We make an examination by the commonality analysis of

the displacement-controlled and load-controlled experiments. Commonality anal­

ysis is one approach to identifying commonalities (assumptions that are true for

the current system and even future versions of this system), variabilites (assump­

tions about what can vary among different versions of the system) and common

terminology for the system [AW97].

This chapter starts by providing the terminologies we use in the descriptions

of the load-controlled and displacement-controlled experiments in Section 2.1. We

15

then analyze the commonalities between these two experiments in Section 2.2. In

Section 2.3, we give a displacement-controlled experiment as a case study and

then summarize the variabilities between the load-controlled experiments and the

displacement-controlled ■ experiments. Finally, we provide conclusions after the

commonality analysis in Section 2.4.

2.1 Terminology

This section provides a set of technical terms used in the discussion about and

description of the virtual laboratory for material testing.

article

The term “point” is used exclusively to designate a location in a fixed space;

that is, a point is a place in space. The term “particle” denotes a small volu­

metric element of a continuum; that is, a particle is a small part of a material

continuum [Maz70].

Deformation

The term “deformation” refers to a change in the shape of the continuum between

an initial (un0eformed) configuration and a subsequent (deformed) configuration[Maa70].

Continuum configuration

The initial configuration, which is also called the reference configuration, is re­

ferred to as a Lagrangian coordinate system, written as OX1X2X3 . The final

configuration, which is also called the deformed configuration, is referred to using

an Eulerian coordinate system, written as ox^^xX [Maa70]. We use a general

example to explain the difference between the Lagrangian coordinate system and

16

Figure 2.1: Coordinate system [Maz70]

the Eulerian coordinate system. In Figure 2.1 the Lagrangian coordinate system

of a material continuum at time t = 0 is shown together with the Eulerian coor­

dinate system of the same continuum at a later time t = t For a fixed particle

of the continuum, the Lagrangian coordinate is used to record the location at

the undeformed configuration and the Eulerian coordinate is used to record the

location at the deformed configuration. The purpose of two configurations is to

describe the position of a particle in the original and deformed configuration and

also to determine the relative change in the position of particles over time, so as

to characterize the deformation of the material.

Displacement versus load controlled experiment

Displacement-controlled experiments and load-controlled experiments are catego­

rized as the experiment class. The displacement-controlled experiment refers to

17

when the test specimen is extended or compressed by a displacement and the

displacement works as the independent variable. Figure 2.2 schematically shows

a displacement-controlled experiment. In the load-controlled experiment, the test

specimen is extended or compressed by a load acting on the . testing specimen and

in this case the load works as the independent variable. Figure 2.3 schematically

shows a load-controlled • experiment. In Figures 2.2 and 2.3, a rectangle means

the test specimen, a dotted rectangle represents the test specimen after the de­

formation caused by an applied load or displacement on the test specimen, zj,

n2, Xi and X2 represent the axial directions, Lo and Wo represent the original

length and width, respectively; L and W stand for the updated length and width

respectively, u is the displacement at the end of the body in the axial direction,

u represents the velocity function of time and f represents the load function of

time. The circle represents a roller and the triangle represents a pinned support.

A pinned support means that the point on the test specimen is fixed from transla­

tion in either direction, although it could rotate if the other supports allowed this

motion. A roller means that the point on the test specimen can translate only

in one direction. For example, a roller in x direction means the point can only

translate in the x direction.

Uniaxial, biaxial and multiaxial experiments

In each experiment class, from the view of the directions in which the test specimen

is extended or compressed, experiments are further classified as the experiment

type: uniaxial, biaxial or multiaxial experiments. In a uniaxial experiment, as

shown in Figure 2.2 and Figure 2.3 the test specimen is extended or compressed

in one axial direction. In the biaxial experiment shown in Figure 2.4, the test

18

Figure 2.2: A displacement-controlled experiment

Figure 2.3: A load-controlled experiment

19

Figure 2.4: A biaxial experiment

specimen is extended or compressed in two axial directions and in the multiaxial

experiment shown in Figure 2.5 the test specimen is extended or compressed in

all three axial directions.

Kinematics quantities

Kinematics quantities deal with the deformation of the test specimen in response

to the external factors such as the displacement or force acting on the test speci­

men. The following are classified as kinematics quantities: material deformation

gradient, ■ spatial deformation ■ gradient, material displacement gradient, spatial

displacement gradient, Cauchy’s deformation tensor, Green’s deformation ten­

sor, Lagrangian infinitesimal strain tensor, Eulerian infinitesimal strain tensor,

Lagrangian finite strain tensor, Eulerian finite strain tensor, true strain tensor,

stretch tensor and stretch ratio tensor [Maz70][AJ96]. Appendix A lists how to

calculate these kinematics quantities.

20

Figure 2.5: A multiaxial experiment

Strain

The strain is closely related with the deformation, as the strain provides a quan­

titative measure of the relative displacement between neighboring particles of the

material. The strain is caused by the action of the displacement, or force on the

test specimen. There are many kinds of strains, such as shearing strain, normal

strain, engineering strain, true strain, etc. We use Figure 2.2 to ill'^.sitrate how to

calculate the engineering strain and true strain. Appendix A summarizes how to

calculate other strains.

Engineering strain
u

£=U

True strain [Smi93]

From the above definitions, the true strain is calculated by adding successive value

21

of Ae, which are obtained by dividing each increment AL of the distance between

the gage marks by • the corresponding value of L. Instead, the engineering strain is

calculated by using the total elongation u and the original value Lo [BJ81]. When

the deformation is small, the difference between the true strain and the engineering

strain is negligible, but when the deformation of the specimen is large, the true

strain provides more information about the deformation history.

Stress

“Stress is the internal resistance in a body to the external forces or reactions

acting on the body” [Pet69]. There are many kinds of stresses, such as shearing

stress and bearing stress etc. We will focus on the engineering stress and the true

stress in the virtual laboratory. Figure 2.6 shows the elongation of a rod subjected

to a uniaxial tensile force F. Part (a) shows the rod with no force on it; Part

(b) shows the rod subjected to a uniaxial tensile force F which elongates the rod

from Lo to L. The engineering stress a on the bar is equal to the average uniaxial

tensile force F on the bar divided by the original cross-sectional area Ao of the

bar.

Engineering stress is calculated via

F
o = —

Ao

The true stress o on the bar is equal to the average uniaxial tensile force F on

the bar divided by the new cross-sectional area A after the elongation of the bar.

True stress crt [Smi93] is calculated by

F
at=A

22

Figure 2.6: Elongation of a rod subjected to a uniaxial tensile force

The difference between the engineering stress a = . and the true stress cr* = ~

is that the instantaneous cross-sectional area A of the deformed specimen is used

in the calculation of the true stress, so the true stress is more related with the

deformation history. As we discussed above for the true strain and the engineering

strain, the true stress is also related with the deformation history. Therefore, the

true stress and the true strain together reflect more accurately the behaviour of

the material. [BJ81]

Constitutive equation

A constitutive equation serves the role of an equation to solve the required kine­

matics quantities. Sometimes the conservation equation of physics are not enough

to solve for the required unknowns; therefore, we need to add another equation

that provides information relating the unknowns through characteristic material

properties. Unlike a generally applicable equation, such as the conservation of

23

momentum equation, a constitutive equation is tied to the specific material that

it is developed for.

A constitutive equation is a mathematical equation on internal attributes of the

material and describes the macroscopic behaviours resulting from the internal

constitution of the material and specially characterizes the individual material

[Mal69]. We know that the range of materials is wide, for instance, elastic mate­

rial, viscous material, viscoelastic material, plastic material, etc. When the entire

range of possible temperatures and deformations is considered, materials behave

in such complex ways that it is not feasible to write down one equation or set of

equations to describe accurately a real material over its entire range of behavior.

Instead, the constitutive equation for a material approximates physical observa­

tions of a real material’s response over a suitably restricted range [Mal69].

Table 2.1 generally introduces the elastic, viscous, viscoelastic and plastic mate­

rials as possible constitutive models. The difference between elastic and viscous

or plastic materials is that elastic material returns to an undeformed state upon

removal of an applied force. Viscous or plastic materials, however, have no ten­

dency for deformation recovery. For a viscous material the deformation occurs

over time, even under a constant load. In the model of a plastic material the

permanent deformation does not depend on time, but on the magnitude of the

loading. For a plastic material it is necessary to track the loading history to de­

termine how the material will respond to a new loading.

The examples of constitutive models are be no means exhaustive. In the current

overview we have left out orthotropic materials, where the material response is

different depending on the direction of loading. We have also left out materials

24

that have a deformation history dependent damage parameter that is used to cap­

ture how the material fatigues with repeated loading. A more detailed treatment

of constitutive equation can be found elsewhere [Maz70].

Given the variety of models, it is hard to describe all materials in one constitu­

tive equation. We could describe all materials using the principle of determinism

for stress: “The stress in a body is determined by the history of the motion of

that body [Mal66] .’’Unfortunately, this statement is too abstract to be of value

for concrete implementation. We need then to adopt different. models for differ­

ent materials and the algorithms for applying the constitutive equations will be

significantly different. Moreover, the algorithm for using the constitutive equa­

tion will change, even for the same material model, depending on whether we are

conducting a displacement or a load controlled experiment.

2.2 Commonalities

“Identifying common aspects of the family is a central part of the analysis, ac­

cordingly, a commonality analysis contains a list of assumptions that are true for

all family members. Such assumptions are called commonalities” [AW97J. Since

a multiaxial experiment is the most complex experiment in our system, common

assumptions are based on the multiaxial experiment. These assumptions are also

used in the uniaxial experiment and the biaxial experiment.

Figure 2.7 schematically shows a multiaxial experiment. In this figure the

rectangular box represents the test specimen used in the experiment. The dashed

25

Table 2.1: A comparison of different material models

Material name Material description
Elastic material If the strains caused in a material by the application

of a given load disappear when the load is removed,
this material is called an elastic material. The ideal
linear elastic material is assumed to obey Hooke's law
in which a uniaxial stress situation takes the form
(t — Ee expressing a linear relation between the axial
stress and strain, where E is the modulus of elasticity
[Maz70].

Viscous material A viscous material is assumed for many applications
in fluid analysis. The constitutive equation for a
fluid relates the rate of deformations D to the ap­
plied stress. It is generally assumed that the viscous
stress is a funciton of the rate of deformation D, that
is, r = f(D). for a so-called Newtonian fluid, this re­
lation is linear, t = r]D, where r is the stress, 77 is the
viscosity and D is the rate of deformation [Maz70].

Viscoelastic material A viscoelastic material is characterized by possess­
ing both viscous and elastic behavior. The Maxwell
equation a + Ad = 2rje is one kind of constitutive
equations for a viscoelastic material, where A is called
the relaxation time

Plastic material If the strains caused in a material by the applica­
tion of a given load do not return to zero after the
load has been removed, this material is called plastic
material. Four examples of idealized plastic behav­
iors include: rigid-perfectly plastic, in which elastic
response and work-hardening are missing completely,
elastic-perfect plastic, in which elastic response prior
to yield is included but work-hardening is not, rigid-
linear-work-hardening plastic, in which elastic re­
sponse is omitted and the work-hardening is assumed
to be linear, and elastic-linear-work-hardening plas­
tic, in which elastic response prior to yield is in­
cluded and the work-hardening is assumed to be lin­
ear [Mal69].

26

Figure 2.7: ■ A multiaxial experiment for the commonality analysis

rectangular box represents the test specimen after the deformation, ox^x^x^ rep­

resents the Eulerian coordinate system. OA^AhA'a stands for the Lagrangian

coordinate system. Ui,U2,«3 refer to the displacements at the end of the body in

the direction of the coordinate axes. Lo,HoWO represent the initial length, height

and width of the test specimen and L,H,W represent the new length, height and

width of the test specimen after the deformation, respectively. In this experi­

ment the test specimen is extended or compressed by the external factors such

as the displacement or force from three directions. Based on this experiment,

commonalities are organized into the following list.

• The test specimen, used in the experiments, is assumed to be a rectangular

box. Length, width and height of the rectangular box is changeable, but

the shape of the rectangular box is fixed, that is, after the deformation the

shape of the test specimen is still a rectangular box.

• Since in the experiment we are interested in kinematics quantities, stresses

and the constitutive equation, we assume that material properties of the test

27

specimen, such as Young’s modulus [BJ81] are known. That is, material

properties can be specified; for instance, the properties can be specified

through the user interfaces in the virtual laboratory.

• Lagrangian coordinate system (OX^X^Xi) and the Eulerian coordinate sys­

tem (0X1X2X3) are superimposed as shown in the Figure 2.7. That is, the

origins of these two coordinate systems are the same and the coordinate axes

are coincident.

• In the Lagrangian coordinate system and Eulerian coordinate system, there

are some assumptions on relationships among the variables as follows:

— L = Lo + u 1 , H — Ho + U2, W = Wo + rt.3

— X, = Xi + U,,Z2 = X2 + U2,X3 = X3 + U3

The variables,Uj,122^3, represents displacements along the coordinate axes

in the period of the deformation and they are functions of either the Eulerian

or Lagrangian coordinates. XxXGiX represents the location of a particle of

the test specimen in the Lagrangian coordinate system. £1X2X3 represents

the location of a particle in the Eulerian coordinate system.

• Ui,U2-,u3 are assumed as a function of Xi,X2X3

— The displacements Ui,u.2,^3 are zero at Xi = 0,%2 = 0 and X3 — 0,

respectively

- The displacements at the end points are u = UU2 = = U3 at

- Xi = Lq,X^2 = Ho and X3 = Wo, respectively

28

- The displacements are assumed to vary linearly through the test • spec­

imen Ui = uxg-,,U2 = = U3-%

- f — (fi, f2, fz) is & vector representing the forces applied to the sides

of the test specimen

- u — (hi, «2, 3)) is a vector representing the displacement at the end of

the specimen

• In the case of the load-controlled experiment the load is an independent

variable and in the other case of the displacement-controlled experiment

the displacement takes the role of the independent variable. Regardless

of whether it is the load or the displacement, the independent variable is

assumed to be a function of time (t). For example, the displacement function

u(t) for a displacement-controlled experiment can be a function of time or

it can be supplied as a velocity function of time u(i) or as an acceleration

function of time u(t). The load function is supplied as a force function

of time f(t) or the first time derivative of force f(t) or the second time

derivative of force /(£).

• In the virtual laboratory experiments, shear is not considered.

• In the virtual laboratory experiments, only the displacement or the load is

an independent variable. Experiments are not allowed to simultaneously set

both of them for a given direction.

29

Figure 2.8: A uniaxial displacement-controlled experiment

2.3 A case study: a uniaxial displacement-controlled

experiment for a viscoelastic material

We adopt a uniaxial displacement-controlled experiment as a case study to illus­

trate what we want to obtain from a real experiment. Figure 2.8 schematically

shows a uniaxial displacement-controlled experiment. In this experiment the test

specimen is assumed incompressible. That is, LHW = LoHoWo and the test

specimen is extended by the displacement function which is given by u = £Loe*-,

where £ is a constant, the initial length (Lo) and width (Wo) of the test specimen

are known. The function for it was sele<^nted so that a constant strain rate will be

obtained. For this example the Maxwell constitutive equation for a viscoelastic

material is assumed.

30

Table 2.2: The specification of the displacement function in the uniaxial experi­
ment

t < 0 0<t<MAXTIME t > MAXTIME
inrange(t,Lo) -iinrange(t,Lo)

u 0 0 0

Table 2.3: The specification of Maxwell’s equation

t < 0 t>0
cr| 0 <7 + Ad = 2r£(t)

To clearly specify the requirement of this uniaxial displacement-controlled ex­

periment, we use two tables to illustrate the specifications of the displacement

function and the Maxwell constitutive equation. Table 2.2 shows the specifi­

cation of u. In this table inrange is defined as inrange(t,Lo))=(—Lo < u(t) <

MAX -ST RETCH -RAT IOL) where MAX-STRETCH-RATIO is a constant

representing the maximam stretch. In the definition of inrange, u(t) can be cal­

culated by

u(t) = / u(tt<li (2.3.l)
Jo

From the Table 2.2 the domain of the displacement function is specified clearly.

The specification of the Maxwell constitutive equation is shown in the Table 2.3.

In this equation, the stress and strain refers to the true stress and true strain.

True strain can be calculated by

e(t) = } (2.3.2)
To

Based on assumptions discussed in the last section, an additional equation can be

31

Table 2.4: Assumed parameters for the Maxwell’s equation

Geometry Material Parameters Time
Lo = l(m) A = O.Ol(s) to = 0(s)
Wo = 0.1(m) r — 2000(Pa.s) t = 50(s)
Ho = 0.1(s) £ = 0.8(m/s) At = 0.01(s)

setup as follows:

L(t) = Lo + u(t) (2.3.3)

Using the assumed incompressibility of the material we obtain the following equa­

tion:

A(ttL(t) = AoLo (2.3.4)

Based on the constitutive equation Table 2.3 and equations 2.3.1, 2.3.2, 2.3.3

and 2.3.4 and the parameters for the Maxwell equation shown in Table 2.4, u, L,

W, e and < can be calculated. Appendix B provides the detailed steps. Once u is

known, based on the relationships between u and the kinematics quantities shown

in the table in Appendix A, kinematics quantities can be obtained. However, if we

mistakenly use the engineering strain and engineering stress to solve the Maxwell

constitutive equation, the results are totally different, and wrong. Figure 2.9 shows

the difference between the two approaches. Two errors occurred in the incorrect

process the engineering definitions were mistakenly used for cr and e and then the

mistake was compounded by converting the engineering values to true values. In

Figure 2.9 the dotted line represents the relationship between the true strain and

true stress that are used to solve the Maxwell constitutive equation. The solid

line represents the relationship between the true strain and true stress that were

32

Figure 2.9: Comparison of data for the correct and incorrect experiment

found using the incorrect approach. Figure 2.9 illustrates that the correct speci­

fication of the experiment is important; therefore, it is worthwhile to invest in a

virtual environment to help researchers and students understand the importance

of specification and of using the correct stress and strain measures. The virtual

laboratory should prevent user from making mistakes of the sort illustrated here.

From the above example, we can draw the following conclusions:

• The displacement function can be determined from a first derivative function

of time (t), that can also be understood as a velocity function of time (t),

u(t)-

• During the approximation of the constitutive equation, the Maxwell consti­

tutive equation . in this case, a specialized algorithm must be adopted.

• The initial geometric information of the test specimen, such as the original

length (Lo) and width (Wo), can be assumed to be given.

33

• The material properties, such as rj and A, are given.

In the case study a displacement-controlled experiment is shown. There are two

obvious differences between the displacement-controlled experiment and the load-

controlled experiment. One is the independent variable. The other is how to solve

the constitutive equation. In the displacement-controlled experiment, since the

displacement is given, the kinematics quantities history can be calculated directly

from the displacement. Since the constitutive equation is an equation that de­

scribe the relationship between the stress and the kinematics quantities, the stress

can be approximated after the kinematics quantities history is obtained. However,

in the load-controlled experiment, the load is known so it is the stress, not the

kinematics quantities, that are approximated. Moreover, only the engineering

stress can be immediately determined, as the true stress requires knowledge of

the deformed configuration, but the displacement and the kinematics quantities

are still unknown. The constitutive equation in one direction is not enough to

solve for all the unknowns, other equations are required to setup.

The complication of the load-controlled experiment, can be illustrated by an exam­

ple that assumes that Hooke's law ax = Eex is given. In the uniaxial displacement-

controlled experiment, since kinematics quantities can be calculated from the

known displacement, the strain is easily calculated. Based on cx = Eex, the stress

can also be calculated in a straightforward manner. However, in the uniaxial load-

controlled experiment, only the stress (engineering stress) can be calculated from

the known load. If the constitutive equation a = Ee is for true values, then the

strain can not be calculated directly. To calculate the strain and other kinematics

quantities, other equations are required. In this case we could use Poisson’s ratio

34

v to characterize how the material deforms in the other coordinate direction so

that Ey = — f f and ez — Using this information, we can solve for the true

stress and for the kinematics quantities.

Although the Hooke’s law is a simple constitutive equation for ' the small strain

linearly elastic material, the procedure to solve the constitutive equation in the

displacement-controlled experiment and the eoad-rdntrolecd experiment is differ­

ent. Therefore, procedures to solve the complex constitutive, equations in the

load-controlled experiment and the displacement-controlled experiment are signif­

icantly different. This fact will need to be accounted for in the design presented

in Chapter 3.

Although there are difference in how the constitutive model is introduced, there

are many similarities between the displacement-controlled experiment and the

load-controlled experiment. For instance, kinematics quantities, stresses and the

analysis of the result data are handled the same for both classes of experiments.

Therefore, we extend our thoughts to all the experiments as follow:

• Regardless of the displacement or the load in the experiment, the similarity

is that they are from some kind of functions of time (i), e.g. a velocity

function of time u(t), an acceleration function of time u(ii), a force function

of time f(t), the first derivative of force u(t) or the second time derivative

of force n(t)- It is beyond the scope of this thesis to determine an abstract

form to represent all possible mathematical functions. So we will stay with

three popular types of functions: a quadratic function, a tin/rosine function

and an exponential function.

• It would be best to find an abstraction that would allow us to describe

35

all constitutive equations. However, we decided not to do this because an

abstraction for all constitutive equation is challenging. Moreover, people

should have some solid background on materials test to undertake this task.

Therefore, the task for the approximation of the constitutive equation will

be delegated to professionals, as will be shown in Section 3.6.2.

Based on the above discussion, we predict the possible changes over the lifetime

of the program from the view of variabilities. They are organized into a list where

each item identifies a separate concern:

• The shape of the test specimen before and.' after the deformation has been

assumed as a rectangular box, but the way to specify the geometric infor­

mation of the test specimen such as the original length, width and height

are changeable.

• The material properties are assumed to be given, but the way to specify the

material properties are changeable. For example, material properties are

given in the way of a file or input directly from the external devices such as

mouse or keyboard.

• Since procedures to approximate the constitutive equation in the displacement-

controlled experiment and the load-controlled experiment are different, the

designer shown in Chapter 3 will use one module for the approximation

of the constitutive equation in the displacement-controlled experiment, and

another is for the approximation of the constitutive equation for the load-

controlled experiment. In each module algorithms used to approximate the

constitutive equation are changeable.

36

• Algorithms to calculate or approximate the kinematics quantities and stress

are changeable.

• The ways to output the result data are changeable. For example, the result

data could be output as curves or as tables.

2.4 Conclusions

To develop a virtual laboratory for material testing, which will be named as

Virlab, we have analyzed the real material experiment using a commonality anal­

ysis approach. In addition, we have summarized the common terminologies for

communicating and identifying the commonalities, or unlikely changes, shown in

the Table 2.6 and the variabilities, or anticipated changes, shown in the Table 2.7.

After the commonality analysis, the next step is typically a requirements analysis,

followed by the creation of a requirements document. However, since Virlab is a.

comparatively small system, a requirement document was not explicitly created.

Rather than a full requirements document, we will provide a brief overview of how

the system can be imagined. To describe the system, we will used Table 2.5, which

is assumed to represent the output of experimental result data. From the output

view of the data, the u column will be filled in the displacement-controlled exper­

iment and the f column will be filled in the load-controlled experiment. After the

experiment, the other columns will be filled. For example, after the experiment

the kinematics quantities represented with Et will be calculated and filled into the

table. To fill in the table, we need to specify the following information.

• We need to specify the required experiment information corresponding to

37

Table 2.5: Visualizing ■ the Virlab system

t u f £t £e Ce

to undef ined
t 4- zXZ
t 4"

...

label C_ll in the Table 2.7, e.g, the specification of experiment type.

• We need to design data structures to represent those required information

corresponding to labels C_l, C_2, C_6, C_7, C_8, C_9, C-10, . C_12 and C_13

in the Table 2.7.

• We need to design corresponding algorithms to calculate displacement, kine­

matics quantities and stress, and to analyze the experimental data corre­

sponding to labels C_3, C_4, C_5 in the Table 2.7.

• We need to consider the output of data corresponding to the label C_13 in

the Table 2.7.

Although a requirement document was not explicitly created, we did consider

the requirements before designing Virlab. We considered the requirements from

two views: functional requirements and non functional requirements. For example,

for functional requirements, we knew that Virlab will provide some functions,

e.g., calculating kinematics quantities, calculating stresses. For non-functional

requirements, we consider that Virlab should be easily maintained. We keep

system requirements in mind during the whole procedure instead of writing them

38

down as an independent documentation. With the determined commonalities and

variabilities and our understanding on requirements, we can now go to the next

stage - design of the Virlab.

Order Unlikely changes (Assumptions) Label
1 The shape of the test specimen before and

after the deformation is a rectangular box

SHAPE

2 The displacement or load function is
chosen from three popular functions: a
quadratic function, a sin/cosine function
or an exponential function

FUNCTION

3 The Langrangian coordinate system and
Eulerian coordinate system are superim­
posed.

SUPERIMPOSED

4 In the experiments the shear is not con­

sidered.
SHEAR

5 1. The signs for Lagrangian coordinate
system OX1X2X3 and Eulerian coordi­
nate system OX1X2X3 are unchangeable.

2. Xi = Xi + UiX2 — X2VU2X3 = X3 + U3
3. L = Lq + U1,H = Hq + U2,W — Wo + U3
4. Uy, U2, U3 are assumed as a function of
Xi ,X2,-C3- The displacements ux, U2, U3
are zero at Xi = 0,X2 = 0 and X3 = 0,
respectively.
5. The displacements ui = U1U2 — U2
and U3 = U3 at Xi — Lo, X2 = Ho and

X3 = Wo

M.A1TLRELATION

Continued on next page

39

Continued from previous page

Table 2.6: The list of unlikely changes

Order Unlikely changes (Assumptions) Label
6. The displacements are assumed to vary
linearly iq = = u3^

6 The development environment or operat­
ing system supports mouse and keyboard
function. That is, drivers for the mouse
and/or keyboard exist.

DRIVER

7 The development environment or oper­
ating system provides the screen display
functions such as buttons, combo lists and

so on.

DISPLAY

Order Anticipated changes Label
1 The geometric information of the test

specimen is changeable.
C_1

2 The ways to specify the material proper­
ties are changeable.

C_2

3 Algorithms to approximate the constitu­
tive equation are changeable -

C_3

Algorithms to approximate the consti­
tutive equation in the displacement-
controlled experiment are changeable

C.3jDISP

Continued on next page

40

Continued from previous page

Order Anticipated changes Label
Algorithms to approximate the constitu­
tive equation in the load-controlled exper­
iment are changeable

C_3_LOAD

4 Algorithms to calculate the kinematics

quantities are changeable:
C_4

Procedure to calculate the material defor­
mation gradient

C_4_MDG

Procedure to calculate the spatial defor­
mation gradient

C-4.SDG

Procedure to calculate the material dis­
placement gradient

C_4_MDPG

Procedure to calculate the spatial dis­
placement gradient

C-4.SDPG

Procedure to calculate the Cauchy defor­
mation gradient

C-4-CDG

Procedure to calculate the Green deforma­

tion gradient

C-4.GDG

Procedure to calculate the stretch tensor C_4_ST
Procedure to calculate the stretch ratio

tensor

C_4_SRT

Procedure to calculate the Eulerian in­
finitesimal strain tensor

C_4_EIST

Procedure to calculate the Lagrangian in­
finitesimal strain tensor

C-4-LIST

Procedure to calculate the Lagrangian fi­

nite strain tensor

C_4_LFST

Continued on next page

41

Continued from previous page

Order Anticipated changes Label
Procedure to calculate the Eulerian finite
strain tensor

C.4jEFST

Procedure to calculate the true strain ten­
sor

C_4_TST

5 Algorithms to approximate the stress C_5
Procedure to calculate the engineering
stress tensor

C_5JESST

Procedure to calculate the true stress ten­
sor

CJLTSST

6 The way to present the constitutive equa­
tion for the purpose of display

C_6

7 The way to define the experiment C_7

8 Although only one of three popular func­
tions can be chosen as the displacement
or load function, the coefE^c^^^i^'ts of any of
these functions are changeable

Cj8

9 The way to describe the displacement C 9

10 The way to describe the load C_10
11 The ways to specify the required informa­

tion for the experiment are changeable
C_ll

The way to specify the experiment defini­
tion

C_11JDEF

The way to specify the displacement C_llD)ISP
The way to specify the load C_11_LOAD
The way to specify the function’s informa­

tion
C_11_FUNC

Continued on next page

42

Continued from previous page

Table 2.7: The list of anticipated changes

Order Anticipated changes Label
The way to specify the geometric informa­
tion of the test specimen

C_11_GEO

The way to specify the constitutive equa­
tion

C_11_CON_EQU

12 The way to store the result data C_12

13 The way to output the result data C_13

14 The sequence of executing the program C_14

43

Chapter 3

Component-based design

In this chapter, we give the component-based design of the Virlab software system.

The meaning of the term component is confusing without a clear definition, so

Section 3.1 gives the definition of component that we use in the Virlab design.

Section 3.2 discusses the reasons that the component-based ' idea comes up in

the Virlab design. Since modularity is a prerequisite for components, Section 3.3

gives an overview of the modular design for the Virlab system and explains how to

divide the system into modules. This section also gives the module hierarchy and

use relation for the Virlab. Section 3.4 describes how to identify the components

on the basis of modularity'. Section 3.5 discusses the component design for the

Virlab system based on the modular design for the system. Finally, Section 3.6

gives the documentation for the component description, the module guide and the

module interface specification for the Virlab software.

3.1 Wh^t is a component?

Originally the word ‘component’ was used in the engineering field and referred to

a constituent element, forming or functioning as part of a whole. Later this word

44

was borrowed by the software engineering field, but its meaning is often unclear be­

cause a concrete definition is not always supplied. However, a variety of definitions

are available in the literature. Booch from the view of the source-level states: “A

reusable software component is a logically cohesive, loosely coupled module that

denotes a single abstract [Boo87]”. Jacobson states: “By components we mean

already implemented units that we use to enhance the programming language con­

structs. These are used during programming and correspond to components in the

building industry” [Jac93]. Jacobson’s component concept is general and macros

or templates are thought of components. Sametinger states: “Reusable software

component are self-contained, clearly identificable pieces that describes and/or

perform specific functions, have clear interfaces, appropriate documentation and

a defined reuse status” [Sam97]. It is unfair and incorrect to judge whether their

definitions are right and precise or not without knowing the context-sensitive en­

vironment where the definitions are used. The important decision in the current

context is to adopt a definition for components and to use this definition consis­

tent ly.

In this thesis a component is defined as a unit of composition that can be

linked dynamically into the system. Along with explicitly specified interfaces, its

composition includes other components and/or a set of modules that carry out

a unique set of functional behavior. The definition of the component emphasizes

its dynamical linking characteristic. The module is defined as a work assignment

and its definition does not highlight dynamical linking characteristic. Since the

component is a unit of composition, the relationship between the component and

45

the module is that a component might include single or multiple modules. Fur­

thermore, components can be independently developed. This definition has the

following characteristics:

• It embodies some part of the functionality of the system.

• Since a component can be independently developed and also has an explicit

specified interfaces and binary executable form, it is a unit of distribution

and configuration [KN96]. A unit of distribution refers to the fact that a

component can be delivered independently and a unit of configuration means

that a component can be used to configure the application.

• Because a component's composition can finish a subset of the functionality

and it may include other components, it can be a subsystem [KN96].

• It is self-contained, which means the component itself communicates with

outside components or applications by its interfaces and outside components

and applications have no knowledge about its implementations; that is, the

component's implementation is independent of other components.

• Explicit specified interface means that it needs to come with clear specifica­

tions of what it requires and what it provides. A component encapsulates its

implementation and interacts with other components through well-defined

interfaces [KN96].

The benefit of giving a component definition is that it is necessary to under­

stand the meaning of the term component when a component is being used or

described. Now that the component ceefinitfon is clear, we can move to why the

componeni-ba.se(i idea is used in the Virlab software design.

46

3.2 Why use component-based system design?

Building a large software system is always difficult, so many researchers and prac­

titioners devote themselves to research on how to reduce software design complex­

ity and improve the correctness of systems. A component-based design is often

used during the software development, especially for large systems, because the

component-based design offers several advantages:

1. Possible reusability

During the development of the system, an outside component can be reused

in different applications or other components. If an off-the-shelf component

from a commercial organization, or existing projects, satisfies the part of the

functionality of specified systems, it is better to adopt the known component

into the system rather than design, code, test, debug and document a new

component. Even in the same project, a good component can be reused in

the different versions of the project. The obvious advantage of reuse is to

reduce the development time and cut the costs of the project.

2. Increased reliability [Cte95]

An off-the-shelf component will be used in many other systems or different

versions; therefore, it will be tested many times and many bugs will be found

and sifted out over time. Reusing that component increases the reliability

of the system.

3. Increased flexibility [Cle95]

Designing a system . to accommodate the existing components • means that

the system ' has been built to ignore the ' details of the implementation of

47

those components. In such system any component that satisfies the system

requirement with the same interface can easily replace the existing compo­

nent.

4. Easy maintenance

If a system is built using components and each component carries out a

unique subset of the system’s functional behavior, independently of the other

components, then when some modifications are made in the system, they

will be localized. It is much easier to. modify a few components than it is to

change the entire system.

So far the advantages of component-based design have been discussed. It is

natural to ask why component based design is suitable for the Virlab software

design? The reasons will be explained based on the design decisions made for the

Virlab software.

1. Rapid development

One design decision is that the system should be easily extended and con­

tracted. The component-based design supports rapid development. In a

component-based design, a new version of the system may reuse existing

components or remove existing components without requiring modification

of the other components. For example, assuming one version of Virlab

exists ■ that has both the load-controlled experiments and the displacement-

controlled experiments implemented, a new version, just for special users to

do displacement-controlled experiments, can be rapidly released by removing

the load-controlled component.

48

2. Reusable components

Since the calculation of the kinematics quantities are needed not only in the

displacement-controlled experiment but also in the load-controlled experi­

ment, the decision was made that the calculation of the kinematics quanti­

ties and stress should be separated as independent components. That means

that once the kinematics component and stress component are finished, they

can be reused many times and should thus increase our confidence that er­

rors have been found. Undoubtedly this will increase the reliability of system

in later versions.

3. Extensive research

One purpose of the Virlab software is for the designer to do the research.

(Please see the Section 3.6.2 for the definition of the designer.) If a designer

wants to use a new constitutive equation to do the displacement-controlled

experiment, he/she just needs to write a new component with the same

interfaces described in the module interface specification of displacement

constitutive calculation module. This new module will replace the existing

displacement-controlled component, while the rest of the components in the

system stay the same. So the component-based structure will make research

on new constitutive models easier.

4. Easy update

From the view of a practical application, the Vi/rlab software should be

easy to maintain. Based on this consideration, the Virlab system is divided

into several components based on the functionalities of the system. Each

component might embody one functionality or part of the functionality.

49

Therefore, when the system needs to change, based on the function of the

possible changes, the corresponding component may be quickly located and

then modified. Because each component is relatively unique subset of the

system’s behavior, the modification might be ' limited to this component. So

in the component-based system updates are easier than for a non-component

based system.

5. Dynamic linking

One goal in the Virlab software is to dynamically plug components into

and out of the Virlab system. It is important to support research without

recompiling or relinking the updated or new component. For example, if a

designer writes a new component for an experiment with a new constitutive

equation, the end user will not be required to recompile and relink that com­

ponent. The user will be able to add the component while the application

is still running.

Since the component itself has so many advantages, such as increased relia­

bility, reusability and flexibility, and our design decisions for the Virlab software

provide an opportunity to build on these advantages, a conclusion can be made

that the idea of the component-based design is suitable for the Virlab software.

So far the definition and benefits of components have been described, but

the question remains how to partition our design into components? Partitioning

a design into component is a careful process that has a significant influence on

the success of the resulting components. From the composition of the component,

modules can be thought of as the minimal components. So modularity is a prereq­

uisite for the component. “Component technology unavoidably leads to modular

50

solutions” [Szy99].

3.3 Modularity

Since the components are rather close to modules, it is worthwhile to closely

look into modules. A module is “a work assignment” [Par72] and “Modules are

relatively self-contained systems that can be combined to make large systems”

[HW01]. Modules are interconnectable and interchangeable parts. A modular

architecture makes dependencies • among the modules explicit and also should show

a hierarchical structure. From such a layered architecture a natural distribution of

responsibility becomes obvious. After modularity is built, it is easier to compose

the components by following the principle of separation of concerns.

How to divide a system into modules is a challenge. Without careful consid­

eration and iterative effort, a good modularity will not happen. Our goal was to

decompose the system into a hierarchical structure.

3.3.1 System decomposition

System decomposition refers to the structure of the system architecture. “The

primary goal of the decomposition into modules is reducing overall software cost

by allowing modules to be designed and revised independently [PCW85]”. Infor­

mation hiding [Par72] and separation of concerns are the . principles we used for

decomposing the system. In the decomposition a module is defined as “a work

assignment”. Using the information hiding principle each module will contain

some access routines and these routines will hide a design decision known as a

51

secret of the module from the view of the caller outside the module. Potential

changes, such as the algorithms or data structures, are typical secrets that are

hidden inside modules. By hiding the likely changes, it is possible to implement

the likely changes in the ' futures, with a minimal amount . of effort.

Figure 3.1 shows the system decomposition for the Virlab. In this figure, a

rectangle with a double frame means this module has some sub modules, modules

shown as a rectangle with a single frame are leaf modules, which are the modules

that will be implemented, modules represented with a dotted frame means that

they are provided by the operating system and the term mod is an abbreviation

of the word ‘module’. To decompose the system into modules, we focus on several

important aspects of the system. These aspects include sequence control, speci­

fication, data representation, independent functions and separate algorithms and

data structures. They will be described in more detail below.

1. Sequence control

The Virlab version might vary in its system capacity. For example, will

the Virlab provide the function of importing the new constitutive equation?

Will the Virlab be used to do the displacement-controlled experiment and/or

load-cointrolled experiment? Will the experiment in the Virlab be used to

calculate the kinematics quantities and/or stress? From these questions, we

therefore centralize the control of the experiment and assign this respon­

sibility to the “Experiment module''. This module works as a mediator

among stress module, kinematics module, disp_con calculation module and

load-con calculation module. We also centralize the control of the flow of

the system execution by assigning this responsibility to the “Master control

52

Figure 3.1: Module hierarchy

53

module". The master control module acts as a hub between the functions

of the systems such as- importing a new constitutive equation, doing the

experiment and showing the output results of the experiment.

2. Specification

In the Virlab, a user needs to specify the information required by the ex­

periment. The specification can be categorized as follows:

• Experiment definition information (e.g. experiment class (load versus

displacement controlled experiment), experiment type (uniaxial, biax­

ial or multiaxial))

• Specimen information (e.g. the length, width and height of the speci­

men geometry)

• Function information (e.g. a function refers to a displacement function

in the displacement-controlled experiment or a load function in the

load-controlled experiment). The Virlab provides three popular func­

tions: sine/cosine function, quadratic function and exponential func­

tion. The user should specify which type of functions is used in the

experiment and corresponding parameters of each function used in the

experiment.

• Displacement specification in the displacement-controlled experiment

(e.g. which type of functions is chosen as the displacement, function?)

• Load specification in the load-controlled experiment (e.g. which type

of functions is chosen as the load function?)

• Constitutive equation information (e.g. select the constitutive model

54

from the list of available models)

• Material properties information {e.g. how many material properties

are used in the constitutive equation and the numerical value of each

material property)

How to specify the required information is related to the user interface of

Virlab and also decides the friendliness of Virlab user interfaces. As a result,

we delegate the responsibilities of specifying each type of information to each

individual module that handles the Virlab user interface.

Once the required information is specified, it will be available for later use

by the system. How to represent the above information for the further use

is an important consideration.

3. Data representation

Putting the closely related data together is obviously a good idea, which

makes the decomposition much cleaner. Therefore, a corresponding data

structure for each type of specified information is designed, e.g. specimen

geometry module deals with a data structure for the test specimen, exper­

iment definition module presents a data structure to describe the experi­

mental setup information, displacement structure module provides a data

structure to represent the displacement, load structure module gives a data

structure for the load on the specimen in the load-controlled experiment,

comequ structure module presents a data structure to describe the con­

stitutive equation for the display and the function structure module gives

a data structure to represent the functions. The tensor structure module

55

provides a data type for the tensor, without providing access routines. Be­

cause kinematics module, stress module, disp-con • calculation module and

load-con calculation module share a data type for the tensor, we believe it

is better to separate it as an independent module.

4. Independent functions

Since designing the Virlab to be extensible and contractible is one of our

goals and the Virlab version might vary in its system capabilities, predict­

ing and designing the possible functions will lead to a good design. We

consider that calculating the kinematics quantities and stress and approx­

imating the constitutive equation should be totally or partly included in

the system depending on the user’s requirements. Since procedures to solve

the constitutive equation in the displacement-controlled experiment and the

load-controlled experiment are different as discussed in Section 2.3, we de­

cide to handle these two cases separately. Hence, we predict four possible

functions and delegate them into different modules: kinematics module,

stress module, disp_con calculation module and load-con calculation mod­

ule. The kinematics module is used to obtain the kinematics quantities.

The secret of the stress module is now to calculate the stress. The disp.con

calculation module serves to approximate the constitutive equation in the

displacement-controlled experiment and the load-con calculation module is

to approximate the constitutive equation in the load-controlled experiment.

5. Separate the algorithms and data structures

It is not always desirable to separate the algorithm and data structure. In

56

some domains it • is hard to separate the algorithm from the data struc­

ture and in some domains it is also unwise to separate them because that

means the system might lose efficiency and performance. However, one of

the characteristics of the information hiding principle is that one module

only has one secret. Because our intention is to ■ apply information hiding

principle to practical application and our system does not focus on improv­

ing system performance, we put considerable thought into how to handle

the relationship between the algorithm and the data structure. We decided

that the data structure is used to present the required data in the experi­

ment. The module interfaces are carefully designed to output the required

information by the access programs of the module. For example, the secret

of the displacement constitutive calculation is an algorithm to approximate

the constitutive equation in the displacement-controlled experiment. This

module will use the specimen geometry information and the displacement,

information. The specimen geometry information will be provided by the

access programs of the specimen geometry structure module, whose secret is

a data structure to describe the specimen geometry. Displacement informa­

tion will be provided by the access programs of the displacement structure

module, whose secret is a data structure to represent the displacement.

3.3.2 Hierarchical structure

In addition to carefully designing the Virlab system decomposition through se­

crets, we also used a hierarchical structure for the design of Virlab. Simply, “we

57

have a hierarchical structure if a certain relation may be defined between the mod­

ules or programs and that relation is a partial ordering” [Par72], The relation in

the definition of hierarchical structure is referred to as a “use” relation. Program

A uses program B means that “correct execution of B may be necessary for A

to complete the task described in its specification. That is, A uses B if there

exist situations in which the corrected [sic] functioning of A depends upon, the

availability of a correct implementation of B [PS75]”. A hierarchical structure is

defined as follows: “A relation or predicate on pairs of the parts (R(at,/3)) allows

us to define levels by saying that

1. Level 0 is the set of parts a such that there does not exist a (3 such that

R(ct,/3), and

2. Level i is the set of parts a such that

a. There exists a (3 on level i — 1 such that R(a,?) and

b. If R(a,7) then 7 is on level i — 1 or lower. [Par74]”

Figure 3.4 gives the modules that constitute the Virlab system and their uses

relation [Par74]. A rectangle with a single frame means a module and a rectangle

with a double frame means a module that has some sub modules and all the sub

modules have the same use relation externally in the use relation of the system. A

rectangle with a dotted frame means that a module is assumed to be implemented

and provided by the operating system. Kinematics Module has some sub modules

shown in the Figure 3.2. A significant characteristic of the use relation of the

kinematics module is that all submodules in the kinematics module can use each

58

Figure 3.2: Use relation in the kinematics module

other because sometimes known kinematic quantities will be used to calculate an

unknown kinematic quantity. All the submodules in the kinematics module have

the same use relation externally with the other modules in the system. Following

a similar argument, the use relation of the stress module shown in Figure 3.3 has

the same characteristics as the use relation of the kinematics mouii/e, i.e., all

submodules in the stress module can use each other when a known stress is used

to calculate an unknown stress and all the submodules in the stress module have

the same use relation externally with the other modules in the system.

The Virlab system is constructed with a hierarchical structure by the use of

the concept of transparency. The transparency in the system refers to a kind of

59

Figure 3.3: Use relation in the stress module

abstraction at each level in the system hierarchy. Each level in the hierarchical

system provides a virtual machine which hides (or abstracts from) some aspects

of the machine below it [PS75]. In the procedure of building the hierarchical

structure we combine two approaches together: “Outside in [PS75]” and “Bottom

up [PS75]”. The “Outside in” approach is adopted in the consideration of the

functional behaviors. From the outside view the system should implement the

functions such as calculating the stress and kinematics quantities and approxi­

mating the constitutive equation and then from the inside view we consider how

to design each of them. The “Bottom up” approach is applied when the direction

of data flow is considered. Figure 3.5 shows the data flow chart for an experi­

ment. The required information is first input with a virtual device, such as the

keyboard, by the ‘specification’ part to the corresponding data structures that are

used to represent the required information. Secondly the ‘algorithm’ part uses the

information from the corresponding data structure to do the calculation or ap­

proximation and result data is obtained. Thirdly the result data flow into a table.

Finally the data result will be output to the concrete application. Compared with

the direction of the use relation of the system shown in Figure 3.4, the direction

of the data flow of the system shown in Figure 3.5 is from the bottom to the top.

60

Figure 3.4: Use relation of the system

61

Figure 3.5: The data flow chart for an experiment

62

As a result of modularity, a clear hierarchical structure of the Virlab system

is given and such a layered architectuee. makes ' the responsibilities and functions

of the modules clear. However, the challenge still remains of how to identify the

components from the module decomposition.

3.4 Identifying the components

People should be careful when they divide a design into components. Identifying

a component depends on ' many different aspects. Components can be classified ■ as

units of analysis, units of abstraction, units of compilation, units of maintenance

and units of system management [Szy99]. To identify the components used in the

Virlab, it is necessary to do • a careful analysis.

Figure 3.6 shows that the Virlab system is separated as five layers on the

basis d: responsibilities and functionalities of modules in the system. This figure

has the same information as Figure 3.4 except that Figure 3.6 has four dotted

lines that are used to split the whole picture into live layers. Table 3.1 shows the

composition of each layer and also summarizes the commonalities in each layer.

Based on the Figure 3.6 and summaries of the Table 3.1, the second layer serves

as an interface between the Virlab software and input devices of the system to fa­

cilitate the receiving of the user inputs. The mouse module and keyboard module

work as virtual devices to help the user input the required information needed by

an experiment, the screen display module can be thought of as external compo­

nents, such as buttons, combo list, work area, icon, etc. that make up the system

graphics interface. Therefore, the second layer can be understood as a part of the

63

application, a graphics user interface built with the external components such as

buttons, lists, etc. The third layer is all data structures that are fundamental and

mandatory for the Virlab and are shared by the modules in the fourth layer. Due

to its importance and because it is shared by others, all the modules in the third

layer should be encapsulated into one component, which is named the structure

component. This component is categorized as a fundamental component. In the

fourth layer, stress module serves to calculate the stress; kinematics module serves

to obtain the kinematics quantities; displacement constitutive calculation module

provides the numerical approximation of the constitutive equation to obtain the

stress and to recalculate the kinematics quantities when the constitutive equa­

tion is introduced in the displacement-controlled experiment, as well as the load

constitutive calculation in the load-controlled experiment. So each of the four

modules in the fourth layer implements one function of the Virlab system. For

easy management, it is better to encapsulate each module into one component,

they are named as stress component, kinematics component, disp.con component

and load_con component, respectively. Since these components emphasize the sys­

tem function, they are classified as functional components. Modules in the fifth

layer such as importing constitutive equation module and experiment module can

be understood as concrete applications from the role of the modules in the system,

but table structure module is specially designed to store the date in a table form

and show output module is to display data as a graph. Therefore these two mod­

ules are grouped into application component and are respectively named output

component and table component.

64

Figure 3.6: System architectural layer

65

Continued on next page

No.Layer Composition Similarities
First mouse, key­

board, screen
display

Modules of first layer are provided by the
operating system or the developing envi­
ronment; that is, they are from the exter­
nal environment

Second Con.equ

specification,
func specifi­
cation, exp
specification,
disp specifi­
cation, load

specifica­
tion, spe_geo
specification

The purpose of these modules is to query

the user to specify the information that
is required when the experiment is con­
ducted.

Third con_equ
structure,
disp struc­
ture, load
structure,
func struc­
ture tensor
structure, exp
definition,
spe geometry

In the modules of the third layer some
data structures are designed to represent
the information that is needed by the ex­
periment.

66

Continued from previous page
No.Layer Composition Similarities
Four stress,

disp_con,
load_con,
kinematics

In the modules of the fourth layer some
algorithms are adopted to obtain the
displacement, kinematic quantities and
stress, which are the experimental results.

Fifth imp con_equ,
experiment,

output show,
tables struc­
ture

In the fifth layer, some modules such as
experiment module and importing con­
stitutive equation module implement the
concrete application and some modules
such as table structure module and output
module serve for the concrete application
based on the modules of the fourth layer.
The secret of the table structure module is
one kind of data structure that is specially
designed to store the experimental data in
the form of a table. Show output module
isj. used to display the experimental results.

Table 3.1: The comparison between the five layers in the
Virlab

So far in the Virlab there are seven components: structure component, stress

component, kinematics component, disp_con component, load.con component, ta­

ble component and output component. From the view of the system these compo­

nents in the Virlab are categorized as fundamental components, functional com­

ponents and application components. Table 3.2 shows the category of component

67

Table 3.2: Component categories in • the Virlab

Fundamental component Functional component Application component
structure component stress component

kinematics component
disp_con component
load-con component

table component

in the Virlab and the composition of each component.

3.5 Component-based system architecture

Once modularity of the Virlab has been established, it is natural to migrate parts

of the Virlab system to components by applying the principle of separation of

concerns. Now a new challenge is to construct, the system with the available

components.

Figure 3.7 shows the component architecture of the Virlab system. In this

figure, the arrow pointing from the concrete; application rfrree to the external

component, which could be a visual programming language such as Visual Basic,

means that the application uses external components such as buttons. The outer

circle represents the concrete application and the inner circles represent each type

of component, such as a fundamental component, a functional component or an

application component. The parts in the circle separated by a line mean each

constitutive . component in each type. The ellipsis (...) in the figure means that

potential components might be added in the future. In this figure, the structure

component, as a fundamental component, lies in the innermost circle of the cyclical

layers, since it is necessary and pivotal to all others. The functional components

68

adopt algorithms to implement different functions such as the calculation of the

kinematics quantities on the basis of the information represented with the data

structure from the fundamental component. Therefore, functional components

are placed on the second innermost cyclical layer.

The application component such as table component, and show output compo­

nent are placed between the outer circle and functional component circle because

they work as a bridge between the application and functional components. For

example, the table component is designed because the table form is needed from

the requirements of the application. The outer circle is for the . real application.

The real application is based on the systematic components such as the structure

component and the external components such as buttons that make up the ap­

plication’s graphics interface. In the real application the communications among

the components are finished by the component interfaces. In this figure, from the

view of the systematic structures each layer is isolated from others and the Virlab

is built from the inner circle to the outer circle. However from the view of data

flow, data is input from the concrete application's graphical interface to the inner

circle (structure component) and then flows from the inner circle to outer circle

and finally the experimental results are obtained from the concrete application

as the graphical output interface. Regardless of different views, communications

among components and between components and real applications are furnished

by the components’ interfaces. Therefore, the design for the Virlab system is

called a component-based design.

Upon the completion of the component architecture of the Virlab, the advan­

tages of the component-based architecture are clear.

69

Figure 3.7: Component architecture of the Virlab system

• Helpful to understand

Although the Virlab system is a large and complex system, Figure 3.7 makes

this large and complex system easy to understand by presenting it at an

abstract level.

• Valuable to construct

The component architecture and architectural description works as a partial

blueprint for the development by showing the major components and their

relationships. It will be helpful to guide designers to implement the whole

system because it will act as a reference document and it is also useful for

newcomers to the team to quickly grasp the system architecture.

• Useful for analysis and management

Clear architecture is always useful for maintainers to help them analyze and

70

manage the components.

• Support rapid development

Clear architecture supports a rapid development. The second circle in Figure

3.7 is for the functional components. The designer can freely choose which

components will be used in the version based on different functionalities

required by the system. For example, assuming the four functional com­

ponents are available, a system that does only load-controlled experiments

could be quickly created by removing the disp_con component.

So far we have devoted considerable effort in giving a definition of the compo­

nent and the reasons that we need a clear definition of the component, identifying

a component and constructing a component-based architecture; however, nobody

but the authors can understand the system without adequate documentation.

Furthermore the authors themselves might forget their design as time goes by.

Therefore, specification documentation is necessary for the Virlab system.

3.6 Documentation

Documentation plays an important role in the software development. Therefore

documentation should be written and maintained from the beginning and through­

out the lifetime of a system. This section includes three documents for the Virlab

system. Each document is created as the specific area of the Virlab design is being

molded. Since the modularity is a precondition of the component, Section 3.6.1

documents the modules that each component is built from. The communications

among the modules happen through the interfaces. Therefore, Section 3.6.2 is

71

the module interface specification, where the interface of each module identified is

specified. Finally, Section 3.6.3 is the documentation of the components identified

in the previous section, based on the documentation of the module and module

interface specification.

3.6.1 Documenting modules

We followed the principle of the ' information hiding and divided the system into

modules by the use of system decomposition with the goal of a hierarchical struc­

ture as described in the section 3.3. In this section, we will look into a document

that records the system architecture that is known as a module guide [PCW85].

The module guide for the Virlab is attached in Appendix C. The purpose of

this module guide is to make the design for the Virlab system explicit, which

will facilltate changes to the system in the future. Table 3.3 is a module guide

for the experiment definition module and shows an example on how to document

a module in the Virlab. The template for documenting modules is based on

the module structure of A-7E flight software by the Naval Research Laboratory

[PCW85].

In the module guide for the Virlab, the module’s secret is used as the main

description that characterizes each module. This part typically embodies the

notion “one module one secret”. The service of the module is intended to give

some hints that this module implements a particular aspect of the system. In

addition to its secret and service, expected changes are added to help the reader to

predict and understand the possible changes in the future. The entry for “prefix”

is used to trace the implementation of the module in the Virlab. “Prefix” is a

72

Table 3.3: Experiment definition module

Module Name Experiment definition module
Module service This module provides experiment config­

uration information.
Module secret A data structure to represent the experi­

ment configuration. Secret type: software
design.

Expected changes Since experiment configuration is repre­
sented with a data structure, the same ex­
periment might be represented with other
data structures depending on the design­
ers’ choice.

Prefix ed

short string that will be prepended to all the access routines belonging to the

same modules, so that the conflict of the names among the access routines in

the different modules can be avoided. If a module does not have a prefix, this

means the operating system and/or development environment provides the needed

functionalities.

To make the module guide of Virlab complete and easy to understand, it

also describes the system decomposition. Since each module hides some design

decision of the system, generally the hidden information of each module can be

divided into the following three classes: behavior-hiding module, software decision­

hiding module and hardware-hiding module [PCW85]. The diagram is shown in

the Figure 3.1. The module guide for the Virlab also comprises the diagrams

of the use relation between the modules (see the Figure 3.4). To this point in

the document, the followings have been developed: a complete module guide,

which includes the system decomposition, use relation of the modules and detailed

73

module description.

The effort devoted to creating a module guide was significant. However, the

effort is worthwhile because a module guide provides the following benefits:

• Allows verification of the system

After the module guide has been finished, it is possible to check for various

errors, to discover the possible inconsistencies, to review the feasibility of

the decomposition and to evaluate the flexibility of the design.

• Allows one to quickly grasp the system [PCW85]

Since the module guide shows the clear responsibilities among the modules,

it is helpful for newcomers to the project team to understand the system.

• Removes ambiguity

In our experience of conceiving and writing the module guide for the Virlab

we went through an iterative thinking process of identifying the secrets and

clarifying the responsibility of each module and the relationship between

the modules. As an example of this process, the module guide in the first

version included both an engineering strain tensor module and a lagrangian

infinitesimal strain tensor module, but we chose one of them in the current

version because they had the same responsibility when we compared the

services they provide. As a result, ambiguities in the design were discovered

through the process of writing the module guide.

• Provide guidance [Par72]

The existence of the module guide not only benefits ourselves it also will

provide support and guidance for programmers and maintainers.

74

3.6.2 Documenting the module interface specification

A significant advantage of the module design is that it allows parallel development

of the system among programmers. However the module guide for the system is

not enough, the module interface specification (MIS) is also necessary for the

system to record the crucial design. “The module specification tells you both

how to use that module and what that module must do [PCW85]”. The purpose

of a MIS is to describe how each module is to be used, for example, how can

a programmer code interfaces with the module? What will the access routines

require for the inputs and what will they return for the output? A MIS for the

Virlab system is provided in Appendix D. In this section we will first take a close

look at the content and then we will discuss our design decisions for the MIS for

the Virlab.

Contents in the MIS

The following shows a MIS for “the constitutive equation structure module”. We

use it to illustrate the contents for the MIS. Generally a MIS for each module

includes two sections: one section for interface syntax and the other section for

interface semantics [HS95].

Constitutive equation structure module
Prefix: cs_
Reference: MG - Section C. 3.2.1
Interface syntax
Imported data type:

PropertyListT from the material property file module
PropertiesT = tuple of {
propertyname: string
propertyvalue: real
}

75

PropertyValueT from the material property file module
PropertyValueT = sequence of real
LISTNUM from the tensor data definition module
LISTNUM 15

Exported data type:
ConstitutiveEquationT = tuple of {
name: string
the_iiumber_of_material_properties: integer
material-properties -list: PropertyList
deformationOlst: DeformationListT
}
DeformationListT = sequence [LISTNUM] of boolean

Exported constant: none
Exported function:

Routine names Inputs Outputs Exceptions
cs_g_constitutiveequation ConstitutiveEquationT
csosoonstitutiveequation string

DeformationListT
PropertyValueT

ce_g_writetofile ConstitutiveEquationT failuredo^pen
ce_s_readfromfile string ConstitutiveE■quationT failure-to_open

file-not-exist
External functions:

mpf_o-numberorproperries from the material property file module
mpf-g-oropeeryname from the material property file module
file Openfileffilename: string)

Open a file whose name is filename, if return value is zeron,
opening a file is successful, otherwise failure

Readfile(f: file, -type: string)
Read the value of the specified type from an current position
of a file pointer and return this value

Writefile(f: file, var: string)
Write the value of a variable whose type is type constructor
into the file

Interface semantics

State variable:
con: C<fnstitutiveEquatifoT
f: file

76

77

Local variable: local: PropertyListT
State invariant: none
Assumption:

• Functions cs_g_readfilefile and cs_g_writetofile are used
to operate the file in which the constitutive equation is
saved. Actually the order of the format is irrelevant but
it should be consistent so that the order of information
on the constitutive equation that is read from the file is
the same as the order that is written to the file.

Access routine semantics:
csjs_constitutiveequation(name:string, deforimDeformationListT,

value:PropertyValueT)
Exception: none
Transition: con.name :=filename

con.the-number-of_material_properties:=mpf_g.jlumberofproperties(name
local^mpf-g-propertyname^ame)
local:=mpf_s>g_propertyvalue(value)
con.material_property_list := local
mpf_g_peopeaiyname(name)
con-deformation-list := deform

cs_g.._opotitutiveequatioo()
Exception: none

Output: out := con

os_g_readfromfile (filename: string)
Exception: (Openfiie (filename) is suppesfful=>fai-_to_opeIl,

file.Joot_axist)
Transition/output: f:=Opanfila(filenanle)

local.name := filename
local. the_iiumber _oPfmaterial-properties:=Readfile(f, “ioiagar”)
for i=0 to lopal.the_number_of_Inaieriai_properties
lopal.materiaI_peoperiy.fist [i] :=Readfile(f, “PiPeartyT”)
local-deformation _list:=Readfile(f, “DeforinationlistT”)
out:=lopal

cs_._wriietofiie(conoqq:ConotitutiveEquationT)

Exception: Openfile(conequ.name) is unsuccessful=-fail_to_open
Transition/output: f:=Openfile(conequ.name)

Writefile(f,conequ.the_number..of_inaterial_properties)
for i=0 to conequ.theonumber_of_Ioattrial_properties
Writefile(f,conequ.material_propertyolistii])
Writefile (f, conequ. deformation-list)

Comments:
• DeformationListT type is a sequence of boolean. This

type is used to present what deformation definitions are
used in the constitutive equation.

• Interface syntax section

The interface syntax section includes the declaration of the exported data

types, functions names, parameters and return types of the functions, ex­

ceptions in the functions, exported constants, imported data types, environ­

mental variables ' and external functions. However, among all the attributes

listed above, because exported data types, exported constants and exported

functions directly show the services of the module, they are listed as the core

part for the module, regardless of whether a module has any exported data

type or exported constants or not. The other attributes will be included

only when they are needed. The exported functions as interfaces are called

when outside modules or programs use this module. The exported data

types and exported constants are listed as new data types provided by this

module. The external functions mean that these functions are needed in

this module and are assumed to be provided by other modules in the system

or the development environment.

78

• Interface semantics section

The interface semantics section mainly focuses on how exported functions in

a module are called and what each does and/or returns based on the inputs.

It includes the basic parts such as state variables, state invariants, assump­

tions and access routines semantics and the additional parts such as local

variables, local functions, event tables and comments. State variables are

internal to the module and are shared by the members in the module. State

invariants are the predicates that remain true after the successful execution

of any access program. Assumptions are the preconditions that a module

requires its users to meet. Access routine semantics explain the details on

exported functions. For each function, the possible conditions for the excep­

tions are specified in the heading “exception”. How a state variable or an

environmental variable is changed is explained in the heading “transition”.

The outputs that the exported function returns are specified in the heading

“output”. The event table is helpful to understand the connections between

the events and exported functions. The comments are listed based on some

design considerations and explanations of the details. Local variables and

local functions are used in the cases where there is a complex specification.

Some design decisions for the ■ MIS of the Virlab

• A section for conventions used in the MIS

To avoid the ambiguity for the readers, we list a section for the conventions

we use to document the MIS.

• Use as precise a description as possible

79

class=Hi n type=H2

uniaxial biaxial multiaxial

H
displacement
-controlled

ds_s _irntdisp
ds_s_disputype

ds_sdnitdisp
ds_s_disputype
dSdS.dispvtype

dsd_initdisp
ds_s_disputype
ds_s_dispvtype
ds s dispwtype

load-controlled ds-s initdisp ds-s initdisp ds-s-initdisp

Table 3.4: The order for the initialization

We advocate the formal specification indicated by Parnas. For this goal

we try our best to use mathematics and Parnas tables [JPZ97] in our MIS

to make the description more precise and easy to follow. Table 3.4 is an

example of a Parnas table used in the MIS for the displacement specifica­

tion module. It is more obvious to specify the initialization process for the

displacement under the different conditions in a table than in prose. Also,

we adopt predicts for the mathematical expressions to make the description

unambiguous.

• The prefix of a module

In the module guide we mention that the modules with prefixes will be

implemented so those modules are further specified in the MIS. The same

prefix is found below the name of the corresponding module at the beginning

of the specification for each module. The purpose of a prefix is for quick

reference among modules. For example, the displacement structure module

uses the function fs_g_functionvalue() to calculate the displacement function.

This function is declared in the external functions part of the syntax section

of the displacement structure module. From its prefix “Us” we know that

80

this function is implemented in the function structure module.

• The usage of reference

The reference is found next to the prefix part in the specification for each

module. Since the interfaces of the modules are abstracted from the module

guide, it is helpful to point to the source for the specification. A section

number from the module guide where this module is introduced is listed

after the heading “reference”. From this section number, the corresponding

section in the module guide can be quickly located and then the services

and secrets of the module can be reviewed.

• @ in the event table

Event tables were introduced to specify the software requirements for the

A-7E [Hen80]. The notation @T(condition_l) is used to denote the occur­

rence of condition© becoming true. Event tables show when certain func­

tions should be performed or when periodic functions should be started or

stopped. Table 3.5 shows an example for the event table used in our MIS. In

this event table the notation TClick(buttonname) is used to denote the oc­

currence of the event that the button ‘buttosname’ is clicked. For example,

an event @Cllck(Confirm) happens when the ‘Confirm' button is pressed.

From Table 3.5 we know that when the event @Click(Confirm) happens,

functions cd_s_codoSituttveswitrh, ce-S__onotttuttveequatioo. mof-g■mumbcrofprdocrties,

mpf'_g_poodocrynamc and mof-Sg_poopertyvalue should be called.

• Developer / demigner/user

At the beginning of the design for the Virlab, we tried to summarize a

81

Table 3.5: An example for an event table

Condition Event Action
When the
‘Confrm’
button is
pressed

@Click(Confirm) edo_oonstttutiveswitch,
ce o.ooneStrutiveequatien,
mpLg_numbero_propertiet,
mpf-g.propertyname,
mpf-sg-propertyvalue

When the
’Save’ button
is pressed

@Click(Save) oe_g-writetnfile

When the
Cancel but­
ton is pressed

@Click(Cancel) Do nothing

unique form to describe the constitutive equations and then numerically ap­

proximate this form. We realized that it is difficult to do this because of

the complexity and diversity of constitutive equations. To make our design

feasible we decided to move some of the responsibilities for the design out­

side of our system. To make this notion concrete we defined three roles for

people interacting with the system: the developer, the designer and the user.

A user refers to a person who will do the experiment with Virlab software,

e.g. a student. A designer is a person who designs an experiment with the

Virlab software for ' a user to do an experiment or for himself to do research.

A designer is required to have solid professional knowledge about what a ma­

terial experiment needs. Moreover, the designer should have basic software

engineering knowledge because he/she can add new materials for the exper­

iment into the Virlab based on the experiment requirement, which requires

that he/she should understand the documentation for the module guide and

82

module interface specification. A developer is a person who develops and/or

extends the Virlab software by implementing new functions of the Virlab

software or enriching the system on the basis of the Virlab blueprint. A

developer should have strong software engineering knowledge because he or

she has the responsibilities to build and update the documentation for the

Virlab.

• The usage of the term ‘virtual’

The term ‘virtual’ is used in the object-oriented programming language and

means if the method is defined as virtual in the base class, its concrete

implementation will be provided in the subclass of this base class. Because

the term ‘virtual’ is used clearly to delegate the class’s responsibility for

the implementation, it is borrowed into our MIS to define the attribute

of the access programs in some of the module interface specifications. For

example, in the displacement constitutive (disp.con) calculation module, the

exported function dcc_diipconssttutive() is defined as virtual, which means

that the designers have responsibility to provide the implementation of the

corresponding access programs. This allows us to clearly show what aspects

of the system are the responsibility of later developers.

Theoretically after a MIS is written for a module, the first step toward imple­

mentation is to prepare a module internal design (MID). A MID deals with the

concrete state of the module [HS95], e.g., the internal design for abstract data

types. However, in the Virlab system a MID was not explicitly created because

Virlab is not a complicated system and the mapping between the abstract state

and the concrete state is straightforward. When we designed the MIS, we chose

83

those simple and obvious data types that have direct counterpart in most pro­

gramming languages. For example, a tuple can be implemented as a structure in

the C language. Based on these consideration, we our some efforts on designing

the MIS. Therefore, the fact that we do not have an explicit MID will not affect

the implementation of Virlab later.

3.6.3 Documenting the component description

In Section 3.5 we concluded that the design for the Virlab system is a component­

based design. Since the components are derived from the modularity of the system,

documenting the module guide and module interface specification for the Virlab

makes documenting the components easier. The purpose of the component de­

scriptions is to describe what a component can provide, how to use the component

together with the MIS, the role of the component in the system and the source

of the component. The component description for the Virlab is attached as Ap­

pendix E.

Since the goal of documenting the component is to make what it requires

and what it provides explicit, the component description is composed with the

basic parts such as name, role in the system, service, composition and interface

specification and an additional part for comments. The “service” part generally

specifies what the component provides and it is also used to give directions for

the production of the component interface. The “interface specification” part

is designed to specify what it requires in detail. The “role in the system” part

is used to denote the component’s role in the system so that newcomers in the

team can quickly grasp the composition of the system. The “composition” part

84

is used to specify the source of the component because the characteristic of the

component we use in the Virlab is module-based. The “comment” part is designed

to supplement the source of data types and/or constants occurring in the interface

specification.

Continued on next page

Name Kinematics component

Role in the system Functional component

Service Based on the definitions given by [Maz70], Kine­
matics component is used to calculate the kine­
matics quantities.

Composition material deformation gradient module
spatial deformation gradient module
material displacement gradient module
spatial displacement gradient module
Cauchy’s deformation tensor module
Green’s deformation tensor module
Lagrangian finite strain tensor module
Eulerian finite strain tensor module
Lagrangian infinitesimal strain tensor module
Eulerian infinitesimal strain tensor module
True strain tensor module
Stretch tensor module
Stretch ratio tensor module

85

Continued from previous page

Name Kinematics component

Interface specification The composed modules’ interfaces are available
for the use. Please refer to the corresponding
module interface specification found in the Ap­
pendix D. Based on the similarities among all
the composed modules’ interfaces in the kine­
matics component, two interfaces are summa­
rized below.

• koJknownquantity(comeflag, outflag:
TensorFlagT, kq: TensorDataT)

Exception: exceptions are triggered from the
calling programs and same as the ex­
ceptions from the calling programs

Output: output is based on the value of out-
flag shown in the Table3.7

• kc_geometry(outflag: TensorFlagT, disp:
DisplacemeenT, sg: 8^0^611060016-
tryT)

Exception: exceptions are triggered from the
calling programs

Output: output is based on the value of out­
flag shown in the Table3.8

Continued on next page

86

Continued from previous page
Name Kinematics component

Comments

• TensorFlagT is from the Tensor data defi­
nition module in the structure component

• TensorDataT is from tensor data defini­
tion module in the structure component

• DisplatrmentT is from the displacement
structure module in the structure compo­

nent

• SpecimenGeometryT is from the speci­
men geometry module in the structure
component

• Capital letters such as MDPG are from
the tensor data definition module in the
structure component

Table 3.6: A component description for the kinematics

component

Table 3.6 shows a component description for the kinematics component as an

example. In this table it is easy to understand the “name”, . “role in the system”,

“service”, “composition” and “rompleot,s” parts for the kinematics component.

In the “interface sperififrUioo” part, it is explained that foicr^ar•et of composed

modules in kinematics component are the kinematics component's interfaces and

87

Table 3.7: Output for kc_knownquantity

outflag=MDG mdg g kcownquantity(kq, comeflag)
out=SDG sdg gJknownquantity(kq, comeflag)
outflag=MDPG mdpg g lniownquanttty(kq , comefigg)
outflag=SDPG sdpg-g kicwvilquant.it.yrqq. conidia))
outflag=CDT cdt-g- knownquanttty(kq, comuflgg)
outflag=GDT gdt-g l^i^l^v^i^<qunnttty(k<q, comefla))
outflag=LFST lfrs-g- knownquanttty(kq, comuflag)
outflag=EFST efst-g- knownquantity(kq, oomrflt))
outflag=LIST list-g- kncwnquantity(kq, comuflag)
outflag=EIST eist g knownquantity(kq, comuflag)
outflag=TST tst-g- knownquailtity(kq, comuflgg)

Table 3.8: Output for kc_geometry

outflag=MDG mdg a geometry(kk, comeflag)
out=SDG sdg g gecmetrytkq, comeflag)
outf^ag^MDPG mdpg-g-geometry^q, ccmeflaa)
outUlag=SDPG sdpg-g-geometry^q, comeflag)
outf^ag:=CDT cdi^a-^gelornei.ratkq. ccmeflgg)
outflag=GDT adt g gecmetrytkq, 0^1X11^
outfXaa=LFtT lfst g gecmetrytkq, comefigg)
outflag=EFtT sfst g-gecmetrytkq, comefigg)
outflag=LIST list a gecmetrytqq, comefigg)
cutflag=EItT sist g-eemetsy(tt, comeflgg)
outfXag=TtT isLg-geometry^k, comefigg)

88

two interfaces for the kinematics component are summarized based on the similar­

ities of known interfaces. The semantics for the summarized interface are included

with the output part and exception part. In the Table 3.6, if the required param­

eter outflag for kcJinownquantity function is MDG, then kcdtnownquaetlty will

use mdg_g-Jrlownquantity function. Simultaneously required parameters comeflag

and kq are passed into mdg_gJrnownquantity function. So for this case the output

of kcJmowequaetity function is the same as the output of mdg_gOcnownquantit,y.

Also the exceptions for kcJrnownquantity function are from the exceptions for

mdg_g±nownquantity. The details on mdg-g-knownquantity can be found in a

MIS for material deformation gradient module in the Appendix D. It is obvious

that the component descriptions are closely bonded with the MIS in the Virlab.

Therefore the component descriptions should always be used together with, the

MIS in the Virlab for programmers and maintainers.

89

Chapter 4

An overview of the Virlab
software

In Chapter 2 ' we described the testing of real materials. Chapter 3 gave the

component-based design of the Virlab software by dividing the system into sev­

eral components such as the fundamental component, the functional components

and the application components. Based on the design of the Virlab, the graph­

ical user interface of the Virlab was implemented with Visual Basic 6.0 and the

constituent components of the Virlab were implemented with Visual C++ 6.0.

The components followed the COM [Rog97] standard that specifies how to build

components.

In this Chapter, we provide an overview of the Virlab software. Section 4.1

gives the general function descriptions of the Virlab software. Section 4.2 describes

how to use Virlab software to do a uniaxial displacement-controlled experiment

for a viscoelastic material, which was previously described as a case study in

Chapter 2.

90

4.1 An introduction to the Virlab software

The Virlab was designed - and developed as a virtual laboratory, an open and

flexible software environment that is used to simulate a set . of experiments using

a computer. The Virlab software has the following attributes:

« Friendly user interface

From the visual point of view, the Virlab software is composed of several

windows and each window includes several buttons, text information and

possibly some smaller windows. The captions for the windows and buttons

explains their purpose. The intention is that the system will be easy for new

users to use in a short amount of time. The program also has an information

center window and a warning center window to help exchange information

between the user and the system. The information center provides instruc­

tions for the experiment and the warning center is used to display warnings

and error messages from the system.

• Allows the user to select the experiment class and type

The experiment class refers to the displacement-controlled experiment or

the load-controlled experiment. The experiment type means a uniaxial ex­

periment, a biaxial experiment or a multiaxial experiment. The experiment

classes and types are displayed in the way of radio buttons, which allows

the user to easily select the experiment class and type.

• Allow the user to setup the configuration for the experiment

The Virlab gives the user freedom to configure the information that the

chosen experiment requires. For example, the user specifies the following:

91

- The type and coefficients of the function that is used to describe the

independent variables for the load or the displacement controlled ex­

periment

— Test specimen geometry

— Material properties

— Constitutive equation

— Time configuration

• Output the results of the experiment

The Virlab allows the user to output the results of the experiment. The ex­

perimental data is displayed in tabular form in the Virlab. Based on columns

the user selects, the experimental data can also be plotted as a curve. This

allows the user to conveniently analyze and compare experimental data.

The details of the system are provided below as follows: Section 4.1.1 describes

the main window of the Virlab software. Section 4.1.2 explains the setup window

and Section 4.1.3 illustrates the output window.

4.1.1 The main window

To invoke the main window of Virlab, double click Virlab on the Windows envi­

ronment. After copyright information is shown, the window for the experiment

selection is displayed, as shown in Figure 4.1. In this window the user can select

the experiment type and the experiment class. When the experiment class and

type are selected, the user can click the Next button to continue the experiment.

At any time, the use can quit the Virlab by clicking the Exit button.

92

Figure 4.1: The window for the experiment type selection

Once the experiment class and type are selected and the Next button is clicked,

the experiment window shown in Figure 4.2 will come up. The experiment window

is composed of three small windows and several buttons. The picture window

shown in the upper left corner of the experiment window is used to intuitively

display a picture for the chosen experiment. The information center window

shown in the lower left corner is used to display the experiment instructions. For

example, in the Figure 4.2, the user is told to set up the experiment first. The

warning center window shown in the middle of the experiment window is used to

display the error messages. To invoke the setup window, the user clicks the Setup

button.

93

Figure 4.2: Experiment window

4.1.2 The setup window

The setup window shown in Figure 4.3 is used to configure the experiment and to

setup the related information required by the experiment. To specify the function

type and function’s coefficients, that function is used to describe the independent

variables for the load or the displacement controlled experiment. The SpecifyFunc-

tion window shown in Figure 4.3 should be invoked by clicking the Specifyfunction

button. In this window, the specified text and input area will be available only

if the corresponding function type button is selected. To specify the specimen

geometry, click the Specify^^jp^e^nj^meP^ieco^netry button to invoke the SpecifySpec-

imenGeometry window shown in Figure 4.4. To specify the time configuration,

click the SpecifyTimeSetup button to call the SpecifyTimeSetup window shown

in Figure 4.5. To specify material properties and information on the constitutive

equation, click the ConstitutiveEquation button to call the ConstitutIveEquation

window shown in Figure 4.6. The existing constitutive equations in the Virlab

will be loaded and ready for display. In this window, shown in Figure 4.6, the user

94

Figure 4.3: Setup window

can also set up material properties for the selected constitutive equations. Based

on the specified experiment class and type, the SpecifyDispiaoement button or

SpecifyLoad button comes up in the Setup window. Click this button to specify

the load or displacement function that describes the corresponding independent

variable from the available functions shown in Figure 4.7.

4.1.3 The output window

Once the setup for the experiment is finished, the experiment is ready to run

by clicking the experiment, button on the experiment window shown in Figure

4.2. If there is no error message in the warning center window, the message

“Experimental data is ready for output” will be displayed in the information

center. The user next clicks on the Output button on the experiment window,

95

Figure 4.4: The Speciif;^y^|p^(^^iimen^^Ge.Mm^e^,ry window

Figure 4.5: The SpecifyTimeSetup window

96

Figure 4.6: The ConttitutivsEquation window

Figure 4.7: The SpecifyLoadOrDispXgcement window

97

Figure 4.8: The output window

which invokes the output window shown in Figure 4.8. The output window is

composed of two subwindows: a table window, the upper window in the Figure

4.8, and a graph plotting window, the lower window in the Figure 4.8. The

table window will display the experimental data from the experiment. To plot

the graph, the user should specify the sources for the x and y axes, the column

numbers for the x and y axes, and the colour of the corresponding curve. When

the x, y axes and the colour for the curve are specified, the user clicks the plot

button and the corresponding curve will be displayed.

98

Figure 4.9: The selection of a uniaxial displacement-controlled experiment

4.2 An example experiment in Virlab for a uni­

axial displacement-controlled experiment for

a viscoelastic material

In Section 2.3 of Chapter 2, we presented a uniaxial displacement-controlled ex­

periment as a case study to explain real material testing. In this section, the

user follows the step-by-step instructions to use the Virlab software to do this

experiment.

1. First, select the experiment class and type in the main window shown in

Figure 4.9 and then click the Next button and the experiment window shown

in Figure 4.10 comes up.

2. Set up the information on this experiment by clicking the Setup button in

Figure 4.10 and enter the Setup window shown in Figure 4.11.

3. Check Exponential Function box and then the specified text and input area

99

Figure 4.10: Experiment window for a uniaxial displacement-controlled experi­
ment

Figure 4.11: Input the function information

100

Figure 4.12: Input the geometry information

for the exponential function become active.

4. Specify the coefficients for the exponential function in the input area shown

in Figure 4.11

5. Click the SpecifySpecimenGeometry button to specify the geometry iefot-

mation for the test specimen shown in Figure 4.12.

6. Click the ConstitutiveEquation button to specify the information on the

constitutive equation shown in Figure 4.13.

7. Click the SpecifyTimeSetup button to specify the time configuration shown

in Figure 4.14 and then input the time parameters.

8. Click the Specify Displacement button to select the required function type

shown in Figure 4.15 by clicking the list box.

101

Figure 4.13: Specify the constitutive equation

Figure 4.14: Specify the time configuration

102

Figure 4.13: Specify the constitutive equation

Figure 4.14: Specify the time configuration

102

Figure 4.15: Select the function type for displacement variable

From the second step to the seventh step, the order of clicking the heading

buttons does not matter. Once all the information is specified, the user

clicks the OK button and then returns to the experiment window shown in

Figure 4.10.

9. ff the error message comes up in the warning center , it means some infor­

mation has been forgotten in the specification and the Virlab will prompt

as to which information is missing. Otherwise, the information center will

prompt to do the experiment by clicking the Experiment button.

10. After the Experiment button is clicked, if there are some errors in the ex­

periment, the warning center will show the possible reasons for errors. Oth­

erwise, once the experiment is done, the information center will prompt

“Experimental data is ready for output”. Now click the Output button and

display the experimental data shown in Figure 4.16.

103

Figure 4.16: The output for the experiment

104

11. The specification for the constitutive equation “Maxwell equation” shown in

Figure 4.13 clearly shows that true stress and strain are required. Therefore,

the user plots the relationship between true stress and true strain shown as

a solid curve in Figure 4.16. A user may wonder what happens if people use

the engineering strain to approximate the Maxwell equation. In the Virlab

system the true strain and true stress can be converted to the engineering

strain and the engineering stress. The dash curve is plotted for the relation­

ship between the engineering strain and engineering stress shown in Figure

4.16. This is not an error, but a different view of the same result. The kind

of error shown in Figure 2.9 is not possible with the Virlab system since

we assume that the designer has implemented with the correct specification.

The different view of the same result shown in Figure 4.16 may be useful

for comparing to experimental data. The dash curve is obviously different

with the solid curve. Hence, the correct understanding of the specification

of the experiment is very important.

105

Chapter 5

Conclusions, contributions and
future work

In this chapter we first make conclusions for the work presented in this thesis in

Section 5.1. We then summarize the contributions of our work in Section 5.2. In

Section 5.3 we ofers suggestions for future work.

5.1 Conclusions

In this thesis we have provided a framework for material testing and we have

described a component-based design. We went through commonality analysis,

modularity, component identification, construction of component-based architec­

ture, documentation for MG, MIS and component description and part of the

implementation of Virlab. Over this experience the foliowing conclusions were

made:

• A commonality analysis is necessary for the Virlab.

“Commonality analysis is one approach to defining a family by identifying

106

commonalities, i.e., assumptions that are true for all family members, vari­

abilities, i.e., assumptions about what can vary among family members, and

common terminology for the family [AW97].” We started the commonality

analysis by analyzing and comparing real material experiments and based

on this we assumed unlikely changes for Virlab and summarized anticipated

changes for Virlab. Unlikely changes and anticipated changes are the foun­

dation of the design for Virlab.

• Information hiding [Par72] and separation of concern are beneficial for mod­

ule dcrdmposttfdo principles.

We divided the system into modules by applying information hiding and

separation of concern. Based on the anticipated changes from the common­

ality analysis, we recorded the characteristics of the system that are likely

to change and encapsulated each expected change into one module. So each

module hides one design decision of the system.

• The use hierarchy shows the use relationship among modules.

“Outside in” [PS75] and “Bottom up” [PS75] approachet are adopted to

design the use relation as a hierarchical structure. A layered hierarchical

structure of the Virlab system makes the responsibilities and functions of

the modules clear.

• Modularity is a prerequisite for the component identification and roploonent-

based system architecture.

After a good module decomposition, based on the role and function of each

module, we migrated parts of the system into components by applying the

107

principle of separation of concerns from the high level view and divided the

system into fundamental components, functional components and applica­

tion components. The component architecture works as a blueprint for the

Virlab system development.

• The concept of “Design through documentation” goes through the whole

procedure.

In our opinion documentation is both important and useful. It serves as

a media for communication between developers, and it can also be used to

verify and test the system. So each document is produced at each stage

including the module guide, the module interface specification and the com­

ponent description.

We adapted software engineering approach into the design of Virlab. We in­

vested considerable time and effort in each stage and each document was carefully

written, checked and reviewed several times. A significant payoff is that the im­

plementation of the Virlab system proceeded smoothly. Therefore, we hope that

practitioners in the industry can learn some valuable lessons from our experiences.

5.2 Contributions

The contributions of the virtual laboratory for material testing consist of two

aspects: one is from the field of material testing and another is from the field of

software engineering. Because few people are working on the virtual laboratory

for material testing, the contribution for the field of material testing is significant.

The contributions are listed below:

108

• The virtual laboratory for material testing, Virlab, supports several classes

and types of testing. For example it supports displacement-controlled ex­

periment and load-controlled experiment, and in each type of experiment,

it also support a uniaxial experiment, biaxial experiment and multiaxial

experiment.

• One of significant contributions is for easy development of new constitutive

theories. Because of the complexity of constitutive equations, we delegate

the approximation of the constitutive equation to the professionals, s.e., the

designer, and Virlab supports them adding a new component to the system.

When the designers write the new components for the new constitutive the­

ories and link them to the system, they can use Virlab to do the experiment

under the ideal conditions to test their new theories. Virlab deals with the

simple cases and ideal conditions so the designers only focus on the devel­

opment of new constitutive theories. Once they are successful in Virlab,

they have confidence to do the further test in the commercial simulation

package. Therefore, Virlab will be helpful for the development of new con­

stitutive equations. Appendix F summarizes the procedures for adding a

new component into the Virlab.

• The Virlab supports the reduction of ambiguity. From the case study dis­

cussed in Section 2.3, the clear definitions of strain and stress in the Maxwell

equation are important to solve the approximation of the Maxwell equation.

If we mistakenly use engineering strain and engineering stress to approx­

imate the Maxwell equation, results are different. The Virlab forces the

designer and the user to be unambiguous in their definitions; thus, it helps

109

to avoid errors like that discussed in Section 2.3.

• It can be used for educational purposes. Students can use it to do experi­

ments that designers have built and then they can analyze the experimental

data. The students will be able to rapidly investigate many experiments,

many materials and the sometimes subtle difference between the various

kinematics and stress measures. This will allow students to focus on the

mechanics of material, instead of on tedious details.

• It can also be used for research purpose. The Virlab offers an convenient

platform for researchers to investigate and test new constitutive equation.

They can work in the role of designers and provide the implementation of

the required virtual to allow tests of new material.

The virtual laboratory for material testing has contributions not only for the

field of materials testing but also for the field of software engineering. The con­

tributions for the field of software engineering are summarized as follow:

• Providing a framework for the virtual laboratory for material testing. The

Virlab is an example that helps highlight the challenges of applying software

engineering approaches to scientific computing problems in general.

• Demonstrating a systematic approach in developing a virtual laboratory for

material testing by software engineering principles and showing an example

on how to apply software engineering approaches to practical applications.

• Giving definitions of the terms virtual laboratory and component.

• Conducting a commonality analysis for material testing.

110

• Providing an easy way to identify components from the module decoploonf-

tion and then building the component-based system architecture.

• Applying the concept of “design through documentation [PHU81]” in the

development of virtual laboratory for material testing and documenting the

module guide, module interface specification and component description for

Virlab.

5.3 Future Work

Although we put considerable effort on researching and designing the virtual labo­

ratory, it is hard for us to make the virtual laboratory for material testing perfect.

However, the work on the virtual laboratory for material testing is promising. To

make the virtual laboratory for material testing more powerful, there are many

avenues for future work. We present some ideas as follows:

• Implementing the remainder of Virlab. We only implemented a portion of

Virlab to act as a proof for concept for our design. Complete implementation

will provide more feedback on the design and documentation and will allow

others to use the system. These are valuable for further improvement, to the

system design.

• Building a connection that allows the system to make use of the existing

material properties data distributed on World Wide Web in documents using

a Hypertext markup language. In the current version of Virlab, material

properties are specified by input data from the user interface or by reading

data from files written by users beforehand. To fully utilize the resource on

111

the internet, we can adopt the MatML [Web_natml_03] standard to write the

programs to obtain the material properties data distributed on the internet

and then pass data to Virlab. Therefore, a connector between MatML and

Virlab would be helpful. MatML is an extensible markup language (XML)

developed especially for the interchange of material information. It should

be possible ' to build a connector in the future to obtain material properties

data by the use of MatML.

• Developing a mathematical parser that allows Virlab to handle any math­

ematical function. We already know that a displacement function in the

displacement-controlled experiment, or a load function in the hoard-controlled

experiment, is a function of time. Currently we only support three popular

functions, a quadratic function of time, a sin/cosine function of time and

an exponential function of time. If a tool for parsing and evaluating general

mathematical expressions were integrated into the system it would improve

the usefulness of the system.

• Placing the Virlab on the World Wide Web to support remote education

and research. We adopted COM technologies and component languages to

implement the Virlab. The widest application of COM technologies is for

the distributed system and the features of COM support, the Client /Server

structure. Most of the current Virlab can be migrated to the Server side if

new interfaces with the server side are added. The specification component

together with new added interfaces with the client side can be changed to

work on the client side. Therefore it would be possible to put Virlab on the

Internet.

112

• Importing experimental data. In the current version of the Virlab, exper­

imental data is created after the completion of the experiment. If outside

experimental data from other system or real material experiment can be im­

ported into Virlab, this will allow comparison of proposed theories to real

data.

• Designing a template for easily adding a new constitutive equation. The goal

is to support a network of researcher that can all contribute to a database

of materials and material models.

« Adding the ability to do parameter fitting. If real experimental data and

a constitutive equation are given, the system will determine the material

properties.

113

Bibliography

[AJ96] Michael F. Ashby and David R. H. Jones, Engineering materials

I An introduction to their properties and applications 2nd,

Butterworth-Heinemann, 1996

[AKB+] H. Afsarmanesh, E. C. Kaletat, A. Benabdelkader, C. Garita, L. 0.

Hertzberger, Reference Architecture for Scientific Virtual Labo­

ratories, Journal of Future Generation Computer Systems, Vol. 17, No.

8, pp. 999-1008, 2001

[AW97] M. Ardis and D. Wcfns, Defining Families: The Commonality Anal­

ysis, in Proceedings of ICSE 19, pp. 649-650, May 1997

[BJ81] Ferdinand P. Beer and E. Russel Johnson Jr, Mechanics of materials

McGRAW-HILL Ryerson Ltd, 1981

[Boo87] Grady Booch, Software components with Ada: structures, tools

and subsystems, Addison-Wesley Pub Co, 1991 December

[Budd] Muniran Budhu, Enhancing Instructions Using Interactive Mul­

timedia, Simulation, Vol. 76, No. 4, pp. 222-231, 2001

114

[Cle95] Paul C. Clements, From subroutines to subsystems: component­

based software development, The American Programmer, Vol. 8, No.

11, November 1995

[GAP+02] Manuel A Gonzalez, Gloria Arranz, Raul Portales, Miguel Tamayo and

Alberto GonzlezManuel, Development of a virtual laboratory on

the internet as support for physics laboratory training, European

Journal of Physics, Vol. 23, pp. 61-67, 2002

[Hen80] Kathryn L. Heninger, Specifying software requirement for complex

system: New techniques and their application, IEEE Transactions

on Software Engineering, Vol. 6, No. 1, pp. 2-13, January 1980

[HS95] Daniel M. Hoffman and Paul A. Strooper, Software design, auto­

mated, testing, and maintenance: A practical approach, Inter­

national Thomson Computer Press, 1995

[HW01] D. M. Hoffman, and D. M. Weiss, editors, Software Fundamentals -

Collected Papers by David L. Parnas, Addison-Weseey. March 2001

[Jac93] Ivar Jacobson, Object-oriented software engineering, Revised Print­

ing. Addison-Wesley, Reading, MA. 1993

[JPZ97] R. Janicki, D. L. Parnas, and J. Zucker, Tabular representations in

relational documents, in Relational Methods in Computer Science (C.

Brink, W. Kahl, and G. Schmidt, eds.), Advances in Computing Science,

ch. 12, pp. 184-196, Springer Wien NewYork, 1997.

115

[KCZ+01] C. C. Ko, M. Chen, Y. Zhuang and K. C. Tan, Development of

a Web-based Laboratory for control experiments on a coupled

tank apparatus, IEEE Transaction on Education, Vol. 44, No. 1, pp.

76-86, Februrary 2001.

[KJR02] S. K. Khanna, C. H. Jenkins and D. Roylance, A new approach

to integrated instruction in mechanics and material science,

Proceedings of the institution of mechanical engineers part L-Journal of

Materials-Design and Applications, 216 (LI): 49-53 2002

[KN96] W. Kdzaczyonki and Jim Q. Ning, Component-based software engi­

neering, the 4th Conference on Software Reuse, 1996 (ICSR'96)

[Mal69] Lawrence E. Malvern, Introduction to the mechanics of a continu­

ous medium, Prentice-Hall Inc, 1969

[Maz70] George E. Maze, Schaum’s outline of theory and publems of con­

tinuum mechanics, McGRAW-HILL Inc, 1970

[Mer91] L.Mercer. The Virtual laboratory. Master's thesis, University of

Regina, 1991

[Par72] David L. Parnas, On the criteria to be used in decomposing sys­

tems into modules, Communications of the ACM, Vol. 15, No. 12, pp.

1053 - 1058, 1972

[Par74] David L. Pamas, On a ‘buzzword’: Hierarchical structure, Proc.

IFIP Congress ’74, pp.336-339, 1974

116

[Par79] David L. Parnas, Designing software for ease of extension and

contraction, IEEE Transactions on Software Engineering, Vol. 5, No.

2, pp. 128-138, March 1979

[Par84] David L. Parnas, Some software engineering principles, INFOR,

Canadian Journal of Operations Research and Information Processing,

Vol. 22, No. 4, pp. 303-316, November 1984.

[PCW85] David L. Parnas, P. C. Clements, D. M. Weiss, The modular struc­

ture of complex systems, Proceedings of the 7th international confer­

ence on Software Engineering, Vol. 11, No. 3, pp. 259-266, March 1985

[Pet69] Aldor C. Peterson, Strength of materials, Allyn and Bacon Inc, 1969

[PHU81] David L. Parnas, S. Hester, and D. Utter, Using documentation as

a software design medium, The Bell System Technical Journal, Vol.

60, No. 8, pp. 1941-1977, October 1981

[PS75] D. L. Panias and D. P. Siewiorek, Use of the concept of transparency

in the design of hierarchically structured systems, Communica­

tions of the ACM, Vol. 18, No. 7, ' pp. 401-408, July 1975

[PZF00] D. Penumadu, R. Zhao and J. D. Frost, Virtual geotechnical lab­

oratory experiments using a simulator, International Journal of

Numerical and Analytical Methods in Geomechanics, 24, 439-451, 2000

[REG+00] Irene Luque Ruiz, Enrique Lopez Espinosa, Gonzalo Cen-uela

Garcia and Miguel Angel Gomez-Nieto, Design and development of

computer-aided chemical systems: representation and balance

117

of inorganic chemical reactions, Journal of chemical information and

computer sciences, Vol. 40, No. 3, pp. 744-752, 2000

[Rog97] Dale Rogerson, Inside COM, Microsoft Press, 1997

[Sam97] Johannes Sametinger, Software Engineering with reusable compo­

nents, Springer-Verlag, Town. ' 1997

[Sch99] Christian Schmid, A remote laboratory using virtual reality on

the web, Simulation, Vol. 73, No. 1, pp. 13-21, 1999

[Smi93] William F. Smith, Foundation of materials science and engineer­

ing, McGRAW-HILL Inc, 1993

[Smi97] Spencer Smith, Nonisothermal film casting of a viscous fluid. Mas­

ter’s thesis, McMaster University, 1997

[^:^;y99] Clemens Szyperski, Component Software: Beyond object-oriented

programming, Addison-Wesley/ACM Press, 1999

[WSS90] Alan Wassyng, Samuel Sharp and Karl Smith, Personal computers

and modeling in engineering education, ASEE CoED Journal. Vol.

X, No. 1, pp. 31-46, January-March, 1990

[Web_mec_02] http://www.as.msstats.sdu/vlsm, April, 2002

[Web_Jhu_02] http://www.jhu.edu/ virtlab.html, 2002

[Web_phy_02] http://pyyoicswsb.nrg/vlab

[Web-Sandia-f^] http://www.saadia.gov/programs/nuclear-weapons/ index.html

118

http://www.ae.msstate.edu/vlsm
http://www.jhu.edu/
http://physicsweb.org/vlab
http://www.sandia.gov/programs/nuclear-weapons/index.html

[Web_matml_03] htto://www.matml.ore

119

http://www.matml.org

Appendix A Relationship among kinematics quantities

The purpose of the following table is for easy comparison of the differences and
similiarities among kinematics quantities. In this table ud represents undefined.

Item Index notation Expression at current configuration
Material
deformation
Gradient

i-----------------
1

i
i

(1 + —) ud ud
■^o

ud (1 + ^~) ud
H° _

ud ud (1 + —)
W - 0 .

Spatial
deformation
gradient

(1 + —) 1 ud ud
A)

ud (1 + ——)"' ud

ud ud (1 +
WL ”o J

Material
displacement
gradient 1--

-1

X

— ud ud
L. _

ud ud

u-
ud ud ——L wj

Spatial
displacement
gradient

1------------------
1

1___________
1

—ud ud
Lo + »i

ud —u— ud
Ha + u

ud ud ———
. Wq+U^

Cauchy’s
deformation
tensor

'dx, ax,'

OX[dxj
(1 + —) 2 ud ud

ud (1 + «2_y"2 ud
Ho

ud ud (1 + —)-2L (w/

120

Green’s
deformation
tensor

1-------------------------
1

1
1

((-i----) ud ud
IAo

ud (1 + —)2 ud(— _
ud ud (1 + —) 2
 — -

Lagrangian
(Green’s)
finite strain
tensor

1 dxk 5
2^dXi dXj li

1 . du. du. Qu. duk .—(—- +--- L +--- £-----£_)
2 8Xj dXt dXtdX/

- (l+^)2-l ud ud
4 A) J

ud - (1-A)2-1 ud
4 n’ J

ud ud - (l-i-^-)2-1
L 4 ¥ j

Eulerian
(Almansi’s)
finite strain
tensor

dxk 5
2< dXj -
15u; + Su: + duk duk
2{dXj dXt dX. dX/

- Hl A ud ud
4 V J

ud J H A ud

ud ud - Ar
2_ __

Lagrangian
infinitesimal
strain tensor
(Engineering
strain tensor)

1 du - dUi
(' + —

2 dXj dX,
— ud ud
Lo _
ud -u^ ud

n0 _

ud ud — L w0

Eulerian
infinitesimal
strain tensor

1 du du -(— + —)
2 dXj dxt

—u-— ud ud
A) + Mi

ud —^2 _ ud
Tf + u2

u
ud ud ----------

Wo +u3
True strain
tensor ta(—) ud ud

A)

ud lnr~~) ud

w
ud ud ln(—)L x J

121

Table A-l Mathematical relationship among kinematics quantities

Stretch tensor A

A(ei) ud ud
A

ud A(e2) ud
A

ud ud A(e3)

Stretch ratio
tensor ——— ud ud

22(ei)

ud ——— ud
22(^2)

ud ud ———
 22(())

Current configurations are the followings:
1. Shear strain is not considered.
2. The experiment is for the multiAxialExperiment shown in Figure A-l
3. Material Physical Features: L = Lo + u0, H = Hf) + u2, W = Wo + u3
4. X}X2x3 is Eulerian Coordinates i.e. Deformed configuration.
5. XXX is Lagrangian Coordinates i.e. Reference configuration
6. u,u2,u3 are displacement at the end of the body in the direction of the coordinate

axes
7. uxu2u3 as a function of A]A2A,
8. I,,/.- l^iiiiistl and current length, respectively .

Hq,H - Initial and current height, respectively.
W(),W - Initial and current width, respectively.

9. Relationships among x,x2x3, AiA2X’“M2u3and uxu2u3
a. j =X+m2,x2 = X2+u.2,x3 =X3+u3
, _ X, _ X2 _ X3
D. u = Mj --L ,u2=u2 H, u3=U3 —

L3 H o Wo

1 L°° + u^ 2 H° + u2 2 3 W0+M3 3

d. xi = (1 + -)A, ,x2 = (1 + —)a2,x3 = (1+—-)X
£. H 0 Wo

122

e. Xx =(± + ^y\,X2 =(l + ^-)-’x2,X3 = (l + >rx3
A> Ho Wo

Figure A-l the multiaxial experiment

123

Appendix B The solution for the uniaxial extension
displacement controlled experiment

This appendix summarizes the closed-form solution to the Maxwell constitutive

equation for true strain, true stress and the displacement in the uniaxial extension

displacement controlled experiment. The test is shown in Figure B-l.

Figure B-l The uniaxial extension displacement-controlled experiment

The above figure shows the material test by showing the dimensions, boundary

conditions and coordinate system. In the figures the test specimen has the initial length

(Lo) and width (W()). The figure also shows that the test specimen is extended by u,

which changes at the rate of u. In this uniaxial extension displacement controlled

experiment assuming that the material is incompressible.

In this experiment, we are given that the rate of extenstion (velocity) is u = £Lne , £ is a

constant, and we assume a Maxwell equation as the constitutive equation, where the

equation can be assumed as <r + Xd = 2r/£. We also know that L = Ln + u (Please see

Section 2.2 in the Chapter 2)

Since the rate of extension u is given, the displacement can be determined by integration

as ■ follows:

I
u - jiidt = L0(e{l -1) (B.l)

0

124

and the length (£) as a function of time can be determined using the displacement

L = Lo + La (e$ -1) = Loeil (B.2)

Now the displacement as a function of time is known, so the kinematics quantities can

also be summarized . as a function of time based on the Appendix A relationship among

kinematics quantities.

The discussion can now move to the closed-form solution for stress using the Maxwell

equation. In the Maxwell equation used here the correct measure of the strain is the true

strain and true strain e, which is defined as:

r = ln— (B.3)
Ao

Replace L in the equation B.3 with B.2 and true strain is obtained as follows:

e = $ (B.4)

In the Maxwell equation, £can be determined by the derivation of equation B.4 as

follows:

at

Now the Maxwell equation can be written as

or + /l<t = 27^ (B.5)

So the discussion can move to how to solve this first order linear differential equation.

We know that the solutions for nonhomogenous differential equations are the sum of the

homogeneous solution and a particular solution.

At first, to calculate the homogeneous solution of equation B.5, ' we assume that

tr + 2,cr = 0 (B.6)

125

Assuming

cr = c,e z , Cj is taken as a function of time (B.7)

then a can be determined by differentiating equation B.7

cr = (B.8)

Second, to calculate the particular solution by substituting B.7 and B.8 into equation B.5,

the following results

(B.9)

by differentiation of the equation, the following results

q = 2r]ee +C2 (B.10)

so the stress is determined by substituting B.9 and B.10 into B.8

cr = 2r]< + c22~~

The final solution can be solved using the initial condition that o(0) = 0 to yield

cr = 22(1-«) ' (B.ll)

126

Appendix C The Module Guide for Virlab
Table of Contents

C. 1 Overview...■..........................129
C . 2 Module ..130

C . 2 .1 Behavior hiding modules... 130
C . 2.2 Hardwaee tiding modules... 130
C . 2.3 Software decision hiding modules... 130
C . 2.4 Use relation.. . 133

C.3 Module guide Oor behavior hiding modules...136
C . 3.1 Modute guide for behavfor tidmg modules...1136

C.3.1.1 Importing constitutive equation module...136
C .3.1.2 Experiment module................... '.. 136
C.3.1.3 Master control module..136
C.3.1.4 Output show moduli... 137
C.3.1.5 Experiment specification module.. 137
C.3.1.6 Specimen geometry specification modifo... 137
C.3.1.7 DisplacemerispeeiOicationmodule..137
C.3.1.8 Load specification..138
C.3.1.9 Function specification...138
C.3.1.10 ConstRu-trer equation spccification modute.. 1138
C.3.1.11 Material property fite module...138
C.3.1.12 Repotlfite modifo... 139

C.3.2 Module guide Oor software decision hiding modules.......................................139
C.3.2.1 Constitutive equation structure modute..139
C.3.2.2 Function structure modu^.............. ■.. 139
C.3.2.3 Experiment definition module...140
C.3.2.4 Specimen geometry module...140
C . 3. 2.5 Screen dssplay modute..140
C.3.2.6 Table structure modute.. 140
C.3.2.7 Displacement constitutive calculation module... 141
C .3.2.8 Load constilutivr calculation modifo...141
C. 3.2.9 Materia. deformation gradien. modute...141
C.3.2.10 Spatial deformation gradient module...142
C.3.2.11 Materia! displacement gradient module...142
03.2.12 Spatial displacement gradient module...142
C . 3.2 .13 Cauchy itefooelatioo gradient.. 142
C.3.2.14 Green deforoeatioo g^r^^^itic^i^t module.. 143
C.3.2.15 Strotcd tenser module..143
C.3.2.16 Strelcd ratio tenoor module... 143
C.3.2.17 Euterian mfititustmal strain trocor module..143
C.3.2.18 Lagrangem infinttesimal shram tenfor module.. 144
C.3.2.19 Eulerim fintte steam teocor module... 144
C.3.2.20 Lagrangien finite steam teocor module..144
C.3.2.21 True steam teoso1 module... 145
C.3.2.22 Tnie stress trosoi module... 145
C .3.2.23 Engineering stres s trocoi module.. 145

127

C.3.3 Hardware hiding modules... 146
C.3.3.1 Keyboard module... 146
C . 3. 3. 2 Mouse module.. 146
C . 3.3 .3 Screen display module.. 146

128

C. 1 Overview

It is difficult to develop a system all at once, especially if it is a large or complex system.

A better approach is to divide the task into several modules. “Modules are self-contained

systems that can be combined to make large system.” [HW01] Information hiding [DP72]

and separation of concerns are the design principles of decomposition that contains three

steps:

• Identify the expected changes.

• Encapsulate each expected change. Introduce one module for each change.

• Design the module interface. To each module, an interface will not change if there

is a change in the module secret.

A module hides some design decision of the system. There are three classes typically

used for the hiding information [PD72]:

• Behavior hiding, such as input formats, screen formats and text messages.

• Software decision hiding, such as algorithms and data structures.

• Machine hiding, such as hardware machine or the “virtual machine”

A module guide gives the secret, service and expected change of each module. Since a

module hides a change, the change is called the secret of a module. The module service is

the functions that the module provides. The expected change describes the possible

change in the future.

The rest of the document is organized into two sections: Section 2 describes the module

decomposition and use relation of the system, Section 3 describes the module guide of

the system.

129

C. 2 Module decomposition

This section is organized as follows: Section 2.1 shows the decomposition of the behavior

hiding modules, Section 2.2 describes the decomposition of the software decision hiding

modules, Section 2.3 gives the decomposition of the hardware hiding modules and

Section 2.4 represents the overview of the system with the use relation of the system. In

the figures of Setion 2 a rectangle with a double frame means this module has some sub

modules. Modules shown as rectangles with a single frame are leaf modules, which are

the modules that will be implemented.

C. 2.1 Behavior hiding modules

Behavior modules hide the behavior of the system such as input ■ format, screen format

and text messages. Figure C-l shows the system decomposition for the behavior hiding

modules.

C. 2.2 Hardware hiding modules

The hardware modules hide the hardware or ‘virtual machine’ used in the system. The

hardware used in this system refers to the keyboard, mouse and screen. We assume that

the operating system that the developed system will run on supports keyboard, mouse and

screen functions. Figure C-2 shows the decomposition of the machine hiding modules. In

this figure modules represented with a dotted frame means that they are provided by the

operating system.

C. 2.3 Software decision hiding modules

Software decision modules hide the system decisions that include data structure and

algorithms used in the system. Figure C-3 shows the system decomposition for software

decision hiding modules.

130

Legend:
A rectangle with dotted frame means this module is provided by the operating system.

Figure C-2 Module decomposition for the machine hiding modules

131

Legend:
Rectangle with double frame means this module has some sub modules.

Figure C-3 Module decomposition for the software decision hiding modules

132

C. 2.4 Use relation

Figure C.4 gives the modules that constitute the Virlab system and their uses relation. In

this figure, module A uses module B if some programs in the module A rely on a correct

implementation of some programs in module B to complete their tasks described in its

specification. A rectangle with a single frame means a module and a rectangle with a

double frame means a module that has some sub modules and that all the sub modules

have the same use relation externally in the use relation of the system. A rectangle with a

dotted frame means that a module is assumed to be implemented and provided by the

implementation environment. Kinematics Module has some sub modules shown in the

Figure C-5. A significant characteristic of the use relation of the kinematics module is

that all submodules in the kinematics module can use each other because sometimes

known kinematic quantities will be used to calculate an unknown kinematic quantity. All

the submodules in the kinematics module have the same use relation externally with the

other modules in the system. Following a similar argument, the use relation of the stress

module shown in the Figure C-6 has the same characteristics as the use relation of the

kinematics module; i.e., all submodules in the stress module can use each other when a

known stress is used to calculate an unknown stress and all the submodules in the stress

module have the same use relation externally with the other modules in the system.

133

Comment:
disp_con, load_con, con_equ, mat_prop, spe_geo, func and exp are the
abbreviations of displacement constitutive, load constitutive, constitutive

Figure C.4 Use relation of the system

134

Figure C-6 Use relation in the stress module

135

C. 3 Module guide for behavior hiding modules

This section is organized as follows: Section 3.1 gives the module guide for the behavior

hiding modules. Section 3.2 provides the module guide for the software decision hiding

modules. Section 3.3 shows the module guide for the hardware hiding modules.

C. 3.1 ■ Module guide for behavior hiding modules

This section focuses on the module guide for behavior hiding modules in the Virlab

system.

C. 3.1.1 Importing constitutive equation module

Module name Importing constitutive equation module
Module service Import the new constitutive equation. By this module an new

constitutive equation is imported.
Module secret The calling sequence of modules when a new constitutive equation

is imported.
Expected changes Since this module works as a mediator when a new constitutive

equation is imported, the sequence of programs being called might
be changed. The expected changes correspond to C_14 in the list of
anticipated changes.

Prefix

C. 3.1.2 Experiment module
Module name Experiment module
Module service Finish doing the experiment.
Module secret The calling sequence of modules to do the experiment.
Expected changes Since this module works as a mediator when an experiment is done,

the sequence of programs being called might be changed. The
expected changes correspond to C_14 in the list of anticipated
changes.

Prefix

C. 3.1.3 Master control module
Module name Master control module
Module service This module controls the execution sequence of different modules

being called through the system.

136

Module secret The calling sequence of modules.
Expected changes Since ■ this module works as a mediator in the whole system, the

sequence of programs being called might be changed. The expected
changes correspond to C 14 in the list of anticipated changes.

Prefix

C. 3.1.4 Output show module
Module name Output show module
Module service Outputs the experiment data in a curve way or in a table form or in

the file and works as an interface between the system and output
display.

Module secret Output format
Expected changes Output format might be changed or added. The expected changes

correspond to C 13 in the list of anticipated changes.
Prefix os

C. 3.1.5 Experiment specification module
Module name Experiment specification module
Module service Query the user to specify the experiment definition
Module secret Display content and format.
Expected changes Display content and format might be changed depending on the

requirements. The expected changes correspond to C_11_DEF in
the list of anticipated changes.

Prefix es

C. 3.1.6 Specimen geometry specification module
Module name Specimen geometry specification module
Module service Query the user to specify the geometry of the specimen
Module secret Display content and format.
Expected changes Display content and format might be changed if the test specimen is

changed. The expected changes correspond to C_11_GEO in the
list of anticipated changes.

Prefix sgs

C. 3.1.7 Displacement specification module
Module name Displacement specification module
Module service Query the user to choose the displacement function
Module secret Display content and format.
Expected changes Display content and format might be changed depending on how to

describe the displacement. The expected changes correspond to
Cll DISP in the list of anticipated changes.

137

Prefix ds

C. 3.1.8 Load specification
Module name Load specification module
Module service Query the user to choose the load function.
Module secret Display content and format.
Expected changes Display content and format might be changed depending on how to

describe the load. The expected changes correspond to
C 11 LOAD in the list of anticipated changes.

Prefix ls

C. 3.1.9 Function specification
Module name Function specification module
Module service Query the user to specify the function composition
Module secret Display content and format.
Expected changes Display content and format might be changed depending on the

function format. The expected changes correspond to C_11_FUNC
in the list of anticipated changes.

Prefix fsm

C. 3.1.10 Constitutive equation specification module
Module name Constitutive equation specification module
Module service Query the user to specify the constitutive equation
Module secret Display content and format.
Expected changes Display content and format might be changed depending on how to

describe the constitutive equation. The expected changes
correspond to C 11 CON EQU in the list of anticipated changes.

Prefix ces

C. 3.1.11 Material property file module
Module name Material property file module
Module service Provide the material properties of the constitutive equation that are

saved into the file and provide the programs to read information on
material properties.

Module secret File format.
Expected changes The format of file in which material properties are saved might be

different. The order of file format is irrelevant but it should be
consistent so that the order of information that is read from the file
is the same as the order that is written to the file. The expected
changes correspond to C 2 in the list of anticipated changes.

Prefix __

138

C. 3.1.12 Report file module
Module name Report file module
Module service Provide the information on experiment configuration and

experiment data that are saved in the file and provides programs to
write experiment configuration and experiment data into file

Module secret
Expected changes

File format.
File format might be different. The order of file format is irrelevant
but it should be consistent so that the order of information that is
read from the file is the same as the order that is written to the file.
The expected changes correspond to C_13 in the list of anticipated
changes.

Prefix rfm

C. 3.2 Module guide for software decision hiding modules

This section focuses on the module guide for all the software decision hiding modules in

the Virlab system.

C. 3.2.1 Constitutive equation structure module
Module name Constitutive equation structure module
Module service Provide a form to describe the constitutive equation. A data

structure is designed to represent this form for the display. This
module also provides programs to save information on the
constitutive equation to the file and programs to read information
on the constitutive equation from the file.

Module secret
Expected changes

Data structure to represent the constitutive equation.
Other data structure might be designed to represent the constitutive
equation. A data structure might be adopted to calculate the
constitutive equation. The expected changes correspond to C_6 in
the list of anticipated changes.

Prefix cs

C. 3.2.2 Function structure module
Module name Function structure module
Module service Provide three functions. Each function is represented with a

corresponding data structure and is calculated with an algorithm.
Module secret Data structure to represent the function and algorithms to calculate

the functions.
Expected changes Other data structure might be designed to represent the function. Or

139

new function might be added. The expected changes correspond to
C 8 in the list of anticipated changes.

Prefix fs

C. 3.2.3 Experiment definition module
Module name Experiment definition module
Module service This module provides experiment configuration information.
Module secret A data structure to represent the experiment configuration.
Expected changes Since experiment configuration is represented with a data structure,

the same experiment might be represented with other data structures
depending on designers’ choice. ■ The expected changes correspond
to C ■ 7 in the list of anticipated changes.

Prefix ed..

C. 3.2.4 Specimen geometry module
Module name Specimen geometry module
Module service This module provides a way to describe the test specimen
Module secret Geometry of the test specimen is described with a data structure.
Expected changes If test specimen is changed or geometry of the test specimen is

changed, a new data structure might be needed. The expected
changes correspond to C lindte listofanticipatedchanges.

Prefix sg

C. 3.2.5 Screen display module
Module name Screen display module
Module service Displays different components (e.g. buttons, checkbox, icon, etc)

that make up the system output interface on the screen. Provides
some interfaces between the system and the screen so the system
can display information on the screen through the use of the
programs in the module.

Module secret The data structure and the algorithms to display anything on screen.
Secret type: software decision hiding

Expected changes Other data structure might be designed to display user interface
elements on screen.

Prefix

C. 3.2.6 Table structure module
Module name Table structure module
Module service This module provides a data structure to save all the data and also

provides programs to save data into the table and to read
experiment data from the table.

140

Module secret The data structure and the algorithms to save the experiment data.
Expected changes Other data structure might be designed to save the data. The

expected changes correspond to C_12 in the list of anticipated
changes.

Prefix ts

C. 3.2.7 Displacement constitutive calculation module
Module name Displacement constitutive calculation module
Module service Provide the numerical approximation of the constitutive equation to

obtain the stress or other kinematics quantities when the
constitutive equation is introduced in the displacement experiment.

Module secret Algorithm to calculate the numerical approximation of the
constitutive equation in the displacement controlled experiment.

Expected changes Different algorithm might be adopted to ' calculate the
approximation. The expected changes correspond to C_3_DISP in
the list of anticipated changes.

Prefix dec

C. 3.2.8 Load constitutive calculation module
Module name Load constitutive calculation module
Module service Provide the numerical approximation of the constitutive equation to

obtain the displacement and then other kinematics quantities when
the constitutive equation is introduced in the load experiment.

Module secret Algorithm to calculate the numerical approximation of the
constitutive equation in the load controlled experiment.

Expected changes Different algorithm might be adopted to calculate the
approximation. The expected changes cnrressnod to C_3_L0AD in
the list of anticipated changes.

Prefix Icc

C. 3.2.9 Material deformation gradient module
Module name Material deformation gradient module
Module service
Module secret

Provides the programs to obtain the material duOormattoo gradient
The calculating procedure to obtain the material deformation
gradient.

Expected changes F is called the material deformation gradient by George E
Masu(1970). Different researcher might give it a dtOOerent name.
User can get the material deformation gradient based on the
different known conditions. The expected changes correspond to
C 4 MDG in the list of anticipated changes.

Prefix mdg

141

C. 3.2.10 Spatial defOrmatton gradient module
Module name Spatial deformation gradient module
Module service Provides the programs to obtain the spatial deformation gradient
Module secret The calculating procedure to obtain the spatial deformation

gradient.
Expected changes H is called the spatial deformation gradient by George E.

Mase(1970). Different researcher might give it a different name and
also use different algorithms to get the spatial deformation gradient.
The expected changes correspond to C_4_SDG in the list of
anticipated changes.

Prefix sdg

C. 3.2.11 Material displacement gradient module
Module name Material displacement gradient module
Module service Provides the programs to obtain the material displacement gradient
Module secret The calculating procedure to obtain the material displacement

gradient. Secret type: software decision hiding
Expected changes J is called the material displacement gradient by George E.

Mase(1970). Different researcher might give different name for the
same tensor. Different researchers can change algorithm to get the
material displacement gradient. The expected changes correspond
to C 4 MDPG in the list of anticipated changes.

Prefix mdpg

C. 3.2.12 Spatial displacement gradient module
Module name Spatial displacement gradient module
Module service Provides the programs to obtain the spatial displacement gradient
Module secret The calculating procedure to obtain the spatial displacement

gradient. Secret type: software decision hiding
Expected changes K is called the spatial displacement gradient by George E.

Mase(1970). Different researcher might give it a different name.
Different researchers can change algorithm to get the spatial
displacement gradient. The expected changes correspond to
C 4 SDPG in the list of anticipated changes.

Prefix sdpg

C. 3.2.13 Cauchy deformation gradient
Module name Cauchy deformation gradient module
Module service Provides the programs to obtain the Cauchy deformation gradient
Module secret The calculating procedure to obtain the Cauchy deformation

gradient. Secret type: software decision hiding
Expected changes C is called the Cauchy’s deformation tensor by George E. Mase

142

(1970). Different researcher might give it a different name and use
different algorithms to calculate the Cauchy deformation tensor.
The expected changes correspond to C_4_CDG in the list of
anticipated changes.

Prefix cdt

C. 3.2.14 Green deformation gradient module
Module name Green deformation gradient module
Module service Provides the programs to obtain the Green deformation gradient
Module secret The calculating procedure to obtain the Green deformation gradient.

Secret type: software decision hiding
Expected changes G is called the Green deformation tensor by George E. Mase

(1970). Different researcher might give it a different name and use
different algorithms to calculate the Green deformation gradient.
The expected changes correspond to C_4_GDG in the list of
anticipated changes.

Prefix gdt

C. 3.2.15 Stretch tensor module
Module name Stretch tensor
Module service Provides the programs to obtain the stretch tensor
Module secret The calculating procedure to obtain the stretch tensor. Secret type:

software decision hiding
Expected changes The stretch tensor is named by George E. Mase (1970). Different

researcher might give it a different name. The expected changes
correspond to C 4 STinthe listofanticipatedchanges.

Prefix st

C. 3.2.16 Stretch ratio tensor module
Module name Stretch ratio tensor
Module service Provides the programs to obtain the stretch ratio tensor
Module secret The calculating procedure to obtain the stretch ratio tensor. Secret

type: software decision hiding
Expected changes The stretch tensor is named by George E. Mase (1970). Different

researcher might give it a different name. The expected changes
correspond to C 4 SRT in the list of anticipated changes.

Prefix srt

C. 3.2.17 Eulerian infinitesimal strain tensor module
Module name Eulerian infinitesimal strain tensor module

143

Module service Provides the programs to obtain the Eulerian infinitesimal strain
tensor.

Module secret The calculating procedure to obtain the Eulerian infinitesimal strain
tensor. Secret type: software decision hiding

Expected changes e is called the Eulerian infinitesimal strain tensor by George E.
Mase (1970). Different researchers might give it a different name
and they also might use other algorithms to calculate the Eulerian
infinitesimal strain tensor. The expected changes correspond to
C 4 EIST m the Hst of anticipated conges.

Prefix eist

C. 3.2.18 Lagrangian infinitesimal strain tensor module
Module name Lagrangian infinitesimal strain tensor module
Module service Provides the programs to obtain the Lagrangian infinitesimal strain

tensor.
Module secret The calculating procedure to obtain the Lagrangian infinitesimal

strain tensor. Secret type: software decision hiding
Expected changes 1 is called the Lagrangian infinitesimal strain tensor named by

George E. Mase (1970). Different researchers might give it a
different name and they might adopt different algorithms to
calculate the Lagrangian infinitesimal strain tensor. The expected
changes correspond to C_4_LIST in the list of anticipated changes.
Lagrangian infinitesimal strain tensor is also called engineering
strain tensor.

Prefix list

C. 3.2.19 Eulerian finite strain tensor module
Module name Eulerian finite strain tensor module
Module service
Module secret

Provides the programs to obtain the Eulerian finite strain tensor.
The calculating procedure to obtain the Eulerian finite strain tensor.
Secret type: software decision hiding

Expected changes E is called the Eulerian (Almansi's) finite strain tensor by George
E. Mase (1970). Different researcher might give it a different name
and they also might use other algorithms to calculate the Eulerian
finite strain tensor. The expected changes correspond to C_4_EFST
in the list of anticipated changes.

Prefix efst

C. 3.2.20 Lagrangian finite strain tensor module
Module name Lagrangian finite strain tensor module
Module service
Module secret

Provides the programs to obtain the Lagrangian finite strain tensor.
The calculating procedure to obtain the Lagrangian finite strain
tensor. Secret type: software decision hiding

144

Expected changes L is called the Lagrangian (Green) finite strain tensor by George E.
Mase (1970). Different researcher might give it a different name
and also they might use other algorithms to calculate the
Lagrangian finite strain tensor. The expected changes correspond to
C 4 LFST in the list of anticipated changes.

Prefix lfst

C. 3.2.21 True strain tensor module
Module name True strain tensor module
Module service Gives the definition of the true strain and provides the programs to

obtain the true strain tensor.
Module secret The calculating procedure to obtain the true finite strain tensor.

Secret type: software decision hiding
Expected changes Different researcher might give it a different name. The expected

changes correspond to C 4 TST in the list of anticipated changes.
Prefix tst

C. 3.2.22 True stress tensor module
Module name True stress tensor module
Module service Gives the definition of the true stress. To obtain the true stress

tensor, constitutive equation is required. The numerical
approximation of the constitutive equation can be calculated.
Provides the programs to obtain the true stress tensor.

Module secret Algorithms to obtain the numerical approximation of the
constitutive equation. Secret type: software decision hiding

Expected changes Different algorithms might be adopted depending on the designer’s
choice. The expected changes correspond to C_5_TSST in the list
of anticipated changes.

Prefix tsst

C. 3.2.23 Engineering stress tensor module
Module name Engineering stress tensor module
Module service Gives the definition of the engineering stress and Provides the

programs to obtain the Engineering stress tensor.
Module secret The calculating procedure to obtain the engineering stress tensor.

Secret type: software decision hiding
Expected changes Different researcher might give it a different name. The expected

changes correspond to C 5 ESST in the list of anticipated changes.
Prefix esst

145

C. 3.3 Hardware hiding modules

This section provides the module guide for all the hardware hiding modules in the Virlab

system.

C. 3.3.1 Keyboard module
Module name Keyboard module
Module service Keyboard works as a bridge between system software and user.

This module provides all keyboard events that system software
needs to respond.

Module secret Keyboard event. Secret type: Hardware-hiding
Expected changes Other keyboard event might be added to the system.
Prefix

C. 3.3.2 Mouse module
Module name Mouse module
Module service Mouse also works as a bridge between system software and user.

This module provides all mouse events that system software needs
to respond.

Module secret Mouse event. Secret type: Hardware-hiding
Expected changes Other mouse event might be added to the system based on the need.
Prefix

C. 3.3.3 Screen display module
Module name Screen display module
Module service This module provides screen display functions that system software

needs to respond.
Module secret Screen information. Secret type: Hardware-hiding
Expected changes Other screen display functions might be added to the system based

on the need.
Prefix

146

Appendix D The Modulelntefaaee for VirUib

Table of Contents

D. 1 Introauction.. 150
D. 2 Convention..150
D. 3 Mod^e rnieoface Specification.. 153

D. 3.1 Experimenl defmttion module.. 153
D. 3.1.1 InierOa<ci synto.. 153
D. 3.1.2 Inttnface semantics...154

D. 3.2 Specimen geomerry module...157
D. 3.2.1 Inne^aae Sv^ta... 157
D. 3.2.2 Interface semantics... 157

D. 3.3 Function siisiciure module..159
D. 3.3.1 Inierface synnax.. 159
D. 3.3.2 Interface semantics... 160

D. 3.4 Dsspaacemenl specificaiion module... 162
D. 3.4.1 Inifiroce syntax...162
D. 3.4.2 Interfac semantics... 163

D. 3.5 Load spccifiastion module... 165
D. 3.5.1 Interface syntta...165
D. 3.5.2 Interface semantics... 166

D. 3.6 Tafce structere module... 168
D. 3.6.1 Interface syntax...168
D. 3.6.2 Interface semantics... 168

D. 3.7 Screen dsppaay module...171
D. 3.8 Experimenl specificaiion moduie... 172

D. 3.8.1 lnieoface sydax..172
D. 3.8.2 Interface semantics.....................................■..172

D. 3.9 FunSrion saecffication module..174
D. 3.9.1 rnieoface sydax..174
D. 3.9.2 rnierface semantics.......................... .. 174

D. 3.10 Specimen geometry speciOinattno modu^.. 176
D. 3.10.1 rnierfcee syntax...176
D. 3.10.2 rnieoface semantics... 176

D. 3.11 Material properties file module... 178
D. 3.11.1 rnieofner syntax...178
D. 3.11.2 rnieofaur semantics... 178

D. 3.12 ' Constitutive equation structure module.. 18^(1
D. 3.12.1 nfieofcee syntax..180
D. 3.12.2 rnierfaur eemantics.. - .. 181

D. 3.13 Constitutive equation specification module..183
D . 3.13 .1 rnieofnee synaax..183
D. 3.13.2 rnierfnur remontics.. 183

D. 3.14 Tensor data definteton mod^e..185

147

D. 3.14.1 Ineerface syntax... 185
D. 3.15 Material deformation gradient module..187

D. 3.15.1 Ineerface syntax...187
D. 3.15.2 Ineerface semantics... 187

D. 3.16 Spatial deformation gradient module...192
D. 3.16.1 Ineerface syntax...192
D. 3.16.2 Ineerface semantics... 192

D. 3.17 Material displacement gradient module..197
D. 3.17.1 Ineerface syntax.. 197
D. 3.17.2 Ineefface semantics... 197

D. 3.18 Spatial displacement gradient moduL...202
D. 3.18.1 ^ooPu^ syntax...202
D. 3.18.2 toeerface semantics... 202

D. 3.19 Cauchy deformation tensor moduhe...207
D. 3.19.1 ineeoPace syntax.. 207
D. 3.19.2 interface semantics...207

D. 3.20 Green deformation tensor module..212
D. 3.20.1 hteerface syntax.. 212
D. 3.20.2 titerf^i^i^e semantics...212

D. 3.21 Lagrangian (Green’s) finite strain tensor module... 217
D. 3.21.1 nneerface syntax...217
D. 3.21.2 faterface semantics... 217

D. 3.22 Eulerian (Almansi’s) finite strain tensor module.. 223
D. 3.22.1 naterface syntax...223
D. 3.22.2 Inerrfahe temantics... 223

D. 3.23 Lagrangian (Green’s) infinitesimal strain tensor modute.............................. 229
D. 3.23.1 Interface syntax...229
D. 3.23.2 hnterface semantics..229

D. 3.24 Eulerian (Almansi’s) infinitesimal strain tensor module...............................234
D. 3.24.1 Interface syntax... 234
D. 3.24.2 iathrfpch sema^ies..234

D. 3.25 True strain tensor moduk..239
D. 3.25.1 ipeerface syntax...239
D. 3.25.2 iathrfpch semantics.................... ... 239

D. 3.26 Displacement constitutive calculation modute...245
D. 3.26.1 Interface syntax...245
D. 3.26.2 Interface semantics... 245

D. 3.27 Load constitutive calculation module..247
D. 3.27.1 Interface syntax.. 247
D. 3.27.2 Interface semantics...247

D. 3.28 Engineering stress modute...248
D. 3.28.1 Ineerface syntax.. 248
D. 3.28.2 Interface semantic..248

D. 3.29 True stress modute..251
D. 3.29.1 Ineefface syntax.. 251
D. 3.29.2 Ineerface semantics..251

148

D. 3.30 Output show modute.. 253
D. 3.30.1 httefface syntax...253
D. 3.30.2 Interface semantics... 253

149

D. 1 Introduction

A module interface specification describes the detailed design of the system. It is

represented as a collection of access routines. There are common idiom that help with the

design of a set of access routines. The idoms are available for set, sequence and tuple

types. This appendix is known as the module interface specification (MIS) for the Virlab

software.

This appendix is organized as follows: Section 2 includes some of the conventions we

adapted in documenting the MIS with the attempt to remove ambiguity for readers.

Sections 3 shows the module interface specifications for the modules, each of which

comprises a syntax subsection and a semantics subsection.

D. 2 Convention

• Naming convention

o Generally the access routine name includes three parts: the first is the

prefix that is the same as the module’s prefix, so all the access routines

with the same prefix mean that they serve for the same module. The

second is a letter s and/or g that explain that the second part is only

included for set and/or get access programs. The third is the routine name.

The three parts are separated by ‘

o Some access routine names are just composed of prefix and routine name

because this access routine does not involve with the state.

150

o That some exported functions are named without the prefix means that

they are more related with the development environment and are assumed

to be provided by the development environment or operating systems.

o The letters in the names of constants are capitalized.

• Mathematics definition

o ‘ :=’ means assignment

o '=’ means comparison

o '=>’ means a condition rule.

o ‘ € ’ and ‘ £ ’ follow their meanings in discrete mathematics

• Type definition

o The primary types are string, real, boolean and integer.

o Real* is a new type and is equal to a set of all real numbers plus a special

value named undefined, that is, Real* = Ru>{undefined}. Many of the data

structures that are introduced use a sequence of Real*, ud is the

abbreviation of the special value 'undefined.'’.

o Set, sequence and tuple are used in the type constructor.

o User-defined types in the module interface specification start with a

capital letter.

o ‘a: Type’ means a is of type ‘Type’.

• Developer/designer/user

o User is a person who will do the experiment with Virlab software; For

example, a user might be a student.

151

o Designer is a person who designs an experiment with Virlab software for a

user to do the experiment or for himself to do the research. A designer is a

professional with the professional knowledge that a material experiment

needs.

o Developer is a person who designs the Virlab software. A developer

should have software engineering knowledge.

• ‘Virtual’ in the module interface specification

o The term ‘virtual’ is . used in object-oriented programming language and

means if the method is defined as virtual in the base class, its concrete

implementation will be provided in the subclass of this base class. Here

the term ‘virtual’ is borrowed to define the attribute of the access

programs in the module interface specification. It represents that the

developers have responsibilities to provide the implementation of the

corresponding access programs.

• @ in the event table

The notation @Click(buttonname) is used to denote the occurrence of the event

that button ‘buttonnfme’ is clicked. For example, the event @Click(Confirm)

occurs when the ’Confirm’ button is clicked. Other events include

@Click(Cancel), @Click(Save) etc.

152

D. 3 Module Interface Specification

This section includes the module interface specification (MIS) for the modules designed

for the Virlab software. Each of MIS is composed of a syntax subsection and a semantics

subsection.

D. 3.1 Experiment definition module
Prefix: ed_
Reference: MG - C. 3.2.3

D. 3.1.1 Interface sy^n^t^ax
Exported data types:

ExperimentClassT = set of {displacement-controlled, load-controlled}
ExperimentTypeT = set of {uniaxial, biaxial, multiaxial}
CoordinateTypeT = set of {superimposed, nonsuperimposed}
FunctionTypeT = {quafunction, expfunction, cosfunction}
FunctionDefinitionT = set of FunctionTypeT
ConEquSwitchT = set of {consider_con_equ, nonconsider_con_equ}
TimeDefinitionT = tuple of {inittime: real; timelength: real; timestep: real}
CoordinateDataT = tuple of {angle: reaF setoff: real}

Exported constants: none

Exported functions:

Routines name Inputs Outputs Exception
ed s experimentclass ExperimentClassT none
ed g experimentclass ExperimentClassT none
ed s experimenttype ExperimentT ypeT none
ed g experimenttype ExperimentT ypeT none
ed s coordinatetype CoordinateTypeT none
ed g coordinatetype CoordinateT ypeT none
ed s functiondefinition FunctionDefinitionT none
ed g functiondefinition FunctionDefinitionT none
ed s conequswitch ConEquSwitchT none
ed g conequswitch ConEquSwitchT none
ed s timedefinition TimeDefinitionT none
ed g timedefinition TimeDefinitionT none
ed s coordinatedata CoordinateDataT none
ed g coordinatedata CoordinateDataT none

153

D. 3.1.2 Interface semantics
State variables:

expCiass: ExperimentClassT
expType: ExperimentTypeT
coord: CoordinateTypeT
func: FunctionDefintionT
time: TimeDefinitionT
con_switch: ConEquSwitchT
coorddata: CoordinateDataT

State invariants: none

Assumptions:
• State coord is set to superimposed by default. In this version the case that state

coordinate is equal to nonsuperimposed is not considered. If state coord is equal
to nonsuperimposed, type constructor CoordinateDataT will be used and state
coorddata will be set. So type CoordinateDataT and exported functions
ed_s_CoordinateData and ed_g_CoordinateData are designed for future
expansion.

Access routines semantics:

ed_s_experimentclass(c: ExperimentClassT)
exception none
transition expCiass :=c

ed_g_experimentclass
exception: none
output out := expCiass

ed_s_experimenttype(t: ExperimentTypeT)
exception none
transition expType := t

ed_g_experimenttype
exception: none
output cju^t := expType

ed_s_coordinatetype(c: CoordinateTypeT)
exception none
transition coord :=c

ed g , coordinate type
exception: none
output out := coord

154

ed_s_functiontype(f: FunctionTypeT)
exception none
transition ftinc := f

ed g functiontype
exception: none
output out := func

ed_s_conequswitch(s: ConEquSwithcT)
exception n^<^ne
transition con_switch := s

ed g conequswitch
exception: none
output out := con-Switch

ed_s_timedefintion(t: TimeDefinitionT)
exception none
transition iirne := t

ed_g_timedefinition
exception: none
output o_t := time

Comments:
I. quafunction, expfunction and cosfunction

The function type refers to the type of displacement function or load function
used in the experiment: Three popular mathematical function types are chosen:
quadratic function, sine/cosine function, exponential function. Table 4.4.1-1 gives
the concrete type of each function.

Table D-l Function type

quafunction expfunction cosfunction
ax2 +bx + c c, sin(ctf) + c2 cos(fr)

2. displacement-controlled and load-controlled
In the definition of ExperimentClassT displacement-controlled refers to the
displacement controlled experiment and load-controlled refers to the load
controlled experiment.

3. superimposed and nonsuperimposed
These two terms are used in the definition of CoordinateTypeT. Superimposed
means that Lagrangian coordinate system and Eulerian coordinate system
mentioned at section 2.1 in chapter two have the same origin and further their
axes are parallel. Nonsuperimposed means that Lagrangian coordinate system and

155

Eulerian noordtoatu system do not have the same origin or their axes are ont
parallel r both cases.

4. considur_con_equ oand onncnosider_cno_equ
In the deOtnitino of CnoEquSwitnhT, consider_coo_equ refers to the case when
the noostituttve equation is introduced in the experiment and also is used to obtain
the experimental data such as kinematics quantities or stress.
onnconsider_con_equ refers to the case that the experimental data of • interest can
be calculated without introducing a constitutive equation.

156

D. 3.2 Specimen geometry module
Prefix: sg_
Reference: MG - C. 3.2.4

D. 3.2.1 Interface Syntax
Exported data types:

SpecimeaGeometryT = tuple of {
length: real
height: real
width: real
anglexy: real /* design for the future*/
angleyz: real
anglexz: real

}

Exported constants: none

Exported functions:

Routines name Inputs Outputs Exception
sg_s_geomhiry real, real, real, real,

real, real
none

sg g geometrylength real none
sg g geometryheight real none
sg g geometrywidth real none
sg g geomeiryaaglexy real none
sg g geometryaagleyz real none
sg g geometryanglexz real none

D. 3.2.2 Interface semantics
State variables:

spe: SpecimeaGeometryT

State invariants: none

Assumptions:
• Since the test specimen is assumed as a rectangle box, anglexy, angleyz and

anglexz arc assumed as ninety degrees. Exported functions
sg g geometr-yang^y, sg_g geometryaagleyz and sg_ggeometryanglexz are
designed for the future.

Access routines semantics

sg_s_geometry(l: real, h: real, w: real, axy: real, ayz: real, axz: renl)
exception None

157

transition spe.length := 1
spe.height := h
spe.width := w
spe.anglexy := axy
spe.angleyz := ayz
spe.anglexz := axz

ed _ g _ geometryiengthQ
exception: none
output: out := spe.length

ed_g_geometryheight()
exception: none
output: out := spe.height

ed_g_geometrywidth()
exception: none
output: out := spe .width

ed _ _ g _ geometryanglexyQ
exception: none
output: out := spe.anglexy

ed-g-geometryangleyzO
exception: none
output out := spe.angleyz

ed g geometryanglexzQ
exception: none
output: out := spe.anglexz

Comments:
1. anglexy in the SpecimenGeometryT refers to the angle between the length side

and height side of the rectangle box, angleyz in the SpecimenGeometryT refers to
the angle between the length side and width side of the rectangle box, anglexz in
the SpecimenGeometryT refers to the angle between the height side and width
side of the rectangle box.

158

D. 3.3 Function structure module
Prefix: fs_
Reference: MG - C. 3.2.2

D. 3.3.1 Interface syntax
Imported data types:

• FunctionDeOinitionT from experiment definition module
FunctionDefinitionT = set of FunctionTypeT
FunctionTypeT = {quafonction, expfuration, cosfuncttifn}

External functions:
SinOOnction^real)
Cosftinctton(t:real)
Expfunction(t: real)
ed_g_functiondefinition from the experiment definition module

Exported data types:
QuaDefinittonT = tuple of {

qua_coeOicient: real
lin_coofficinnt: real
con_coofficient: real

}/* /'(r) _ qua_coefficient * t2 + lin_coefficient * t + con-Coefficient */
CosDeOimtionT = tuple of {

sin_coeffictenr: real
sin_t_coeOicienr: real
cos_coelfictent: real
cos_t_coefficient: real

}/* f(t) = sincoefflcient * sin(sm_t_ceefficient *t) +
cos_coefficient * o«(ms_/_ coefficient *t) */

ExpDefinitionT = tuple of {
exp_coefficinni:• real
exp_t_coefficient: real

} /* j(t) = coefficient * nt*‘ */

Exported constants: none

Exported functions:

Routines name Inputs Outputs Exception
fs s inilqua
fs s mitcos
fs s initexp
fs s quafunction real, real, real
Os s expfunc^i^<fn real, real
ts s cosfunction real, real, real, real

159

fs g quaOuoctlonvolue t: real real
fs g expOinctionvaluu t: real real
fs g cosfunctioovalue t: real real
OS-g-fuoctionvalue ft: FuncttonTysuT,

t: real
real

D. 3.3.2 Interface semantics
State variables

qua_state: QuaDeOtnttonT
cos-state: CnsDeOinttonT
exp—state.' ExpDeOintinnT
qua_set: boolean := FALSE
cos-set: boolean := FALSE
exp-set: boolean := FALSE

State invariants: none

Assumptions:
• Experiment definition module should be imtialized before function structure

module is called.

Access routines semantics

fS-S-quafuoctioo(q: real, 1: real, c: real)
exception: None
transition: qua-set := TRUE

qua-state.qua-coefficient := q, qua-State.lin-Coeffialeot := 1,
qua-State.qua-aoO-Coe00lateot:= c

fS-S-Cosfuoction(c: real, ct: real, s: real, st: real)
exception: None
transition: cos-set := TRUE

coS-State.aoS-CoeOOicteot := c,
qua-State.aoS-t-CoeOficient := ct,
qua-State.stO-Coe00tcient:= s,
qua-State.stn-t-CoeOOicieot:=st

OS-S-exsfuoction(e: real, et: real)
exception: none
transition: exp-set := TRUE

uxp-State.uxS-CoeOOtcient := u,
exS-State.exp-t-CoeOOtcient := et

fs_g_ quafunciioovaluuit:
excusttnn:

real)
(qua-set = FALSE) => NotSet

160

output: out := qua_state.qua_coefficient*t*t +
qua_etate .lin_coefficient * t+
qua_state.con_coefficient

fs g cosfunctionvalue(t: real)
exception: (cos_stt = FALSE) => NotSet
output: out :=

coe_etate.coe_coeffictent*Cosfunction(coe_etate.coe_t_coefftcitnt*t)
+cos_state.sin_coefficient*Stnfunction(stn_etate.sin_t_coefficitnt*t)

fs_g_expfunctionvalue(t: real)
exception: (exp_set = FALSE) => NotSet
output: out :=

exp_etate .exp_coefficient * Expfunction(exp_state .exp_t_coefficient * t)

fs_g_functionvalue(ft: FunctionTypeT, t: real)
exception: none
output: ((ft = quafunction) =>fs_g_equfunctionvalue(t)) |

((ft = cosfunction) =>fs_g_cosfunctionvalue(t)) |
((ft = expfunction) =>fs_g_expfunctionvalue(t))

161

D. 3.4 Displacement specification module
Prefix: ds_
Reference: MG - C. 3.1.7

D. 3.4.1 Interface syntax
Imported data types:

• FunctionDefinitionT from the experiment definition module
FunctionDefinitionT = set of FunctionTypeT
FunctionTypeT = {quafunction, expfunction, cosfunction}
TimeDefinitionT from the experiment definition module
TimeDefinitionT = tuple of {inittime: real, timelength: real, timestep: real}

Exported data types:
Displacement? = tuple of

dispu: Real*
dispv: Real*
dispw: Real*
deltaxy: Real* /* design for the future*/
deltayz: Real* /* design for the future*/
deltaxz: Real* /* design for the future*/

}

External functions:
labelshow, /* from the screen display module*/
listshow, /* from the screen display module*/
buttonshow /* from the screen display module */
fs_g_functionvalue /* from the function structure module */
ed_g_TimeDefinition /* from the experiment definition module */
ed g experimentclass /* from the experiment definition module*/
ed_g_experimenttype /* from the experiment definition module*/

Exported constants: none

Exported functions:

Routines name Inputs Outputs Exception
ds s initdisp Displacement
ds s disputype FunctionDefinitionT
ds g dispu real
ds s dispvtype FunctionDefinitionT
ds g dispv real
ds s dispwtype FunctionTypeT
ds g dispw real
ds s dispu Real*
ds s dispv Real*
ds s dispw Real*

162

ds g displacement DisplacementT
dsspetifydisplacement

D. 3.4.2 Interface semantics
Environmental variable:

labwindows: the graphic window where the experiment is displayed on the
screen.

State variables:
utype, vtype, wtype: FunctionDefinitionT
disp: DisplacementT

State invariants: none

Assumptions:
• ds_s_initdisp() should be called before any other access routines.
• Function structure module and experiment definition module should be initializ

before the displacement specification module.
• ds_g_dispu, ds_g dispv, dispw are just designed for the displacement controlled

experiment as well as ds_s_disputype, ds_s_dispvtype and ds_s_dispwtype.
• In the data type DisplacementT, deltaxy, deltayz and deltaxz are designed for the

future.
Access routines semantics:

ds_s_initdisp()
exception: None
transition/output: disp.dispu := undefined

disp.dispv := undefined
disp. dispw := undefined
out := disp

ds_s_disputype(u: FunctionDefinitionT)
exception: None
transition: utype := u

ds_s_dispvtype(v: FunctionDefinitionT)
exception: None
transition: vtype ;= v

ds_s_dispwtype(w: FunctionDefinitionT)
exception: none
transition: wtype := w

ds g_ dispuft: real)
exception: (t > (iimCiinit + time.legjhh))5:>(out_of_range)
transition: dssp.dsspu := fs g ^enctien_alu_Uutype, t)

ds_g_dispv(t: real)

163

exception: (t > (time.init + time.length)) => (out_of_range)
transition: disp.dispv := fs_g_functionvalue(vtype, t)

ds_g_dispw(t: real)
exception: (t > (time.init + time.length)) => (out_of_range)
transition: disp.dispw :=fs_g_functionvalue(wtype, t)

ds_s_dispu(u: Real*)
exception: none
output: disp.dispu := u

ds_s_dispv(v: Real*)
exception: none
output: disp.dispv := v

ds_s_dispw(w: Real*)
exception: none
output: disp.dispw := w

ds_g_displacement()
exception: none
output: out := disp

ds_specifydisplacement()
exception: none
transition: Call the screen display module to set the environmental

variable’s state for the graphical interface of the displacement
specification and then query the user to choose the displacement
function type and set the state variables utype, vtype or wtype.

Event table:
Condition__________________Event__________________ Action_______________________
When the ‘Confirm’ button @Click(Confirm) class:= ed_g_experimentclass
is pressed. type:= ed_g experimenttype

___ Table D-2____________________
When the ‘Cancel’ button is @Click(Cancel) Do nothing
pressed

Table D-2 The order for the initilization

(class= H])A(type = h2)->G
uniaxial biaxial multiaxial H2

displacement-
controlled

ds_s_initdisp
ds_s_disputype

ds_s_initdisp
ds_s_disputype
ds_s_dispvtype

ds_s_initdisp
ds_s_disputype
ds_s_dispvtype
ds sdispwtype

g

load-
controlled

ds_s_initdisp ds_s_initdisp ds_s_initdisp

164

D. 3.5 Load specification module
Prefix: ls_
Reference: MG - C. 3.1.8

D. 3.5.1 Interface syntax
Imported data types:

• FunctionDefinitionT
FunctionDefinitionT = set of {quafunction, expfunction, cosfunction}

• TimeDefinitionT
TimeDefinitionT = tuple of {inittime: real, timelength: real, timestep: real}

Exported data types:
LoadT = tuple of

loadu: Real*
loadv: Real*
loadw: Real*
loaddeltaxy: Real* /* design for the future*/

loaddeltayz: Real* /*design for the future */
loaddeltaxz: Real* /*design for the future */

}

External functions:
labelshow /* from the screen display module*/
listshow /* from the screen display module*/
buttonshow /* from the screen display module*/
fs_g_functionvalue /* from the function structure module */
ed_g_experimentalass/* from the experiment definition module*/
ed_g_experimenttype /* from the experiment definition module*/

Exported constants: none

Exported functions:

Routines name Inputs Outputs Exception
Is s initload LoadT
Is s loadutype FuactioaDefiaitionT
Is g loadu real
Is s loadvtype FunctioaDeOinitionT
Is g loadv real
Is s loadwtype FuactioaTypeT
Is g loadw real
Is g load LoadT
ls specifylopd

165

D. 3.5.2 Interface semantics
State variables:

utype, vtype, wtype: FunctionDefinilionT
load: LoadT

State invariants:

Assumptions:
• Function structure module and experiment definition module should be initialized

before the load specification module.
• In the data type LoadT, lofaaeltaxy, loaddeltryz and lf^addeltaNz are designed for

the future.

Access routines semantics:

ls_s_initlofd()
exception: none
transition/output: lofd.lofau .^undefined, lofd.lofav := undefined, lord.lsfaw

.■undefined
out:= load

ls_s_loadutype(u: F'unctionDnfintiionT)
exception:
transition:

none
utype := u

ls_s_lordvtype(v: FunctionDefinifionT)
exception: none
transition: vtype := v

le_s_loadwtypeew: FunctionDnfiniitonT)
exception: none
transition: wtype := w

ls_g_loadu(t: real)
exception:
transition:

(t > etime.init + timeJeegth)) =>exc(ont_of_tange)
loff.loadu :=O_^jOneuti^tlr^^^i^l^l^i^futype, t)

ls_g loadvd: real)
exception:
transition:

(t > (time.ieit + time.length)) => exc(ont_of_range)
lora.lsfav :=fs___folncttonvalue(vtype, t)

ls_g loffw(t: real)
exception:
transition:

(t > etime.init + time^leegth)) => exceout_of_range)
load.loadw :=fs_g_runctirnvalnt(wtypt, t)

Is g loadQ
exception: efM

166

output: out := load

ls_specifyload()
exception: none
transition: Call the screen display module to sei the environmental

variable’s state for the user graphical interface of the load
specification and then query the user to choose the displacement
function type and set the state variables utype, vtype or wtype.

Event table:
Condition_________________ Event___________________ Action _________________
When the ‘Confirm’ button @Click(Confirm) class:=ed _g experimentclass
is pressed. type:=ed g experimenttype

__Table D-3_________________
When the ‘Cancel’ button @Click(Cancel) Do nothing
is pressed.

Table D-3 The order for the initilization

(class= Hj)A(type= H2)—>G
uniaxial biaxial multiaxial h2

displacement-controlled Do nothing Do nothing Do nothing
G

Hi load-controlled ds_s_initdisp
ls_s_initload
ls_s_loadutype

ds_s_imtdisp
ls_s_initload
ls_s_loadutype
ls_s_loadvtype

dsj-Jmtdisp
ls_s_initload
lsjsjtoadutype
lS-S-loadvtype
Is s loadwtype

167

D. 9.6Table structure module
Prefix: ts_
Reference: MG - C. 3.2.6

D. 3.6.1 Interface syntax
Imported data types:

TensorDataT from the tensor data definition module
TensorDataT = _ Sequence [DIM][DIM] of Real*

Exported data types:
ResultDataT = sequence of TensorDataT

Exported functions:
Routines name Inputs Outputs Exception
ts AddColumn String Integer
ts g ColumnName Integer String InvalidColumnNumber
ts AddRow Integer
ts RemoveRow Integer InvalidRowNumber
Ts Depth Integer
Ts Width Integer
tf_SetAt Integer

Integer
ResultDataT

t^GetAt Integer
Integer

ResultDataT

ts tRealseTable
External Function:

String RealToString(resultdata:Real*)
Real * S tringToReal(resultftring: string)

D. 3.6.2 Interface semantics
State variables:

resultData:ResultDataT
numCols,numRows: Integer

State invariants: none

Local variables:
ColumnNameList: sequence of String
resultstring: string

Local Functions:
ResultDataT CreatTable()

Assumption: none

Access routines semantics:

tf_AddColumn(columnname:Strieg)
exception: None

168

transition/output: ColumnNameList[numCols] := columnname
numCols :=numCols+l
out:=numCols

ts g ColumnName(index:integer)
exception: (index > |ColumnNameList|)=>InvalidColumnNumber
transition/output: out:= ColumnNameList[index-l]

ts_AddRow()
exception: none
transition/output: resultData = CreatTable()

Allocate memories for the resultdata
numRows = numRows+1
out:=numRows

ts_RcmovcRow(rownum: integer)
exception: (rownum > ts_Depth())=>InValidRowNumber
transition: Release memories for this row

numRows = numRows-1

ts_Depth()
exception: none
output: Out := numRows

ts_Width()
exception: none
tansition: Out :=numCols

ts_SetAt(row:integer,aolumn:integer,result:ResultDataT)
exception: (row > ts_Dcpth())=^>InvalidRowNumber

(column > ts_Width())=> InvaildCoiumnNumber
output: resultstring :=RealToString(result)

allocate memory for resultstring
resuitData[row,column] := Resultstring

ts_GetAt(row: integer, column: integer)
exception: (row > ts_Depth())=>InvaiidRowNumber

(column > ts_Width())=> InvaiidCoiumnNumber
tansition: resultstring:=resultData[row,column]

out:= StrrngToReal(resultstring)

Ts_ReleaseTable()
exception: none

169

170

Output: CurrentRow :=ts_Depth
CurrentColumn := ts_width
Release the table in which the number of rows is currentRow
and the number of colomns is currentColumn

D. 3.7 Screen display module
The screen display module is more related with the development environment.
Exported functions might be provided by the development environment or as the
operating system's application program interface. So there are not interface syntax
and interface semantics for this module. The functions of access routines are just
described in the following.

Environmental variable:
labwindows: the window where the experiment is displayed.

Exported functions
• labelshow(top, left: integer, caption: string)

At this position (top, left) a label caption is show.
• optionshow(top, left: integer; visible: boolean; value: boolean; caption: string)

At the position(top, left) an option is shown with the caption. The variable
visible decides if it can be seen and variable value decides if this _ option is
elected.

• frameshow(top, left, down, right: integer; visible: boolean; caption: string)
A frame with the caption is shown between the left top position (top, left)
and right down position (down, right).

• buttonshow(top, left, down, right: integer, visible: boolean, caption: string)
A button with the caption is shown. The left top point of the button is at
the coordinate (top, left) and right down point of this button is at the
coordinate (down, right)

• imagshow(top, left, down, right: integer; imagefile: string)
An imag is shown between the top left point (top, left) and bottom right
point (down, right).

• textshow(top, left, down, right: integer; visible: boolean; text: string)
A text input windown is shown between the top left point (top, left) and
bottom right point (down, right).

• checkboxshow(top, left: integer; visible: Boolean; value: Boolean: caption^ing)
At the position^op, left) a checkbox is shown with the caption. The
variable visible decides if it can be seen and variable value decides if this
option is elected.

• listshow(top, left, down, right: integer; visible: Boolean)
A listbox is shown between top left point (top, left) and bottom right point
(down, right). The variable visible decides if it can be seen and variable
value decides if this option is elected.

• aeditemtolist(s: string)
Add a new item to the list.

• deleteitemtolist(i: integer)
Delete the item with the specified index from the list.

• showwindow
Display the experiment window where the experiment is done.

171

D. 3.8Experiment specification module
Prefix: es_
Reference: MG - C. 3.1.5

D. 3.8.1 Interface syntax
Environmental variables:

labwindows: the graphic window where the experiment is displayed

Exported data type: none

Exported constant: none

Exported function:

Routines name Inputs Outputs Exception
es specifyExperiment

External functions:
labelshow /*from the screen display module*/
frameshow /* from the screen display module */
optionshow /* from the screen display module*/
buttonshow /*from screen display module*/
ed_s_expClass from the experiment definition module
ed_s_expType from the experiment definition module

D. 3.8.2 Interface semantics
State variables: none

State invariant: none

Assumption: none

Access routine semantics:

es_specifyexperiment
exception: none
Output: Call screen display module to configure the graphical interface

and set the labwindows’s state for the display and then query
the user for the experiment class and type definition and store
them in expCiass and expType states respectively.

Event table:
Condition Event Action
When the ‘Confirm’ button
is pressed.

@Click(Confirm) ed_s_ExperimentClass(class)
ed sExperimentTypn(type)

When the ‘Cancel’ button @Click(Cancel) Do nothing

172

is pressed

173

D. 3.9 Function specification module
Prefix: fsm_
Reference: MG - C. 3.1.9

D. 3.9.1 Interface syntax
Environmental variables:

labwindows: the graphic window where the experiment is displayed.

Exported data type: none

Exported constant: none

Exported function:

Routines name Inputs Outputs Exception
fsm..specifyfunction

External function:
labelshow /* from the screen dssplyy module*/
textshow /* from the screen dssjla^y n^t^t^uh 1̂*/
checkboxshow// from the screen display module*/
buttonshow /* from screen display module*/
real StringT'oRea^s: string)

return the real number by converting the string to the real number
fs_s_quafunction //from the function structure module*/
fs_s_cosfunction //from the function structure module*/
fs_s_expfunction //from the function structure module*/
ed_g_functiondefinition //from the experiment definition module*/

D. 3.9.2 Interface semantics
State variable: none

State invariant: none

Assumption: none

Access routine semantics:

fsm_spesifyfunction
exception:

174

output: Call screen display module to configure the graphical interface
and set the environmental variable for the display and then
query the user to select which functions will be used and set the
selected funetions' arguments and store them in states
qua_state, constate or exp-state respectively and set the
corresponding state variables que_set, coS-Set or exp_set as
true.

Event table:
Condition__________________ Event________________ Action_________________________
When the ‘Confirm’ button @Click(Confirm) select := ed_g_functiondefinition
is pressed._______________________________________ Table D-4_____________________
When the ‘Cancel’ button is @Click(Cancel) Do nothing
pressed

{}
(8616^=^—>G

Do nothing
{qua} fs s quafiulction is called.
{exp} fs s expfunction is called.

H {cos} fs s cosfunctifn is called.
{qua, exp} fs s quafunction and fs s expfouction are called.
{qua,cos} fs s quafunction and fs s to fucctioc are called.
{exp,cos} fs s expttinction and Oss cosOuntiioc are called.
{exp, cos, qua} fs s expfunction, fs s co function and is s quafuectlon are called.

Table D-4 The order of initialization
Comments for the Table D-4:

qua: the abbreviation of the quafuoction
exp: the abbreviation of the uxsfunctino
cos: the abbreviation of the cosfunctton

175

D. 3.10 Specimen geometry specification module
Prefix: sgs_
Reference: MG - C. 3.1.6

D. 3.10.1 Interface syntax
Environmental variables:

labwindows: the graphic window, where the experiment is displayed.

Exported data type: none

Exported constant: none

Exported function:

Routines name Inputs Outputs Exception
sgsspecify geometry

External functions:
labelshow /*from the screen display module*/
buttonshow * from the screen dssp^l^^y module*/
textshow ■ /* from the screen dssplay module */
real StringToReal(s: string)

Return the real number by converting the specified string in the textshow
to the real type.

sg^-geomed'y^ngth /* specimen geometry module*/
sg_s-g^(^c^m^e^i^i^ywidth /* specimen geometry module*/
sgoO_geomefryheight /* specimen geometry module*/

D. 3.10.2 Interface semantics

State variable: none

State invariant: none

Assumption: none

Access routine semantics:

sgf_sppciff geometry
exception: none
output: Call screen display module to configure the graphical user

interface and set the environmental variable's state for the
display and then query the user for the specimen geometry
properties and store them in the state spe.

Event table:

176

Condition Event Action
When the ‘Confirm’ button
is pressed.

@Click(Confirm) ed_s_geometrylenth
ed_s_geometrywidth
ed s geometryheight

When the ‘Canael’ button is
pressed.

@Click(Canael) Do nothing

Comments:
1. The length, width and height of the test specimen have to be specified in every

experiment.

177

D. 3.11 Material properties file module
Prefix: mpf_
Reference: MG - C. 3.1.11

D. 3.11.1 Interface syntax
Exported data type:

PropertiesT = tuple of {
propertygame: string
propertyvalue: real
}

ProptertylistT: sequence of PropertiesT
PropertyValueT = sequence of real

Exported functions

Routines name Inputs Outputs Exception
mpf_g_gumberofpropertias string integer fiie_got_exist,

failureto open
mpf _ g . prosertygame string PropertylistT file_not_exist,

faiiure^oopen
mpf sg propertyvalue PropertyValueT PropertylistT

External functions:
Opegfiie(filenama: string)

Open a file whose name is filename and a pointer pointing to this file.
Readfile(FILE *file, type: string)

Read the value of the specified type from an opened file. If type is string
then read a string from the current position of the file pointer. If type is
integer then read an integer value from the current position of the file
pointer.

D. 3.11.2 Interface semantics
State variable:

f: file
State invariant: none

Assumption:
• Material property file is named with string given by a designer and an extension

name (.mat). That string given by the designer should be consistent with
constitutive equation file’s name because every constitutive equation has the
corresponding material properties saved as material property file. The difference
between constitutive equation file and material property file is an extension.
Material features file has an extension as .mat and constitutive equation file has an
extension as .con.

• Material features file is written by a user with a notepad or textwriter and saved as
a text. The order of file format is irrelevant, but it should be consistent so that the

178

order of information that is read from the file is the same as the order that is
written to the file.

Local variables:
number: integer
list: PropertylistT

Access routine semantics:

mpf_g_numberofproperties(filename : string)
exception: (Openfile(filename) is unsuccessful) => (file_not_exist,

failure_to_open)
transition/output: f:= Openfile(filename)

out :=Readfile(f. “integer”)

mpf_g_propertyname(filename: string)
exception: (Openfile(filename) is unsuccessful) => (file_not_exist,

failure_to_open)
transition/output: f:= Openfile(filename)

number :=Readfile(f, “integer”)
for i=0 to number

listfi] .propertyname := Readfile(f, “string”)
out := list

mpf sg propertyvalue(value: PropertyValueT)
exception:
transition/output: f:= Openfile(filename)

number :=Readfile(f, “integer”)
for i=0 to number

listfi] .propertyvalue := valuefi]
out := list

Comments:
1. ■ The first entry in the material property file is the number of the material

properties.

179

D. 3.12 Constitutive equation structure module
Prefix: cs_
Reference: MG - C. 3.2.1

D. 3.12.1 Interface syntax
Imported data type:

PropertyListT from the material property file module
PropertiesT = tuple of {

propertyname: string
propertyvalue: real
}

ProptertylistT: sequence of PropertiesT
PropertyValueT from the material property file module

PropertyValueT = sequence of real

Exported data type:
DeformationListT = sequence [LISTNUM] of Boolean

CsestitutiveEqnftiseT = tuple of {
name: string
thn_eumbnr_nf_mftnrial_properties: integer
materifl_properties_list: PropertyListT
defsrmatton_tlsttDefo^nationListT

}

Exported constant: none

Exported functions:

Routines name Inputs Outputs Exception
cs g c(rnstitutivnnquftion CoostitutiveEquatiooT
cs_s_constitutivnequftion string

DeforroationListT
PropertyValueT

ce g writetofile ConstitutiveEquationT failure to open
on_s_readfromfile string ConstitutiveEquatiooT ffilulento_optn

file not exist

External functions:
mpf_g numberofproperties from the material property file module
mpf_g propertyname from the material property file module
file Opeofile(fileoame: string)

Open a file whose name is filename, if return value is zero, Opening a file
is successful, otherwise failure.

ReadE^f: file, type: string)

180

Read the value of the specified type from an current position of a file
pointer and return this value.

Writnfiln(f: file, var: type)
Write the value of a variable whose type is type constructor into the file.

D. 3.12.2 Interface semantics
State variable:

coninformation: ConstitutiveEquationT
f: file

Local variable:
local: Property Lis tT

State invariant: none

Assumption:
• DeformationListT type is a sequence of boolean. This type is used to present if

deformation definitions are used in the constitutive equation.
• Functions cs_g_readfilefile and cs_g_writetofile is used to operate the file in

which the constitutive equation is saved. Actually the order of the format is
irrelevant but it should be consistent so that the order of information on the
constitutive equation that is read from the file is the same as the order that is
written to the file.

Access routine semantics:

cs_s_constitutiveequation(name: string, deform: DeformationListT, value:
PropertyValueT)

exception: none
transition: coninfotmation.name := filename

coninformation.the_number_of_material_properties:=
mpf_g_numbnrorproperties(name)

local := mpfgpropertynamn(name)
local := mpf _sg ptopnrtyvalun(valun)
coninformation.material_property_list := local

mpf_g_propertyname(name)
coninformation. deformation_list := deform

cs_g_constitutiveequation()
Exception: none
Output: out:= comnformaiion

cs_g_rnaldftomfiln(filename: string)
Exception: (Openfllfrfllenmce) ss unsuccessful) =>

(failjtO-Open, file_not_exist)

181

Transition/output: f:= Openfilefilename)
Ioaal.name := filename
losai.thr_numbrr_of_materiai_pfopeftiss:=Rsadfile(f,’’integer”)
for i=0 to local.the_number_of_material_properties

ioaal.matcfiai_pfopcfty_list|i] := Rcadf'dcCf. “PropertyT”)
ioaal.drfofmation_ilst := Rradailh(f(“DeaofmationlIstT”)
out :=■ local

cs_g_writetofil e(aonequ: ConstitutiveEquationT)
Exception: (Openfile(conequ.name) is unsuccessful) => aciI_to_oprf
Transition/Output: f:= Openfile(conequ.name)

Writefile(f, conequ.the_numbcr_of_material_properties)
For i=0 to conequ.the_number_of_materiai_properties

Wdtefilef, conequ.matcriaI_property_Iist[i])
Writefiie(f, conequ.deformation_list)

182

D. 3.13 Constitutive equation specification module
Prefix: ces_
Reference: MG - C. 3.1.10

D. 3.13.1 Interface syntax
Eevifoemeetal variable:

labwindows: the graphic window where the experiment is displayed.

Exported data type: none

Exported constant: none

Exported function:
Routines name Inputs Outputs Exception
ces sppcifyconsittuiivp

External functions:
labelshow /* from the screen display module*/
textshow /* from the tefppe display module*/
frameshow /* from the screen display module*/
opiioefhow /* from the screen display module*/
buiioefhow /* from the screen display module */
listshow /* from the screen display module */
pd_o_constitutivpowitfh
pdog_conotiiutivpowitfh
fo_Ooeoeotiiuiivpequaiioe
es_g_fpadfromfilp
r_ gwriipiofilp
mpfog_eumbpro_propprtieo
mpfog_pfoperiyeamp
mpf_g. sg ._ propertyvalue
real SifiegToReal

D. 3.13.2 Interface semantics
State variables: nonp

State invariant: none

Assumption: none

Access routine semantics:

epo_sppci_ffoeoiiiuiive
Exception: None

183

Output: Call screen display module to set environmental variable
‘labwindows’ for the display and then query the user for the
constitutive equation selection and keep it in con_switch state
and query the user for the constitutive equation defmition and
keep it in the coninOormation state and query the user for the
value of material propterties.

Event table:
Condition Event Action
When the 'Confirm' button
is pressed.

@Click(Confirm) ed_s_constitutiveswltch,
ce_s_constitutiveequatlog,
msO_g_gumberoOsropnrtins,
msf_g_prosertygame,
mpf sg srosertyvahle

When the ‘Save’ button is
pressed

@Click(Save) ce_g_writetoOiie

When the Cancel button is
pressed

@Click(Cancel) Do nothing

184

185

D. 3.14 Tensor data definition module
Prefix:
Reference:

D. 3.14.1 Interface syntax
Exported constant:

DIM 3

LISTNUM 15

MDG 1
SDG 2
MDPG 3
SDPG 4
CDT 5
GDT 6
ST 7
SRT 8
EFST 9
LFST 10
EIST 11
LIST 12
TST 13
TSST 14
ESST 15

Exported data type:
TensorDataT = sequence [DIM][DIM] of Real*
TensorFlagT = {mdg, sdg, mdpg, sdpg, cdt, gdt, st, srt, efst, lfst, eist, list, tst, tsst,

esst}
Comments:

• Comment on TensorFlagT
mdg: the abbreviation of material deformation gradient,
sdg: the abbreviation of spatial deformation gradient,
mdpg: the abbreviation of material displacement gradient,
sdpg: the abbreviation of spatial displacement gradient,
cdt: the abbreviation of Cauchy’s deformation gradient,
gdt: the abbreviation of Green’s deformation gradient,
st: the abbreviation of stretch tensor.
srt: the abbreviation of stretch ratio tensor.
efst: the abbreviation of Eulerian finite strain tensor
lfst: the abbreviation of Lagrangian finite strain tensor
eist: the abbreviation of Eulerian infinitesimal strain tensor
list: the abbreviation of Lagrangian infinitesimal strain tensor
tst: the abbreviation of true strain tensor
tsst: the abbreviation of true stress tensor

esss: the abbreviation of engineering stress tensor.

186

D. 3.15 Material deformation gradient module
Prefix: mdg_
Reference: MG - C. 3.2.9

D. 3.15.1 Interface syntax
Imported data type:

DisplacementT from the displacement specification module
Displacement? = tuple of{dispu: real, dispv: real, dispw: real,

deltaxy: real, deltayz: real, deltaxz: real}
TensorDataT from Tensor data definition module
TensorDataT= sequence[DIM][DIM] of Real*
TensorFlagT = {mdg, sdg, mdpg, sdpg, cdt, gdt, st, srt, efst, lfst, eist, list, tst, tsst,

esst}

Imported constant:
DIM 3

Exported functions:

Routines name Inputs Outputs Exception
mdg_g_knownuuantity TensorDataT

TensorFlagT
TensorDataT Table D-5

mdg_g_Deomntry SpecimnnGnomntryT
DisplacementT

TensorDataT

D. 3.15.2 Interface semantics
State variable: none

State invariant: none

Assumption:

Access routine semantics

mdg_g_knownuuantityfku: TensorDataT, kuflag: TensorFlagT)
exception: Table D-7
output: Table D-5

187

mdg_g_geometry(sg: SpecimenGeometryT, diep:DisplacementT)
exception: None
output: Table D-6

188

to
Out:=[ud]

ii.SS

tZ a G

ii.

t=-a

© SX

0

| others ud. |

II.

35-a ©

E

S

•S'
w

1 others ud. |

II.

S

a ©

5

wQ

II.

s

©

S- wV

m
,

m"aX o

73305U o
xo

II
£

£

tzS ©

CM77§

~a
s

733050o

II.

£

S
'

tG- a 0

CM
 ,

77
'

§Q.X O

II.

s
,

sT3
a

©

cn,
SX

 X V

^3305I­O

£O
&0

II.
S

s

 a ©

II.

s

S
'©

CM77g

&<D

753k-
■OO

II.
77.

77
©

CM

£X4c

JI,
S

s

X

­©

,<m
,

s

£

w

<D

d305k­O

X0

z
^

£2j
CM

,
CM

,

ll
,m'

g
73

37
.rm,

37
37

CM
S

'
•S

II,
m

'
73

II.
S'

73
JI.

S
'

s
•d

JI.
g

JI.
s

U
S

33
II.

S
'

75
JI

3
3

ii.
£

H
cm

3
’X

3
S

■«
3

s
§

S
4v

3
*X

i
3

§
S

£
3

§
s

£
3

77
■s

S
Tv

5
-X

t5
4c

4c
4?

-X
4C

4c
4C

4C
4c

•X
<ic

05
3

m
'

tZ a
i

k­i)
S

 1
tz
3

i
i—0

•fi
7m'
ts- a

i
"m'
ts-
a

i
0

*=- a
i

0
X

S­a
i

"m'a
0

d3

tz a
i

'cm
'

tz

a

k­O

X
s

i
CM■e-

s

tz
k-
0

C

1) o
©

o
G

31
o

<0
©

O
©

O
©

©
0

©
©

t--
b

©
©

”-
©

0

T?
73

II
73

ll
C

M
ii

-Q
ll

■d
ll

73
ll

77
d

||
JI,

CM
d

05
T3

£

S

tz
a

cm
£

+

305u47

s77
tZ
a

77
£

+

300UO43

£

s

ts- a

cT
£

+

S
,

sa

s+

3Ui
.2

S­a
-x"+

3O43
tz a

£+

S

s
s£4-

3k-043
tz a

+

£77
77£+

05u0

X
sa

X

4c4-

£

£
££+

s

s
s£+

k-0

•S
o

©
O

©
O

©
0

b
©

O
©

©
b

©
©

©
©

©
0

/—'
Z—-

3
3

r>
,

CM
CM

H
'

33
T7

jcn.
37

,CM
,

07
CM

.
S

'
m

CM
CM

cn
;_<■

m
U

w
'

CM
I—

'
PC

Tv
X

Tv
£

£
£

4C
X

X
X

40
4<

•X
•X

-X
4C

4C
4C

4C
-5

*
*

*
*

*
*

*
*

*
*

*
*

cm
73

11
CM

73
CM

ll
CM

73
JI.

CM
73

CM
ll

73
CM

IL
CM

d
JI.

CM
H

CM
CM

d
3

3
£77
tz
a

3
£

cT
ts- a

C—
>

i
3

3
C—

i
3

s77
tz
a

3
77,
£X

-—,
3

,tc
T3

on
■

-
13
J?

C/5k­o
43

J?
05Ui
O

tv
O) s

tz
a

X tv
to

0

•=>
3Z
a

s
05U-

■0
a

K s s
 ts- a

tv«o

05k­O
X

St
t*>

i7 s
05k­O

X

'S-
i7 ■v
X

j?

JD,
sX

i7 tv
KJ

05
k­O

43

o
o

©
—

■
b

©
b

<e
©

0
©

0
©

©
O

©
©

•“*
“0

©
©

©
b

+
s

+CM
,

+

£
+
s.

+
+

+
s.

+
+
£

+
+77

+
s

cm
d

CM
CM

m
07

m
30

CM
i[

CM
m

73
tv

H
73

I
4?

ll
G

’
73

ll
T?

73
]|

tv
ll

£
73

£
l£

£
75

X
X

X
d

-£
3

-X
3

CM,
4e

-X
3

4C
5

4C
3

4c
3

4c
4C

•X
3

T
co.

* CM
05

,CM,
* CM

* CM
,cn.

* CM
s

* CM
05

c
i

* CM
rm

.
* CM

s
* CM

CM
,

* CM
d

* CM
CM

* CM
C

L
* CM

05

to
3

cm
tz

13 tv
o43

CM

tz3
K

043
CM

tz
a

tv

m

ts- a
X0"

"tz
a

X tv
O-0

S
’

U

tv

m
X tv

O

-£
sa

tv
CM

X

tv
4=!

S
i7 tv

CM
tz

t tv
cn
’e

13 tv
O
X

o
©

to
b

©
Oj

b
<o

O)
©

b
©

«o
b

©
to

©
to

b
©

to
©

X
b

©
KJ

©
KJ

©
KJ

b

CM
CM

m
—

i
C—

<
S

'
k--

s
C—

i
<M

cm'
II.

£

73
II.

CM£
73

l£
C

M
£

ii.
c

i
£■

73
33

73
33

II,
££

73
—

JI.
d

z
z

LL
.11.

££
d

V
2

05
(M

05
CM

S
£

05
c£

£
05

Cl
£

CM
X

4c

S
£

CM
£

s
,

•5
3

cm
tv

o43
CMa

tv
043

CM

t?

a
tv

m

tz
a

Ov
O43

tz-
a

tv
O

3Z
a

K tv
C<5
tz a

K tv
O
X

"Sa
i7

CM

tz
a

i7 tv
043

"S
i7 tv

CM
tz

J

el
tz

t tv
043

CDo
©

«o
O

©
to

O
©

05
©

O)
b

©
Xi

0
©

KJ
©

Ki
d

©
X

©
Ki

b
©

K)
©

KJ
©

KJ
b

33
7I.

CM
C

M
4_i'

£<d
3T

CM
,

3T
CM

s.
d3

ll.

£

S

tzs

S>
733

ll.

CM

S5
733

ll.
S£

ii.
■tST,
S

tz25

s4e
703

JI.
5

733
ll.

§
ll.

S£
733

ll.
Il.

c7
S

'
£

d3
Ii.
s

JI.

CM

'cm
'

£
JI.

S£
d3

II3
t S'

O5k­o
43

S
'

13S’
U 0

43

S

tz3
©-
OJ

tv
so

£J
c

ts-
a

So
Ui

-3
s

s
S

tz a

s
£X

s
i7 tv
KJ

77
i7 s

k-
43

tS-
i7 s

77
X

tv
KJ

cm
J

X

u-0

-C
o

©
o

O
-■

o
©

©
—'

b
©

—
O

©
—

©
—

0
©

©
--

O
©

—
©

©
—

0

_
z—,

H
CM

 ,
CM

 ,
Cn'

37
Z7

H
 ,

37
CM

37
C

M
,

S
'

d
H

73
II.

CT
•6

ii.
S

'
l£
s

37
73

37
I

S
73

33
ii.

S
' d

3
3

ii.
S

'
I.

s
d

3
S

'
3

S
"0?

3
£

"X
3

3
"Sv

3
—

,
C7

tv
3

"tv
77

X
C5

Tv
3

JI,3
•X

-X
-X

4C
-X

4C
4C

4c
4c

4c
4c

4C
05

ao
Q

.
m

'
u-0>
X

CM3
0~
•s

CM
 'a

co’
tz
a

043
35-a

u-O
£

'm'a
UiO43

s
'cm

'
u0X

§
S

'
V)
X

k­OX
05o

©
b

©
0

©
--

©
6

©
—

M
O

©
©

b
©

©
—

b
©

©
M

©
b

d
73

ii.
73

M
c7

73
ll

73
II

77
d

II,
IL

77
Cl

d
aoC

l
73

S
s

3
C

M
£

3
C

M
c7

ST.s
3

3
S?,s

3
33

j£
£

3
33

77
CM

s
,

m
3

II,3
S

■Z

+
u-o43

S

tz
a

£+
u-O

X

7m
'

tz
a

4C
+

S

tz
a

£+
U

-
O43

35-a
'<v4c
+

k­O

43
S'

£

+
s

ts-

£+
k-0

X

§
£+

CM ,
ts- a

X4C
+

0

•0
s-

£+
Cm ,
t3

X4c
+

<m
'

'S
'

X+
u0
X

s
o

©
O

©
b

©
©

O
©

b
©

©
b

©
©

0
©

©
©

b

d
73

73
73

T3
73

H
75

IL
•0

ao
y3

s

S
'

tz

a

cm
s

•S'

305k-0
43

CT
77
tz
a

CM
,

c?
£

3U04S

cm,
CTa

(M ,
C?
J

S

s
 tz

a

<m,
S

J

3cs
•£

a
-S"

50

X
s

 a
I

s,
s

 ■z
C

L
S

£

3&k-0

£
sa

II
7777

CM
 ,

S-5"

3u-O

43

7777
'S'

CM
,

77
X

4c

sm

cc
s

 T?4c

3k-0

X
C5

o
©

O
©

b
©

©
b

©
O

©
©

O
©

O
©

©
0

co
73

O
'

O
'

CT
CC

O
'

O
'

O
'

O
'

E
44

44
44

44
44

44
44

44

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

-Q
73

73
*3

73
73

73
73

73
73

7373
73

73
73

75
73

73
73

73
"O

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

II
II

II
II

II
I-

II
H

.
II

II
%

%
I-

II
II

■u.
II

*
U-

*
.ll.

%
%

4
-

F—
cm 1 cn

CM
m

CM
m

--
CM

cn
CM

C3
CM

C<i
<-v

CM
C<)

—
CM

m
i—

>
1—

1
U-—1

1—
1

>—
1>—

'l—
J

■——1
I—

1
1—

11—
1

1
, ■cm 'm

4^
CM

CC
4^

Cm
r*7

cm
CI

CM
CC

CM
C*5

C7
C*7

—-<
CM

m
3

“
3

“
O

"
O

'
O

'
O
'

O
'

CT
O

'
CC

CT
O

'
CT

O
'

O
'

O
"

O
-

O
'

C
O
'

O
'

O
'

er
44

44
44

44
44

X

44
44

44
44

44 44
44

44
44

44
44

44
44

44
44

44
44

44
44

O

O
'

0
0

oTCj
X<X"ccS3

C

T

C&O3SM I
bfl T3 su.

<23 OLO,
Q<L>
f~

F

x>
cSH

003S
300

-CCM
3

G H—>G

H disp.dispu=udA
disp.dispv=udA
disp.dispw=ud

Out :=[ud]

disp.dispu=udA
dispxii5^f^x^=^i^c^A
disp.dispw^ud

ow[3][3| := (1 + dispdispw l sg.width)
others ud

disp.dispu=udA
disp.dispvuudA
disp.dispw=ud

out[2][2] := (1 + dispdispvI sg.height)
others ud

disp-dispi^udA
disp.dispvAudA
dIsp.dispw#Cid

out [2][2] := (1 + disp.dispv I sg.height)
out[3] [3] := (1 + disp.dispw l sg.width)
others ud

disp.dispuAudA
dipp.dippv=udA
disp.dippw=ud

owf]l] [1] := (1 + disp.dispu l sglength)
others ud

disp.dispuUudA
dipp.dippv=udA
dIpp.dispwUud

ow/|1][1] := (1 + disp.dispu l sglength)
ouU[3][3] := (1 + dispdispw!sg.width)
others ud

disp.dispu#udA
disp.dispvuudA
dIpp.dippw=ud

om/HI [1]-- (1 + disp.dispu l sglength)
out[2][2] := (1 + dispdispvlsg.height)
others ud

disp.dispuAudA
disp.dispvuudA
dIpp.dIspwUud

out[i] [1] := (1 + dispdispu 1 sglength)
out[2][2] := (1 + dispdispvl sg.height)
out[3][3] := (1 + dispdispw/sg.width)
others ud

Table D-6 out for ndg_g_grometry

190

Table D-7 exception for mdg_g_koowoquaotity

mdg sdg mdpg sdpg cdt gdt lfst efst list eist tst
non ((kq[l][l]=0)v

(kq[2][2]=0)v
(kq[3][3]=0))
=>d_zero

non ((kqUHl^Ov
(kq[:^;^l^:^]^=^i)v
(kq[3][3]=l))
^d-zero

((kq[l][l]=0)v
(kq[2][2]=0)v
(kq[3][3]=0))
^d^zero,
((k<^[l][l]<0)v
(kq[2][2]<0)v
(kq[3][3]<0))
=>sr_zcro

((kq[l][l]<0)v
(kq[2][2]<0)v
(kq[3][3]<0))
^sf-zero

((kq[l][l]<0.5)v
(kq[2][2]<0.5)v
(kq[3][3]<0.5))
^sf-Zero

((kq[l][l]>0.5)v
(kq[2][2]>0.5)v
(kq[3][3]>0.5))
=>sr_ze.ro

non ((kq[l][l]=0)v
(kq[2][2]=0)v
(kq[3][3]=O))
=>d_zero

non

191

H! ->G

G

sr_ze.ro

D. 3.16 Spatial deformation gradient module
Prefix: sdg-
Reference: MG C. 3.2.10

D. 3.16.1 Interface syntax
Imported data type:

Displacement? from the displacement spuniOicatioo module
TuosorDataT from the tensor data duOioitioo module
TuosnrFlagT from the tensor data deftoitioo module

Imported constant:
DIM 3

Exported functions:
Routines name Inputs futputs Exception
sdg-g-knownquantity Tensm'DataT

TuosorFeagT
TuosorDataT TableD-8

sdg_g_guometry SpecimeoGunmufryT
DisplacementT

TuosorDataT ooou

D. 3.16.2 - Interface semantics
State variable: none
State invariant: none
Assumption:
Access routine semantics

sdg-g-konwoquantity(kq: TensorDataT, kqflag: TuosnrFlagT)
exception: Table D-8
output: Table D-9

sdg-g-genmetry(sg: SsenimeoGuomutryT, disp•.DisseanemeotT)
Exception: None
futput: Table D-ie

192

H ->G Table D-8 exception for sdggknownquantity

mdg sdg mdpg sdpg cdt gdt lfst efst list eist tst

(kq[l][l]=0)v
(kq[2][2]=0)v
(kq[3][3]=0)
=>
d_zero

non (kq[l][l]=l)v
(kq[2][2]=l)v
(kq[3][3]=l)
=>
d_zero

non (kq[l][l]<0)v
(kq[2][2]<0)v
(kq[3][3]<0)
=>
sr_lesszero

(kq[l][l]<0)v
(kq[2][2]<0)v
(kq[3][3]<0)
=>
sr lesszero,
(kq[l][l]=O)v
(kq[2][2]=0)v
(kq[3][3]=O)
=>
d_zero

(kq[l][l]<-
0.5)v
(kq[2][2]<-
0.5)v
(kq[3][3]<-
0.5)
=>
sr lesszero,
(kq[l][l]=-
0.5)v
(kq[2][2]=-
0.5)v
(kq[3][3]=-
0.5)
=>
dzero

(kq[l][l]>0.5)v
(kq[2][2]>0.5)v
(kq[3][3]>0.5)
=>
sr_lesszero

(kq[l][l]=-l)

(kq[2][2]=-l)

(kq[3][3]=-l)
=>
d_zero

non non

193

H!

G

H2 : kgflag

mdg sdg mdpg sdpg cdt gdt
kq[l][l]=udA
kq[2][2]=udA
kq[3][3]=ud

Out:=[ud] kq Out:=[ud] Out:=[ud] Out:=[ud] Out:=[ud]

kq[l][l]=udA
kq[2][2]=udA
kq[3][3][ud

oMi^[3][3]:=l/Jl?3^:i[3]
others ud

kq owt[3][3] := 1/(1 + [3])
others ud.

ow/[3][3] := 1 - fc?[3][3]
others ud.

ow^]3l]3] := 1 / sqrt (/C7132 [3])
others ud.

kq[l][l]=u<A
kq[2][2]>udA
kq[3][3]=ud

owr[2][2] := 1/Ag[2][2]
others ud

kq oi/t[2][2] := l/(l + fa?2][2])
others ud.

o«[[2][2] :=]-fcrt2][2]
others ud.

out[2][2] := sqrt(kq[2][2])

others ud.

out[2][2] :=1/sqrt(/b/[2][2])
others ud.

kq[l][l]=udA
kq[2][2]?tudA
kq[3][3]*ud

out[2][2] '=1/Aq[2][2]
owt[3][3] := 1/ MC[[31
others ud

kq o^[2][2] := 1/(1 + M12][2])
owt[3][3] := 1/(1 + M[1(3])
others ud

Ow[2][2]:=]-Ag[2][2]
O<3][3]:= /-dir[3]l3]
others ud.

out[2][2] := sqr]^!^])
OM^[3]]3]l==^?rt((M[3]]3])
others ud.

out[2][2] := 11 sqrt(kq[2][2])
out[3] [3] := 1 / sqrt (kq[3 2 [3])
others ud.

kq[ll[l>udA
kq[2][2]=udA
kq[3][3]=ud

oM[llii]ji/j/]dini
others ud

kq ow41][l]1=1/(1 + M1il[1])
others ud.

OM41][]l:=]-fc7/]][l]
others ud.

o^t[]1]]1] := .s'<7rd1(A/d[1l1lD
others ud.

ow[l][l] := 1/ $d-f(<[[/][/])
others ud.

kq[l][l]*udA
kq[2][2]=udA
kq[3][3]*ud

oW/3][3]:=]/fa7[3][3]
others ud

kq o*tl][l]:=[/((+Ml]m)
oirfniCTM/a+fcOPi)
others ud.

O[mt]/]|l]][-Ag[/][/]
od3H3] := 1-M3K3]
others ud.

owr[ll[l] := sqrt (*?[l][l])
o«t^[3^:i3]]:= sqr^r<^M^1][3])
others ud.

oM^ll-l/sq"^!]^])
OM43H31 1/5prZ/*i^]3][3])
others ud.

kq[l][l]*udA
kq[2][2]]udA
kq[3][3]=ud

oM/UKl^l/MUm]
out[2][2]:=/fy[2][2]
others ud

kq ow[l[[l] :=]/// + fe(l][l])
ou/[2]l^:^l^:=^l/(l + kq[2][2])
others ud.

ot^Hl]:^---^
oM^[2]]]!]l=l-M[2][2]
others ud.

out[1][[) ?= sqrt(kq\ 1] (1])
out[2][2] := sqrt(kq[2][2])
others ud.

o«41]][/ := 1 / sqrt(kq[l] [1])
out[2][2] := 1/ sqrt (kq[2][2])
others ud.

kq[l][i]^^<A
kq[2][2]*udA
kq[3][3]=>ud

OwOJ[l[:=l/[M][l[
out[2][2] := 1 / M12l(2]
out[3][3] := 1 / kq[3][3]
others ud

Kq Ow/[i][l]1/]/[1+MDH])
out[2][2] = l/(l + kq[2][2])
out[3][3] := 1 /([+ *?31][:3])
others ud.

0Ml][l]:=]-Ml][H
out[2][2] := 1 - kq[2][2]
out[3][3] :=l-k[[3[3^]
others ud.

out[3] [1] := sqrt/A^[l]l1])
out[2][2] := sqrt(iq[2][2])
ou|[[[[J := sqrt(fc^lf3])
others ud.

OiM[/Jtl] ~ 1 / sqrt(kq\3nXl)
out[2][2] .-1 / sqr^(Jq]2][2])

:= 1 / sqrt (t«7[3]]3])
others ud.

G Table D-9 out for sdg_g_knownquantity Hj aH2 ->G Continue—>

194

H,

H2 : kgflag
lfst eist list eist tst

kq[l][l]=udA
kcq2][2]uuclA
kq[3][3]=ud

Out^^d] Out:=[ud] Outtp[ud] Out:=[ud] Out:=[ud]

kq[l][lp=u<A
kq[2][2]=udA
k^[3][32^ud

o«z[3] [3] := 1 / sqrt(2 * ia7[3][3] + 1)
others ud.

owr[3][3] := sqrt[[- 2* —[2][])
others ud.

OK23H3] := 1/(1 +
others ud.

out[3][3] := 1 - M33][3]
others ud.

oe—[3][3]:=nxp(—-—[3]|3])
others ud.

kq[l][l]=udA
kq[2][2]budA
kq[3][3]=ud

out[2][2] := 1 / sqrt(2 * kq[2][2] + 1)
others ud.

ow[2]l2] := qrt(l-2*kq[2][2])o
fheas ud.

out[2][2] .= 1/(l + kq[2][2])
others ud.

O2t[2][22:= 1 -iqPjpj
others ud.

fW[2el2]:=]exp(-Ap[2][2[)
others ud.

kq[l][l]=udA
kq[2][2]*udA
kq[3][3]>ud

oW[2][2] := 1 / sqrt(2 * A][2]|[2] + 1)
out[3] [3] := 1 / sqrt (2 * —[3][3] + 1)
others ud.

oW/PlR] := sqrt(l - 2 * &?[2][2])
owf[3][3] := sqrtfl - 2* —[3][3])
others ud.

fW[2]]2]:=l((1 + AfcPllP])
ou^2[3][3] := l/(l + MSlP])
others ud

ou2[2][2l :=-- /2^:222]
o>—2[3[l3]:=l-—23J33I
others ud.

ou2[^][[^:^:= e2(---[2][2])
oit23][3] ?= (xp]-—2^]2^])
others ud.

kq[l][llbudA
kq[2][2]=upA
kq[3][3]=ud

oW[l][l] := 1 / sqrt(2 * A^[l][l] + 1)
others ud.

out[l] [1] := sqrt(l - 2 * Agl] [1])
others ud.

o«/[1[[1]:=1/(1 + —[1][1])
others ud.

o—p[-]i;^ :=^ =. — ci1l^[P^-
others ud.

O«2^12[1] := exp(-—[l][l])
others ud.

kq]]][]]AudA
kq[3][2]=udA
kq[3][3]*ud

ou/[1] [1] := 1 / sqrt(2 * kq[\\[1] + 1)
out[3][3] :- 1 / sqrt[2 * kq[3][3] + 1)
others ud.

out[l] [1] := sqrt (1 - 2 * ic]!:!] [1])
owZ[33[3] := sqrj -2* kq[3][3])
others ud.

OM^[l]ll] = l/(14-dlr[l][l])
Om23][3) := 1/(1 + A22H3])

others ud.

sM^2[l][:=]-^il][[i
o—23[[3]:= l ——[33J33]
others ud.

oi/21][[] := expe-MlHli)
o«23]|3] := expe--7[3i[3[)
others ud.

kq[l][l]budA
kq[3l[2]budA
kq[3][3]=ud

out[1][1] := 1 / sqrt(2 * kq[1][1] + 1)
owt[2] [2] := 1 / sqrt(2 * tcq[2][2] + 1)
others ud.

oW^Hl) := sqrt(l - 2 * kq[1][1])
out[2][2] .= sqrt(l - 2 * kq[2][2])
others ud.

owNlU^l/a + —ll][l])
out[2][2] .= 1/(1 + kq[2][2])
others ud.

f—[li[ll:==-—[lilll
pM22[[2]:1--Ap[2][2)
others ud.

owl]— := expe-—|l]|!|)
out[2][2] .= exp--—[3][2])
others ud.

kq[l][l>uidA
kq[2J[2;ctu<A
kq[3][3]bua

om/[1] [1] := 1 / sqrt (2 * kq[1] [1]4-1)
out[2][2] := 1 / sqrt(2 * kq[2][2] + 1)
oul[3] [3] := 1 / sqrt(2 * kq[3] [3] + 1)
others ud.

ou/[l] [1] := sqrt (1 - 2 * Oil] [1])
out[2][2] .= sqrt(l - 2 * A?[:^:|[2])
out[3] [3] := sqrtfl - 2 * kq[3} [3])
others ud.

cW[l]|[[:=l-1l + *g[l]|l[)
ouf[2][2] := 1/(14- kq[2[[2])
ow23H33:= 1/(1 + M3][3])
others ud.

0M[[-[l^1:21--l2^[2l[H
out[2][2] ■l--q[2][2]

others ud.

:= exppe--—[lKl])
out[2][2] := rap(-—[2][2])

:= (xp(_—3PP3j)
others ud.

—^Continue G Table D-9 out for sdg_gJknowoquaotiiy (Continue) H. aH, —>G

195

H ,

G H—»G

Table D-10 out for sdg_g_geometry

disp^ispu^dA
disp.dispv=udA
diss.dissw=ud

Out ;=[ud]

dlis.diisu=udA
dii{^dlssv=udA
disp. disp wpud

o wZ[3] [3] := (1 + disp.dispw / sg.width)~{

others ud

diis.dissu=udA
disp.dispvPucA
diis.dissw=ud

oi/t[2][2] := (1 + disp.dispv I sg.height)~x
others ud

disp^ispu^dA
diss.dissvPudA
diis.disswpud

out[2][2] := (1 + disp.dispv / sg.heighty1

om/[3] [3] := (1 + disp.dispw / sg.width)~i
others ud

diss.dissuPudA
disp^ispy^dA
disp.dispw=ud

out[1] [1] := (1 + disp.dispu / sglength)~{
others ud

disp.dispbAudA
disp.dispv=udA
disp. disp wPud

out[1] [1] := (1 + disp.dispu / sg.length)~x

ou/[3][3] := (1 + disp.dispw / sg.widthy!

others ud
disp.dispuPudA
disp.dispvPudA
diss.dissw=ud

o«t[l][l] := (1 + disp.dispu / sg.length)~x

ow/[2][2] := (1 + disp.dispv / sg.heighty'
others ud

dlss.dlssuPudA
disp.diipvPudA
disp.dispwPud

o wZ[l] [1] := (1 + disp.dispu / sg.lengthy'

out[2][2] := (I + disp.dispv / sg.heighty'

ou[[3] [3] := (1 + disp.dispw / sg.widthy'
others ud

196

H

D. 3.17 Material displacement gradient module
Prefix: mdpg_
Reference: MG C. 3.2.11

D. 3.17.1 Interface syntax
Imported data type:

TentorDataT from the material deformation gradient
TensorHagT from the material deformation gradient

Imported constant:
DIM 3

Exported functinnt:
Routines name Inputs Outputs Exception
mdpg_g_kpownquaptity TrnpofDataT

TepsofF'iagT
TepporDataT

mdpg_g_gromrSry S pesimenGromrSr■yT
DisplacementT

TepporDaSaT mne

D. 3.17.2 Interface semantics
State variable: none
State invariant: none
Assumption:
Access routine semantics

mdpg_g_kpowpquansSty(kq: TepsofDataT. kqflag: TensorFlagT)
exception: Ti^tlki D-11
output: Tabte D-l2

mdpg_g_gromrtry(sg: SpeoiInenGeomeSryT. disp:DispllremeptT)
Exception: None
Output: Table D"13

197

mdg sdg mdpg sdpg cdt gdt lfst efst list eist tst

non (kq[l][l]=O)v non (kq[l][l]=l)v (kq[l][l]<0)v (kq[l][l]<0)v (kq[l][l]<- (kq[l][l]>0.5)v non (kq[l][l]=l) non
(kq[2][2]=0)v (kq[2][2]=l)v (kq[2][2]<0)v (kq[2][2]<0)v 0.5)v (kq[2][2]>0.5)v V

(kq[3][3]=0) (kq[3][3]=l) (kq[3][3]<0) (kq[3][3]<0) (kq[2][2]<- (kq[3][3]>0.5) (kq[2][2]=l)
=> => => 0.5)v => V

d_zero d_zero sr_lesszero sr_lesszero, (kq[3][3]<- sr_lesszero, (kq[3][3]=l)
(kq[l][l]=O)v 0.5) (kq[l][l]=0.5)v =>

(kq[2][2]=0)v => (kq[2][2]=0.5)v d_zero
(kq[3][3]=0) sr_lesszero, (kq[3][3]=0.5)
=> =>
d zero d zero

198

Table D-ll exception for mdpg_g_knownquantityH, -»G

G

Hi

H : kgflag

mdg sdg mdpg sdpg cdt gdt
kq[l][1]=udA
kq[2][2]=udA
kq[3][3]=ud

Out:=[ud] Out:=[ud] kq Out:=[ud] Out:=[ud] Out:=[ud]

kq[l][l]=udA
kq[2][2]=udA
kq[3][3]^ud

omz[3][3] :=M^3][3]-1
others ud

owf[3][3] - l/A2[3][3]-l
others ud

kq 0^^]]2]:]==M^]]2]l^ll-M3l][3])
others ud.

ou/[3] [3] := [1 ■q^^P])-1
others ud

o<3][31 := ^^z^t^(A23^l[3l-l
others ud.

kq[l][1 J=udA
kq[2][2]*udA
kq[3][3]=ud

M[2][2]:=M2l[2]-1
others ud

out[2][2] :=l/kq[2]]2]-l
others ud

kq ou/[2]]2]]=]M[2][2]//(-M]2][21)
others ud.

ou/[2] [2] -1/ sqrtUkfcl} [2]) -1
others ud

our[2][2] := sqrt (kq^W-l
others ud.

kq[1][1]—udA
kq[2][2]£udA
kq[3][3]*ud

ozM2[[2[:==[2]]2]]-l
ow/[3][3] := 33123-1
others ud

0»r[2][2] := 1/M22122-1
03tt33[3]:= l/M3][3]-l
others ud

kq
0Ml[3]12]]=*M3]12]](l-333]]3l)
others ud.

ou([2][2] := 1 / sqrUk^ 2] [2])—1

o«Z[3][3] := l/.sql•/(^<[[3][3])-l
others ud

out[2][2] := sqrt(kq[2]{2])-1
o«l[3][3] := sqrt (fc?[3] [3]) -1
others ud.

kq[l][l]*udA
kq[2][2]=udA
kq[3][3]=ud

0Mrll]]l]:= =Mll][l — l
others ud

oMt[]]2]:= 1/*211][1]-1
others ud

kq
others ud.

ou<1][1] - 1/s<i7-Z(fl[]1[))-1
others ud

Our[[][l] := sqrt(kq[1] [1]) -1
others ud.

kqflJllJ^udA
kq[2][2]=udA
kq[3][3]*ud

om/[1][1] :=A/|l|]1]]-l
owr[3][3] := M3123-1
others ud

oMinn-wnw-l
om/[3][3] := 1/M3][3]-l
others ud

kq out[l][l]:= M11][W-M][1l)
oM[3]33[3= M3][3]/]/ -M33][3])
others ud.

ouzninj^l/^rKMlWll-l
ou/[3][3] := 1 / s91/(M3]P1-1
others ud

out[l][l]:=^rt(Ml][l])-l
out[3] [3] := sqrt(kq[][[3]) -1
others ud

kqflJllJ^udA
kq[2][2]*udA
kq[3][3]=ud

ow[l[l][l==7[[l]l]-l
out[2][2] :=kq[2][2]-l
others ud

oMz[[1[][:=:]1^9[1][l1-1
oW[2][2] := 1 kq[2]]2]-l
others ud

kq o«4[]]i[“Mil][]i(i-Mi][il)
OHl[2][2]:=H[2^2]/(l-M?[3[[2])
others ud.

ou/[l][l] := l/j9MJl|l])-l
^IP^l/ql/M^m)-]
others ud

out[l] [1 l ?= sqrt(kq[\] [1]) -1
out[2][2] := sqrt(kq[2][2]) -1
others ud

kq[l][1 l^udA
kq[2][2]*udA
kq[3][3]#ud

o^nitij^Mimi-i
oitf[2][2] :=kq2^][2]]-l
on/[3][3] := M[3]23-l
others ud

ow[l][1[3==/A[l][l]3-l
out[2][2] := 1/Ag[2][2] — 1
o«[33]23:=]1/M3][33-1
others ud

kq Our[l][l]:=Ml][W-Ml][ll)
out[2][2] := M2][2] /(I - kq[2][2])
OHt[3]]2]l=M3][2]]/l-*2]3]]3])
others ud.

OuOTJiill^ttfajlTO-l
O^JRJ^ll.qXM^PD-l
out[3] [3] := I / sqrt (kq{3] [3]) - 1
others ud

owr[1l[ll := sY/i-l(Aq|[]l 11) -1
out[2][2] := sqrt(kq^[2][2]) -1
oal[3][3] := sqrt(kq[3] [3]) -1
others ud

G Table D-12 out for mdpg_g_knownquantity Continue—>

199

Table D-12 out for mdpg_g_knownquantity (Continue) H, aH, —> G

lfst efst list eist tst
kq[1][l]=udA
kq[2][2]=udA
kq[3][3]=ud

Out:=[ud] Out:=[ud] kq Out:=[ud] Out:=[ud]

kq[l][l]=udA
kq[2][2]=udA
kq[3][3]=Aud

out[3] [3] := sqrt(2 * Agf3][3] +1) -1
others ud.

owt[3][3] := 1 / sqrt(l - 2 * kq[3] [3]) -1
others ud

kq OMt[3][3]:=fa7[3][3]/(l-A<7[3]
others ud.

Oi43][3]:=exp(fc7[3][3])-1
others ud.

kq[l][l]=udA
kq[2][2}AidA
kq[3][3]=ud

out[2][2] := sqrt(2* kq[2][2] +1) -1
others ud.

out[2][2] := 1 /sqrt(l - 2 * kq[2][2]) -1
others ud

kq out[2][2]:=kq[2][2]/(l-kq[2
others ud.

our[2][2] := exp(k<?[2] [2]) -1
others ud.

kq[l][l]=udA
kq[2][2]+udA
kq[3][3]*ud

oul[2][2] := sqrt(2 * kq[2][2] +1) -1
ou/[3] [3] := sqrt(2 * *<?[3][3] +1) -1
others ud.

out[2][2] := 1/sqrt(1-2* kq[2][2])-l
out[3] [3] := 1 / sqrt(l - 2 * kq[3] [3]) -1
others ud

kq out[2][2] := kq[2][2]/(l-kq[2]
out[3][3] := kq[3][3]/(l - kq[3]
others ud.

oul[2][2] := exp(kq[2][2]) — 1
out[3][3]:= exp(^[3][3])-l
others ud.

kq[l][l]*udA
kq[2J[2]=udA
kq[3][3]=ud

oMt[l][l] := sgrt(2* + 0-1
others ud.

out[l][l] := 1/ sgrt(l —2*Ag[l][l]) —1
others ud

kq 0Mt[l][l]:=^[l][l]/(I-MH(l]
others ud.

OMZ[l][l]:=exp(^[l][l])-l
others ud.

kq(l][l>udA
kq[2][2]=udA
kq[3][3]=Aud

o«r[l] [1] := sqrt(2 * M 1][1] +1) -1
o«r[3][3] := sqrt(2 * £<?[3] [3] + 0-1
others ud.

:= 1 / sqrt(l -2* kq[1][1J)-1
otrf[3][3] := 1 / sqrt(\ - 2 * kq[3] [3]) -1
others ud

kq ™t[l][l]:=Ml][ll/(l-Ml][l]
O«r[3][3]:=^[3][3]/(1-M31
others ud.

owr[l][l]:=exp(Ag[l][l])-l
o«r[3][3] := exp(kg[3][3])-l
others ud.

kq[l][l>udA
kq[2][2]*udA
kq[3][3]=ud

ow/[l] [1] := sqrt(2 * kq[l] [1] +1) -1
out[2][2] := sqrt(2 * kq[2][2] +1) -1
others ud.

out[l] [1] := 1 / sqrt (1 - 2 * kq{ 1] [1]) -1
ou/[2][2] := 1 / sqrt(l - 2 * kq[2][2]) -1
others ud

kq O«t[i][i]-Mi][i)/(1-Mi)[i]
out[2][2] := kq[2][2] /(I - kq[2]
others ud.

owt[l][l] := exp(kq[l][l])-l
OMr[2][2]:=exp(M2][2])-l
others ud.

kq[l][l]*udA
kq[2][2]#udA
kq[3][3>ud

ow/[l] [1] := sqrt(2 * kq[l] [1] +1) -1
om/[2][2] := sqrt(2 * M2][2] +1) -1
out[3] [3] := sqrt(2 * Jt^[3][3J +1) -1
others ud.

oi/t[l][l] := 1 / sqrt(l - 2 * Agtl][l]) -1
o«t[2][2] := 1 /sqrt(l - 2 * M2][2]) -1
out[3] [3] := 11 sqrt(l - 2 * ^[3] [3]) -1
others ud

kq Our[l][l]:=Ml][lJ/(l-Ml][i:
oi/t[2][2] := kq[2][2] /(I - kq[2]
out[3][3]:=kq[3][3]/(l-kq[3]
others ud.

Ou/[l][l]:=exp(^[l][l])-l
owr[2][2]:=exp(kq[2][2])-l
owt[3][3] := exp(fc/[3][3J) -1
others ud.

H2 : kgflag

200

H,

-^Continue G

G HaG

Table D-13 out for mdpg_g_geometry

disp.dispu=udA
disp.dispv=udA
disp.dispw=ud

Out :=[ud]

disp.dispu=udA
disp.dispv=udA
disp.dispwAud

ow/[3][3] := disp.dispw / sg.width
others ud

disp.dispu=udA
disp.dispvAudA
disp.dispw=ud

out[2][2] := disp.dispv/sg.height
others ud

disp.dispu=udA
disp.dispvAudA
disp.dispwAud

out[2][2] := disp.dispv/sg.height
om/[3] [3] := disp.dispw! sg.width
others ud

disp.dispuAudA
disp.dispv=udA
disp.dispw=ud

o«t[l] [1] := disp.dispu I sgdength
others ud

disp.dispuAudA
disp.dispv=udA
disp.dispwAud

ow/[1] [1] := disp.dispu I sgdength
o«/[3][3] := disp.dispw! sg.width
others ud

disp.dispuAudA
disp.dispvAudA
disp.dispw=ud

out[1][1] := disp.dispu I sgdength
out[2][2] := disp.dispv I sg.height
others ud

disp.dispuAudA
disp.dispvAudA
disp.dispwAud

out[l] [1] := disp.dispu I sgdength
out[2][2] .= disp.dispv / sg.height
oW[3][3] := disp.dispw! sg.width
others ud

201

H

Routines name Inputs Outputs Exception
sdpg_g_knownquantity TensorDataT

TensorFlagT
TensorDataT Table D-14

sdpg_g_geometry SpecimenGeometryT
DispIacementT

TensorDataT none

D. 3.18.2 Interface semantics
State variable: none
State invariant: none
Assumption:
Access routine semantics

sdpg_g_knownquantity(kq: TensorDataT, kqflag: TensorFlagT)
exception: Table D-14
output: Table D-15

sdpg_g_geometry(sg: SpecimenGeometryT, disp:DisplacementT)
exception: none
Output: T able D-16

202

D. 3.18 Spatial displacement gradient module
Prefix: sdpg_
Reference: MG C. 3.2.12

D. 3.18.1 Interface syntax
Imported data type:

DisplacementT from the displacement specification module
TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module

Imported constant:
DIM 3

Exported functions:

Table D-14 exception for sdpg_g_knownquantity

mdg sdg mdpg sdpg cdt gdt lfst efst list eist tst

(kq[l][l]=0)v
(kq[2][2]=0)v
(kq[3][3]=O)
=>
d_zero

non (kq[l][l]=l)v
(kq[2][2]=l)v
(kq[3][3]=l)
=>
d_zero

non (kq[l][l]<0)
V
(kq[2][2]<0)
V
(kq[3][3]<0)
=>
srjesszero

(kq[lHl]<0)
V
(kq[2][2]<0)
V
(kq[3][3]<0)

sr lesszero,
(k^[l][l^=0)
V

(kq[2][2]=0)
V
(kq[3][3]=0)
=>
d zero

(kq[l]H]<-0.5)
V
(kq[2][2]<-0.5)
V
(kq[3][3]<-0.5)

sr lesszero,
(kq[l]H]=-0.5)
V
(kq[2][2]=-0.5)
V
(kq[3][3]=-0.5)
=>
d zero

(kq[l][l^5)
V
(kq[2][2]>0.5)
V
(kq[3][3]>0.5)
=>
sr_lesszero,

(kq[l][l]=-l)
V

(kq[2][2]:=-l)
V
(kq[3][3]=-l)
=>
d_zero non

non non

203

Hi

G

H, Xi

mdg sdg mdpg sdpg cdt gdt
kq[l][l]=udA
kq[2][2]=udA
kq[3][3]=ud

Out:=[ud] Out:=[ud] Out:=[ud] kq Out:=[ud] Out.-[ud]

kq[l][l]=udA
kq(2J[2]=udA
kq[3][3]*ud

out[3][3] :=l-l/^[3][3]
others ud

oul[3][3] := 1 - M3][3]
others ud

OMr[3][3]:=M3][3]/(l + M3][3])
others ud.

kq out[3][3] := 1 - sqrr/(*qr[3] [3])
others ud

out[3][3] := 1 -1/ sqrt(kq[3][3])
others ud.

kq[l][l]=udA
kq[2][2]*udA
kq[3][3]=ud

kql2][2}^V-\lkq[2}[2]
others ud

out[2][2] :=l-^[2][2]
others ud

out[2][2]:= ty[2][2]/(l +iq[2][2])
others ud.

kq o«42][2]-l-59r«(M2][2])
others ud

out[2][2] := 1 — 1 / sqrt(kq[2][2])
others ud.

kq[l][l]=udA
kq[2][2]*udA
kq[3][3]?tud

out[2][2] := I -1/ kq[2][2
oul[3][3] := 1 -l/^[3][3]
others ud

out[2][2] := 1 - M2][2]
Om43][3]:=1-^[3][3]
others ud

o<2][2] := M2I[2]/(1 + M2J12J)
o«t[3][3] := ^[3][3]/(l + M3][3])
others ud.

kq ou42][2] := 1 -sqrt(kql2][2])
oa/[31[3]:=l-^rt(M31P])
others ud

out[2][2] := 1 -l/sqrt(kq[2][2])
oMt[3][3] := 1 — 1/ SQrt(Ag[3][3])
others ud.

kq[l][l]AidA
kq[2][2]=udA
kq[3][3]=ud

others ud
o«/[l][l]:=l-Ml][lJ
others ud

o«t[l][l]:= M1][H/(1 + M1][1])
others ud.

kq o u/[l] [1] := 1 - sqrl(ki/1] [1])
others ud

out[l][l] := 1 — 1 / s<7rt(^[l][lj)
others ud.

kq[l][l]*udA
kq[2][2]=udA
kq[3][3]*ud

omZ(1][1] := 1 -1/^[1][1]
ou/[3][3] := 1-1/Ag[3][3]
others ud

o«/[l][l]:=l-Ml][l]
ou/(3][3]:=l-^3][3]
others ud

out[3][3] ~ kq[3][3]/(l + M3J13])
others ud.

kq ou/[l][l]:=l-s9r((Ml][ll)
ou/[3]p] := 1 - 59rt(M3][3])
others ud

out[l][l] ?= 1-l/sqrt(fc7[l][l])
ouf(3][3] := 1 -1 / sqrt(kq[3][3])
others ud.

kq[l][l]*udA
kq[2][2]#:udA
kq[3][3]=ud

OM/[1][1].-1-1/^[1][1]
out[2][2]:=l-l/kq[2][2
others ud

ow/[l][l] := 1 - Ag[l][l]
out[2][2] := 1 - kq[2][2]
others ud

ot/t[l][l] := Ag[l][l]/(1 + ^g[l][l])
oa/[2][2] := M2][2]/(l + fyl2][2])
others ud.

kq
OU<(2][2]-l-s9r<M2][2])
others ud

0M/[l][l]:=l-l/s^(^[l][l])
out[2][2] := 1 -1 / sqrt(kq[2][2])
others ud.

kq[l][l]*udA
kq[2][2]*udA
kq[3][3]^tud

our[l][l]:=l-l/Aq[l][l]
o«r[2][2].= l-l/^[2][2
out[3][3]:= l-l/^[3][3]
others ud

out[l][l] := 1-Aq[l][l]
o«/[2][2]:=l-A?[2][2]
<M3][3]:=l-*q[3][3]
others ud

Our[l][l]:=Ml][l]/(l + Ml][ll)
ouf[2][2]:= M2][2]/(1 + M2][2J)
o«/[3][3] := M3][3]/(l + A^[3][3])
others ud.

kq
oul(2][2] — l-sqrl(kq[2][2])
ourppi^l-s^KfcyOlp])
others ud

ou/[l] [1] := 1 — 1 / sqrt(kq[1] [1])
owt[2][2] := 1 -l/sqrt(fa7[2][2J)
o w/[3] [3 J := 1 -1 / sqrt (^[3][3])
others ud.

H, a H2 —> G Continue—>

204

H2:kgflag

G Table D-15 out for sdpg_g_knownquantity

H ,

H : kgflag
lfst efst fist eist tst

kqUlPpspclA
kq[21[21=udA
kq[3H3]=ud

Out:=[ud] Out:=[ud] Out:=[ud] kq Out:=[ud]

kqlllUpuiKA
kq[2][21=udA
kq[2][3]Pud

out[3] [3] := 1 -1 / sqrt (2 * fa/P] [3] + 1)
others ud.

out[3][3] := 1 -sqrt(l -2* kq[3][3])

others ud

out[3][33:=—l3][33/(l + ——)
others ud.

kq OM/PH3] := l-pxe(--Ul33][3])
others ud.

kqUHHieuPA
kq[2][2]pudA
kn^pp^d

out[2][2] := 1 - 1/sqrt(2* kq[2][2] + 1)
others ud.

out[2][2] := 1 - sqrl(l - 2 * kq[2] [2])

others ud

out[2][2] := kq[2][2]/(l + kq[2][2])
others ud.

kq out[2][2] := 1 - exp(-M2||2])
others ud.

kq[]][l]=udA
kq[2][2]*udA
kq[2i[3iPud

out[2][2] ■= l - l/sqrt(2 * kq[2][2] + 1)
outl3][3] := 1 -1/ sqrt(2 * kq[3][3] + 1) Ot
hers ud.

out[2][2] •= 1 - sqrt(l - 2 * kq[2][2])
of/t[3]l3] := 1 - sqrt(l - 2 * kq[3] [3])
others ud

out[2][2] := —ajPllO + kq[2][2])
out[3][3]:= kq[3][3]/(l + kq[3][3])
others ud.

kq out[2][2] := 1 - exp-(-—]]2])
o—43][3]:=[-npe(-A<[]3][3[)
others ud.

kq[l][l]uiidA
kq[2][2]=udA
kq[3H3]=ud

oWlHil] := 1 - 1l sqrt (2 * 2<[i:l] [1] + 1) o
there ud.

ou/[l] [1] := 1 - sqrt(l - 2 * kq[l] [1])
others ud

o«r[lHG:= Aq-[1][(]le1 + —^nU^1D
others ud.

kq o—2[i]li]:=ltxpX/p^-^/2^1]il[)
others ud.

kqUHlhuuidA
kq[2][2]=udA
kqPP^ud

ou/OHl] := 1 - 1!sqrt(2 * Pq[l]11] + 1)
ottf[3][3] := 1 -1/ sqrt(2 * kq[3][3] + 1) ot
hers ud.

ou/P] [1] := 1 - sqrl(1 - 2 * Agl][l])
owf[3][3] := 1 - sqrt (1 - 2 * kq[3] [3])
others ud

O—r[1][1]:= —^1][1H>^(^1 + —fl)
of^fl3H3] : Apf2:3]|^;j:]/P1+-[—])
others ud.

kq o—nlHU^e-extf/-—ll][l])
out[3] [31 := 1 - ex2(-kq[3] [3])
others ud.

kqUHlhuudA
kq[2][2]PudA
kqqejppud

ow/[/] [12 := 1 -1/sqrt(2 * ActH 01 + 1)
out[2][2] := 1 — 1/ sqrt(2 * kq[2][2] + 1)
others ud.

out[l][1] := 1 - sqrttl - 2 * fc[1][l])
out[2][2] := 1 - sqrt(l -2* kq[2][2])
others ud

Oaonm-— aitw+—l][ii)
out[2][2] := kq[2][2]/(l + kq[2][2])
others ud.

kq orf[l][ll := 1 - eep^ kq[l] [1])
out[2][2] := 1 - eyjp—.A/l 2|[2])
others ud

kq]l][2A^u^c^a
kq[2][2]PudA
kq^^Pud

out[l][l^1 := 1 -\lsqrt(2 * AtplJll] + 1)
out[2][2] : = 1 -Usqrt(2 * kq[2][2] + 1)
o ut [3] [3] := 1 -1 / sqrt (2 * fq[3] [3] + 1) ot
hers ud.

cMtlOm := 1 - sqrt(1 - 2 * Ap[2][1])
out[2][2] := 1 - sqrtf - 2 * kq[2][2])
ow/P][3] := 1 - sqrt(l - 2 * kq[3][3])
others ud

0—l1][11:= —U][1]/(1 + —H][1])
outl2][2] -,= kq[2][2]/(i + —[22[2])
o^43][3] := —3J[3]/(1 + ——)
others ud.

kq oi/rOHl] := 1 - eep(— kq[1] [1])
—2][2-:tlr[l—2[]][[)
out[3] [31 := 1 - nnp(-(a[[3] P2)
others ud

—>Contioun G Table D-15 out for edpg_g_knowoquaotity (Continue) H] aH2 -iG

205

G H—>G

Table D-16 out for sdpg_g_geometry

disp.dispu=udA
disp.dispv=udA
disp.dispw=ud

Out :=[ud]

disp.dispu=udA
disp.dispv=udA
disp.dispwAud

om/[3][3J := disp.dispw /(disp.dispw + sg.width)
others ud

disp.dispu=udA
disp.dispvAudA
disp.dispw=ud

out[2][2] := disp.dispv /(dispv + sg.height)
others ud

disp.dispu=udA
disp.dispvAudA
disp.dispwAud

out[2][2] := disp.dispv /(disp.dispv + sg.height)
ow^[3][3] := disp.dispw /(disp.dispw + sg.width)
others ud

disp.dispuAudA
disp.dispv=udA
disp.dispw=ud

o«/[1J[1J := disp.dispu /(disp.dispu + sglength)
others ud

disp.dispuAudA
disp.dispv=udA
disp.dispwAud

out[l][1 J := disp.dispu /(disp.dispu + sglength)
oi/t[3J[3J := disp.dispw /(disp.dispw + sg.width)
others ud

disp.dispuAudA
disp.dispvAudA
disp.dispw=ud

out[l][[.- disp.dispu /(disp.dispu + sglength)
out[2][2] := disp.dispv /(disp.dispv + sg.height)
others ud

disp.dispuAudA
disp.dispvAudA
disp.dispwAud

out[l J[1] := disp.dispu /(disp.dispu + sglength)
out[2][2] := disp.dispv /(disp.dispv + sg.height)
out[3][3] := disp.dispw /(disp.dispw + sg.width)
others ud

206

H

D. 3.19 Cauchy deformation tensor module
Prefix: cdt_
Reference: MG C. 3.2.13

D. 3.19.1 Interface syntax
Imported data type:

Displacement? from the displacement specification module
TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module

Imported constant:
DIM 3

Exported functions:
Routines name Inputs Outputs Exception
cdt_g_knownquantity TensorDataT

TensorFlagT
TensorDataT

cdt_g_geometry SpecimenGeometryT
DispIacementT

TensorDataT none

D. 3.19.2 Interface semantics
State variable: none
Local variable:

temp: Real*[DIM][DIM]
State invariant: none
Assumption:
Access routine semantics

cdt_g_knownquantity(kq: TensorDataT, kqflag: TensorFlagT)
exception: Table D-17
output: TableD-18

cdt_g_geometry(sg: SpecimenGeometryT, disp:DisplacementT)
exception: none
output: TaHea 4.4.19-3

207

Table D-17 exception for cdt g knownquantity

mdg sdg mdpg sdpg cdt gdt lfst efst list eist tst

(kq[l][l]=0)v
(kq[2][2]=0)v
(kq[3][3]=O)
=>
d_zero

non (kq[l][l]=-l)v
(kq[2][2]=-l)v
(kq[3][3]=-l)
=>
d_zero

non non (kq[l][l]=0)v
(kq[2][2]=0)v
(kq[3][3]=0)
=>
d_zero

(kq[l][l]=-0.5)v
(kq[2][2]=-0.5)v
(kq[3][3]=-0.5)
=>
d_zero

non (kq[l][l]=-l)v
(kq[2][2J=-l)v
(kq[3][3]=-l)
=>
d_zero

non non

208

H.

G

H| —>G

H2 : kgflag
mdg sdg mdpg sdpg cdt gdt

kq[l][l]=udA
kq[2][2]=udA
kq[3][3]=ud

Out:=[ud] Oui:=[ud] Out:=[ud] OuttrUud] kq Outtr^d]

kq[l][l]=udA
kq[2][2]=udA
kq[3][3]*ud

Owl[3]]3]:= 0^[3][3D-2
others ud

omU[3[]3[:= (C!'^]^])2
others ud

oM[=][3] := (1 + A[3[[3])~2
others ud.

oMt[3][3]:= (i-[([3])-2
others ud.

kq ou2[3[[3] := l/yi]]]]
others ud.

kq[l][l]=udA
kq[2][2]=udA
kq[3][3]=ud

oer[2][2]:=CM[2][2])-2
others ud

out\2}[2] := (M12H2])2
others ud

OMr[2][2]:Xl + fe=[2][2])_2
others ud.

oiti2[]][]=(]-[[^[2][2])-2
others ud.

kq out[2]]2]:=l/fy[2]{2]
others ud.

kq[l][l]=udA
kq[2][2]AudA
kq[3J[3]Aud

oud2][2]:=CM12[[i))2
OMi3][3[1=(M[3l[3l)-2
others ud

oer^H^] :=GCz[2][2])2

owr[3][3] := (Au^13][3])2
others ud

owt[2K2] := (1 + Ajg23l3])-2
o^r=R^] := (l + 2=3][]])~2
others ud.

o^m/[2][2] := (1 - A712H2])-2
oiMajRl^U-y^Jp])-2
others ud.

kq out[2][2] := 1 /

out!3H3] := 1 / jbrtW]
others ud.

kq[l][l]:uudA
kq[2][2]=udA
kq[3][3]=ud

outnHlJ^lMlHl])-2
others ud

o^l]]Ui=CM[l][l])2
others ud

0Ml][i]:=[l+Mi][ll^[
others ud.

oMi[i[i]=(i-*Mi][]r2
others ud.

kq oMUiai-l/MMl]
others ud.

kq[l][l>udA
kq[2][2]=udA
kq[3][3]*ud

ot/Z[1][ll:= ("H]]!]]-2

oMt[3][3] := (MOP])'2
others ud

ourjlUl] := (=[l][li)2

OMi13[]3[1:=C^[3l[3l)[
others ud

oM[1][11:=C1 +
ow=[[] := ci+ym)-2
others ud.

0Mr[[][1]:=((-y11][l1T2
owlMO-MW-
others ud.

kq oM[i[l]:= l/yoni]
oWPHl] [(/yRlp]
others ud

kq[l][l>udA
kq[2][2]?eedA
kq[3][3]=ud

o=t[l][l] := (&7[1][11)-2

out[2][2] -(MW2
others ud

OM[1][1] :=

o=[R=MW
others ud

0M[l]][J:=]Cl + Wtl])’2

o[2][2]:=(l + h^l]^])-2
others ud

oWl[]l]:=[]-AgDl][l])-2

OM2][W(1-M]W2
others ud

kq owni]]]]]]: 2/=Ul][l]
oW[2[]2]:=l/y[2][2]
others ud

kqll[[[[*udA
kq[2][2]uu<A
kq[3][3]?iud

Om=u [i[:= c=Mnni)-2
out[2][2] := (M2][2])"2

™/[3][3]:=(y[3|[3|)2
others ud

oMll[l] := (fcOlOl)2
out[2][2]:=(kq[2][2])2

ow[3][3] := CAa^[3]13])[
others ud

=[[l[l]i=(l + MHO])'2
ow2[2][2] := (l + 2a[2][2])-2

ou/[3][3] := (1 + 2a23][3]) ~2
others ud.

0^41][l1:=(1-y1l][l])-[

out[2][2]:=(l - kq\2][2]y2

ozH3[l[]:=ll-y[[=]3])-2
others ud

Kq OMni][[i:=i/yii][i]
out[2][2] :=l/ /aj^[2]]2]
o/[3H3] ^//Plp]
others ud

G Table D-18 out for cdt_g_knownquantity H, aH2-=G Continuu-s

209

H ,

H2 : kgflag
lfst efst list eist tst

kq[l][l]=U(A
kq[2][2]=udA
kq[3][3]=ud

Out:=[ud] Out:=[ud] Out:=[ud] Out:=2ud] Out.-M]

kq[l][l]=udA
kq[2][2]=udA
kq[3][3]*ud

om/[3][3]:= l/(2*k[3][3] + l)
others ud.

Owr[3][3] := (1-2fM]3[]3])
others ud.

+ k-L--!^:^:])2
others ud.

oW3[[3] afl-km)
others ud.

oM3jP] := exp(-2* fa/13331)
others ud.

kq[l][l]=udA
kq[2][2]k;udA
kq[3][3]=ud

out[23[2]:= l/(2^’*[^c]]^]22] + r
others ud.

out[2][2]:= (1-2*2[2][21)

others ud.

out[2][2]:= l/(l + k[2][2])2
others ud.

out{2][2] := (1 - kq[2][2])2

others ud.

out[2][2] := exp(-2 * fy[2][2])
others ud.

kq[l][l=^i^c^A
kq[2][2]*udA
kq[3][3]*ud

out [2] [2] := 1 /(2 * kq[2][2] + 1)
oiM3][3(j= 3l(l*3y[2][3] + l)
others ud.

oud]]^]:] (l-2*2[2][])
orf[3HPXl-2**^3K])
others ud.

omi^:^[]3[i=1/(1 + M[2][2])2

cwt[[][3] := 1/(1 + MOW2
others ud.

out[2][2]:= (1 -/aj[2][2])2

ou-3][3]a(AAp3][]))2
others ud

out[2][2] := exp(-2 * kUU]])
out[3][3] := exp(-2 * kq(3][3])
others ud.

kq[l][l]uudA
kq[2][2]=udA
kq[3][3]=ud

owtnnl] := 1/(2* &T1H1] + 1)
others ud.

ou/[l][l] := (1-2 *2^1111])
others ud.

o<1[^[11:=1/(1 + Mll][l])2
others ud.

OMtn3i1]:=a-feii111i1)2

others ud.
ow'212] := exp(-2 * A/fl] [1])
others ud.

kq[l][l]i^i^<^A
kq[2][2]=udA
kq[3][3]*ud

oW][l]:l=i//2*MiHll] + l)
ow/[3][;^]:=l/^(2 :̂^A^i?[;^][3] + l)
others ud.

ow[H[1> (1 -2W1HW
oM[3]H].•=]l-2*2]3][3])
others ud

own/tu.-i 1/(1+kti][]])2

om-^- =-1/(1+M[3]]3])2
others ud

om/U111]:=]]-MU]1])2

MWa-MlW
others ud

oM[l][i] exp(-2 * -3211^1)
owt[3][U] := exp(-2 * fa^13]33])
others ud

kq[l][l>udA
kq[2][2]7*udA
kq[3][3]=ud

out[l][l] := 1/(2*MflKl] + 1)
oirf[2][2]:-l/(2*212l[2] + /)
others ud.

oM/nHu-a-]^]^)
out[2][2] := (1 - 2 * /cq[2][2])
others ud

0M^ll]il[:=l/(l + M][ll)2

ow32][2] := l/(l + k22][2])2
others ud

OM/]l1^l]:=1 = -fc7U]W)2

Ol42][U]:=]l-M2][21)2
others ud

ow-31]31] := exp(-2 * Aq[(][1])
out[2][2] := exp(-2 * k22][2))
others ud

kq[l][l]2udA
kq[2][2]*udA
kq[3][3]*ud

onznnl] := 1/(2* fy[l][/] + l)
out^]^] :-l/(2*3R2][2] + l)
ow'[3][3] :=l/(2* fy^P] + /)
others ud.

oM2[[l]1ll]l-2*fe7]l]]/])
out^H]] := (1 - 2 * kq[2] [2])
oW3][3]:i(H2*C23][]])
others ud

02r212]i=l/(l + MOT])]
oapjJPJalKl + AIUJp]])2
ow/|3][3] := 1 /(l + A[[][3[)2
others ud

oMt[l][l] := (1-MOT3)2

OiMHUJaa-AgRHU])2

ow[3[[3] a (1 -MW
others ud

oM2J[i] := exp(—2 * kq[1] [1|)
out[2][2] := exp(-2 * kq[2][2])
0M3333]] exP-2^3333])
others ud

210

H,

—>Continue G Table D-18 out for cdt g knownquantity (Continue) H, aH2 -+G

G H—>G

H disp.dispu=udA
disp.dispv=udA
disp.dispw=ud

Out :=[ud]

disp.dispu=udA
disp.dispv=udA
disp.disp wAud

out[3] [3] := (1 + disp.dispw I sg.widthy"
others ud

disp.dispu=udA
disp.dispvAudA
disp.dispw=ud

out[2][2] := (1 + disp.dispvlsg.heighty1
others ud

disp.dispu=udA
disp.dispvAudA
disp.dispwAud

out[2][2] := (1 + disp.dispv / sg.height)~2

0«[[3][3] := (1 + disp.dispw / sg.widthy2
others ud

disp.dispuAudA
disp.dispv=udA
disp.dispw=ud

ou/fl] [1 2 := (1 + disp.dispu / sglengthy"
others ud

disp.dispucudA
disp.dispv=udA
disp.dispwAud

out[1] [1] :== (1 + disp.dispu! sglengthy"
owZ[3] [3] := (1 + disp.dispw! sg.widlhy"
others ud

disp.dispucudA
disp.dispvAudA
disp.dispw=ud

ow4i][l] ■= (1 + disp.dispu / sgJengthy2
out[2][2] := (1+ disp.dispv/sg.heighty2
others ud

disp.dispuAudA
disp.dispvAudA
disp.dispwAud

oW[11]l] := (1 + disp.dispu! sglengthy"

out[2][2] :== (1 + disp.dispv /sg.heighty2

out[3][3] a (1 + disp.dispw / sg.widthy"
others ud

Table D-19 out for cdt_g_geometry

211

D. 3.20 Green deformation tensor module
Prefix: gdt_
Reference: MG C. 3.2.13

D. 3.20.1 Interface syntax
Imported data type:

Displacement? from the displacement specification module
TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module

Imported constant:
DIM 3

Exported functions:
Routines name Inputs Outputs Exception
gdt_g_knownquantity TensorDataT

TensorFlagT
TensorDataT

gdt_g_geometry SpecimenGeometryT
DisplacementT

TensorDataT None

D. 3.20.2 Interface semantics
State variable: none
State invariant: none
Assumption:
Access routine semantics

cdt_g_knownquantity(kq: TensorDataT, kqflag: TensorFlagT)
exception: Table D-20
output: Table D-21

cdt_g_geometry(sg: SpecimenGeometryT, disp.'DisplacementT)
exception: none
Output: Table D-22

212

Hi

G

Hj ->G Table D-20 exception for gdt_g_knownquantity

213

mdg sdg mdpg sdpg cdt gdt lfst efst list eist tst

non (kq[l][l]=O)v
(kq[2][2]=0)v
(kq[3][3]=0)
=>
d_zero

non (kq[l][l]=-l)v
(kq[2][2]=-l)v
(kq[3][3]=-l)
=>
d_zero

(kq[l][l]=0)v
(kq[2][2]=0)v
(kq[3][3]=0)
=>
d_zero

non non (kq[l][l]=-0.5)v
(kq[2][2]=-0.5)v
(kq[3][3]=-0.5)
=>
d_zero

non (kq[l][l]=-l)v
(kq[2][2]=-l)v
(kq[3][3]=-l)
=>
d_zero

no
n

H2: kgflag
mdg sdg mdpg sdpg ddt gdt

kq[l][l]=^i^<iA
kq[2][2]=udA
kq[3][3]=ud

Oui:=[ud] Out:=[udJ Out:=[ud] Out:=[ud] Out:=[ud] kq

kq[l][l]=udA
kq[2][2]=udA
kq[3][3]*ud

o«43][3] := (M13][3])2
others ud

oWWXMKJT
others ud

oMP] := (1 +
others ud.

owt[3][3] := (1-M13[) '2
others ud.

out[3][3] :=1(M[3][3]
others ud.

kq

kq[l][l]=udA
kq[2][2>udA
kq[3][3]=ud

o«42][2]:= (MW
others ud

o«42][2]-= (fd[2]]2])-2
others ud

oM/[2][2]:= (1 + MW
others ud.

om42]]2J:=]1-M]2]W2
others ud.

om([2][2] :=([l[[]2][2]
others ud.

kq

kq[l][l]=udA
kq[2][2>udA
kq[3J[3]*ud

oW42][2].-=(M22[2J])2
oMWlMW
others ud

oWM-CMW2
om[[3]]3]:= (M13H3JT
others ud

ow[2][2]:= (1 + MW

oMPl := (1 + MW
others ud.

ow^[2]]2]:=]l-M]2]]2]T
O][3][3]:=(1-W1[3]T
others ud.

out[2][2] :=l/kq[2][21
out[3][3] := l[d[r3][3l
others ud.

kq

kq[l][l]*^udA
kq[2][2]=udA
kq[3][3]=ud

0Mt[l][l] := (M[1][V])2
others ud

oM[l][l] := (]l][[l]-2
others ud

0M411A:=(1 + MM])2
others ud.

M1JPW-M1JWT
others ud.

oMA-HMMl
others ud.

kq

kq[l][lJ^udA
kq[2][2]=udA
kq[3][3]*ud

OM4n[[]i:](^[[ni])2

<MP] :=(M][3])2
others ud

oMrl3]Jl^:]::=2q^[3][l^]^:)-2
others ud

dwMA - (i + MW
MIHM + M23][3])2
others ud.

O(444-((-4A4T

others ud.

oMMM/MM!
ow43][3] := 1 / JMP]
others ud

kq

kqllHlJ^udA
kq[2][2]AudA
kq^J^J^ud

«<[]:= (MW])2
OM/[2][2]:=()d?[2][2])2

others ud

o^AA •■= (M AT
out[2][2] ~ (kq[2][2])~2
others ud

om41JA:= (1 + MM])2
om[[2][2] :=(1 + M[2][2])2
others ud

oM]2][2]=(l-M[]]T
others ud

oMA:=1(MMJ

ow42][2]:= 1 / kq[2][2]
others ud

kq

kqUHll^udA
kq]2J]2JltudA
kq[3][3]*ud

o^4tl[l]::=J(^[ll[lJ)2

o[2][J]:=(]2][2])2

our[3]l3J := (M[3])2

others ud

oMH:=(M][l]T
o«[22]22- (MW2
OM3][3]:=(M][3]T
others ud

oMMMi + MM)2

ow[[2][2]:=(1 + M22][2])2

om][[]=(l + M31W
others ud.

oMMM-MMT
oMWHMW2

oMHIM-WIW2
others ud

ow41]l[^1:]1/AA
out[2][2] := 1 / kq[2][2]
out(33[3]:=](M[3]33]
others ud

Kq

G Table D-21 out for gdt_g_knownquantity H, a H2 —> G Continue—»

214

H ,

H2 : kgflag
lfst efst list eist tst

kq[l][l]=udA
kq[2][2]=udA
kq[3][3]=ud

Out^utf] Out:=(ud] Out-fud] Out.-fud] Out.•d[ud[

kq[][[l]uudA
kq[2][2]=udA
kq|^3J[3T^ud

o3[[3][3]:= + l)
others ud.

ou^[3[[3[:=1/(l-]*M3[3][3[-
others ud.

owd3][3] :=(1 + Mi3][3])2
others ud.

omOTI := ll-(J32ll[]))2
others ud.

ot)[[3|[3| := exp^fayspj)
others ud.

kq[l][l]^idA
kq[3][3]uudA
kq[3][3]=ud

others ud.
oW22[2]:= l](l -2* ;
others ud.

out[2][2] := (1 + kq[2][2])2
others ud.

gWOTlO-MIM)-2

others ud.
OMt^^eexp^iyPP])
others ud.

kqll][l]=udA
kq[2][2]*udA
kq[3][3]*ud

out[2][2]:= (2* fc?[22l2] + l)
OMa3][3]:=(2*fa?[3][3] + l)
others ud.

out[2] [2] := 1 ((1 - 2 * M22K2])
ol4[][3[l=l(()-2*J3[1[2])
others ud

ou[22[[2[:= (1 + A([22[2])2

+]m)2
others ud.

out[2][2]:= (l-y[2][2]y2

OIM3l[2[2=(l1)M33][3]r2
others ud

out[2][2]:=exp(2*fy]2][2])
ow^[3][3] := exp(2 * 1c^I^:^]][:^:1)
others ud.

kqflHl^udA
kq[2][2]=udA
kq[3][3]=ud

oM[l][l]::=(2*Ag[l][l] + l)
others ud. others ud.

oflXl+MOI])2
others ud.

outflttl := (1 - M11[[11)-2
others ud

otfflJM := exp(2 * kq[l] [1])
others ud.

kq[l][l]uudA
kq[2][2]=udA
kq[3][3]*ud

AgU^l] + l)
owZ[3][3]:=]2**[3][3] + l)
others ud.

oudlldl-l/Cl-^fydlll])
oW[2[[3[:=l](l-2*
others ud

0«M]ll]:=(l +]nW
0Mt[3J[[]:=(l + M3][3])2
others ud

^MPAd-MinnT2

mpmomw2
others ud

ou/UUd] := exp(2 * A?[l] [1])
o^m([31[3] ^exp^gPP])
others ud

kqlunbuidA
k^[3][3]ud^A
kq[3][3]=ud

0Mt[l][l]:=(**M?[l][l] + D
OM[[2][2]:= (2*fy[2][2] + l)
others ud.

oM[i[l^.= l:[(-** AdlN)
oM[22[2] := 1 ((1 - 2 * fyA^])
others ud

out[[||[|:=ll + fu31[[l])2

oul[2][2] := (1 + M^H*])2
others ud

ow®- a-yrtijdJT2
ou[[2][2] := a-op]^-2
others ud

out[l] [1] := exp(2 * -c-1] [1])
OM(12|[2| := exp(2*Ag[2][2l)
others ud.

kq[l]ll]?idc^A
kq[2][2>udA
kq[3][3]^-ud

0Udl]|[]:=[2*fa/[l][l] + l)
o^[2][2] := (2*M2][2] + l)
otMOW]]*]]]+l)
others ud.

oWl][l] := 1((1 - 2* Ml])
oi^p] := 1((1 - 2 * M2PD
oM[[^[l2]l=l/(l)2*3l^33^l[3])
others ud

omi[1][1]:= (1 + A[i][i])2
MM := (1 + M[2][2])2

U := (1 + M(3]23])2
others ud

oatH^t]^ ll-3l[]]|[][)2
o^p] := (ll)l[3[2])-2
out[3][3l :=(1 - 3<?[3[[[]) -2
others ud

ow([l|[l] := exp(2 * MWPl)
oaH] := exp(2 * kq[2] [2])
out[3] [3] := exp(2 * fa3[d2l3])
others ud.

-^Continue G Table D-21 out for gdt_g_knownquantity (Continue) H, a H2 —> G

215

H ,

G H—>G

Table D-22 out for gdt_g_geometry

disp.dispu=udA
disp.dispv=udA
disp.dispw=ud

Out :=[ud]

disp.dispu=udA
disp.dispv=udA
disp.dispwAud

out[3] [3] := (1 + disp.dispw! sg.width)2

others ud

disp.dispu=udA
disp.dispvAudA
disp.dispw=ud

out[2][2] := (1 + disp.dispv ^g^eighC)2
others ud

disp.dispu=udA
disp.dispv#udA
disp.dispwAud

out[2][2] := (1 + disp.dispv / sg.height)2

ou2[3][31 := (1 + disp.dispw I sg.width)2
others ud

disp.dispuAudA
disp.disp v=udA
disp.dispw=ud

out[1] [1] := (1 + disp.dispu I sglength)"2
others ud

disp.dispuAudA
disp.dispv=udA
disp.dispwAud

owf[l] [1] := (1 + disp.dispu I sglength)2

ou.331 [3] := (1 + disp.dispw! sg.width)2
others ud

disp.dispuAudA
disp.dispvAudA
disp.dispw=ud

om1[2] [1 1 := (1 + disp.dispu I sglength)2

out[2][2] := (1 + disp.dispv / sg.height)2
others ud

disp.dispuAudA
disp.dispvAudA
disp.dispwAud

oul[l] [1] := (1 + disp.dispu I sglengtth)

out[2][2] := (1 + disp.diipvlsg.heighht2
out[3] [3] := (1 + disp.dispw! sg.width)2
others ud

216

H

D. 3.21 Lagrangian (Green's) finite strain tensor module
Prefix: lfst_
Reference: MG - C. 3.2.20

D. 3.21.1 Interface syntax
Imported data type:

DisplacementT from the displacement specification module
TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module

Imported constant:
DIM 3

Exported functions:
Routines name Inputs Outputs Exception
lfst_g_knownquantity TensorDataT

TensorFlagT
TensorDataT

lfst..g. geometry SpecimenGeometryT
DisplacementT

TensorDataT none

D. 3.21.2 ' Interface semantics
Statu variable: none
State invariant: none
Assumption:
Access routine semantics

lfst g knownquantity(kq: TensorDataT, kqflag: TensorFlagT)
Exception: Table D-23
Output: Table D-24

lfstggeomutryfsg: SpecimunGuometryT, disp: DisplacementT)
Exception: None
Output: Table D-25

217

mdg sdg mdpg sdpg cdt gdt lfst ufst list uist tst

non (kq[l][/]=0)v
(kq[2][2]=0)v
Ckq[3][3]=0)
=>
d_zuro

non (kq[l][l]=l)v
Ckq[2]][]=l)v
(kq[3][3]=l)
=>
d_zuro

(kq[l][l]=0)=
Ckq12l12]=0)v
(klHllO))
=>
d_zero

non non (kqUHlMW
(kq[2][2]=0.5)v
(kq[3][]]=0.5)
=>
d_zuro

non (kq[[]]l]=l)v
(kq^raziDv
(k^|^3][3]=l)
=>
d_zuro

non

H] —>G Tab<e D-23 for 2fst_g_knwwnqu=ntity

218

H,

G

mdg sdg mdpg sdpg
kq[l][l]=udA
kq[2][2]=udA
kq[3][3]=ud

Out:=[ud] Out:=[ud] Out:=[ud] Out:=[ud]

kq[l][l]=udA
kq[2][2]=udA
kq[3][3]*ud

om43][3]:=((M3][3])2-1)/:

others ud
owt[3][3]:= ((M3][3]T2 -l)/2
others ud

o«r[3][3] := «1 + M3][3])2-l)/2
others ud.

O«r[3][3].•= ((M3J13J/(M3][3]-l))2 -D/2
others ud.

kq[l][l]=udA
kq[2][2>udA
kq[3][3]=ud

OMt[2][2]:=((Aq[2][2])2-1)/
others ud

oMt[2][2]:=((^[2][2])-2 -l)/2
others ud

omZ[2][2]:= ((1 + ^[2][2])2 -l)/2
others ud.

OMZ[2][2] := ((M2][2] /(M2][2] - D)2 - D / 2
others ud.

kq[l][l]=udA
kq[2][2>udA
kq[3][3>ud

OI42][2]:=((M2][2])2-1)/:

OMr[3][3]:=((M3][3])2-l)/2
others ud

OMt[2][2]:=((^[2][2])-2-l)/2

owt[3][3] :=((M3][3]T2 -l)/2
others ud

owr[2][2]:=((l + ^[2][2])2-l)/2
OMt[3][3]:=((l + M3][3])2 —1)/2
others ud

out[2][2] := ((^[2][2]/(M2][2]-l))2 -l)/2

omZ[3][3]:= ((^[3][3] W3][3]-l))2 -l)/2
others ud

kq[l][l>udA
kq[2][2]=udA
kq[3][3]=ud

OMf[l][l]:=((MlJ[l])2-l)/2
others ud

o«r[l][l]:=((Ml][l]T2-l)/2
others ud

owr[l][l] := ((1 + M1J11])2 -D/2
others ud.

oMillU - ((MD ID/(MH ID - D)2 - D/2
others ud.

kq[l][l>udA
kq[2][2]=udA
kq[3][3>ud

owr[l][l]:=((Ml][l])2-l)/2

o«r[3][3] := ((fcqr[3][3])2 -1)/:
others ud

0Mt[l][l]:=((^[l][l])-2 —1)/2

owt[3][3]:=((kq[3][3JT2-l)/2
others ud

ou/[l][l]:=((l + ^[l][l])2 —1)/2

out[3][3]:=((l + kg[3][3])2-l)/2
others ud

OM<1][1] - ((Ml][1]/(M1][1] - D)2 - D/2

o«t[3][3] := ((fa?[3][3] /(M3][3J -1))2 -D/2
others ud

kq[l][l>udA
kq[2][2>udA
kq[3][3]=ud

omZ[1][1]:=((M1][1])2-D/2

OMt[2][2]:=((M2][2])2-l)/:

others ud

oMr[l][l]:=((^[l][l])-2-l)/2

OMZ[2][2]:=((M2][2]T2-l)/2
others ud

OM/[1][1]:=((1 + ^[1][1])2 -l)/2

^[2][2]:=((l + ^[2][2])2 -l)/2
others ud

ow/[i] [1] - W1][1]W1][1] - D)2 - D/2

out[2][2] ■= ((M2J[2] /(^[2][2] -1))2 -1) /2
others ud

kq[l][l]*udA
kq[2][2 J=AudA
kq[3][3>ud

oM/[1][1]:=((M1][1])2-l)/2
out[2][2]:=((kq[2][2])2-\)i:
owZ[3][3]:=((M3][3])2-1)/:

others ud

OMr[l][l]:=((^[l][l])-2 -l)/2

oitf[2][2]:=((M2][2])-2-l)/2

om/[3][3]:=((M3][3])“2 -l)/2
others ud

0Wr[l][l]:=((l + ^[l][l])2 -l)/2

our[2][2]:=((l + ^[2][2])2-l)/2
oW[3][3] := ((1 + M3][3])2 -1) / 2
others ud

om/[1][1J - ((Ml][1]/(M1][1J - D)2 - D/2

Owt[2][2] := ((M2][2]/(M2][2] -1))2 -l)/2

o«r[3][3]:= ((^[3][3]/(M3][3]-l))2 -l)/2
others ud

H, A H, -> G Continues

219

H, :kgflag

G Table D-24 out for lfst_g_knownquantity

H ,

cdt gdt lfst efst list
kq[l][l]=udA
kq[2][2>udA
kq[3][3]=ud

Out:= [ud] Out:=[ud] kq Out:=[ud] Out:=[ud]

kq[l][l]=udA
kq[2][2]=udA
kq[3][3]*ud

o«r[3][3] :=(^[3][3r‘ -l)/2
others ud

<M3][3]:=(M3][3]-l)/2
others ud

kq ow/[3][3] := M3][3] /(I - 2 * ^[3][3])
others ud

ow/[3][3] := (M3][3]2 +2 * WJ[2])/2
others ud

kq[l][l]=udA
kq[2][2]#udA
kq[3][3]=ud

out[2][2] := (kq[2][2]~‘-1)/2
others ud

out[2][2]:=(kq[2][2]-l)/2
others ud

kq o«/[2][2] := ^[2][2] /(I - 2 * ty[2] [2])
others ud

out[2][2] := (fy[2][2]2 + 2 * fy[2][2])/2
others ud

kq[l][l]=udA
kq[2][2]^udA
kq[3][3]^ud

our[2][2] :=(fy[2](2] ' -l)/2
O«43][3]:=(M3](3] '-l)/2
others ud

out[2][2]:=(fy[2][2]-l)/2
ou/[3][3]:=(M3][3]-1)/2
others ud

kq ow/[2][2] := fy[2][2] /(I - 2 * fy[2][2])
<W[3] [3] := M3][3] /(I - 2 * ^[3][3])
others ud

OW/[2][2]:=(^[2][2]2+2*^[2][2])/2

om/[3][3] := (M3][3J2 + 2 * Agr[2][2])/2
others ud

kq[l][l]*udA
kq[2][2]=udA
kq[3][3]=ud

out[l][l]:=(Ml][U'-D/2
others ud

owr[l][l]:=(Ml][l]-l)/2
others ud

kq OMr[l][l]:=Ml][l]/(l-2*^[l][l])
others ud

our[l][l] := (^[1][1]2 +2*fc?[l][l])/2
others ud

kq[l][l]*udA
kq[2][2]=udA
kq[3][3j*ud

out[l][l]:=(Ml][l]‘-D/2
OMr[3][3]^(M3][3r‘-l)/2
others ud

0Kr[l][l]:=(Ml][l]-l)/2
oirf[3J[3]:=(M3][3]-l)/2
others ud

kq owt[l][l]:=Ml][l]/(l-2*^[l][l])
OMt[3][3]:=^(3][3]/(l-2*^[3][3])
others ud

0wr[l][l] := (Ml][l]2 + 2*^[l][l])/2

owr[3][3] := (M3][3)2 +2*M2][2])/2
others ud

kq[l][l]^udA
kq[2][2]?tudA
kq[3][3]=ud Om/[2][2].= (M2][2] l-l)/2

others ud

Om/[1][1):=(M1][1]-D/2
owt[2][2]:=(^[2][2]-l)/2
others ud

kq OMt[l][l]:=Ml][l]/(l-2*Ml][l])
out[2]{2] := kq\2][2} /(I - 2 * ^[2][2])
others ud

Ot41][l]:=(Ml][l]2 +2*MlJ[l])/2

out[2][2] := (M2][2]2 + 2* kq[2][2])/2
others ud

kq[l][l]AidA
kq[2][2]^udA
kq[3][3>ud

om?[1][1] (^[linr1 -D/2
om/[2][2]:= (M2][2]-' -l)/2
oirt[3][3]:=(£<?(3][3] 1-l)/2
others ud

ow/[l][l]:=(fc/[l][l]-l)/2
ou/[2][2]:=(M2][2]-1)/2
w/[3][3):= (M3][3]-l)/2
others ud

kq OMt[l][l]:=Ml][lJ/(l-2*Ml][l])
out[2][2] := kq[2][2] /(I - 2 * kq[2] [2])
out[3][3] := fy[3][3] /(I - 2 * fy[3] [3])
others ud

out[l][l] := (Ag[l][l)2 +2*Ml][l])/2

om/[2][2] := (^[2][2]2 + 2 * kq[2] [2]) / 2

o«r[3][3] := (^[3][3]2 + 2*fcq[2][2])/2
others ud

H, a H, -> G —^Continue

H2: kgflag

-^Continue G Table D-24 out for lfst_g_knownquantity (Continue)

H ,

220

H : kgflag

H,

eist tst
kql l[l
kq[2][2]=udA
kq[3][3]=ud

OuCilud] Out:=[ud]

kqUHlbudA
kq[2][2]=udA
kqCT^lud

oM® := WW/M]^]ll)2 -1)/2
others ud.

out[3] [3] := (exp(2 * kq[3] [3]) -1) / 2
others ud

kqUHlIudA
kq[2[[2]]^udA
kq^^bud

out[2] [2] := ((M12[[2] l(kq\2] [2] -1))2 -1) / 2
others ud.

out[2] [2] := (uxp(2 * £[121 [2]) -1) / 2
others ud

kqUHU^uidA
kq[2][2]*udA
kq^^flud

out[2][2] - ((Ml^^l /(fa][[]22] -1))2 -1)/ 2
om[[3][3] := 11M13][3][1fe?[2^[13] -1))2 -1)/2
others ud

fW(2][2] := (uxp(2 * kq[2][2])-1)/ 2
owlS]^] := (exp(2 * &133] [3[) -1) / 2
others ud

kq[l nll^udA
kq[2][2]=udA
kq[3][3]=ud

oMd] [1] - ((MM in Will - I)2 - i)/2
others ud.

owll] [1] := (exp(2 * kq[l] [1]) -1) / 2
others ud

kqUHlbKA
kq[2][2]=udA
kq[]][3][ud

o«[[1][1] - WfflPlW^® -1)2 - D/2
dM[3][3] := ((MPJP]/(jM[3M3]-1))2 -11/2
others ud

our[1] [1] := (uxp(2 * At(l] [1]) -1) / 2
out[3] [3] := (uxp(2 * kq[3] [3]) -1) / 2
others ud

kq[llll>udA
kq[2].[2>udA
kq[3][3]=ud

ow[1][1] “ (((Will] WJ1U -1)2 -112
fM2][2] - 1(M]2[l2] /(kq[2][2] -1))2 -1)/ 2
others ud

out[l] [1] := (exp(2 * [1]) -1) / 2
out[2][2] := (uxp(2 * A[]2[[2[) -1)/ 2
others ud

kqH ((]|,<ik(a
kq[2][2]*udA
kq[3][3]*ud

oM[1][1] - (1M[1]]1] Win -1)/ -112
out[2][2] ~ ((Ml 2][2J W<2[]]2] -1))2 -1)/2
o«M3][3[:= (1M]3][3][((M3]]3]-1))2 -1)/]
others ud

out[l] [1] := (uxp(2 * Mfllll) _ 1)i/ 2
out[2] [2] := (uxp(2 * £221 [2]) -1) / 2
out[3][3] (uxp(2 * kq[3\ [3]) -1) / 2
others ud

Continue—» G Table D-24 out for (fst_g_knownquaniity(Coniinu)) Hj a H2 -» G

221

G H->G

H disp.dispu=udA
disp.dispv=udA
disp.dispw=ud

Gut :=[ud]

disp.dispu=udA
disp.dispv=udA
disp.dispwAud

ou/[3][3] := ((1 + disp.dispw/sg.width)2 -1)/ 2
others ud

disp.dispu=udA
disp.dispvAudA
disp.dispw=ud

out[2][]] := ((1 + disp.dispv/sg.heighty -1)/ 2
others ud

disp,dispu=udA
disp.dispvAudA
disp.dispwAud

out[2][2] := ((1 + disp.dispv I sg.height)2 -1) / 2
cm43][3(:= ((1 + disp.dispw! sg.width)2 -1)/ 2
others ud

disp.dispuAudA
disp.dispv=udA
disp.dispw=ud

out[l][l] := ((1 + disp.dispuI sglength)2 -1)/ 2
others ud

disp.dispuAudA
disp.dispv=udA
disp.dispwAud

out[1][1] := ((1 + disp.dispu / sglength)2 -1) / 2
oii^r[:3][3] := ((1 + disp.dispw! sg.width)2 — 1) / 2
others ud

disp.dispuAudA
disp.dispvAudA
disp.dispw=ud

OM/[1[[1[:= ((1 + disp.dispu I sglength)2 -1) / 2
out[2][2] ■= ((1 + disp.dispv/sg.height)2 -1)/ 2
others ud

disp.dispuAudA
disp.dispvAudA
disp.dispwAud

om?[1][1] := ((1 + disp.dispu /sglength)2 -1)12

out[2][2] := ((1 + disp.dispv/sg.height)2 -1)/ 2
out[3][3l := ((1 + disp.dispw/sg.width)2 -1)/ 2
others ud

Table D-25 out for)fst_g_guometry

222

D. 3.22 Eulerian (Almansi's) finite strain tensor module
Prefix: efst_
Reference: MG - C. 3.2.19

D. 3.22.1 Interface syntax
Imported data type:

Displacement? from the displacement specification module
TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module

Imported constant:
DIM 3

Exported functions:
Routines name Inputs Gutputs Exception
efst-g-knownquantity TensorDataT

TensorFlagT
TensorDataT

efst_g_geometry SpecimeuGeomut[yT
DisplacemeutT

TensorDataT none

D. 3.22.2 Interface semantics
State variable: none
State invariant: none
Assumption:
Access routine semantics

lfst_g_knownquanttty(kq: TensorDataT, kqflag: TensorFlagT)
Exception: Table D-26
Gutput: Table D-27

lisLS-geometrytsg: Specim-nGeometryT, disp:DisplacementT)
Exception: none
Gutput: Table D-28

223

H] —>G D-26 exception for efst_g_knownquantity

mdg sdg mdpg sdpg cdt gdt est eSst ltst etst tst

(kq[l][l]=0)v
(kq[2][2]=0)v
(kq[3][3]=0)
=>
d_zero non

non (kq[l][l]=-l)v
(kq[2][2]=-l)v
(kq[3][3]=-l)
=>
d_zero

non non (kq[l][l]=0)v
(kq[2][2]=0)v
(kq[3][3]=O)
=>
d_zero

(kq[l][l]=-0.5)v
(kq[2][2]=-0.5)v
(kq[3][3]=-0.5)
=>
d_zero

non (kq[l][l]=]l)v
(kq(2[[2]=- 1)v
(kq[3][3]=-l)
=>
d_zero

non non

224

H,

G

H : kgflag

H .

mdg sdg mdpg sdpg
kq[)][l[=u<A
kq[2][2]=udA
kq[3][3]=ud

Gu^uiC] Gut^ud] Gut:=[ud] Gut^ud]

kq[)][l]=uuA
kq[2][2]=udA
kqJSHSjAud

:= (l-^i::31[3r*/2
others ud

om/[)[[S] := (1-A[^[3]12^](^)^)/2
others ud

out[3] [3] := (1 - (1 + kq[3] [3])~2) / 2
others ud.

OM/()[p:=]]-llM3^^]P(-2)/2
others ud.

kq[l][l]=udA
kqPJ^AAudA
kq[[][[:=ud

out[2l[2] := (i — A/[]2|1:^]r2)2
others ud

owr[2][2l := (l-/[*2^1]2())/2
others ud

MWa-a + Ml2^^))/2
others ud.

m^]i[2[22:=[l -((— M[2]12)]))/2
others ud.

kq[)Hl]=udA
kq[2][2]*udA
kqJSHSjAud

f=t]2]]2]:= (l~h[2]]2r2)/2

oul[3][3]t=(l-M3][3r2)/2
others ud

ou-[2J[2] := (l-M'[2]]2]2)/2

:= (1 - M3][3]l)/2
others ud

GwM2i[2]2=(l-(l + M[:^2^_))/2

o/(]3]]3]:= (-(1 + M]3][3[)~])/2
others ud

oM2l[2]]=(l-1l-lJ[[21]2])2[/2

Om-3J]3] := (1 — (1 -M)3][)]):!)/2
others ud

kq^HJlAudA
kq[[][2]=uA
kq[)J[3J=ud

owr[l)[l] := (l-MMlir2)/*^
hers ud

oi/[)[[]::=:^11M[1([W^)/2
others ud

OMl][l(:=^(]l-1l4^M)[l[(]1^]1/2
others ud.

GM<^[]l]:=1l-(^1-)l)]l]]]])))/2
others ud.

kqHHJjAudA
kq[2[[2[=uUA
kq[3J[3[Aud

OM4[H[]::](^A[^1l][11-2)/2
oM[3J[3[:= (1 -M/[3^)^1/2
others ud

oMlKOll-MlJKl]2)/2

fM[[][3]:=(l — M[)][)())/2
others ud

G^l^][[]:=:(l-i-1+Mlmi)’21/2
oM[3][3]Xl-(l + Arf3U[3[)_22)2
others ud

O«41l]l()=ll-(l-Ml][l])2)/2

0M^[):[)]:=(]-(l-l)[1][3])21/2
others ud

kqUHJlAudA
kq[2][2]Au<A
kq[3l[)J=ud

OMll/[ll:= = --M]lll^2)](2

OMl2[[2[:=ll-[M[[[2^[)/2
others ud

GM^1]]l]:=[l-M)l]((())/2

out[2] [2] := (1 - kq[2] [2f) 12
others ud

g41][1]:= [— (l +]((((]T2)/2

out[2][2] := (1 -() + M[^][l^]l*2)/2
others ud

oMM][l1[-11-)--]L[l][(])2)/2
owr[2][2]:=]:-(l-M'221]2])22/2
others ud

kqUHUAudA
kq[2][2]AudA
kqPHSjAud

fM([]](= l--^Ag[l](l(-2)/2

out[2][2]:= 1l-u7[2][2]-])/2

oui[3l[3[:= (l-JUrtS][3lr^),/2
others ud

owm ::=1l-M[l[(l]])/2

out[2][2] := (l-][[2^1]2]])/2

ow/t)]))]:] (l-MSE]]2)/)
others ud

out[l[[l] := (1-(1 + A?lJ](ll)-2)/2
out[2][2]:= (l-() + M2^[[2])“2)/2

out[3][3]:= (l-() + A7[)]13])-2)/2
othrs ud

fu//]H^:=1[-l--Ml](])])2)/2

ow-[2[[2[:= (1 — (1 — A^[2][^2[)2/2
out[3][3] :=]]_((~ j[[31|)])2)/2
others ud

G Table D-27 out for ufst_g_kuowuquantity Hj afy -»G Continue-A

225

H2: kgflag
cdt gdt lfst efst list

kq[l][l]=udA
kq[2J[2]=udA
kq[3[[3]=ud

Out:= [ud] Out.-^d] Out:=[ud] kq Out^ud]

kq[1 J[l]=udA
kq[2][2]=udA
kq[3][3]Aud

owZ3][3] := (1- fy3[[3])][
others ud

ott/[3][3J:= ((-t/nUTi)/2
others ud

o^<^3)3[:= M[3J]3)/(l + 2 * Art3)[3])
others ud

kq oM][U] ••= (1 -1 + kc[3][3])-2)/2
others ud.

kq[l][l]=udA
kq[2[[2]AudA
kq[3][3[=ud

others ud
offlu [l-^JRF1)/ 3
others ud

oW[2][2] := A[U][2[/(1 + 2 * kk[2][2])
others ud

kq OM/[22]22:=(1-(1 + M)[2])’2)/2
others ud.

kq[l)[l]uudA
kq[2][2)*udA
kq[3)[3>ud

ou[2][2]:= (l-/2
oul{3][3] := (1 - ^[3][3])/2
others ud

outl2)[:^^::^{\-kC[[2)[2]-x)l2
ou[3][3] := (l-y[3ll3r‘))u
others ud

outWM = kckWM /(I + 2 * MW
oWOT] := MW/1+2 * MW
others ud

kq out[2][2]:= ((-(l + kk[2][2])~2)/2
out[3][3] ~((-(l + A<[]3]U2])-])/]
others ud

kq[[JilfcudA
kq[2]RJ=udA
kq[3][3]=ud

OMt]][i] := 1l-A-[][[])/]
others ud

o^iirn-a-MW1)^
others ud

omM =^Pl][]/(l+2*Mrtl]]]])
others ud

kq owt[l][l]:= ((-(l + A]]^1][U])-])/2
others ud.

kqlUmuudA
kq[2][2]=udA
kq[3l]3lJud

ou/tlHll^l-MKUl)^
oM[33^[^]:=^(1 - fa?[3][3])/2
others ud others ud

owuijfl] “ MUKW + 2 * MHH1])
owt3]]2] J Mf3][3J /(l + 2 * M][3P
others ud

kq oW[11[]].-]l-1] + A^[l]]l])-])/]

ou2[]]]3]:= (1 -(l + MW2)/2
others ud

kqll)[l[*udA
kq[2][2>udA
kqllHlaud

o™[]][]:= (l-Miui])/2

others ud

o«/(l][l];= H-MfllHlTb/U

oW[2][2]:=UI-2gt22[2]-,]/2
others ud

ou/[lj[1[:= MilKl] /(I + 2 * MIl][l])
oi^^[2][2] := kq^^] /(I + 2 * kc[2][2J)
others ud

kq oUU^[|^]]:=: = -(l+M]l]^^:^]^'])/]

o«W][2]a(1-(1+MJ[]))’2)/U
others ud

kqUlHlUmdA
kq[2][2]*udA
kq[3][2t]^/ud

ow[[][l]:= (-MM3
out[2)[2):= (-yUJU^])/3
oM[3][3] := (1 - 2
others ud

oW2[[U] :=(lu-)tuCU]U2]-i)/2
<M3](3j:= (l-MWb/u
others ud

ou/UHl] := MW! + 2 W1JIW
out[2][2] := kc[2][2] /(I + 2 * kc[2][2])
OMt[3]]3]:=M][3]/(1 + 2*MW
others ud

kq oMl][ir-= (l-Tl + A7[]U]U]U-)])2
out]2)[2) := (1 -(l + MbU]]2])-2)/]
oM[[3][3] := a-(1 + M]3]]3]^])/]
othrs ud

-[Continue G Table D-27 out for efst_g_knownquantity (Continue) Hl , a H, —J G

226

H.

Continue—>

H : kgflag

H ,

eist tst
kq[l][l]=udA
kq[2][2]=udA
kq[3][3]=ud

Out:=[ud] Out:=[ud]

kq[l][l=^i^dA
kq[2][2]=udA
kq[3][3]Aud

OM/[3]]31]=](-((-A[C3]P])2)/2
others ud.

ou/[3] [3] := (1 - exp(-2 * fc[3^][3])^/ 2

others ud
kq[l][l==udA
kq[2][2>udA
kq[3][3]=ud

oul[2][2] := (1 - (1 - kq[2][2])2)/ 2
others ud.

out[2] [2] := (1 - exp(-2 * kq\2\ [2])) / 2
others ud

kqUHl^uicA
kq[2][2>udA
kq[3][3]*ud

outl^[^]]2]]-=(-(l-kq2i[[2])2)/2

oMr[3][3]:=(l-(l-M3][3])2)/2
others ud

(M2][2] := (1 - ex|p-2 * £q[2H2]])/2
oirff3]p] := (1 - exp(-2 * fy[3l[3]))/ 2
others ud

kq[l][l>uda
kq[2][2]=udA
kq[3][3]=ud

oM/OlW-a-MllHltf) ̂
others ud.

or/rtl] [1] := (1 - exp(-2 * AgllnlD/2
others ud

kq[l][l]*udA
kq[2][2]=udA

M[ll]l]:=(^l-((]Mtll][])2)/2

others ud

oi/mHl] := (1 - exp(-2 * A^[l] [1])) / 2
ow/[3]p] := (1 - exp(-2 * Sy[3l[3]X)/ 2
others ud

kqUHOuda
kq[2][2]*udA
kq[3][3]=ud

omOT-Gi^-^iW)^

O^[]^]l2]l=]((]((-a«[2^]]2])2)/2
others ud

out[l] [1] := (1 - exp(-2 * Ayj] [11])/ 2
others ud

kq[l][l]*u<A
kq[2][2]*udA
kq[3][3]Aud

OM411[l1“(1-(1-*1(l[1l])2)/2
OM^Il2]l]:=(]-((-M22[[2l)2)/2
om/[3][3]:= (l-Cl-M/PW)^
others ud

ounKU-a-expC^* Ml][W2
out[2][2] := (1 - eep(-2 * kq[2][2]]))2
oz/r[3][3] := (1 - exp(-2 *]qP]P]))/2
others ud

Conttiiue-s G Table D-27 out for efst_g_knownquantity Hj a H2 —> G

227

G H—»G

H

Table D-28 out for efst_g_geometry

dtsp.dtspu=udA
dtsp.dtspv=udA
dtsp.dtspw=ud

Out :=[ud]

dtsp.dtspu=udA
dtsp.dtspv=udA
dtsp.dtspw£ud

out[3] [3] := (1 - (1 + disp.dispwl sg.widthy2)! 2
others ud

dlsp.dtspu=udA
dtsp.dtspv£udA
dtsp.dlspw=ud

out[2][2] := (1 - (1 + disp.dispvl sg.heighty")! 2
others ud

dtsp.dtspu=udA
dtsp.dtspv£udA
dtsp.dtspw£ud

o«/[2][2] := (1 - (1 + disp.dispv / sg.heighty2)! 2
outl3][3] := (1 - (1 + disp.dispw / sg.widthy2) / 2
others ud

dtsp.dtspu£udA
dtsp.dtspv=udA
dtsp.dtspw=ud

ou/[l] [1] := (1 - (1 + disp.dispv / sg.heighty2) / 2
others ud

dtsp.dtspu£udA
dtsp.dtspv=udA
disp.dtspw£ud

oM[1] [1] := (1 - (1 + disp.dispv / sg.heighty2) / 2
others ud

dtsp.dtspu£udA
dtsp.dtspv£udA
dtsp.dtspw=ud

out[l] [1] := (1 - (1 + disp.dispv / sg.heighty2) / 2
ouf[2][2] := (1 -(1 + disp.dispvlsg.height)~2)l 2
others ud

dlsp-dtspirmdA
dtsp.dtspv£udA
disp-dUf^'^w^ud

owt[1][1] := (1 - (1 + disp^^v! sg.heighty2') / 2

out[2][2] := (1 - (1 + disp.dispv/ sg.heighty2) / 2
out[3] [3] := (1 - (1 + disp.dispwl sg.widthy2) l2

others ud

228

D. 3.23 Lagrangian (Green’s) infinitesimal strain tensor module
Prefix: list_
Reference: MG-C. 3.2.18

D. 3.23.1 Interface syntax
Imported data type:

DisplacementT from the displacement specification module
TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module

Imported constant:
DIM 3

Exported functions:
Routines name Inputs Outputs Exception
ltst g , knownquantitv TensorDataT

TensorFlagT
TensorDataT

ltst_g_g-ometry Sp-ctm-uGeometryT
DtsplacementT

TensorDataT none

D. 3.23.2 Interface semantics
State variable: none
State invariant: none
Assumption:
Access routine semantics

lfst_g_knownquantity(kq: TensorDataT, kqflag: TensorFlagT)
Exception: Table D-29
Output: Table D-30

lfst_g_geometry(sg: SpecimenGeometryT. disp:DisplacemeutT)
Exception: none
Output: Ti^tlte D-31

229

H] —>G Tab>ki D-29 exception for list g knownquantity

mdg sdg mdpg sdpg cdt gdt lfst efst list eist tst

non (kq[l][l]=0)v
(kq[2][2]=0)v
(kq[3][3]=O)
=>

d_zero

non (kq[l][l]=l)v
(kqRJR^Dv
(kq[3][3]=l)
=>
d_zero

(kq[l][l]<0)v
(kq[2][2]<0)v
(kq[3][3]<0)
=>
sr lesszero
(kq[l][l]=0)v
(kq[2][2]=0)v
(kq[3][3]=0)
=>
d zero

(kq[l][l]<0)v
(kq[2][2]<0)v
(kq[3][3]<0)
=>

sr_lesszero,

(kq[l][l]<-
0.5)v
(kq[2][2]<-
0.5)v
(kq[3][3]<-
0.5)
=>
sr_lesszero,

(kq[l][l]>0.5)v
(kq[2][2]>0.5)v
(kq[3][3]>0.5)
=>
sr_lesszero,
(kq[l][l]=0.5)v
(kq[2][2]=0.5)v
(kq[3][3]=0.5)
=>
d zero

non (kq[l][l]=l)
V
(kq[2J[2J=l)
V
(kq[3][3]=l)
=>
d_zero

non

230

Hi

G

H !

G Table D-30 out for list_g_knownquantity

231

Hj a H2 —> G Continue—>

H2 : kgflag

mdg sdg mdpg sdpg cdt gdt
kq[l][l]=udA
kq[2][2]=udA
kq[3][3]=ud

Out:=[ud] Out:=[ud] kq Out:=[ud] Out:=[ud] Out:=[ud]

kq[l][l]=udA
kq[2][2]=udA
kq[3][3>ud

ouZ[3][3]:= M3][3]-l
others ud

o«r[3][3] :=1/Ag[3][3]-1
others ud

kq o«Z[3][3]:= ^[3][3]/(l-M3][3])
others ud.

oi</[3][3] := 1/wpv(ig[3][3])-l
others ud

out[3] [3] := sqrt(kq[3] [3]) -1
others ud.

kq[l][l]=udA
kq[2][2>udA
kq[3][3]=ud

M2][2]:=M2][2]-1
others ud

owZ[2][2]:=l/^[2][2]-l
others ud

kq O«r[2][2]:=M2][2]/(l-^[2][2])
others ud.

oul[2][2] := l/^rZ(^2][2])-l
others ud

out[2][2]:= sqrt(kql2][2])-\
others ud.

kq[l][l]=udA
kq[2][2]^udA
kq[3][3]*ud

omZ[2][2] := Aq{2][2]-1
oz/Z[3][3]:= Ag[3][3]-1
others ud

o«z[2][2] := 1/Ag[2][2]-1
oat[3][3] := l/fa?[3][3]-l
others ud

kq O«t[2][2]:=M2][2]/(l-M2][2])
ou43][3]:=^[3][3]/(l-M3][3])
others ud.

ou(2][2] “ 1/5^M2][2])-1
OU([3][3]:=l/59rt(M3][3])-l
others ud

owZ[2][2] := sqrt(kq[2][2]) -1
OMZ[3][3].-=^rt(M3][3])-l
others ud.

kq[l][l>udA
kq[2][2]=udA
kq[3][3]=ud

others ud
omZ[1][1] := l/fa?[l][l]-l
others ud

kq Ot41][l]:=Ml][l]/(l-Ml][ll)
others ud.

Ou41][l] := 1/-1
others ud

owZ[l][l] := [1]) -1
others ud.

kq[l][l]^udA
kq[2][2]=udA
kq[3][3>ud

our[l][l]:=Ml][ll-i
owZ[3][3] := kq[3] [3] -1
others ud

omz[1][1]:=1/^[1][1]-1
om<3][3] :=1/Aqf3][3]-1
others ud

kq o«Z[l][l]:=^[l][l]/(l-Ml][ll)
oMZ[3][3]:=M3][3]/(1-M3][3J)
others ud.

ou/[3][3]:=l/59r/(M3][3])-l
others ud

owZ[l][l] := sqrtt kq[l] [1]) -1
omZ[3][3] := sqrt(kq[3] [3]) -1
others ud

kq[l][l]*udA
kq[2][2>udA
kq[3][3]=ud

owt[2][2] :=Aq[2][2]-l
others ud

owr[2][2]:=l/^[2][2]-l
others ud

kq OhZ[1][1]:=M1][1]/(1-M1][1])
ouZ[2][2]:=Ag[2][2]/(l-Ag[2][2])
others ud.

OW«[1][1] ~ 1/[1]) -1
ou(2] [2] -1/ s?rZ(M2] [2]) -1
others ud

owz[l][l] := sqrt (Aq-[1] [1]) -1
out[2][2] := sqrt(kq[2][2]) - 1
others ud

kq[l][l]^udA
kq[2][2]#udA
kq[3][3]*ud

om?[1][1] := Ml][l] -1
our[2][2]:=fc7[2][2]-l
owr[3][3] := M3][3]-l
others ud

owz[l][l] :=1/^[1][1]-1
out[2][2] :=l/fc7[2][2]-l
ow/[3][3] :=1/M3][3]-1
others ud

kq O«z[l][l]:=Ml][l]/(l-Ml][l])
OUr[2][2]:=M2][2]/(l-M2][2])
Ou/[3][3]:=^[3][3]/(l-M3][3])
others ud.

ou/[l][l]- l/59rz(^l][l])-l
O«42][2] - l/r9ri(M2][2])-l
o«Z[3] [3] := 1 / sqrt (kcft3] [3]) -1
others ud

owz[l][l] := sqrt (Ag[l] [1]) -1
out[2][2] := sqrt(kq[2][2])-l
ow/[3] [3] := s^rz(Ag[3][3]) -1
others ud

H2: kgflag
lfst efsl list eisl lsl

kq[l][l [=udA
kq[2]]2]=udA
kq[3][3]=ud

Out:=]ud[Oul:=[ud] kq Out:=[ud] Out:=[ud]

kq[l][l]=udA
kq[2[[2]=udA
kq[3][3]lud

out[3] [3] := sqrt (2 * kq[3][3] + I) - I
others ud.

owcn]^ := 1 / sqrt(l - 2 * Ag^HS]) -1
others ud

kq out[3][3] = kOTl/fl - kq[3]
others ud.

OW[][3].[=exe(A<(]3][][]-l
others ud.

kq[l][l]=udA
kq[2][2]AudA
kq^^^ud

out[2][2] := sqrt(2 * kq[2][2] + I) -1
others ud.

out[2] [2] := 1 / sqrt(l - 2 * kq[2] [2]) -1
others ud

kq out[2][2] := kq[:^][\^]/ll-kq(2
others ud.

out[2][2] := exp(jA[2][2])-I
others ud.

kq[l][l]=udA
kq[2][2]*udA
kq^^^ud

oz422|2] := sqrt (2* kq[2][2] + I) -1
out|3J[3] := sqrt(2 * kq[3][3] + I) - 1
others ud.

out[2][2] -\/sqrt(\ - 2 * kq[2[[2]) -1
out[3][3] := 1 lsqrt(\ - 2 * U/HPJ) -1
others ud

kq outl2][2==kq]2l]2V(\ - kq[2]
out[3][3] := kq[3][3] /(I - kq\3\
others ud.

o«42][2[:= epp(C7[22[2]2-l
ow[3J[2] leXWB-l
others ud.

kq[l][l]*udA
kq[2[[2[=udA
kqPJ^^ud

o M [I] [I[:= sqrt(2 * kq[l] [I[+ I) -I
others ud.

out[l][I] := 1 / sqrt(l - 2 * UU2(I]) - I
others ud

kq
others ud.

out[l][l] := exXOUlPD-l
others ud.

kq[l][l]#u<A
kq[2[(2[=udA
kq^J^J^ud

oicf[l][l] := sqrt(2 * &7[I][I] + I) -1
oMt[l][3] := sqrt(2 * ,[3] [3] + I) -1
others ud.

ort[l][1] := 1 / sqrt(\ - 2 * A][l][l])-1
out[3] [3] := 1 / sqrt(l - 2 * A aI3] [3]) - I
others ud

kq o«OT:- Uiim/a-Mni]
out[3][3] := kq[3][3]/(l - kq[3]
others ud.

oUzmm-eepCAMinW-l
ou^[0][3]:=exp2Ac[3][3])-]
others ud.

kq[lHJ>udA
kq[2]]2]uudA
kq^P^ud

oi/[[l[[I] := sqrt(2 * fc]|1][l[+ 1) -1
out[2][2] := sqrt(2 *kq[2][2] + I) - I
others ud.

out[l] [I] := 1 / sqrt(l - 2 * U ll(l]) -1
out[2][2] :=llsqrt(i - 2 * kq[2][2]) -1
others ud

kq oWdRl] := M1][1/(l|- Ulld]
out[2][2] := kq[2][2] /(I - kq[2]
others ud.

0lU[|[[ll=eeePfc7U[l])-l
out[2][2] := epp(A]2][2]) -1
others ud.

kqUHlJludA
kq[22]22AudA
kq^j^^ud

ow/[]|l] := sqrt(2* AjtlHl] +I) - I
out[2][2] := sqrt(2 * kq[2][2] + I) -1
out]] [3] := sqrt(2 * kq[3][3] + I) -1
others ud.

oHl[l][I] := 1 / sqrtQ. - 2 * UMJ]l]) - I
out[2][2] := 1 / sqrt(l - 2 * kq[2][2]) -1
out[3][3] := 1 / sqrt(l - 2 * kq[3][3]) -1
others ud

kq drfllltl] := [Qn]]]/(]■[/-^i]P^I
out[2][2] := kq[2]]^^l/(l- kq[2]
out[3][3]:=kq[3][3]/(l-kq[3]
others ud.

Ourl]][][:=pppAC^]l|)l])-l
o«C[2][2] := exp(*q[22[222-l

0O[3][3]l3expPO[3][3])-l
others ud.

—^Continue G Table D-30 out for list_g_knownquantity (Continue) H] a H2 —> G

232

H,’

G H—>G

H

Table D-S1 out for (ist-g-geometry

disp.dispu=udA
disp.dispv=udA
disp.dispw=ud

Out ^[udJ

disp.dispu=udA
disp.dispv=udA
disp.dispwAud

out[)[[)] := disp.dispwl sg.width
others ud

disp.dispu=udA
disp.dispvAudA
disp.dispw=ud

out[2][2] := disp.dispvIsg.height
others ud

disp.dispu=udA
disp.dispvAudA
disp^sp^^'Aiid

out[2][2] := disp.dispvIsg.height
oM/[3[[S] := disp.dispw/sg.width
others ud

disp.dispuAudA
disp.dIspv=udA
disp.dispw=ud

oz/[l][l] := disp.dispu / sglength
others ud

disp.dispuAudA
disp.dispv=udA
disp.dispwAud

ow1[]J [1[:= disp.dispu / sglength
owf[3][)J := disp.dispw / sg.width
others ud

disp.dispuAudA
disp.dispvAudA
disp.dispw=ud

out[1] [1] := disp.dispu / sglength
out[2][2] := disp.dispvI sg.height
others ud

disp.dispuAudA
disp.dispvAudA
disp.dispwAud

out[1][1] := disp.dispu / sglength
out[2][2] := disp.dispv / sg.height
om/[S][3] := disp.dispw l sg.width

others ud

233

D. 3.24 Eulerian (Almansi’s) infinitesimal strain tensor module
Prefix: eist_
Reference: MG - C. 3.2.17

D. 3.24.1 Interface syntax
Imported data type:

DisplacementT from the displacement specification module
TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module

Imported constant:
DIM 3

Exported functions:
Routines name Inputs Outputs Exception
eist_g_knownquan[ity TensorDataT

TensorFlagT
TensorDataT

eist_g_geometry SpecimenGeometryT
DisplacementT

TensorDataT none

D. 3.24.2 Interface semantics
State variable: none
State invariant: none
Assumption:
Access routine semantics

Eist_g_knownquantity(kq: TensorDataT, kqflag: TensorFlagT)
exception: Table D-32
output: Table D-33

eist_g_geometry(sg: SpecimenGeometryT, disp.'DisplacementT)
Exception: none
Output: Table D-34

234

G

H,—>G Table D-32 exception for eist_g_knownquantity

235

mdg sdg mdpg sdpg cdt gdt lfst efst list eist tst

(kq[l][l]=O)v non (kq[l][l]=l)v non (kq[l][l]<0) (kq[l][l]<0) (kq[l][l]<-0.5) (kq[l][l]>0.5) (kq[l][l]=-l) non non
(kq[2][2]=0)v (kq[2][2]=l)v V V V V V

(kq[3][3]=0) (kq[3][3]=l) (kq[2][2]<0) (kq[2][2]<0) (kq[2][2]<-0.5) (kq[2][2]>0.5) (kq[2][2]=-l)
=> => V V V V V

d_zero d_zero (kq[3][3]<0) (kq[3][3]<0) (kq[3][3]<-0.5) (kq[3][3]>0.5) (kq[3][3]=-l)
=> => => =>

srjesszero sr lesszero, sr lesszero, srjesszero, d_zero non
(kq[l][l]=0) (kq[l][l]=-0.5)

(kq[2][2]=0) (kq[2][2]=-0.5)

(kq[3][3]=0) (kq[3][3]=-0.5)
=> =>
d zero d zero

H: kgflag

mdg sdg mdpg sdpg cdt gdt
kq[l][l]=udA
kq[2][2]=udA
kq[3][3]=ud

Out:=[ud] Out:=[ud] Out:=[ud] kq Out:=[ud] Out:=[ud]

kq[l][l]=udA
kq[2][2]=udA
kq[3][33>ud

out[3]l[]:=l-[/M33][3l
others ud

owf[3][3l :=1 —fa7[3J[3]
others ud

o«t[3] [3] := kq[3] [3] /(I + *#3] [3])
others ud.

kq o«43]]3]:=l-.!lrt(Mt]]P])

others ud
out[3][3l := 1 — 1/ .s'fcl•t(/<7[3l[3])
others ud.

kq[l][l]=udA
kq[2][2J*udA
kq[3][3]=ud

M2^][2] := 1 — 1 / fa/[2] [2]
others ud

out[2][2] ^l-fc^]^]
others ud

OitfWitfW + M22][2])
others ud.

kq ou^[2][22:=lli?l■t(fa?[2][2l)

others ud
out[2][2]:= 1 -1 /sqrt(k^[2][2])
others ud.

kq[[][l]=udA
kq[2][2]AudA
kql3H3J^ud

otuMM^l-l/qjW
oat[3][3]:= 1-l/fc[[3][3]
others ud

owr[3][3] -l-fc^p]
others ud

out[2][2] := M22][2]((1 + fy[2][2])
oUt[[^]]3]:=Ml3][3]/(l + M33][3])
others ud.

kq ou42][2] ~ 1-s9iKM2][2])

o«[3]][]:=l-.fcrt(MP[P])
others ud

out[2][2] := 1 -1/sqrt(kq[2][2])
owf[3][3] := l-l/slt’^([33]]3])
others ud.

kq[l][l*mdA
kq[2][2]=udA
kq[3][3]=ud

ow[l][l]l=l-l/fa7[]]|^l]
others ud

oItfl]]ll]:=]llh][]][ll
others ud

o<[][l]:= MUllW + MH[111)
others ud.

kq ou/[l][l] := 1 - .^t-fa^lHl])

others ud
OMf[][l] := 1 - 1/sgrtliC7[l][l])
others ud.

kq[l][l]*udA
kq[2][2]=udA
kq[3][3>ud

ou1[1][1] := l-l/77fl][l]
our[3l]3l := 1-1/MPH3]
others ud

oMnl^i-Mnmi
o«/3][][:=l-*3l>[]3]
others ud

ow[l][l] := fa7[l][H/(l + MHHH)
OuOT^AgCWG + *[33[[3])
others ud.

kq ou/U][l] := 1 -<rl((fcl]][])

ou/]3]]3] := 1 - j1?i-((M[3][3])
others ud

out[l] [1] := 1 -1/ /fcr'((fc[[] [1])
out[3][3]:= l-H sqrt(kq[3][3])
others ud.

kq[]][l]?uidA
kq[2][2]>^t^d^A
kq[3][3]=ud

o«[][]l]:=]-[/h][]][[]
oM/]22]22:=]-[/fe[22]]2
others ud

o^4[l]]]:=]-,k][]][[]

others ud

ourninl-MMiTCl + MU][i])
out[2][2]:= M^2^][2]/(l + M2][2])
others ud.

kq ou41[l[[:=^ l—g/t^rlaq(ll]l])

others ud

Owt[l]][]:= [-//sr/Wmi])
om/[2] [2] := 1 -1 / sqrt(kq[2] [2])
others ud.

kq[l][l]*udA
kq[2][2]>udA
kqESJfSJI^ud

o«41[][[:=1-1/*1[][11]
out[2][2] ■/= 1 -1 / kq[2][2
ou/[3][3] := 1 -1 / kq[3][3]
others ud

o^tr[lc^]]=]li*[l]][i^]
out[2][2]

1-M33[P]
others ud

o«1[1][1] := Mfl][U/(1 + M^l][l])
ou^I-WM + M22][2])
ou<3][3] := MIWO + M3][3])
others ud.

kq oM(l[ll]:=]-s/l7(M(l]]l])

<7u42]R] := 1—sfc^l•(Z^9]2]]2])
o«(l3][3] := 1 - .tqrr(i<j[3][3])
others ud

o«tll][]]:=]-l/sgrt(ly[l][l])
owt[2][2] := 1 - l/sqrf(q[2][2])
out[3] [3] := 1 -1 / sqrt(kq[3] [3])
others ud.

G Table D-33 out for eist_g_knownquantity H, aH2->G Continue—>

236

H ,

H,

^Continue G Table D-33 out for eist_g_knownquantity (Continue)

237

11] a Il2 —> G

H2 : kgflag
lfst efst fist eist tst

kq[l][l]=udA
kq[2][2]=udA
kq[3][3]=ud

Out:=[ud] Out:=[ud] Out:=[ud] kq Out:=[ud]

kq[l][l]=udA
kq[2][2>udA
kq[3][3]Aid

out[3] [3] := 1 - \/sqrt(2 * ^[3][3] +1)
others ud.

[3] := 1 - sqrt(l - 2 * £g[3][3])

others ud

out[3][3]-.= ^[3][3]/(l + ^[3][3])
others ud.

kq out[3][3].-1 - exp(-kq[3][3])
others ud.

kq[l][l]=udA
kq[2][2]^udA
kq[3][3]=ud

out[2][2] := 1 -\lsqrt(2 * kq[2][2] +1)
others ud.

out[2][2] := 1 - sqrt(l - 2 * kq[2][2])

others ud

out[2}[2]-=k42}[2]l(i + kq[2}[2}}
others ud.

kq owt[2][2] := 1 - exp(- kq[2] [2])
others ud.

kq[l][l]=udA
kq[2][2]^udA
kq[3][3>ud

oul[2][2] := 1 -l/sqrt(2 * kq[2][2] +1)
out[3][3] :=!-!/ sqrt(2 * ^[3](3] +1) ot
hers ud.

out[2][2] := 1 - sqrt(l -2*kq[2][2])
oat[3][3] := 1 - sqrt(l - 2 * M3][3])
others ud

owt[2][2] := M2][2]/(l + kq[2][2])
oUt[3][3] := kq[3][3]/(l + A^[3][3])
others ud.

kq ow/[2][2] := 1 - exp(-kq[2] [2])
out[3][3] := 1 - exp(-kq[3] [3])
others ud.

kq[l][l>udA
kq[2][2]=udA
kq[3][3]=ud

oirf[l][l] := 1 -llsqrt(2 * i?[l][l] +1) o
thers ud.

ow/f 1] [1] := 1 - sqrt(l - 2 * MUll])
others ud

OMt[l][l]:= ^[1][1]/(1 + M1J[1])
others ud.

kq 0Mr[l][l]:=l-exp(-Ml][l])
others ud.

kq[l][l>udA
kq[2][2]=udA
kq[3][3]Aid

OMt[l][l] := 1 - l/sqrt(2 * Z^[l][l] +1)
owZ[3][3] := 1 -1/sqrt{2 * fa?[3][3] +1) ot
hers ud.

owrfl] [1] := 1 - sqrt(\ - 2 * ^[1] [1])
our[3][3] := 1 - sqrt(\ - 2 * kq[3][3])
others ud

Our[l][l]:=Ml][l]/(l + Ml][ll)
owt[3][3]:= ^[3][3]/(l + M3][3])
others ud.

kq owt[l](l] := l-exp(-fcj[l][l])
o«r[3][3]:=l-exp(-M3][3])
others ud.

kq[l][l]*udA
kq[2][2]^udA
kq[3][3]=ud

oirf[l][l] := 1 - \lsqrt(2 * ^[1][1] +1)
o«r[2][2] := 1 -\lsqrt(2 * kq[2][2] +1)
others ud.

o«t[l] [1] := 1 - sqrt(\ - 2 * A^1][1J)
om/[2][2] := 1 - sqrtfl - 2 * kq[2][2])
others ud

Our[l][l]:=Ml][U/(l + Ml][l])
OMr[2][2]:=M2][2]/(l + M2][2])
others ud.

kq out[l] [1] := 1 - exp(-fc?[l][l])
or/r[2][2] :=l-exp(-Ag[2][2])
others ud

kq[l][l>udA
kq[2][2>udA
kq[3][3>ud

oirffl][1] := 1 - Hsqrt[2 * Atfl][l] +1)
out[2][2] := 1 -\lsqrt(2*kq[2][2] +1)
o«Z[3][3] := 1 -1/ sqrt(2 * Ag[3][3] +1) ot
hers ud.

out[l][1] := 1 - sqrt(l - 2 * Ag[l][l])
out[2][2] := 1 - sqrt(\ - 2 * kq[2][2])
out[3] [3] := 1 - sqrt(l - 2 * Aq(3][3])
others ud

om[2][2] := M2][2]/(l + kq[2][2])
OMt[3][3]:=^[3][3]/(l + M3][3])
others ud.

kq owt[l][l]:=l-exp(-h?[l][l])
owr[2][2]:=l-exp(-^[2][2])
OM43][3]-l-exp(-M3][3J)
others ud

G H-»G

H di>p.di>pu=udA
disp.disp v=udA
disp.dispw^d

Out :=[ud]

di>p.dlspu==dA
disp.dispv=udA
disp.dispwAuU

o«r[3][3] := disp.dispw /{disp.dispw + sg.width)
others ud

di>p.di>p===dA
disp.dispvAudA
disp.dispw=ud

out[2][2] := disp.dispv /{dispv + sg.height)
others ud

di.sp.dispi^uUA
disp.dispvAudA
di>p.di>pwAud

out[2][2] := disp.dispv /{disp.dispv + sg.height)
o«t[3][3] := disp.dispw /{disp.dispw + sg.width)
others ud

disp.dispuAudA
disp.dispvAudA
disp.dispw=ud

out[l] [1] := disp.dispu /{disp.dispu + sgJength)
others ud

disp.dispuAudA
disp.dispv==dA
di>p.di>pwA=d

oM[1][1] := disp.dispu /{disp.dispu + sgJength)
ow'[3][3] := disp.dispw /{disp.dispw + sg.width)
others ud

di>p.di>puA=dA
disp.dispvAudA
disp.dispw=ud

om/[1][1] := disp.dispu /{disp.dispu + sgJength)
out[2][2] := disp.dispv /{disp.dispv + sg.height)
others ud

disp.dispuAudA
disp.dispvAudA
disp.dispwAud

out[1] [1] .= disp.dispu /{disp.dispu + sgJength)
out[2][2] := disp.dispv /{disp.dispv + sg.height)
om/[3][3] := disp.dispw /{disp.dispw + sg.width)
others ud

Table D-34 out for eist-g-geometry

238

D. 3.25 True strain tensor module
Prefix: tst_
Reference: MG C. 3.2.21

D. 3.25.1 ' Interface syntax
Imported data type:

DisplacementT from the displacement specification module
TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module
KinematicsT from the table structure module

Imported constant:
DEM 3

Exported functions:
Routines name Inputs Outputs Exception
tst_g_knownquantity TensocDataT ,

Tensor-lagT
TensocDataT

tst_g_geometry SpecimenGeometryT
DisplacementT

TensocDataT none

External functions:
real lnfuntion(r: real)

D. 0-25.2 Interface semantics
State variable: none
Local variable:

temp: Real*[D]M][D]M]
Slate invariant: none
Assumption:
Access routine semantics:
tst_g_knownquantity(kq: TensorDataT, kqflag: Tensor-lagT)

Exception: Table D-35
Output: Table D-36

tst_g_geometcy(sg: SpecimenGeometcyT, disp:DisplacementT)
Exception: none
Output: Table D-35

239

Hj —>G Table D-35 exception for tst_g_knownquantity continue-*

mdg sdg mdpg sdpg cdt gdt lfst

(kq[l][l]<0)v (kq[l][l]=0)v (kqUHl] <-l)v (kq[l][l]=l) v (kq[l][l]=0) v Cq[l][l]n0)v (kq[l][l]=-0.5) v
(kq[2][2]<0)v (kq[2][2]=0)v (kq[2][2] <-l)v (kq[2J[2]=l) v (kq[2][2]=0) v (kq[2H2]=0) v v
(kq[3][3]<0) (kq[3][3]=0) (kq[3][3] <-l) (kq[3H3]=l) (kq[3][3]=0) (kq[3][3)G)
=> => => => ==> => =>

ln err d_zero, ln_err d_zero, d_zero, ln_err, ln_err,
(kq[l][l]<0)v (kq[l][l]>l) v ^[lUl^G^ (kq[l][l]<0)v (kq[l][l]<-0.5)v
(kq[2][2]<0)v (kq[2][2]>l) v (kq[2][2]<0)v (kq[2][2]<0)v (kq[2][2]<-0.5)v
(kq[3][3]<0) (kq[3][3]>l) (kql3]l3]<0) (kqPJH-G) (kq[2][3-3-a.5)
=>ln_err =>ln_err, =>sr_lesszero =>sr_lesszero,

ln_err sr_lesszero ln_err

continue —> Table D-35 exception for tst_g_knownquantity

H, efst list eist tst

G

(kqUHlnGJ). v
(kq[2][2]=0.5) v
akq][3]G3)
=>
d_zero,
(k<nn[n>o.5)v
(kq[2][2]>0.5)v
(kq[3][3]>0.5)
=>
sr_lesszero,
lnrerr

(3q31Mn <-l)v
(kq[2J[2J <-l)v
(kql3[[3[<-l)
=>
ln_err

(kqllJtlM) v
(kq[2][2]=l) v
(kq[3^|[:^^^:^:l)
=>
d_zero,
(kq[l][l]>l) v
(kqUJHM) v
(kq[3][3]>l)
=>
ln_err

non

240

H,

G

H, ->G

H,

G

241

Table D-36 out for tst_g_knownquantity

H2 : kgflag

H] a H2 —> G Continues

mdg sdg rndpg sdpg cdt
kq[l][l]=udA
kq[2][2]=udA
kq[3][3]=ud

Out:=[ud] Out:=[ud] Out:=[ud] Out:=[ud] Out:=[ud]

kq[l][l]=udA
kq[2][2]=udA
kq[3][3>ud

out[3][3] := ln(M3][3J)
others ud

o«r[3][3] := ln(l/Agr[3][3])
others ud

out[3][3] := ln(l + ^[3][3J)
others ud.

owt[3][3] :=ln(l/(l-^[3][3]))
others ud

out[3] [3] := ln(l / sqrt(kq\3\ [3]))
others ud.

kq[l][l]=udA
kq[2][2]^udA
kq[3][3]=ud

om/[2][2] := ln(^[2][2J)
others ud

out[2][2] :=ln(l/kq[2][2])
others ud

out[2][2] :=ln(l + Ag[2][2])
others ud.

ou^2][2]~ ln(l/(l-^2][2]))
others ud

out[2][2] := ln(l/sqrt(kq[2][2]))
others ud.

kq[l][l]=udA
kq[2][2>udA
kq[3][3]*ud

OMr[2][2]:=ln(A9[2][2])
our[3][3] := ln(fc?[3] [3])
others ud

OMr[2J[2J:=ln(l/M2J[2])
o«r[3][3]:= ln(l/M3][3])
others ud

out[2][2] :=ln(l + ^[2][2])
o«r[3][3]:= ln(l + M3][3])
others ud

ouf[2][2] := ln(l/(l - tq[2]{2]))
ouf[3][3]:=ln(l/(l-kq[3][3]))
others ud

out[2][2] := ln(l/sqrt(Aq[2][2]))
others ud

kq[l][l>udA
kq[2][2]=udA
kq[3][3]=ud

o«r[l][l]:= ln(MlJ[l])
others ud

0W/[l][l]:=ln(l/fc7[l][l])
others ud

owt[l][l] := ln(l + Ml][l])
others ud.

OMr(l][l]:=ln(l/(l-Ml][l]))
others ud

out[l] [1] := ln(l / sqrt(fa7[l][l]))
others ud.

kq[l][l]*udA
kq[2][2]=udA
kq[3][3>ud

0<l][l] := ln(Ml][ll)
otrf[3][3] := ln(fa?[3][3])
others ud

0Mr[l][l]:= ln(l/Ml][lJ)
out[3][3] := ln(l/^[3][3])
others ud

0Mt[l][l]:=ln(l + Ml][lD
o«t[3][3] := ln(l + ^[3][3])
others ud

owr[l][l] :=ln(l/(l-MlJ[l]))
Out[3][3]:=ln(l/(1-M3][3]))
others ud

0Mr[l][l]:=ln(l/^(^[l][l]))
owt[3][3] := ln(l/^rr(M3][3]))
others ud

kq[l][l>udA
kq[2][2]=AudA
kq[3][3]=ud

™r[l][l] := ln(^llKlJ)
out[2][2] := ln(M2][2])
others ud

owr[2][2]:= ln(l/^[2][2])
others ud

out[l] [1].- ln(l + Ag[l][l])
out[2][2] :=ln(l + M2][2])
others ud

0M/[l][l]:=ln(l/(l-Ml][lJ))
0<2][2]:=ln(l/(l-M2][2]))
others ud

oMt[l][l] := ln(l / .v<7rr(jt<g'[l][l]))
out[2][2] := ln(l/sqrt(kq[2][2]))
others ud

kq[l][l>udA
kq[2][2]*udA
kq[3][3>ud

o«r[l][l]:= ln(^[l][l])
out[2][2] := ln(M2][2J)
oul[3] [3] := ln(^[3] [3])
others ud

OMr[l][l]:=ln(l/Ml][lJ)
out[2][2]:= ln(l/A<y[2][2J)
ow/[3][3j:= ln(l/^[3][3J)
others ud

o«r[l][l] := ln(l + M1J1H)
ottt[2][2]:=ln(l + Ag[2][2])
otrf[3][3].- ln(l + ^[3][3J)
others ud

OMr[l][l]:=ln(l/(l-MU[l]))
OM42][2]:=ln(l/(l-M2][2]))
OKr[3][3J:=ln(l/(l-^[3][3]))
others ud

ouf[l][l] := ln(l / sqrt(kq\\][1]))
out[2][2] := ln(l/s<7rr(fcj[2][2]))
out[3][3] := ln(l/sqrt(£q[3][3]))
others ud

H|: kgflag

gdt lfst efst
kq[l][]]=udA
kq[2][2==cdA
kq[3lP]=ud

Out :=[ud] Out:=[ud] Out:=[ud]

kq[l][l]=udA
kq[2][2]=udA
kq[3][3Mud

ottl[3]]3] := [n(s£/r/(A<<3][3])) others
ud

oM[3]]3| := [n(s<T(2 * 3cjf3] [-] + 1)) o
there ud

oWPH-l := ln(l / sqrttt - 2 * APlPl)) other
s ud

hq^H^/dA
kq[2][2J;AidA
kq[3][3]=ud

out[2][2] := ln(s<7rt(Aq{2[l2[)) other
s ud

out[2][2] := ln(s4rt(2 * kq[2][2] + 1)) o
thers ud

out[2][2] := hn(l/sqrt{\.~ 2* A[2|]2|][otheo
s ud

kq[l][l]=udA
kq[2]|2]#udA
kq[3]P]>ud

out[2)[2] := ln(sqrt(kq[2l[2]))
out[3] [3] := ln(sgrt (f^/^l [-l)) others
ud

out[2][2] := ln(sqrt(2 * /tq[2][2] + 1))
owt[3[l-[:= [^(sqrt(2 * MPlPl + 1))
others ud

out[2][2] := ln((/sqrt(l - 2 * kq[2][2]))
outP]]3[:= ln(l / sqrt(l - 2 * API [-])) other
s ud

kq[l][l]*udA
kq[2][2]=cA
kq[3]P]=ud

ow?[l] [1] := lnCf/r ̂Ag l] [l|)>
others ud

out[l] [1] := \n(sqrt(2 * kq[t][1] + 1))
others ud

3u/[l][l] := ln(l / sqrtfl - 2 * AUlHl))
others ud

kqPlPJ^udA
kq[2][2]=udA
kqPJPJfcud

o«dl] [1] := lnfsqrt (^qUm]))
out[3][3] := ln(sqrt(h-[3][-[)) others
ud

owf[l] [1] := ln(5Y^r/(2 * Aq[1] [1] + 1))
oW/3]l3l := [nnc]/"/ (2 * kq[3] [-] +1))
others ud

oat[l[[l] := ln(l / sqrtd - 2 * fC/fl] [1]))
ouf[3][3] := ln((l sqrt((- 2 * Xa7[3J]33]) other
s ud

kq]i][ihuidA
kq[2][2]*udA
kq(3][3]=ud

0M[lJ[l] := [n(«/rt(M[]](l]))
out[2][2] :=]n(s■l/r/(Ag[2][2[')) other
s ud

3w/[l][l] := ln(sqrt(2 * kq[l][1] + 1))
out[2][2] := ln(sqrt(2 * kq[2][2] + 1)) o
thers ud

oM|1[]1[:= ln(l/sqrt(l - 2*A11[[1]))
out[2] [2] := ln(l / sqrt (1 - 2 * kq[2] [2])) other
s ud

kqUHl JfCudA
kq[2][2]>udA
kqPJPbud

om1[]|[1[:= ln(j9rr(M[l][l[))
o«r[2][2] - ln(5grt(fc][2][2]))
out[3[l-] := InbqrttAPJP])) others
ud

ow/l]|l] := ln(s<^r/(2 * kq[l][1] + 1))
out[2][2] := ln(sqrt(2 * kq[2][2] + 1))
3u/P[pl := ln(sgrt(2 * £g]3[[3] + 1))
others ud

oW[l][l] := ln(l / sqrttt - 2 * MUM))
om1[2][2] - [naiK/Kl-^fAP] [2]))
out[3] Pl := ln(l / sqrt(t — 2 * kq[3][3])) other
s ud

—^Continue G Table D-36 out for tst g knownquantity (Continue) H , aHI, G

242

H,

H2 : kgflag

list eist tst
kq[l][l]=udA
kq[2][2]=udA
kq]3][3]=ud

Out:=[ud] Out:=[ud] kq

kq[l][1]=udA
kq[2][2]=udA
kq[3][3]*ud

out[3]]3]:= ln(l + M[3][3])
others ud.

OWO3]:2 1n(l/(l-M3][3]))
others ud

kq

kq[l][ll=udA
kq]2][2]AudA
kq]3][3]=ud

oi42][2] :=hO + fcCZ]^)
others ud.

ot42][2] := ln(l /(l - Ag2]]2]))
others ud

kq

kq[l][ll=udA
kq[2][2>udA
kq[3][3]Aud

out[2][2]:= ln(l + feq2][2])
oi43][3]:= ln(l + M^P])
others ud

out[2][2] := ln(l /(l -ty(2][2]))
ontlp] := -»((/((-M]3][3]))
others ud

kq

kq[l][i:£udA
kq[2][2]=udA
kqfDHduid

dn-iia+Miui-i)
others ud.

oK1HT12 1^01/]-^*^1]]]]^))
others ud

kq

kq[l][l]dudA
kq[2][2]=udA
kq[3][3]Aud

omi][1]:= lna+mrow)
oWP]P]:= ln(l + Ag3]p])
others ud

O3]l][l] := -!(((]/-M-itt))
od3][di=a/(/a-*d3]D))
others ud

kq

kqilHlJdudA
kq[2]]2]uudA
kq[2][2]=ud

oi/iOHl] :=ln(l + MI]][]])
o«t]2]]2]:= ln(l + -aC2]]2])
others ud

o^q]]]^]]—iu(ii/i^i — a],^]^][i]))
oul[2]]2] := ln(l /(I - k$2} [2])) ot
hers ud

kq

kq[l][]]AudA
kq]2]]2]£udA
kq]3]]3]>ud

oMl]]l] := ln(l + MBHl])
0Mt[2][2]:=ln(l + -y[2J[2])
out]3]]3]:= ln(l + &3U]3])
others ud

oad[][l[:=ln(l/(l-fci]]][l]))
o4MP-WO/flMdPlD)
o«^]31P].-2((//(l-2zlP]P2))
others ud

kq

-^Continue G Table D-36 out for tst_g__knownquantity (Continue)

243

H,

G H—>G

H disp.dispu=udA
disp.dispv=udA
disp.dispw=ud .

Out :=[ud]

disp.dispu=udA
disp.dispv=udA
disp. disp wAud

owf[3][3] := ln(l + dispw / sg.width)
others ud

disp.dispu=udA
disp.dispvAudA
disp.dispw=ud

out[2][2] := ln(l + disp.dispv / sg.height)
others ud

disp.dispu=udA
disp.dispvAudA
disp.dispwAud

out[2][2] := ln(l + disp.dispvVsg.height)
ow/[3][3] := ln(l + dispw/ sg.width)
others ud

disp.dispuAudA
disp.dispv=udA
disp.dispw=ud

ow|T|[l] := ln(l + disp.dispu I sglength)
others ud

disp.dispuAudA
disp.dispv=udA
disp.dispwAud

ow|l][l| := ln(l + disp.dispu I sglength)
owf[3][3] := ln(l + dispw! sg.width)
others ud

disp.dispuAudA
disp.dispvAudA
disp.dispw=ud

o»r[1][1] := ln(l + disp.dispu / sg.length)
out[2][2] := ln(l + disp.dispy 1 sg.height)
others ud

disp.dispuAudA
disp.dispvAudA
disp.disp wAud

owt[l] [1] := ln(l + disp.dispu / sglength)
out[2][2]:2 ln(l + disp.dispv/sg.height)
owf[3][3] ■= ln(l + dispw / sg.width)
others ud

Table D-37 out for tst_g_geometry

244

D. 3.26 Displacement constitutive calculation module
Prefix: dcc_
Reference: MG C. 3.2.7

D. 3.26.1 Interface syntax
Imported data type:

DispIacementT from the displacement specification module
KinematicsT from the table structure module
StressT from the table structure module
TensorDataT from the material deformation gradient module
ExperimentClassT from the experiment definition module
ExperimentTypeT from the experiment definition module
PropertylistT from material properties file module

Exported data type: none
Exported constant: none
External functions:

All access routines in this module interface specification are available.
Exported function:
Routines name Inputs Outputs Exception
Virtual
dcc_dispconstitutive

DisplacementT
KinematicsT
SpecimenGeometryT
PropertylistT

StressT
KinematicsT

D. 3.26.2 Interface semantics
State variable: none
State invariant: none
Assumption:

• The experiment designer can understand module interface specification.
• When the constitutive equation is involved in the experiment, since it is hard to

summarize the constitutive equation as a unique form with a fixed pattern, the
experiment designer is given more freedom to provide the implementation of this
routine and also the experiment designer can also design the local functions based
on the requirements except that the designer can call all access routines in the
module interface specification

Access routine semantics:
virtual dcc_dispconstitutive(disp: DisplacementT, spe: SpecimenGeometryT, prolist:
PropertylistT, kin: KinematicsT)

exception: Exception occurs depending on known kinematics quantities
and how to calculate the approximation of the constitutive
equation. The experiment designer is responsible for exceptions
in this ' routine.

245

output: Stresses are ■ obtained based on the approximation of the
constitutive equation and known conditions such as
displacements and kinematics quantities. Based on the
constitutive equation, kinematics quantities can be recalculated
again.

246

Routines name Inputs Outputs Exception
virtual
]cc2.1oadconstilulive

LoadT
StressT
KinematicsT
SpectmenGecimetryT
PropertylistT

StressT
KinematicsT
DisplacementT

247

D. 3.27 Load constitutive calculation module
Prefix: lcc_
Reference: MG C. 3.2.8

D. 3.27.1 Interface syntax
Imported data type:

LoadT from the load specification module
KinematicsT from the table structure module
StressT from the table structure module
TensorDataT from the tensor data definition module
ExperimentClassT from the experiment definition module
ExperimentTypeT from the experiment definition module
PropertylistT from material properties file module

Exported data type: none
Exported constant: none
Exported function:

D. -.27.2 Interface semantics
State variable: none
State invariant: none
Assumption:

• The experiment designer can understand the module interface specification.
• When the constitutive equation is involved in the experiment, since it is hard to

summarize the constitutive equation as a unique form with a fixed pattern, the
experiment designer is given more freedom to provide the implementation of this
routine and also the experiment designer can also design the local functions based
on the requirements.

Access routine semantics:
virtual lcc_loadconstitutive(load: LoadT, stress: StressT, spe: SpecimenGeometryT,
prolist: PropertylistT, kin: KinematicsT)

exception: Exception occurs depending on known kinematics quantities
load and how to ' calculate the approximation of the constitutive
equation. The experiment designer is responsible for exceptions
in this routine.

output: That which stress and which strain are used in the constitutive
equation decides how to calculate the approximation of
constitutive equation. Displacements can be obtained by the
strain. Once the displacement is known, other kinematics
quantities can be calculated.

D. 3.28 Engineering stress module
Prefix: es_
Reference: MG C. 3.2.23

D. 3.28.1 Interface syntax
Imported data type:

SpecimenGeometryT from the specimen geometry module
DispIacementT from the displacement specification module
LoadT from the load specification module
TensorDataT from the tensor data definition module

Imported constant:
DIM 3

Exported constant: none
Exported functions:
Routines name Inputs Outputs Exception
es initengstress TensorDataT none
es_g_engstress LoadT

SpecimenGeometryT
TensorDataT none

es_g_knownstress TensorDataT
DispIacementT
SpecimenGeometryT

TensorDataT none

External function:
ed_g_experimenttype

D. 3.28.2 Interface semantic
State variable: none
State invariant: none
Assumption:

• es_initengstress should be called before other access routines.
• Before es_knownstress is called, displacement deformation should be obtained by

calling lcc_loadconstitutive access routine.
Access routine semantics:
Es_initengstress()

Exception: none.
Output: Table D-38

cs_g_engstress(load: LoadT, spe: SpecimenGeometryT,
truestress :TensorDataT)

exception: none.
output: Table D-39

es_g_knownstress(disp: DisplacementT, spe: SpecimenGeometryT, truestress: TensorDataT)
exception: none

248

output; Table D-40

(localtype=H)—>G

Table D-38 out for es_initengstress

H Uniaxial Biaxial Multiaxial

G
0 ud ud

ud ud ud
ud ud ud

0 ud ud
ud 0 ud
ud ud ud

0 ud ud
ud 0 ud
ud ud 0

H—>G

G

H

Table D-39 out for es_g_engstress

load.loadu=udA
load.loadv=udA
load.loadw=ud

Out :=[ud]

load.loadu=udA
load.loadv=udA
load.loadwAud

t^iw[[3][3] := load.loadw!(spe.length*spe.height)
others ud

load.loadu=udA
load.loadvAudA
load.loadw=ud

out[2][2] := load.loadv/(spe.lenglh * spe.width)
others ud

load.loadu=udA
load.loadvAudA
load.loadwTud

out[2] [2] := load.loadv l(spe.length * spe.width)
om[[3] [3] := load.loadwdspe.length * spe.height)
others ud

load.loaduAudA
load.loadv=udA
load.loadw=ud

om[[1] [1] := load.loadu /(spe.height * spe.width)
others ud

load.loaduAudA
load.loadv=udA
load.loadwAud

out [1] [1] := load.loadu l(spe.height * spe.width)
out[3] [3] := load.loadw l(spe.length * spe.height)
others ud

load.loaduAudA
load.loadvAudA
load.loadw=ud

out[1] [1] := load.loadu /(spe.height * spe.width)
out[2][2] := load.loadvl(spe.length * spe.width)
others ud

load.loaduAudA
load.loadvAudA
load.loadwAud

out[l] [1]:= loaddoadu /(spe.height * spe.width)
out[2][2] := load.loadv Kspe.length * spe.width)
o«r[3] [3] := loadloadw l(spe.length * spe.height)
others ud

H—>G

249

G

Table D-40 out for es_g_knf^wnslress

ts[l]]]=^l^UA
ts[2][2]=udA
ls[-][3]=ud

Out:=]ud]

IsllHl^ucA
ts[2][2]=udA
ls]-][-^]*ud

Jr-nn ■ r'-p]]-] {spe.len%th + disp.dispu)(spe.height + disp.dispv)
speJength * spe.height

others ud
isl-m^udA
ts[2][2]AudA
ts[-][3]=ud

ouiI']]]]'] ' rm ^spelength + disp.dispu)(spe;width + disp.dispw)
speJength * spe.width

others ud
ts[l][l=udA
ts]2][2]*udA
tsE-HS2dud

._,„i]L,.-nz] {speJength + disp.dispu)(spe.width + disp.dispw) OWLZ|12J.— wLZJ[Aj J ± .
speJength * spe.width

Jllir] ■ r-]-][3] ^speiength + disp.dispu)(spe.height + disp.dispv)
speJength * spe.height

others ud
is[1][1]*uuA

ts[2]]2]=udA
ls]-][3]=ud

0Ut [1] [1] • t "[1] [1] + d‘sP-disPw)(sPe-height + disp.dispv)
spe.width * spe.height

others ud
ts[l][ihuKA
ts[2][21=uUA
toPlE-ldud

out [1] [1] r-]l] [1] (spe^-width + disp.dispw)(spe.height + disp.dispv)
spe.width * spe.height

oL.r.^n rm . ._rm r' (speJength + disp.dispu)(spe.height + disp.dispv) oiupJLJj — tSLoJpj .
speJength * spe.height

others ud
tsUinddudA
ts[2][2]dudA
ts[-][3]=ud

....mm. ._rmm (spe.width + disp.dispw)(spe.height + disp.dispv)
spe.width * speJieight

.rzirzi . r-^vrm (speJength + disp.dispu)(spe.width + disp.dispw)°ut[2J[2] :=]S[2][2]
speJength * spe.width

others ud
ts[l][]>KA
ts[2][2]*udA
ts[-]|3]>ud

...2mm • ..mm (spe.width + disp.dispw)(spe.height + disp.dispv) owLlJLlj udLLJLU . .
spe.width * speJieight

-urP-nn • r-n]P (spelength + disp-dispu^spewndth + disp.dispw)
speJength * spe.width

[PUP] . r-p-p [(speJength + disp.dispu)(spe.height + disp.dispv)
speJength * speJieight

others ud

250

H
H—»G

D. 3.29 True stress module
Prefix: tsm_
Reference: MG C. 3.2.22

D. 3.29.1 Interface syntax
Imported data type:

SpecimenGeometryT from the specimen geometry module '
LoadT from the load specification module
DispIacementT from the displacement specification module
TensorDataT from the tensor data definition module

Exported constant: none
Exported, functions:
Routines name Inputs Outputs Exception
tsm initturestress TensorDataT none
virtual
tsm_g_truestress

LoadT
KinematicsT
SpecimenGeometryT

TensorDataT

tsm_g_knownstress TensorDataT
DispIacementT
SpecimenGeometryT

TensorDataT none

D. 3.29.2 Interface semantics
State variable: none
State invariant: none
Assumption:

• tsm_inittruestress should be called to initialize true stress before other access
routines.

• Before tsm_g_knowstress is called, displacement deformation should be obtained
by calling lcc_loadconstitutive access routine.

• True stress is needed in the constitutive equation. If engineering stress is needed
in the corresponding constitutive equation, then tsm g truestress is meaningless.

Access routine semantics:
tsm_inittruestress()

Exception: none.
Output: Table D-41

virtual tsm_g_truestress(load: LoadT, spe: SpecimenGeometryT, kin:KinematicsT)
exception: Exception occurs depending on how to calculate the

approximation of the constitutive equation. The experiment
designer is responsible for exceptions in this routine.

output: The experiment designer is responsible for the implementation
of this routine.

251

tsm_g_knownstress(disp: DisplacementT, spe: SpecimenGeometryT,
engstress:TensorDataT)

exception: none.
Output: Table D-42

(localtype=H)—>G

Table D-41 out for tsm_inittruestress Q

H Uniaxial Biaxial Multiaxial

G
0 ud ud

ud ud ud
ud ud ud

0 ud ud
ud 0 ud
ud ud ud

0 ud ud
ud 0 ud
ud ud' 0

H->G

Table D-42 out for tsm_g_knownstress

es[l][l]=udA
es[2][2]=udA
es^^^ud

Out:=[ud]

esdinuudA
es^J^uddA
es[3][3]>ud

00(OT '"[[]□ spelength* speJheigtfo
{disp.dispu + spelength)(spe. height + disp.dispv)

others ud
es[l][l]=udA
es[2] [2]*uKa
esDlPluud

MtZW-alWl
(spe.width + disp.dispw)(spe.length + disp.dispu)

others ud
esniUudlA
es[2][2]oudlA
es[2][3]?ud

„«|21[2)» «(2)[2J speJwgP^pwUl.
(spe.width + disp.dispw)(speJength + disp.dispu)

.pgtP-^Pg«HIIP
(disp.dispu + spelength)(spe.height + disp.dispv)

others ud
esmmuddA
es]2]]2]=udA
ess3][22uid

mm mm spe.width * spe.heightcat[l][l] := e-inni]---------------- -------------- - ----- 5-------------------
(disp.dispw + spe.width)(disp.dispv + spe.height)

others ud
esUHlJuudA
es[2][2]=udA
es[3][3]*ud

ouuII]]]].......h[]] spe.width* spe.height
(disp.dispw + spe.width)(disp.dispv + spe.height)

.pelepg^peMgM
(disp.dispu + spe.length)(spe.height + disp.dispv)

others ud
esUKUbudA
es]2l[2]5*udA
esDlD^ud

(disp.dispw 4- spe.width)(disp.dispv + spe.height)

» .421(2) (spe +

others ud
esUHlJuiKiA
es[2H2]>udA
esDlDlJud

<»(ra[ll2«[l)[l) spe.widlh^spe.heighl
(disp.dispw + spe.width)(disp.dispv + spe.neight)

«42][2] + 2

-e2]p) ^to^****
(disp.dispu + spelength)(spe.height + disp.dispv)

others ud

252

H
H—>G

Routines name Inputs Outputs Exception
os_curveshow CoordDataT

CoordDataT
Undefined_data

D. 3.30.2 Interface semantics
State variable:

None
State invariant:

None
Assumption:

None
Access routine semantics:
os_curveshow(x: CoordDataT, y: CoordDataT)

exception: [x[O]=undefined)\[y[[)]=undefineel)=>undefmed_data
output: In the coordinate system all the points whose value (x,y) is

respectively from the inputs x and y. The curve that is
composed of all the points will be drawn in the coordinate
system.

253

D. 3.30 Output show module
Prefix: os_
Reference: MG C. 3.1.4

D. 3.30.1 Interface syntax
Exported data type:

CoordDataT = sequence of Real*
Exported constant:

None
Exported functions:

Appendix E Component description for VirUib

1 Structure component
Name Structure component
Role in the system Fundamental component
Service Provide the data structures that are used to represent the required

information by the experiment. These data structures act as a
bridge between outside information input by the specification and
inside information required by the algorithms. The structure
component communicates with outside specifications and
algorithms by its interfaces.

Composition Constitutive equation (con_equ) structure module
Displacement (disp) structure module
Load (load) structure module
Tensor structure module
Experiment (exp) definition module
Specimen (spe) geometry module

Interface
specification

The structure component interfaces are _ composed with its
component modules’ interfaces. Please refer to the corresponding
module interface specification found in the Appendix D: module
interface specification for theVirlab

2 Stress component
Name Stress component
Role in the system Functional component
Service Stress component is used for the calculation of the true stress and

engineering stress
Composition True stress tensor module

Engineering stress tensor module
Interface
specification

1. The composed modules’ interfaces are available for the use.
Please refer to the module interface specification found in the
appendix D
2. Based on the similarities between the engineering stress
module’s interfaces and true stress module’s interface, two
additional interfaces are summarized below.

• sc_initstress(outflag: TensorFlagT)
Output: output is based on the value of outflag shown in

the table E-2-1
Exception: exceptions are triggered from the calling

programs and same as the exceptions from the
calling programs

Outflag = TSST tsm inittruestress
Outflag = ESST es initengstress

Table E-3-1 output for sc initstress

254

• sc_knownstress(outflag:TensorFlagT, ss: TensorDataT;
disp: DisplacementT; sg: SpecimenGeometryT)
Output: output is based on the value of outflag shown in

the table E-2-2
Exception: exceptions are triggered from the calling

programs and same as the exceptions from the
calling programs

Outflag = TSST Tsm g knnwnstrens(ss,disp,sg)
Outflag = ESST es g knownstress^s’dispjsg)

Table E-2-2 output for sc knownstrcss
Comments a. TensorFlagT is from the Tensor data definition

module in the structure component
b. TensorDataT is from tensor data definition

module in the structure component
c. DisplacementT is from the displacement

structure module in the structure component
d. SpecimenGeometryT is from the specimen

geometry module in the structure component
e. Capital letters such as MDPG are from the

tensor data definition module in the structure
component.

3 dispcon component
Name disp con component
Role in the system Functional component
Service This component provides the algorithms to approximate the

constitutive equation in the displacement-controlled experiment.
Composition displacement constitutive (disp con) calculation module
Interface
specification

This component just includes one module and its interfaces are
also the composed module's interfaces. Please refer to the module
interface specification found in the appendix D

4 load^on component
Name load con component
Role in the system Functional component
Service This component provides the algorithms to approximate the

constitutive equation in the load-controlled experiment.
Composition load constitutive (load con) calculation module
Interface
specification

This component just includes one module and its interfaces are
also the composed module's interfaces. Please refer to the _ module
interface specification found in the appendix D

5 kinematics component
Name kinematics component

255

256

Role in the system Functional component ■
Service Based on the definitions given by [MG70], kinematics component

is used to calculate the kinematics quantities.
Composition material deformation gradient module

spatial deformation gradient module
material displacement gradient module
spatial displacement gradient module
Cauchy’s deformation tensor module
Green's deformation tensor module
Lagrangian finite strain tensor module
Eulerian finite strain tensor module
Lagrangian infinitesimal strain tensor module
Eulerian infinitesimal strain tensor module
True strain tensor module
Stretch tensor module
Stretch ratio tensor module

Interface
specification

The composed moduli
Please refer to the cor
found in the appendix
composed modules’ ir
interfaces are summar

a. kc
Tm

Output: output
the tat

Exception: exc
pro
cal

es’ interfaces are available for the use.
responding module interface specification
D. Based on the similarities among all the
iterfaces in the kinematics component, two
ized below.
knownquantity(comeflag, outflag:
isorFlagT; kq: TensorDataT)
is based on the value of outflag shown in

>le E-5-1
options are triggered from the calling
grams and same as the exceptions from the
ing programs

outflag=MDG mdg g knownquantity(kq, comeflag)
outflag=SDG sdg g knownquantity(kq, comeflag)
outflag=MDPG mdpg g knownquantity(kq, comeflag)
outflag=SDPG sdpg g knownquantity(kq, comeflag)
outflag=CDT cdt g knownquantity(kq, comeflag)
outflag=GDT gdt g knownquantity(kq, comeflag)
outflag=LFST lfst g knownquantity(kq, comeflag)
outflag=EFST efst g knownquantity(kq, comeflag)
outflag=LIST list g knownquantity(kq, comeflag)
outflag=EIST eist g knownquantity(kq, comeflag)
outflag=TST tst g knownquantity(kq, comeflag)

Table E-5-1: output for kc_knownquantity

b. kc_geometry(outflag: TensorFlagT, disp:
Displacements sg: SpecimenGeometryT)

Output: output is based on the value of outflag shown in
the table E-5-2

Exception: exceptions are triggered from the calling

257

programs

outflag=MDG mdg g geometry(sg,disp)
outflag=SDG sdg g geometry(sg,disp)
outflag=MDPG mdpg g geometry(sg,disp)
outflag=SDPG sdpg g geometry(sg,disp)
outflag=CDT cdt g geometry(sg,disp)
outflag=GDT gdt g geometry(sg,disp)
outflag=LFST lfst g geometry(sg,disp)
outflag=EFST efst g geometry(sg,disp)
outflag=LIST list g geometry(sg,disp)
outflag=EIST eist . g geometry(sg,disp)
outflag=TST tst g geometry(sg,disp)

Table E-5-2: output for kc geometry
Comments c. TensorFlagT is from the Tensor data definition

module in the structure component
d. TensorDataT is from tensor data definition

module in the structure component
e. DisplacementT is from the displacement

structure module in the structure component
f. SpecimenGeometryT is from the specimen

geometry module in the structure component
g. Capital letters such as MDPG are from the

tensor data definition module in the structure
component.

6 table component
Name Table component
Role in the system Application component
Service Table component is specially designed to describe the

experimental data in the form of the table so this component
provides a data structure to do this.

Composition Table structure module
Interface
specification

This component just includes one module and its interfaces are
the also the composed module’s interfaces. Please refer to the
module interface specification found in the appendix D

7 output component
Name show outputcomponent
Role in the system Application component
Service Show outputcomponent is specially designed for the output of the

result data. This component is used when the experiment is done
and the result data is ready for the use.

Composition Show outputmodule
Interface This component just includes one module and its interfaces are

specification the also the composed module's interfaces. Please refer to the
module interface specification found in the appendix D

258

Appendix F The procedure for adding a new constitutive

equation

In this appendix, the step-by-step instructions are presented for the designer to add a new

constitutive equation as a new component into the Virlab software. In the following steps

we mention COM, Visual C++ and Visual Basic. It is the responsibility of the designer to

learn how to program in Visual C++, Visual Basic and COM technologies.

1. Read the MIS carefully, especially Sections D. 3.26 and D. 3.27 (together with

Appendix D) that describe the MIS for the displacement conslilulive calculation

module and load conslilulive calculation module and understand the corresponding

module interface.

2. Follow the COM standard to write your programs about the approximation of the new

constitutive equation and create the Dll file. (Many programming languages support

the COM standard. We used ATL COM AppWizard in Visual C++ 6.0 to write the

program for the approximation of the Maxwell equation in the uniaxial displacement-

controlled experiment.) Record the component name that you declare in the Dll file.

We suggest that the best approach is to have the component name that you declare in

Dll file and the name of Dll file the same.

3. Register the Dll into the operating system. (In Visual C++, the Dll file performs

registration after successfully linking.)

The above steps are about creating the Dll library. Below we describe how to modify

visual basic source codes for the Virlab software.

4. Open userintcfface.vbp project in the Vssual Basic environment (suggest Visual Basic

version 6.0)

259

5. Modify the constitutive equation specification module

Find the frmSetup frame and view its source codes, locate ShnwCnkstitutiveEquatink

procedure and search the comments “Modify here if adding a new constitutive”.

There are two tips in this procedure, “add ■ a new item to the list constitutive

equation”, add the name of the Dll file to the list; “declare a new text for the material

property” declare a new Textbox for inputting each material property of the new

constitutive equation.

6. Modify the Experiment module

Find the frmNext frame and view its source codes, locate Doing^xperiment function

and search the comments “Modify here if adding a new constitutive equation”. There

are several tips in this procedure, such as: “declare a new component”, declare a new

component in Visual Basic by setting a name as a new component name (For

example, Set DispConstitutive = New ConEquDisp, the DispConstitutive name

represents a name given by the designer now and ConEquDisp is the name you have

declared for the component in the Dll file.)

7. . Add a condition template “If -—End If”

If the output of your program is for the strain, find the comments “strain information”

in DoingExperiment function, if the output of your program is for the stress, find the

comments “stress information”. After locating the strain and ■ stress information, add a

condition template, the _ condition is that the current item in the list of constitutive

equation (^Constitutive) is equal to the component name you have declared in your

Dll file.

8. Fill into the table

260

Once you locale the position of the strain and stress, you can fill the data into the

table between if and end-if. First convert your output numerical value to siring type,

then add the output into lhe table by calling the table interface.

When the described eight steps have been completed, click the button “Run” in the

Visual Basic environment and run ■ the Virlab. The new constitutive equation will _ be

available for future users of the Virlab system.

261 384 05

