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Abstract

This thesis presents a framework for a virtual laboratory for material testing,
called Virlab. A virtual laboratory is an open and flexible environment that
is used to simulate a set of experiments using a computer. It is beneficial and
valuable for researcher and educators to simulate real problems and to conquer
some challenges such as a weightless body. The virtual laboratory for material
testing contributes both to the field of mechanics of materials and the field of

software engineering.

In the field of material mechanics Virlab can be used for material testing
education and research. Students can rapidly investigate many experiments for
materials and the difference between kinematics quantities and stress measures.
Virlab also offers a convenient platform for researchefs to investigate and test new
constitutive equation and implement their new algorithms. Virlab also encourages

unambiguous definitions of mechanics terms and principles.

In the field of software engineering the contribution is to provide an example
of the application of software engineering approaches to an important scientific
computing problem. By showing the successful application of software engineer-
ing methodologies for a virtual laboratory, it is hoped that software engineering
ideas will spread to other scientific applications. In terms of software engineering
methodologies, this thesis presents a component-based design for the virtual lab-
oratory for material testing. In this thesis we conduct a commonality analysis for

material testing, decompose the system into modules with the information hiding
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principle, provide an easy way to identify components from the module decompo-
sition, and build the component-based system architecture. In this procedure we

apply the concept of design through documentation at each stage.
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Chapter 1

Introduction

Scientists and engineers face diverse and complex challenges when designing and
developing advanced experiments. For example, a tensile test is challenging in
part because of the wide range of materials that are tested, such as linear elastic
materials, hyperelastic materials, hypoelastic materials and viscoplastic materials
etc. Another challenge in material testing is how to describe different materials.
For some materials, such as linearly elastic materials, the description is a simple
linear state equation relating stress and strain, but for other materials, such as
elasto-viscoplastic materials, the description is complex with several nonlinear
equations, multiple parameters and a nontrivial relationship between the stress

and the deformation history.

A significant source of problems with the real experiment is ambiguous def-
initions of the requirements. In material testing scientists and engineers often
struggle to find ways to describe the materials and the material tests in an unam-
biguous way. One problem, for instance, is the definition of strain. Should it be
defined relative to the new or the old configuration, or to some other configura-

tion? The interpretation of the experimental results in terms of a material model



McMaster University Huan Chun Gao

requires a clear definition. The solution to this problem is to use mathematical
techniques and notations to unambiguously specify the requirements. This means
a formal approach, which can be supported by a virtual laboratory. A virtual lab-
oratory is a software environment that simulates real world experiments. Ideally,
a virtual laboratory will unambiguously present all the required definitions and
calculate values for the quantities of interest, such as stress and strain. The users
will be able to use this information to determine the best material model for their
situation. Moreover, a virtual laboratory has the advantage that it can force the
users to think about the inappropriateness of mixing incompatible quantities in

their material models.

Another source of problems in material testing is the technical difficulty of
setting-up an experimental environment that matches the assumptions used to
model the experiment. For example, the theoretical model of many experiments
ignores the effect of the material’s self-weight. In a real experiment it is impossible
to have a weightless material, but in the virtual laboratory it is easy to simulate
a weightless specimen and moreover, the set-up of the experiment is simple as it

only requires entering some data and clicking a few buttons.

Not only researchers and engineers are confronted with challenges. Educators
also have faced difficulties when teaching students the rules of mechanics. If the
teachers had access to a frictionless environment, this would simplify teaching
students such principles as Newton's laws of motion. It is impossible however, to
set up a perfect experimental environment where there is no friction. However, in

a virtual laboratory it is easy to model a friction free environment.
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Some difficulties from real experiments can be conquered by sacrificing consid-
erable time and expense, while others can never be overcome. These difficulties
together with the needs of scientific discovery motivate researchers to build virtual
laboratories. Ongoing work in the area of virtual laboratories is mostly focused
on research on different problems in a variety of fields. For instance, people who
work on education and training contribute to virtual laboratories for education.
One area of contribution is related to the remote education based on the World
Wide Web [KCZ+01][GAP+02][Bud01]{Sch99]. Other contributions from the lit-
erature are related to virtual laboratories for different disciplines. Some exam-
ples of virtual laboratories include, a virtual geotechnical laboratory for soil tests
and triaxial tests [PZF00], a virtual chemical lab for inorganic chemical reactions
[REG+00], a virtual lab for mechanics and materials science [KJR02] [WSS90]

and a virtual laboratory for biology [Mer91].

The concept of a virtual laboratory changes as the field of application changes.
In the area of education, the virtual laboratory can be imagined to verify the me-
chanics rules at work by performing a virtual physical experiment [Web_mec_02]
[Web_Jhu_02] [Web_phy.02]. Sometimes virtual laboratories for education have
additional features, such as a search engine to look for the related information
from a textbook [Web_mec_02]. Virtual laboratories also provide an environment
to analyze experimental data and output the result data [KJR0O2][WSS90]. In
other areas such as aerospace engineering, deep ocean engineering and nuclear
engineering, virtual laboratories are used as a simulator to study dangerous sit-
uations [AKB+]. Given the range of application of the term virtual laboratory,

the question remains what is a virtual laboratory? This question is addressed in
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this chapter.

Section 1.1 gives the definition of a virtual laboratory. Section 1.2 describes
the reasons that a virtual laboratory is needed. As the virtual lab of interest in
our current studies will focus oﬁ material testing, Section 1.3 provides an overview
of real material testing. Section 1.4 summarizes the difficulties from real material
testing and gives the motivations for the virtual laboratory. Section 1.5 discusses
the scope for the virtual laboratory system and this thesis. Finally, Section 1.6

provides an overview of the thesis.

1.1 What is a virtual laboratory?

Although some virtual laboratories are limited in the sense that they provide a
solution to certain specific problems in a given field, some commonalities exist
among virtual laboratories. The most obvious commonality is that they provide
a software environment. Therefore, in this thesis a virtual laboratory is defined
as an open and flexible software environment that is used to simulate a set of
experiments using a computer. In the virtual laboratory each virtual experiment
is added in a similar sense as adding new equipment and experimental methods

to a real laboratory.

A significant benefit of giving a definition of the term virtual laboratory is
that researchers, engineers and educators need a common definition if they are to

communicate effectively about the idea of a virtual laboratory.
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1.2 Why is a virtual laboratory needed?

Most currently existing virtual laboratories are focused on educational purposes
either for conducting detailed experiments, such as physics experiments, or for
implementing distance education on the World Wide Web. There are also a few
virtual laboratories that emphasize scientific research on a specific domain. How-
ever, sometimes a good educational virtual laboratory can also be used for re-
search. For example, a virtual laboratory [KCZ+01] for control experiments on a
coupled tank apparatus is being utilized in the teaching of undergraduate courses.
In this virtual laboratory students learn to identify a physical model for the cou-
pled tank system based on input-output data and design a PID controller and
different fuzzy logic controllers for the system. Postgraduates also use this virtual
laboratory to solve both classical optimal control system design problems and ad-
vanced robust control problems. This virtual laboratory also offers an excellent
and convenient platform for researchers to test and implement their new algo-
rithms. No matter the purpose of a virtual laboratory, the reasons that a virtual

laboratory is needed are as follows:

e Budget
Building a real laboratory with a sufficient number of adequate training
and/or research experiments may be very expensive. However in a virtual
lab, a set of specific experiments are inexpensively integrated in the software.

The cost of a virtual laboratory is much lower than for a real laboratory.

e Space

A real laboratory needs enough space to accommodate the equipment and
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people who will use the laboratory. The concept of a virtual laboratory

requires no real space, other than space for the computer equipment.

e Time
To researchers, it is time consuming to set up a scientific research laboratory.
However in a well-designed virtual laboratory, it is easy to simulate scientific
problems. To students, a virtual laboratory based on WWW environment
means that students have a flexible lab time to finish their experiments by
choosing to do experiments at home or at school. In particular, a virtual
laboratory is more convenient for part-time students holding full-time em-

ployment in industry.

e Hands-on experiences in what-if scenarios
In a virtual laboratory, students can do experiments under a variety of condi-
tions, including extreme condifions. This experience will benefit them when
they take part in designing for industry. Furthermore, researchers on the-
oretical analysis and numerical simulation can consider building novel and
highly experimental designs, without the risk of actually physically building
them. Furthermore, a virtual laboratory [KCZ+01] provides a convenient

platform for researchers to test and implement their new algorithms.

Danger

Some experiments such as an underwater experiment or a nuclear experiment
are dangerous. A minor error might result in loss of life. However in the
virtual laboratory detailed experiments can be done exhaustively. If a real

experiment is still necessary, the preliminary virtual experiment can greatly
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decrease the possibility of an accident.

¢ Political, cultural or governmental consideration
Sometimes because of political, cultural or governmental reasons, some real
experiments are not allowed to be conducted. As an example, the Sandia.
National Laboratories are required to do all of their nuclear experiments
with computer simulation, as the U.S. government has banned actual nu-
clear testing [Web_Sandia_03]. The only option for the lab to continue their

research is to use a numerical simulation.

e Technical difficulties
In real experiments, it is impossible to get a perfect environment that exactly
matches the model being used, but in the virtual laboratory it is easy to set
up a perfect environment. For instance, in the virtual laboratory it is easy
to build an environment without friction, but in a real experiment some
friction is always present. Weightless parts are also possible in a virtual

laboratory.

The above benefits provide the justification for the virtual approach when consid-
ering research on materials testing. Before discussing a virtual materials testing

laboratory, we need to review the test that are done in a real laboratory.

1.3 An overview of real material testing

This section is intended to generally describe material testing. The in-depth

details and terminology of material testing will be explained in Chapter 2. To
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give an overview of material testing, we have to mention a few necessary terms,

which will be written in italics.

In industry, important factors for the improvement in the performance and
reliability of products are the development of new materials, the novel use of
existing materials, better understanding of the structure-property relationships
and incorporation of both mechanics and material science in the design of struc-
tures (KJRO2]. It is obvious that correct understanding of materials properties
is necessary, regardless of whether new materials or existing materials are being
considered. A correct understanding of materials comes from exhaustive testing
of materials. As far as testing is concerned, there are many tests, such as engi-
neering tensile testing, hardness testing, ductility testing, shear testing and so on.
Different tests are used to determine different material properties. For example,
in an engineering tensile test the material properties that can be obtained are as
follows: modulus of elasticity, yield strength, ultimate tensile strength, percent

elongation at fracture and percent reduction in area at fracture [Smi93|.

Since material testing is a broad and deep topic, we have to restrict our fo-
cus. In material testing we are interested in kinematics quantities, stress and
constitutive equations. Kinematics quantities are used to describe the defor-
mation of the material in response to the external forces acting on the material
body. Stress is the internal resistance in the material to external forces or reac-
tions acting on the material [Pet69]. Constitutive equations are a mathematical
relationship among internal attributes of the material and describe the possible
deformation history dependent relationship between stress and kinematics quan-

tities. In material testing we want to precisely specify the constitutive equations,



obtain experimental data such as kinematics quantities and stress, plot the data,
and analyze the data to obtain the relationship between kinematics quantities
and stress. In the real laboratory the materials tests are conducted by profes-
sional material testing equipment.

Figure 1.1 shows a picture of a modern tensile testing machine [Smi93]. The force
(load) on the test specimen is recorded on the chart paper in the drawer on the
left. The strain, which describes the deformation in the dimension or shape of the
material [BJ81] that the test specimen undergoes, is also recorded on the chart.
The signal for the strain is obtained from the extensometer attached to the test

specimen.

Figure 1.1: A tensile testing machine from the Instron Corporation

Figure 1.2 illustrates schematically how the test specimen is tested in tension
[Smi93]. In this figure the external load or displacement on the moving crosshead

causes the test specimen to deform. The deformation information is helpful to



Figure 1.2: Schematic illustration of the tensile machine shown in Figure 1.1

research the material. There are two classes of experiments: load-controlled ex-
periments and displacement-controlled experiments. In the load-controlled exper-
iment, the test specimen is extended or compressed by an applied load and the
load is the independent variable. Compared with the load-controlled experiment
the test specimen in the displacement-controlled experiment is extended or com-

pressed by a displacement and the displacement is the independent variable.

1.4 Thesis motivation

After an overview of real material testing was introduced in Section 1.3, some

difficulties of real material testing become clear.

» Hard to overcome technical difficulties
The weight, of the test specimen and constraints on the boundary conditions

cannot be ignored. They are involved in the test and make the analysis of

10
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the test more complicated. Also precise control of the deformation velocity

or load can be challenging.

Limited experiments

A real test machine is shown in Figure 1.1. With a real machine, people
should follow the fixed instructions to do the experiment. It is impossible to
do exhaustive experiments and provide what-if scenarios because some func-
tions might not be implemented on the real machine. Limited experiments
are not always enough for a researcher to completely test and understand a

new material.

The considerations of space, money and time
To do a real material test on the corresponding test machine, we need money
for the machine, space to place the machine and we need considerable time

to set up the experimental environment.

The above technical difficulties, financial requirements and operational incon-

veniences motivate us to develop a virtual laboratory for material testing. In the

virtual laboratory, it is easy to set up perfect boundaries, implement a weightless

test body and control the deformation velocity, implement and test new constitu-

tive theories and algorithms. Our purpose is not to provide anything that cannot

be done by a general purpose simulation package. Our focus is that the system will

provide benefits for researchers and educators. Additionally during our research

on the virtual laboratory we found that there are few existing virtual laboratories

designed for material testing, except for a tensile test that was implemented in

[KJRO2]. This deficiency motivates us to develop a virtual laboratory for material

11
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testing, that is not for testing real material but for providing a software environ-
ment to simulate a set of experiments.

From the papers describing existing virtual laboratories we found that existing

virtual laboratories were seldom designed with a software engineering approach.
For instance, the systems are not developed using modular decomposition, compo-
nent composition, or the corresponding documentation system. This deficiency in
the research of material testing obviously indicates a gap between the mechanics
field and software engineering field. The developers and engineers in the field of
mechanics lack the knowledge of software engineering approaches and the devel-
opers in the field of software engineering have not applied their approaches to the
practical application of material testing. This gap also motivates us to present
an example on how to apply software engineering approaches to design a virtual

laboratory for material testing, which is named Virlab.

1.5 Thesis scope

Having identified the difficulties for real material tests, we propose a virtual lab-
oratory for material testing. However, it is unrealistic that a virtual laboratory
can be quickly developed for all material tests. So first we have to restrict the

scope for the experiments in the Virlab.

The experiments that can be done in the virtual laboratory will be limited to
the displacement-controlled experiments and load-controlled experiments. In each
of these types, the experiment can be a uniazial experiment, which is conducted

just from one axial direction, a biazial ezperiment, which is conducted from two

12
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axial directions, or a multiaxial experiment, which is conducted for all three axial
directions. In all experiments, we are after kinematics quantities, stresses and the
relationship between kinematics quantities and stress through using a precisely

specified constitutive equation.

Our focus is on providing a framework for virtual material testing so that
new kinds of experiments can be built or existing experiments can be extended
in the future. We present our solution for the Virlab by applying software engi-
neering approaches toward its development. In this thesis, we will demonstrate
how software engineering approaches can be applied to building a component-
based application for the Virlab system. Commonality analysis is one approach
to identifying commonalities and variabilites for the system. The commonality
analysis provides what we need for the design stage, so we do not go through the
stage of software requirement gathering and analysis. Based on commonalities and
variabilities summarized in the commonality analysis, we develop the system ar-
chitecture design and propose a component-based design. From the software side,
the thesis scope is from the commonality analysis stage, the design stage to the
implementation stage. Each stage is documented and attached as an appendix.
These appendices include a module guide, a module interface specification and a

component description.

1.6 Thesis organization

Chapter 2 presents the commonality analysis for the real material experiments.

It provides the terminology related to material experiments and also provides the

13
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terminology for constitutive equations and then summarizes the commonalities
and variabilities. Chapter 3 presents how software engineering approaches can be
applied to building a component-based application for the Virlab system. This
chapter also presents each type of document produced during the design phase.
Chapter 4 provides an overview and examples of the actual Virlab system. Chap-
ter 5 presents conclusions and contributions of this work and gives suggestions for
future work. The documents that were produced during the design phases can be

found in the appendices.

14



Chapter 2

Commonality analysis of material
experiments

In Chapter 1, we provided an overview of material testing and decided that there
are so many material tests that we needed to reduce the scope of the thesis. We
narrowed our interests to displacement-controlled experiments and load-controlled
experiments. In each experiment we are interested in applying the precise spec-
ification of the constitutive equation to the material, obtaining the kinematics

quantities and stress, and plotting and analyzing the experimental data.

To develop a virtual laboratory for material testing, a close examination of real
experiments is required. We make an examination by the commonality analysis of
the displacement-controlled and load-controlled experiments. Commonality anal-
ysis is one approach to identifying commonalities (assumptions that are true for
the current system and even future versions of this system), variabilites (assump-
tions about what can vary among different versions of the system) and common

terminology for the system [AW97].

This chapter starts by providing the terminologies we use in the descriptions

of the load-controlled and displacement-controlled experiments in Section 2.1. We

15
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then analyze the commonalities between these two experiments in Section 2.2. In
Section 2.3, we give a displacement-controlled experiment as a case study and
then summarize the variabilities between the load-controlled experiments and the
displacement-controlled experiments. Finally, we provide conclusions after the

commonality analysis in Section 2.4.

2.1 Terminology

This section provides a set of technical terms used in the discussion about and
description of the virtual laboratory for material testing.

Point/Particle

The term “point” is used exclusively to designate a location in a fixed space;
that is, a point is a place in space. The term “particle” denotes a small volu-
metric element of a continuum; that is, a particle is a small part of a material
continuum|[Maz70].

Deformation

The term “deformation” refers to a change in the shape of the continuum between
an initial (undeformed) configuration and a subsequent (deformed) configuration[Maz70].
Continuum configuration

The initial configuration, which is also called the reference configuration, is re-
ferred to as a Lagrangian coordinate system, written as OX;X2X3 . The final
configuration, which is also called the deformed configuration, is referred to using
an Eulerian coordinate system, written as oz;zozs [Maz70]. We use a general

example to explain the difference between the Lagrangian coordinate system and

16



Figure 2.1: Coordinate system [Maz70]

the Eulerian coordinate system. In Figure 2.1 the Lagrangian coordinate system
of a material continuum at time t = 0 is shown together with the Eulerian coor-
dinate system of the same continuum at a later time t = t For a fixed particle
of the continuum, the Lagrangian coordinate is used to record the location at
the undeformed configuration and the Eulerian coordinate is used to record the
location at the deformed configuration. The purpose of two configurations is to
describe the position of a particle in the original and deformed configuration and
also to determine the relative change in the position of particles over time, so as
to characterize the deformation of the material.

Displacement versus load controlled experiment

Displacement-controlled experiments and load-controlled experiments are catego-

rized as the experiment class. The displacement-controlled experiment refers to
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when the test specimen is extended or compressed by a displacement and the
displacement works as the independent variable. Figure 2.2 schematically shows
a displacement-controlled experiment. In the load-controlled experiment, the test
specimen is extended or compressed by a load acting on the testing specimen and
in this case the load works as the independent variable. Figure 2.3 schematically
shows a load-controlled experiment. In Figures 2.2 and 2.3, a rectangle means
the test specimen, a dotted rectangle represents the test specimen after the de-
formation caused by an applied load or displacement on the test specimen, z;,
z9, X1 and X, represent the axial directions, Ly and Wy represent the original
length and width, respectively; L and W stand for the updated length and width
respectively, u is the displacement at the end of the body in the axial direction,
% represents the velocity function of time and f represents the load function of
time. The circle represents a roller and the triangle represents a pinned support.
A pinned support means that the point on the test specimen is fixed from transla-
tion in either direction, although it could rotate if the other supports allowed this
motion. A roller means that the point on the test specimen can translate only
in one direction. For example, a roller in z direction means the point can only
translate in the x direction.

Uniaxial, biazial and multiarial experiments

In each experiment class, from the view of the directions in which the test specimen
is extended or compressed, experiments are further classified as the experiment
type: uniaxial, biaxial or multiaxial experiments. In a uniaxial experiment, as
shown in Figure 2.2 and Figure 2.3 the test specimen is extended or compressed

in one axial direction. In the biaxial experiment shown in Figure 2.4, the test
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Figure 2.2: A displacement-controlled experiment
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Figure 2.3: A load-controlled experiment
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Figure 2.4: A biaxial experiment

specimen is extended or compressed in two axial directions and in the multiaxial
experiment, shown in Figure 2.5 the test specimen is extended or compressed in
all three axial directions.

Kinematics quantities

Kinematics quantities deal with the deformation of the test specimen in response
to the external factors such as the displacement or force acting on the test speci-
men. The following are classified as kinematics quantities: material deformation
gradient, spatial deformation gradient, material displacement gradient, spatial
displacement gradient, Cauchy’s deformation tensor, Green’s deformation ten-
sor, Lagrangian infinitesimal strain tensor, Eulerian infinitesimal strain tensor,
Lagrangian finite strain tensor, Eulerian finite strain tensor, true strain tensor,
stretch tensor and stretch ratio tensor [Maz70][AJ96]. Appendix A lists how to

calculate these kinematics quantities.
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Figure 2.5: A multiaxial experiment
Strain

The strain is closely related with the deformation, as the strain provides a quan-
titative measure of the relative displacement between neighboring particles of the
material. The strain is caused by the action of the displacement or force on the
test specimen. There are many kinds of strains, such as shearing strain, normal
strain, engineering strain, true strain, etc. We use Figure 2.2 to illustrate how to
calculate the engineering strain and true strain. Appendix A summarizes how to
calculate other strains.

Engineering strain

True strain [Smi93]

AL LdL L
e = Bhe = 5(57) = /L = =in(1)

0

From the above definitions, the true strain is calculated by adding successive value
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of Ae, which are obtained by dividing each increment AL of the distance between
the gage marks by the corresponding value of L. Instead, the engineering strain is
calculated by using the total elongation u and the original value Ly [BJ81]. When
the deformation is small, the difference between the true strain and the engineering
strain is negligible, but when the deformation of the specimen is large, the true
strain provides more information about the deformation history.

Stress

“Stress is the internal resistance in a body to the external forces or reactions
acting on the body” [Pet69]. There are many kinds of stresses, such as shearing
stress and bearing stress etc. We will focus on the engineering stress and the true
stress in the virtual laboratory. Figure 2.6 shows the elongation of a rod subjected
to a uniaxial tensile force F. Part (a) shows the rod with no force on it; Part
(b) shows the rod subjected to a uniaxial tensile force F° which elongates the rod
from Lg to L. The engineering stress o on the bar is equal to the average uniaxial
tensile force F on the bar divided by the original cross-sectional area A, of the
bar.

Engineering stress is calculated via

The true stress ¢ on the bar is equal to the average uniaxial tensile force F' on
the bar divided by the new cross-sectional area A after the elongation of the bar.

True stress o; [Smi93] is calculated by
o — F
T A
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Figure 2.6: Elongation of a rod subjected to a uniaxial tensile force

The difference between the engineering stress a = . and the true stress o* = ~
is that the instantaneous cross-sectional area A of the deformed specimen is used
in the calculation of the true stress, so the true stress is more related with the
deformation history. As we discussed above for the true strain and the engineering
strain, the true stress is also related with the deformation history. Therefore, the
true stress and the true strain together reflect more accurately the behaviour of
the material. [BJ81]

Constitutive equation

A constitutive equation serves the role of an equation to solve the required kine-
matics quantities. Sometimes the conservation equation of physics are not enough
to solve for the required unknowns; therefore, we need to add another equation
that provides information relating the unknowns through characteristic material

properties. Unlike a generally applicable equation, such as the conservation of

23



McMaster University Huan Chun Gao

momentum equation, a constitutive equation is tied to the specific material that
it is developed for.

A constitutive equation is a mathematical equation on internal attributes of the
material and describes the macroscopic behaviours resulting from the internal
constitution of the material and specially characterizes the individual material
[Mal69]. We know that the range of materials is wide, for instance, elastic mate-
rial, viscous material, viscoelastic material, plastic material, etc. When the entire
range of possible temperatures and deformations is considered, materials behave
in such complex ways that it is not feasible to write down one equation or set of
equations to describe accurately a real material over its entire range of behavior.
Instead, the constitutive equation for a material approximates physical observa-
tions of a real material's response over a suitably restricted range [Mal69)].

Table 2.1 generally introduces the elastic, viscous, viscoelastic and plastic mate-
rials as possible constitutive models. The difference between elastic and viscous
or plastic materials is that elastic material returns to an undeformed state upon
removal of an applied force. Viscous or plastic materials, however, have no ten-
dency for deformation recovery. For a viscous material the deformation occurs
over time, even under a constant load. In the model of a plastic material the
permanent deformation does not depend on time, but on the magnitude of the
loading. For a plastic material it is necessary to track the loading history to de-
termine how the material will respond to a new loading.

The examples of constitutive models are be no means exhaustive. In the current
overview we have left out orthotropic materials, where the material response is

different depending on the direction of loading. We have also left out materials
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that have a deformation history dependent damage parameter that is used to cap-
ture how the material fatigues with repeated loading. A more detailed treatment
of constitutive equation can be found elsewhere [Maz70].

Given the variety of models, it is hard to describe all materials in one constitu-
tive equation. We could describe all materials using the principle of determinism
for stress: “The stress in a body is determined by the history of the motion of
that body [Mal69].” Unfortunately, this statemént is too abstract to be of value
for concrete implementation. We need then to adopt different models for differ-
ent materials and the algorithms for applying the constitutive equations will be
significantly different. Moreover, the algorithm for using the constitutive equa-
tion will change, even for the same material model, depending on whether we are

conducting a displacement or a load controlled experiment.

2.2 Commonalities

“Identifying common aspects of the family is a central part of the analysis, ac-
cordingly, a commonality analysis contains a list of assumptions that are true for
all family members. Such assumptions are called commonalities” [AW97]. Since
a multiaxial experiment is the most complex experiment in our system, common
assumptions are based on the multiaxial experiment. These assumptions are also

used in the uniaxial experiment and the biaxial experiment.

Figure 2.7 schematically shows a multiaxial experiment. In this figure the

rectangular box represents the test specimen used in the experiment. The dashed
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Material name

Material description

Elastic material

If the strains caused in a material by the application
of a given load disappear when the load is removed,
this material is called an elastic material. The ideal
linear elastic material is assumed to obey Hooke’s law
in which a uniaxial stress situation takes the form
o0 = Ee expressing a linear relation between the axial
stress and strain, where £ is the modulus of elasticity
[Maz70].

Viscous material

A viscous material is assumed for many applications
in fluid analysis. The constitutive equation for a
fluid relates the rate of deformations D to the ap-
plied stress. It is generally assumed that the viscous
stress is a funciton of the rate of deformation D, that
is, 7 = f(D). for a so-called Newtonian fluid, this re-
lation is linear, 7 = nD, where T is the stress, 7 is the
viscosity and D is the rate of deformation [Maz70].

Viscoelastic material

A viscoelastic material is characterized by possess-
ing both viscous and elastic behavior. The Maxwell
equation o + Ao = 2né is one kind of constitutive
equations for a viscoelastic material, where A is called
the relaxation time

Plastic material

If the strains caused in a material by the applica-
tion of a given load do not return to zero after the
load has been removed, this material is called plastic
material. Four examples of idealized plastic behav-
iors include: rigid-perfectly plastic, in which elastic
response and work-hardening are missing completely,
elastic-perfect plastic, in which elastic response prior
to yield is included but work-hardening is not, rigid-
linear-work-hardening plastic, in which elastic re-
sponse is omitted and the work-hardening is assumed
to be linear, and elastic-linear-work-hardening plas-
tic, in which elastic response prior to yield is in-
cluded and the work-hardening is assumed to be lin-
ear [Mal69)].

Table 2.1: A comparison of different material models
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Figure 2.7: A multiaxial experiment for the commonality analysis

rectangular box represents the test specimen after the deformation. oxizsx3 rep-
resents the Eulerian coordinate system. OX;X,X3 stands for the Lagrangian
coordinate system. y,us,u3 refer to the displacements at the end of the body in
the direction of the coordinate axes. Lg,Hy, Wy represent the initial length, height
and width of the test specimen and L,H,W represent the new length, height and
width of the test specimen after the deformation, respectively. In this experi-
ment the test specimen is extended or compressed by the external factors such
as the displacement or force from three directions. Based on this experiment,

commonalities are organized into the following list.

e The test specimen, used in the experiments, is assumed to be a rectangular
box. Length, width and height of the rectangular box is changeable, but
the shape of the rectangular box is fixed, that is, after the deformation the

shape of the test specimen is still a rectangular box.

e Since in the experiment we are interested in kinematics quantities, stresses

and the constitutive equation, we assume that material properties of the test
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specimen, such as Young’s modulus [BJ81] are known. That is, material
properties can be specified; for instance, the properties can be specified

through the user interfaces in the virtual laboratory.

e Lagrangian coordinate system (OX;X,X3) and the Eulerian coordinate sys-
tem {ox1z2x3) are superimposed as shown in the Figure 2.7. That is, the
origins of these two coordinate systems are the same and the coordinate axes

are coincident.

e In the Lagrangian coordinate system and Eulerian coordinate system, there

are some assumptions on relationships among the variables as follows:

— L=Ly+4, H=Hy+ty, W =Wy + U

-z = X1 +u,Ty = Xo + ug,73 = X3+ u3
The variables,u;,uq,u3, represents displacements along the coordinate axes
in the period of the deformation and they are functions of either the Eulerian
or Lagrangian coordinates. X,X5,X3 represents the location of a particle of

the test specimen in the Lagrangian coordinate system. x;,z,,z3 represents

the location of a particle in the Eulerian coordinate system.

e u;,uy,u3 are assumed as a function of X;,X5,X5.

— The displacements u,us,u3 are zero at X; = 0,X, = 0 and X35 = 0,

respectively

— The displacements at the end points are u; = U;,us = Ug,u3 = Ug at

X, = Lo,Xy = Hy and X3 = W, respectively
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— The displacements are assumed to vary linearly through the test spec-
imen u; = ﬂl%j,’llq = ’Ez%ﬁ-,u;} = 63%%
~ f= (f1, f2, f3) is a vector representing the forces applied to the sides

of the test specimen

— i = (1, Ug, U3) is a vector representing the displacement at the end of

the specimen

e In the case of the load-controlled experiment the load is an independent
variable and in the other case of the displacement-controlled experiment
the displacement takes the role of the independent variable. Regardless
of whether it is the load or the displacement, the independent variable is
assumed to be a function of time (¢). For example, the displacement function
i(t) for a displacement-controlled experiment can be a function of time or
it can be supplied as a velocity function of time @(t) or as an acceleration
function of time @(t). The load function is supplied as a force function

of time f(t) or the first time derivative of force f(t) or the second time

-

derivative of force f(t).
¢ In the virtual laboratory experiments, shear is not considered.

o In the virtual laboratory experiments, only the displacement or the load is
an independent variable. Experiments are not allowed to simultaneously set

both of them for a given direction.
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Figure 2.8: A uniaxial displacement-controlled experiment

2.3 A case study: a uniaxial displacement-controlled
experiment for a viscoelastic material

We adopt a uniaxial displacement-controlled experiment as a case study to illus-
trate what we want to obtain from a real experiment. Figure 2.8 schematically
shows a uniaxial displacement-controlled experiment. In this experiment the test
specimen is assumed incompressible. That is, LHW = LoH,W, and the test
specimen is extended by the displacement function which is given by @ = ¢ Lget,
where £ is a constant, the initial length (Lg) and width (W;) of the test specimen
are known. The function for @ was selected so that a constant strain rate will be
obtained. For this example the Maxwell constitutive equation for a viscoelastic

material is assumed.
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t<0 0<t<MAXTIME t>MAXTIME
inrange(t,Lo) | —inrange(t,Lo)
T 0 £Loe" 0 0

Table 2.2: The specification of the displacement function in the uniaxial experi-
ment

t<0 t>0
ol | 0 |0+ Id=2n)

Table 2.3: The specification of Maxwell’s equation

To clearly specify the requirement of this uniaxial displacement-controlled ex-
periment, we use two tables to illustrate the specifications of the displacement
function and the Maxwell constitutive equation. Table 2.2 shows the specifi-
cation of . In this table inrange is defined as inrange(t,Lo)=(—Lo < u(t) <
MAX_STRETCH_RATIOxLy) where MAX_STRETCH_RATIO is a constant
representing the maximam stretch. In the definition of inrange, u(t) can be cal-
culated by

u(t) = /0 tu(f)df (2.3.1)

From the Table 2.2 the domain of the displacement function is specified clearly.
The specification of the Maxwell constitutive equation is shown in the Table 2.3.
In this equation, the stress and strain refers to the true stress and true strain.

True strain can be calculated by
e(t) = In(——) ' (2.3.2)

Based on assumptions discussed in the last section, an additional equation can be
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Geometry | Material Parameters | Time

Ly = 1(m) A = 0.01(s) to = 0(s)

Wy = 0.1(m) | n = 2000(Pa.s) t = 50(s)
Hy=0.1(s) | £=0.8(m/s) At = 0.01(s)

Table 2.4: Assumed parameters for the Maxwell’s equation

setup as follows:

L(t) = Lo + u(?) (2.3.3)

Using the assumed incompressibility of the material we obtain the following equa-
tion:

AW)L(t) = AoL (2.3.4)

Based on the constitutive equation Table 2.3 and equations 2.3.1, 2.3.2, 2.3.3
and 2.3.4 and the parameters for the Maxwell equation shown in Table 2.4, u, L,
W, ¢ and o can be calculated. Appendix B provides the detailed steps. Once u is
known, based on the relationships between u and the kinematics quantities shown
in the table in Appendix A, kinematics quantities can be obtained. However, if we
mistakenly use the engineering strain and engineering stress to solve the Maxwell
constitutive equation, the results are totally different and wrong. Figure 2.9 shows
the difference between the two approaches. Two errors occurred in the incorrect
process the engineering definitions were mistakenly used for o and € and then the
mistake was compounded by converting the engineering values to true values. In
Figure 2.9 the dotted line represents the relationship between the true strain and
true stress that are used to solve the Maxwell constitutive equation. The solid

line represents the relationship between the true strain and true stress that were
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Figure 2.9: Comparison of data for the correct and incorrect experiment

found using the incorrect approach. Figure 2.9 illustrates that the correct speci-
fication of the experiment is important; therefore, it is worthwhile to invest in a
virtual environment to help researchers and students understand the importance
of specification and of using the correct stress and strain measures. The virtual

laboratory should prevent user from making mistakes of the sort illustrated here.

From the above example, we can draw the following conclusions:

e The displacement function can be determined from a first derivative function

of time (t), that can also be understood as a velocity function of time (1),

a(t).
e During the approximation of the constitutive equation, the Maxwell consti-

tutive equation in this case, a specialized algorithm must be adopted.

o The initial geometric information of the test specimen, such as the original

length (L) and width (W;), can be assumed to be given.
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e The material properties, such as n and A, are given.

In the case study a displacement-controlled experiment is shown. There are two
obvious differences between the displacement-controlled experiment and the load-
controlled experiment. One is the independent variable. The other is how to solve
the constitutive equation. In the displacement-controlled experiment, since the
displacement is given, the kinematics quantities history can be calculated directly
from the displacement. Since the constitutive equation is an equation that de-
scribe the relationship between the stress and the kinematics quantities, the stress
can be approximated after the kinematics quantities history is obtained. However,
in the load-controlled experiment, the load is known so it is the stress, not the
kinematics quantities, that are approximated. Moreover, only the engineering
stress can be immediately determined, as the true stress requires knowledge of
the deformed configuration, but the displacement and the kinematics quantities
are still unknown. The constitutive equation in one direction is not enough to
solve for all the unknowns, other equations are required to setup.

The complication of the load-controlled experiment can be illustrated by an exar-
ple that assumes that Hooke’s law 0, = E¢, is given. In the uniaxial displacement-
controlled experiment, since kinematics quantities can be calculated from the
known displacement, the strain is easily calculated. Based on o, = E¢,, the stress
can also be calculated in a straightforward manner. However, in the uniaxial load-
controlled experiment, only the stress (engineering stress) can be calculated from
the known load. If the constitutive equation o = Ee is for true values, then the
strain can not be calculated directly. To calculate the strain and other kinematics

guantities, other equations are required. In this case we could use Poisson’s ratio
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v to characterize how the material deforms in the other coordinate direction so
that ¢, = —v% and ¢, = —v%. Using this information, we can solve for the true
stress and for the kinematics quantities.

Although the Hooke’s law is a simple constitutive equation for the small strain
linearly elastic material, the procedure to solve the constitutive equation in the
displacement-controlled experiment and the load-controlled experiment is differ-
ent. Therefore, procedures to solve the complex constitutive equations in the
load-controlled experiment and the displacement-controlled experiment are signif-
icantly different. This fact will need to be accounted for in the design presented
in Chapter 3.

Although there are difference in how the constitutive model is introduced, there
are many similarities between the displacement-controlled experiment and the
load-controlled experiment. For instance, kinematics quantities, stresses and the

analysis of the result data are handled the same for both classes of experiments.

Therefore, we extend our thoughts to all the experiments as follow:

e Regardless of the displacement or the load in the experiment, the similarity
is that they are from some kind of functions of time (¢), e.g. a velocity
function of time (t), an acceleration function of time ii(t), a force function
of time f| (t), the first derivative of force @(t) or the second time derivative
of force w(t). It is beyond the scope of this thesis to determine an abstract
form to represent all possible mathematical functions. So we will stay with
three popular types of functions: a quadratic function, a sin/cosine function

and an exponential function.

e It would be best to find an abstraction that would allow us to describe
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all constitutive equations. However, we decided not to do this because an
abstraction for all constitutive equation is challenging. Moreover, people
should have some solid background on materials test to undertake this task.
Therefore, the task for the approximation of the constitutive equation will

be delegated to professionals, as will be shown in Section 3.6.2.

Based on the above discussion, we predict the possible changes over the lifetime
of the program from the view of variabilities. They are organized into a list where

each item identifies a separate concern:

e The shape of the test specimen before and after the deformation has been
assumed as a rectangular box, but the way to specify the geometric infor-
mation of the test specimen such as the original length, width and height

are changeable.

o The material properties are assumed to be given, but the way to specify the
material properties are changeable. For example, material properties are
given in the way of a file or input directly from the external devices such as

mouse or keyboard.

o Since procedures to approximate the constitutive equation in the displacement-
controlled experiment and the load-controlled experiment are différent, the
designer shown in Chapter 3 will use one module for the approximation
of the constitutive equation in the displacement-controlled experiment, and
another is for the approximation of the constitutive equation for the load-
controlled experiment. In each module algorithms used to approximate the

constitutive equation are changeable.
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e Algorithms to calculate or approximate the kinematics quantities and stress

are changeable.

e The ways to output the result data are changeable. For example, the result

data could be output as curves or as tables.

2.4 Conclusions

To develop a virtual laboratory for material testing, which will be named as
Virlab, we have analyzed the real material experiment using a commonality anal-
ysis approach. In addition, we have summarized the common terminologies for
communicating and identifying the commonalities, or unlikely changes, shown in
the Table 2.6 and the variabilities, or anticipated changes, shown in the Table 2.7.
After the commonality analysis, the next step is typically a requirements analysis,
followed by the creation of a requirements document. However, since Virlab is a
comparatively small system, a requirement document was not explicitly created.
Rather than a full requirements document, we will provide a brief overview of how
the system can be imagined. To describe the system, we will used Table 2.5, which
is assumed to represent the output of experimental result data. From the output
view of the data, the u column will be filled in the displacement-controlled exper-
iment and the f column will be filled in the load-controlled experiment. After the
experiment, the other columns will be filled. For example, after the experiment
the kinematics quantities represented with ¢; will be calculated and filled into the

table. To fill in the table, we need to specify the following information.

e We need to specify the required experiment information corresponding to
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Table 2.5: Visualizing the Virlab system

label C_11 in the Table 2.7, e.g., the specification of experiment type.

e We need to design data structures to represent those required information
corresponding to labels C_1, C2, C6, C_7, C8, C9, C_10, C_12 and C_13
in the Table 2.7.

e We need to design corresponding algorithms to calculate displacement, kine-
matics quantities and stress, and to analyze the experimental data corre-

sponding to labels C_3, C4, C_5 in the Table 2.7.

e We need to consider the output of data corresponding to the label C_13 in
the Table 2.7.

Although a requirement document was not explicitly created, we did consider
the requirements before designing Virlab. We considered the requirements from
two views: functional requirements and non functional requirements. For example,
for functional requirements, we knew that Virlab will provide some functions,
e.g., calculating kinematics quantities, calculating stresses. For non-functional
requirements, we consider that Virlab should be easily maintained. We keep

system requirements in mind during the whole procedure instead of writing them
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down as an independent documentation. With the determined commonalities and
variabilities and our understanding on requirements, we can now go to the next

stage - design of the Virlab.

Order | Unlikely changes (Assumptions) Label
1 The shape of the test specimen before and | SHAPE

after the deformation is a rectangular box
2 The displacement or load function is | FUNCTION

chosen from three popular functions: a

quadratic function, a sin/cosine function
or an exponential function
3 The Langrangian coordinate system and | SUPERIMPOSED

Eulerian coordinate system are superim-

posed.
4 In the experiments the shear is not con- | SHEAR
sidered.
5 1. The signs for Lagrangian coordinate | MATH_.RELATION

system OX;X»X3; and Eulerian coordi-
nate system oz;Z,x3 are unchangeable.

2. 11 = X1+up,x3 = Xo+ug,x3 = Xz+us3
3. L=Lo+1u;,H=Hy+u,W=Wy+13
4. Uy, Uy, Us are assumed as a function of
X1,X5,X3. The displacements u;, ug, ug
are zero at X; = 0,X3 = 0 and X3 = 0,
respectively.

5. The displacements u; = Uj,u = U
and ug = 1z at Xy = Ly, X2 = Hy and
X; =Wy

Continued on next page
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Continued from previous page

Order | Unlikely changes (Assumptions) Label
6. The displacements are assumed to vary
linearly u; = ﬁl%ol,ua = 1121—)53,’11,3 = ﬂg%,g
6 The development environment or operat- | DRIVER
ing system supports mouse and keyboard
function. That is, drivers for the mouse
and/or keyboard exist.
7 The development environment or oper- | DISPLAY
ating system provides the screen display
functions such as buttons, combo lists and
SO on.
Table 2.6: The list of unlikely changes
Order | Anticipated changes Label
1 The geometric information of the test | C_1
specimen is changeable.
2 The ways to specify the material proper- | C.2
ties are changeable.
3 Algorithms to approximate the constitu- | C.3
tive equation are changeable
Algorithms to approximate the consti- | C_.3_-DISP
tutive equation in the displacement-
controlled experiment are changeable

Continued on next page
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Continued from previous page

Order | Anticipated changes Label
Algorithms to approximate the constitu- | C_3_.LOAD
tive equation in the load-controlled exper-
iment are changeable

4 Algorithms to calculate the kinematics | C4
quantities are changeable:

Procedure to calculate the material defor- | C_.4 MDG
mation gradient

Procedure to calculate the spatial defor- | C4.SDG
mation gradient

Procedure to calculate the material dis- | C.4_MDPG
placement gradient

Procedure to calculate the spatial dis- | C.4.SDPG
placement gradient

Procedure to calculate the Cauchy defor- } C_.4.CDG
mation gradient

Procedure to calculate the Green deforma- | C.4.GDG
tion gradient

Procedure to calculate the stretch tensor | C4.ST
Procedure to calculate the stretch ratio | C4_SRT
tensor

Procedure to calculate the Eulerian in- | C_4 EIST
finitesimal strain tensor

Procedure to calculate the Lagrangian in- | C_4_LIST
finitesimal strain tensor

Procedure to calculate the Lagrangian fi- | C_4_ LFST

nite strain tensor

Continued on next page
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Continued from previous page

Order | Anticipated changes Label
Procedure to calculate the Eulerian finite | C.4_ EFST
strain tensor
Procedure to calculate the true strain ten- | C_ 4. TST
sor

5 Algorithms to approximate the stress Ch
Procedure to calculate the engineering | C.5_ESST
stress tensor
Procedure to calculate the true stress ten- | C.5.TSST
sor

6 The way to present the constitutive equa- | C_6
tion for the purpose of display

7 The way to define the experiment C.7

8 Although only one of three popular func- | C_8
tions can be chosen as the displacement
or load function, the coefficients of any of
these functions are changeable

9 The way to describe the displacement C9

10 The way to describe the load C.10

11 The ways to specify the required informa- | C_11
tion for the experiment are changeable
The way to specify the experiment defini- | C_.11_DEF
tion
The way to specify the displacement C.11.DISP
The way to specify the load C.11.LOAD
The way to specify the function’s informa- | C_.11_ FUNC

tion

Continued on next page

42



McMaster University Huan Chun Gao

Continued from previous page

Order | Anticipated changes Label

The way to specify the geometric informa- | C_.11_GEO
tion of the test specimen
The way to specify the constitutive equa- | C_11_.CON_EQU

tion
12 The way to store the result data C.12
13 The way to output the result data C-13
14 The sequence of executing the program C.14

Table 2.7: The list of anticipated changes

43



Chapter 3

Component-based design

In this chapter, we give the component-based design of the Virlab software system.
The meaning of the term component is confusing without a clear definition, so
Section 3.1 gives the definition of component that we use in the Virlab design.
Section 3.2 discusses the reasons that the component-based idea comes up in
the Virlab design. Since modularity is a prerequisite for components, Section 3.3
gives an overview of the modular design for the Virlab system and explains how to
divide the system into modules. This section also gives the module hierarchy and
use relation for the Virlab. Section 3.4 describes how to identify the components
on the basis of modularity. Section 3.5 discusses the component design for the
Virlab system based on the modular design for the system. Finally, Section 3.6
gives the documentation for the component description, the module guide and the

module interface specification for the Virlab software.

3.1 What is a component?

Originally the word ‘component’ was used in the engineering field and referred to

a constituent element, forming or functioning as part of a whole. Later this word
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was borrowed by the software engineering field, but its meaning is often unclear be-
cause a concrete definition is not always supplied. However, a variety of definitions
are available in the literature. Booch from the view of the source-level states: “A
reusable software component is a logically cohesive, loosely coupled module that
denotes a single abstract [Boo87]”. Jacobson states: “By components we mean
already implemented units that we use to enhance the programming language con-
structs. These are used during programming and correspond to components in the
building industry” [Jac93]. Jacobson’s component concept is general and macros
or templates are thought of components. Sametinger states: “Reusable software
component are self-contained, clearly identificable pieces that describes and/or
perform specific functions, have clear interfaces, appropriate documentation and
a defined reuse status” [Sam97]. It is unfair and incorrect to judge whether their
definitions are right and precise or not without knowing the context-sensitive en-
vironment where the definitions are used. The important decision in the current
context is to adopt a definition for components and to use this definition consis-

tently.

In this thesis a component is defined as a unit of composition that can be
linked dynamically into the system. Along with explicitly specified interfaces, its
composition includes other components and/or a set of modules that carry out
a unique set of functional behavior. The definition of the component emphasizes
its dynamical linking characteristic. The module is defined as a work assignment
and its definition does not highlight dynamical linking characteristic. Since the

component is a unit of composition, the relationship between the component and
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the module is that a component might include single or multiple modules. Fur-

thermore, components can be independently developed. This definition has the

following characteristics:

e It embodies some part of the functionality of the system.

e Since a component can be independently developed and also has an explicit
specified interfaces and binary executable form, it is a unit of distribution
and configuration [KN96]. A unit of distribution refers to the fact that a
component can be delivered independently and a unit of configuration means

that a component can be used to configure the application.

e Because a component’s composition can finish a subset of the functionality

and it may include other components, it can be a subsystem [KN96].

It is self-contained, which means the component itself communicates with
outside components or applications by its interfaces and outside components
and applications have no knowledge about its implementations; that is, the

component’s implementation is independent of other components.

Explicit specified interface means that it needs to come with clear specifica-
tions of what it requires and what it provides. A component encapsulates its
implementation and interacts with other components through well-defined

interfaces [KN96).

The benefit of giving a component definition is that it is necessary to under-

stand the meaning of the term component when a component is being used or

described. Now that the component definition is clear, we can move to why the

component-based idea is used in the Virlab software design.
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3.2 Why use component-based system design?

Building a large software system is always difficult, so many researchers and prac-
titioners devote themselves to research on how to reduce software design complex-
ity and improve the correctness of systems. A component-based design is often
used during the software development, especially for large systems, because the

component-based design offers several advantages:

1. Possible reusability
During the development of the system, an outside component can be reused
in different applications or other components. If an off-the-shelf component
from a commercial organization, or existing projects, satisfies the part of the
functionality of specified systems, it is better to adopt the known component
into the system rather than design, code, test, debug and document a new
component. Even in the same project, a good component can be reused in
the different versions of the project. The obvious advantage of reuse is to

reduce the development time and cut the costs of the project.

2. Increased reliability [Cle95]
An off-the-shelf component will be used in many other systems or different
versions; therefore, it will be tested many times and many bugs will be found
and sifted out over time. Reusing that component increases the reliability

of the system.

3. Increased flexibility [Cle95]
Designing a system to accommodate the existing components means that

the system has been built to ignore the details of the implementation of
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those components. In such system any component that satisfies the system
requirement with the same interface can easily replace the existing compo-

nent.

4. Easy maintenance
If a system is built using components and each component carries out a
unique subset of the system’s functional behavior, independently of the other
components, then when some modifications are made in the system, they
will be localized. It is much easier to modify a few components than it is to

change the entire system.

So far the advantages of component-based design have been discussed. It is
natural to ask why component based design is suitable for the Virlab software
design? The reasons will be explained based on the design decisions made for the

Virlab software.

1. Rapid development
One design decision is that the system should be easily extended and con-
tracted. The component-based design supports rapid development. In a
component-based design, a new version of the system may reuse existing
components or remove existing components without requiring modification
of the other components. For example, assuming one version of Virlab
exists that has both the load-controlled experiments and the displacement-
controlled experiments implemented, a new version, just for special users to
do displacement-controlled experiments, can be rapidly released by removing

the load-controlled component.
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2. Reusable components
Since the calculation of the kinematics quantities are needed not only in the
displacement-controlled experiment but also in the load-controlled experi-
ment, the decision was made that the calculation of the kinematics quanti-
ties and stress should be separated as independent components. That means
that once the kinematics component and stress component are finished, they
can be reused many times and should thus increase our confidence that er-
rors have been found. Undoubtedly this will increase the reliability of system

in later versions.

3. Extensive research
One purpose of the Virlab software is for the designer to do the research.
(Please see the Section 3.6.2 for the definition of the designer.) If a designer
wants to use a new constitutive equation to do the displacement-controlled
experiment, he/she just needs to write a new component with the same
interfaces described in the module interface specification of displacement
constitutive calculation module. This new module will replace the existing
displacement-controlled component, while the rest of the components in the
system stay the same. So the component-based structure will make research

on new constitutive models easier.

4. Easy update
From the view of a practical application, the Virlab software should be
easy to maintain. Based on this consideration, the Virlab system is divided
into several components based on the functionalities of the system. Each

component might embody one functionality or part of the functionality.
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Therefore, when the system needs to change, based on the function of the
possible changes, the corresponding component may be quickly located and
then modified. Because each component is relatively unique subset of the
system’s behavior, the modification might be limited to this component. So
in the component-based system updates are easier than for a non-component

based system.

. Dynamic linking
One goal in the Virlab software is to dynamically plug components into
and out of the Virlab system. It is important to support research without
recompiling or relinking the updated or new component. For example, if a
designer writes a new component for an experiment with a new constitutive
equation, the end user will not be required to recompile and relink that com-
ponent. The user will be able to add the component while the application

is still running.

Since the component itself has so many advantages, such as increased relia-

bility, reusability and flexibility, and our design decisions for the Virlab software

provide an opportunity to build on these advantages, a conclusion can be made

that the idea of the component-based design is suitable for the Virlab software.

So far the definition and benefits of components have been described, but

the question remains how to partition our design into components? Partitioning

a design into component is a careful process that has a significant influence on

the success of the resulting components. From the composition of the component,

modules can be thought of as the minimal components. So modularity is a prereq-

uisite for the component. “Component technology unavoidably leads to modular
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solutions” [Szy99].

3.3 Modularity

Since the components are rather close to modules, it is worthwhile to closely
look into modules. A module is “a work assignment” [Par72] and “Modules are
relatively self-contained systems that can be combined to make large systems”
[HWO01]. Modules are interconnectable and interchangeable parts. A modular
architecture makes dependencies among the modules explicit and also should show
a hierarchical structure. From such a layered architecture a natural distribution of
responsibility becomes obvious. After modularity is built, it is easier to compose

the components by following the principle of separation of concerns.

How to divide a system into modules is a challenge. Without careful consid-
eration and iterative effort, a good modularity will not happen. Our goal was to

decompose the system into a hierarchical structure.

3.3.1 System decomposition

System decomposition refers to the structure of the system architecture. “The
primary goal of the decomposition into modules is reducing overall software cost
by allowing modules to be designed and revised independently [PCW85)”. Infor-
mation hiding [Par72] and separation of concerns are the principles we used for
decomposing the system. In the decomposition a module is defined as “a work
assignment”. Using the information hiding principle each module will contain

some access routines and these routines will hide a design decision known as a
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secret of the module from the view of the caller outside the module. Potential
changes, such as the algorithms or data structures, are typical secrets that are
hidden inside modules. By hiding the likely changes, it is possible to implement

the likely changes in the futures, with a minimal amount of effort.

Figure 3.1 shows the system decomposition for the Virlab. In this figure, a
rectangle with a double frame means this module has some sub modules, modules
shown as a rectangle with a single frame are leaf modules, which are the modules
that will be implemented, modules represented with a dotted frame means that
they are provided by the operating system and the term mod is an abbreviation
of the word ‘module’. To decompose the system into modules, we focus on several
important aspects of the system. These aspects include sequence control, speci-
fication, data representation, independent functions and separate algorithms and

data structures. They will be described in more detail below.

1. Sequence control
The Virlab version might vary in its system capacity. For example, will
the Virlab provide the function of importing the new constitutive equation?
Will the Virlab be used to do the displacement-controlled experiment and/or
load-controlled experiment? Will the experiment in the Virlab be used to
calculate the kinematics quantities and/or stress? From these questions, we
therefore centralize the control of the experiment and assign this respon-
sibility to the “Experiment module”. This module works as a mediator
among stress module, kinematics module, disp.con calculation module and
load_con calculation module. We also centralize the control of the flow of

the system execution by assigning this responsibility to the “Master control
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Figure 3.1: Module hierarchy
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module”. The master control module acts as a hub between the functions
of the systems such as importing a new constitutive equation, doing the

experiment and showing the output results of the experiment.

. Specification
In the Virlab, a user needs to specify the information required by the ex-

periment. The specification can be categorized as follows:

e Experiment definition information (e.g. experiment class (load versus
displacement controlled experiment), experiment type (uniaxial, biax-

ial or multiaxial))

e Specimen information (e.g. the length, width and height of the speci-

men geometry)

e Function information (e.g. a function refers to a displacement function
in the displacement-controlled experiment or a load function in the
load-controlled experiment). The Virlab provides three popular func-
tions: sine/cosine function, quadratic function and exponential func-
tion. The user should specify which type of functions is used in the
experiment and corresponding parameters of each function used in the

experiment.

e Displacement specification in the displacement-controlled experiment

(e.g. which type of functions is chosen as the displacement function?)

e Load specification in the load-controlled experiment (e.g. which type

of functions is chosen as the load function?)
e Constitutive equation information (e.g. select the constitutive model
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from the list of available models)

e Material properties information (e.g. how many material properties
are used in the constitutive equation and the numerical value of each

material property)

How to specify the required information is related to the user interface of
Virlab and also decides the friendliness of Virlab user interfaces. As a result,
we delegate the responsibilities of specifying each type of information to each

individual module that handles the Virlab user interface.

Once the required information is specified, it will be available for later use
by the system. How to represent the above information for the further use

is an important consideration.

. Data representation
Putting the closely related data together is obviously a good idea, which
makes the decomposition much cleaner. Therefore, a corresponding data
structure for each type of specified information is designed. e.g. specimen
geometry module deals with a data structure for the test specimen, exper-
iment definition module presents a data structure to describe the experi-
mental setup information, displacement structure module provides a data
structure to represent the displacement, load structure module gives a data
structure for the load on the specimen in the load-controlled experiment,
con_equ structure module presents a data structure to describe the con-
stitutive equation for the display and the function structure module gives

a data structure to represent the functions. The tensor structure module
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provides a data type for the tensor, without providing access routines. Be-
cause kinematics module, stress module, disp_con calculation module and
load_con calculation module share a data type for the tensor, we believe it

is better to separate it as an independent module.

. Independent functions
Since designing the Virlab to be extensible and contractible is one of our
goals and the Virlab version might vary in its system capabilities, predict-
ing and designing the possible functions will lead to a good design. We
consider that calculating the kinematics quantities and stress and approx-
imating the constitutive equation should be totally or partly included in
the system depending on the user’s requirements. Since procedures to solve
the constitutive equation in the displacement-controlled experiment and the
load-controlled experiment are different as discussed in Section 2.3, we de-
cide to handle these two cases separately. Hence, we predict four possible
functions and delegate them into different modules: kinematics module,
stress module, disp_con calculation module and load_con calculation mod-
ule. The kinematics module is used to obtain the kinematics quantities.
The secret of the stress module is now to calculate the stress. The disp.con
calculation module serves to approximate the constitutive equation in the
displacement-controlled experiment and the load.-con calculation module is

to approximate the constitutive equation in the load-controlled experiment.

. Separate the algorithms and data structures

It is not always desirable to separate the algorithm and data structure. In
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some domains it is hard to separate the algorithm from the data struc-
ture and in some domains it is also unwise to separate them because that
means the system might lose efficiency and performance. However, one of
the characteristics of the information hiding principle is that one module
only has one secret. Because our intention is to apply information hiding
principle to practical application and our system does not focus on improv-
ing system performance, we put considerable thought into how to handle
the relationship between the algorithm and the data structure. We decided
that the data structure is used to present the required data in the experi-
ment. The module interfaces are carefully designed to output the required
information by the access programs of the module. For example, the secret
of the displacement constitutive calculation is an algorithm to approximate
the constitutive equation in the displacement-controlled experiment. This
module will use the specimen geometry information and the displacement
information. The specimen geometry information will be provided by the
access programs of the specimen geometry structure module, whose secret is
a data structure to describe the specimen geometry. Displacement informa-
tion will be provided by the access programs of the displacement structure

module, whose secret is a data structure to represent the displacement.

3.3.2 Hierarchical structure

In addition to carefully designing the Virlab system decomposition through se-

crets, we also used a hierarchical structure for the design of Virlab. Simply, “we
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have a hierarchical structure if a certain relation may be defined between the mod-
ules or programs and that relation is a partial ordering” [Par72]. The relation in
the definition of hierarchical structure is referred to as a “use” relation. Program
A uses program B means that “correct execution of B may be necessary for A
to complete the task described in its specification. That is, A uses B if there
exist situations in which the corrected [sic] functioning of A depends upon the
availability of a correct implementation of B [PS75)”. A hierarchical structure is

defined as follows: “A relation or predicate on pairs of the parts (R(«a,3)) allows

us to define levels by saying that

1. Level 0 is the set of parts a such that there does not exist a 3 such that
R(a,0), and

2. Level 7 is the set of parts a such that

a. There exists a 3 on level ¢ — 1 such that R{a,5) and

b. If R(a,y) then v is on level ¢ — 1 or lower. [Par74]”

Figure 3.4 gives the modules that constitute the Virlab system and their uses
relation [Par74]. A rectangle with a single frame means a module and a rectangle
with a double frame means a module that has some sub modules and all the sub
modules have the same use relation externally in the use relation of the system. A
rectangle with a dotted frame means that a module is assumed to be implemented
and provided by the operating system. Kinematics Module has some sub modules
shown in the Figure 3.2. A significant characteristic of the use relation of the

kinematics module is that all submodules in the kinematics module can use each
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Figure 3.2: Use relation in the kinematics module

other because sometimes known kinematic quantities will be used to calculate an
unknown kinematic quantity. All the submodules in the kinematics module have
the same use relation externally with the other modules in the system. Following
a similar argument, the use relation of the stress module shown in Figure 3.3 has
the same characteristics as the use relation of the kinematics module; i.e., all
submodules in the stress module can use each other when a known stress is used
to calculate an unknown stress and all the submodules in the stress module have

the same use relation externally with the other modules in the system.

The Virlab system is constructed with a hierarchical structure by the use of

the concept of transparency. The transparency in the system refers to a kind of
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Figure 3.3: Use relation in the stress module

abstraction at each level in the system hierarchy. Each level in the hierarchical
system provides a virtual machine which hides (or abstracts from) some aspects
of the machine below it [PS75]. In the procedure of building the hierarchical
structure we combine two approaches together: “Outside in [PS75)” and “Bottom
up [PS75]”. The “Outside in” approach is adopted in the consideration of the
functional behaviors. From the outside view the system should implement the
functions such as calculating the stress and kinematics quantities and approxi-
mating the constitutive equation and then from the inside view we consider how
to design each of them. The “Bottom up” approach is applied when the direction
of data flow is considered. Figure 3.5 shows the data flow chart for an experi-
ment. The required information is first input with a virtual device, such as the
keyboard, by the ‘specification’ part to the corresponding data structures that are
used to represent the required information. Secondly the ‘algorithm’ part uses the
information from the corresponding data structure to do the calculation or ap-
proximation and result data is obtained. Thirdly the result data flow into a table.
Finally the data result will be output to the concrete application. Compared with
the direction of the use relation of the system shown in Figure 3.4, the direction

of the data flow of the system shown in Figure 3.5 is from the bottom to the top.
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Figure 3.4: Use relation of the system
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As a result of modularity, a clear hierarchical structure of the Virlab system
is given and such a layered architecture makes the responsibilities and functions
of the modules clear. However, the challenge still remains of how to identify the

components from the module decomposition.

3.4 Identifying the components

People should be careful when they divide a design into components. Identifying
a component depends on many different aspects. Components can be classified as
units of analysis, units of abstraction, units of compilation, units of maintenance
and units of system management [Szy99]. To identify the components used in the

Virlab, it is necessary to do a careful analysis.

Figure 3.6 shows that the Virlab system is separated as five layers on the
basis of responsibilities and functionalities of modules in the system. This figure
has the same information as Figure 3.4 except that Figure 3.6 has four dotted
lines that are used to split the whole picture into five layers. Table 3.1 shows the

composition of each layer and also summarizes the commonalities in each layer.

Based on the Figure 3.6 and summaries of the Table 3.1, the second layer serves
as an interface between the Virlab software and input devices of the system to fa-
cilitate the receiving of the user inputs. The mouse module and keyboard module
work as virtual devices to help the user input the required information needed by
an experiment, the screen display module can be thought of as external compo-
nents, such as buttons, combo list, work area, icon, etc. that make up the system

graphics interface. Therefore, the second layer can be understood as a part of the
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application, a graphics user interface built with the external components such as
buttons, lists, etc. The third layer is all data structures that are fundamental and
mandatory for the Virlab and are shared by the modules in the fourth layer. Due
to its importance and because it is shared by others, all the modules in the third
layer should be encapsulated into one component, which is named the structure
component. This component is categorized as a fundamental component. In the
fourth layer, stress module serves to calculate the stress; kinematics module serves
to obtain the kinematics quéntities; displacement constitutive calculation module
provides the numerical approximation of the constitutive equation to obtain the
stress and to recalculate the kinematics quantities when the constitutive equa-
tion is introduced in the displacement-controlled experiment, as well as the load
constitutive calculation in the load-controlled experiment. So each of the four
modules in the fourth layer implements one function of the Virlab system. For
easy management, it is better to encapsulate each module into one component,
they are named as stress component, kinematics component, disp_con component
and load_con component, respectively. Since these components emphasize the sys-
tem function, they are classified as functional components. Modules in the fifth
layer such as importing constitutive equation module and experiment module can
be understood as concrete applications from the role of the modules in the system,
but table structure module is specially designed to store the date in a table form
and show output module is to display data as a graph. Therefore these two mod-
ules are grouped into application component and are respectively named output

component and table component.
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Figure 3.6: System architectural layer
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No.Layer | Composition| Similiarities

First mouse, key- | Modules of first layer are provided by the
board, screen | operating system or the developing envi-
display ronment; that is, they are from the exter-

nal environment

Second Con_equ The purpose of these modules is to query
specification, | the user to specify the information that
func specifi- | is required when the experiment is con-
cation, exp | ducted.
specification,
disp  specifi-
cation, load
specifica-
tion, spe._geo
specification

Third con_equ In the modules of the third layer some
structure, data structures are designed to represent
disp  struc- | the information that is needed by the ex-
ture, load | periment.
structure,
func  struc-
ture  tensor

structure, exp
definition,

spe geometry

Continued on next page
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Continued from previous page

experiment,
output show,
tables struc-

ture

No.Layer | Composition| Similarities

Four stress, In the modules of the fourth layer some
disp_con, algorithms are adopted to obtain the
load_con, displacement, kinematic quantities and
kinematics stress, which are the experimental results.

Fifth imp con.equ, | In the fifth layer, some modules such as

experiment module and importing con-
stitutive equation module implement the
concrete application and some modules
such as table structure module and output
module serve for the concrete application
based on the modules of the fourth layer.
The secret of the table structure module is
one kind of data structure that is specially
designed to store the experimental data in
the form of a table. Show output module

is used to display the experimental results.

Table 3.1: The comparison between the five layers in the
Virlab

So far in the Virlab there are seven components: structure component, stress
component, kinematics component, disp-con component, load_con component, ta-
ble component and output component. From the view of the system these compo-
nents in the Virlab are categorized as fundamental components, functional com-

ponents and application components. Table 3.2 shows the category of component
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Fundamental component | Functional component | Application component

structure component stress component table component
kinematics component
disp_con component
load_con component

Table 3.2: Component categories in the Virlab

in the Virlab and the composition of each component.

3.5 Component-based system architecture

Once modularity of the Virlab has been established, it is natural to migrate parts
of the Virlab system to components by applying the principle of separation of
concerns. Now a new challenge is to construct the system with the available

compornents.

Figure 3.7 shows the component architecture of the Virlab system. In this
figure, the arrow pointing from the concrete application circle to the external
component, which could be a visual programming language such as Visual Basic,
means that the application uses external components such as buttons. The outer
circle represents the concrete application and the inner circles represent each type
of component, such as a fundamental component, a functional component or an
application component. The parts in the c;ircle separated by a line mean each
constitutive component in each type. The ellipsis (...) in the figure means that
potential components might be added in the future. In this figure, the structure
component, as a fundamental component, lies in the innermost circle of the cyclical

layers, since it is necessary and pivotal to all others. The functional components
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adopt algorithms to implement different functions such as the calculation of the
kinematics quantities on the basis of the information represented with the data
structure from the fundamental component. Therefore, functional components

are placed on the second innermost cyclical layer.

The application component such as table component and show output compo-
nent are placed between the outer circle and functional component circle because
they work as a bridge between the application and functional components. For
example, the table component is designed because the table form is needed from
the requirements of the application. The outer circle is for the real application.
The real application is based on the systematic components such as the structure
component and the external components such as buttons that make up the ap-
plication’s graphics interface. In the real application the communications among
the components are finished by the component interfaces. In this figure, from the
view of the systematic structures each layer is isolated from others and the Virlab
is built from the inner circle to the outer circle. However from the view of data
flow, data is input from the concrete application’s graphical interface to the inner
circle (structure component) and then flows from the inner circle to outer circle
and finally the experimental results are obtained from the concrete application
as the graphical output interface. Regardless of different views, communications
among components and between components and real applications are furnished
by the components’ interfaces. Therefore, the design for the Virlab system is

called a component-based design.

Upon the completion of the component architecture of the Virlab, the advan-

tages of the component-based architecture are clear.
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Application
component

Functional
component

table component

Structure component

disp_con
load_con P Fundamental

component

show output component

Concrete applications

external component

Figure 3.7: Component architecture of the Virlab system

e Helpful to understand
Although the Virlab system is a large and complex system, Figure 3.7 makes
this large and complex system easy to understand by presenting it at an

abstract level.

e Valuable to construct
The component architecture and architectural description works as a partial
blueprint for the development by showing the major components and their
relationships. It will be helpful to guide designers to implement the whole
system because it will act as a reference document and it is also useful for

newcomers to the team to quickly grasp the system architecture.

e Useful for analysis and management

Clear architecture is always useful for maintainers to help them analyze and
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manage the components.

e Support rapid development
Clear architecture supports a rapid development. The second circle in Figure
3.7 is for the functional components. The designer can freely choose which
components will be used in the version based on different functionalities
required by the system. For example, assuming the four functional com-
ponents are available, a system that does only load-controlled experiments

could be quickly created by removing the disp.con component.

So far we have devoted considerable effort in giving a definition of the compo-
nent and the reasons that we need a clear definition of the component, identifying
a component and constructing a component-based architecture; however, nobody
but the authors can understand the system without adequate documentation.
Furthermore the authors themselves might forget their design as time goes by.

Therefore, specification documentation is necessary for the Virlab system.

3.6 Documentation

Documentation plays an important role in the software development. Therefore
documentation should be written and maintained from the beginning and through-
out the lifetime of a system. This section includes three documents for the Virlab
system. Each document is created as the specific area of the Virlab design is being
molded. Since the modularity is a precondition of the component, Section 3.6.1
documents the modules that each component is built from. The communications

among the modules happen through the interfaces. Therefore, Section 3.6.2 is
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the module interface specification, where the interface of each module identified is
specified. Finally, Section 3.6.3 is the documentation of the components identified
in the previous section, based on the documentation of the module and module

interface specification.

3.6.1 Documenting modules

We followed the principle of the information hiding and divided the system into
modules by the use of system decomposition with the goal of a hierarchical struc-
ture as described in the section 3.3. In this section, we will look into a document,

that records the system architecture that is known as a module guide [PCW85].

The module guide for the Virlab is attached in Appendix C. The purpose of
this module guide is to make the design for the Virlab system explicit, which
will facilitate changes to the system in the future. Table 3.3 is a module guide
for the experiment definition module and shows an example on how to document
a module in the Virlab. The template for documenting modules is based on
the module structure of A-TE flight software by the Naval Research Laboratory
[PCW85).

In the module guide for the Virlab, the module’s secret is used as the main
description that characterizes each module. This part typically embodies the
notion “one module one secret”. The service of the module is intended to give
some hints that this module implements a particular aspect of the system. In
addition to its secret and service, expected changes are added to help the reader to
predict and understand the possible changes in the future. The entry for “prefix”

is used to trace the implementation of the module in the Virlab. “Prefix” is a
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Module Name Experiment definition module

Module service This module provides experiment config-
uration information.

Module secret A data structure to represent the experi-
ment configuration. Secret type: software
design.

Expected changes | Since experiment configuration is repre-
sented with a data structure, the same ex-
periment might be represented with other
data structures depending on the design-
ers’ choice.

Prefix ed-

Table 3.3: Experiment definition module

short string that will be prepended to all the access routines belonging to the
same modules, so that the conflict of the names among the access routines in
the different modules can be avoided. If a module does not have a prefix, this
means the operating system and /or development environment provides the needed

functionalities.

To make the module guide of Virlab complete and easy to understand, it
also describes the system decomposition. Since each module hides some design
decision of the system, generally the hidden information of each module can be
divided into the following three classes: behavior-hiding module, software decision-
hiding module and hardware-hiding module [PCW85]. The diagram is shown in
the Figure 3.1. The module guide for the Virlab also comprises the diagrams
of the use relation between the modules (see the Figure 3.4). To this point in
the document, the followings have been developed: a complete module guide,

which includes the system decomposition, use relation of the modules and detailed
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module description.

The effort devoted to creating a module guide was significant. However, the

effort is worthwhile because a module guide provides the following benefits:

« Allows verification of the system
After the module guide has been finished, it is possible to check for various
errors, to discover the possible inconsistencies, to review the feasibility of

the decomposition and to evaluate the flexibility of the design.

o Allows one to quickly grasp the system [PCW85]
Since the module guide shows the clear responsibilities among the modules,

it is helpful for newcomers to the project team to understand the system.

e Removes ambiguity
In our experience of conceiving and writing the module guide for the Virlab
we went through an iterative thinking process of identifying the secrets and
clarifying the responsibility of each module and the relationship between
the modules. As an example of this process, the module guide in the first
version included both an engineering strain tensor module and a lagrangian
infinitesimal strain tensor module, but we chose one of them in the current
version because they had the same responsibility when we compared the
services they provide. As a result, ambiguities in the design were discovered

through the process of writing the module guide.

e Provide guidance [Par72]
The existence of the module guide not only benefits ourselves it also will

provide support and guidance for programmers and maintainers.
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3.6.2 Documenting the module interface specification

A significant advantage of the module design is that it allows parallel development
of the system among programmers. However the module guide for the system is
not enough, the module interface specification (MIS) is also necessary for the
system to record the crucial design. “The module specification tells you both
how to use that module and what that module must do [PCW85)”. The purpose
of a MIS is to describe how each module is to be used, for example, how can
a programmer code interfaces with the module? What will the access routines
require for the inputs and what will they return for the output? A MIS for the
Virlab system is provided in Appendix D. In this section we will first take a close
look at the content and then we will discuss our design decisions for the MIS for

the Virlab.

Contents in the MIS

The following shows a MIS for “the constitutive equation structure module”. We
use it to illustrate the contents for the MIS. Generally a MIS for each module
includes two sections: one section for interface syntax and the other section for

interface semantics [HS95].

Constitutive equation structure module
Prefix: cs.

Reference: MG - Section C. 3.2.1
Interface syntax

Imported data type:

PropertyListT from the material property file module
PropertiesT = tuple of {
propertyname: string

propertyvalue: real

}
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PropertyValueT from the material property file module
PropertyValueT = sequence of real

LISTNUM from the tensor data definition module
LISTNUM 15

Exported data type:

ConstitutiveEquationT = tuple of {

name: string

the_number_of _material_properties: integer

material_properties_list: PropertyList

deformation_ list: DeformationListT

}

DeformationListT = sequence [LISTNUM] of boolean
Exported constant: none

Exported function:

Routine names Inputs Outputs Exceptions
cs-g-constitutiveequation ConstitutiveEquationT
cs.s.constitutiveequation | string

DeformationListT

PropertyValueT
ce_g_writetofile ConstitutiveEquationT failure_to_open
ce_s_readfromfile string ConstitutiveEquationT | failure.to_open

file_not_exist

External functions:

mpf_g numberofproperties from the material property file module

mpf_g_propertyname from the material property file module

file Openfile(filename: string)
Open a file whose name is filename, if return value is zeron,
opening a file is successful, otherwise failure

Readfile(f: file, type: string)
Read the value of the specified type from an current position
of a file pointer and return this value

Writefile(f: file, var: string)
Write the value of a variable whose type is type constructor

into the file
Interface semantics

State variable:

con: ConstitutiveEquationT
f: file
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Local variable: local: PropertyListT
State invariant: none
Assumption:

e Functions cs.greadfilefile and cs_g-writetofile are used
to operate the file in which the constitutive equation is
saved. Actually the order of the format is irrelevant but
it should be consistent so that the order of information
on the constitutive equation that is read from the file is
the same as the order that is written to the file.

Access routine semantics:

css_constitutiveequation( name:string, deform:DeformationListT,

value:PropertyValueT)
Exception: none

Transition: con.name :=filename
con.the_number_of_material _properties:=mpf_g_numberofproperties(name
local:=mpf_g.propertyname(name)
local:=mpf_sg_propertyvalue(value)
con.material_property_list := local
mpf.g_propertyname(name)
con.deformation_list := deform

cs_g-constitutiveequation()

Exception: none

Output: out := con

cs.g.readfromfile(filename:string)

Exception: (Openfile(filename) is successful=fail_to_open,
filenot_exist)

Transition/output: f:=Openfile(filename)
local.name := filename
local.the_number_of_material _properties:=Readfile(f, “integer”)
for i=0 to local.the_number_of_material_properties
local.material_property list{i]:=Readfile(f, “PropertyT”)
local_deformation list:=Readfile(f, “Deformationlist T” )
out:=local

cs_g-writetofile(conequ:ConstitutiveEquationT)
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Exception: Openfile(conequ.name) is unsuccessful=-fail_to_open

Transition/output: f:=Openfile(conequ.name)
Writefile(f,conequ.the_number_of_material_properties)
for i=0 to conequ.the.number_of_material_properties
Writefile(f,conequ.material_property.list]i])
Writefile(f,conequ.deformation_list)

Comments:

e DeformationListT type is a sequence of boolean. This
type is used to present what deformation definitions are
used in the constitutive equation.

e Interface syntax section
The interface syntax section includes the declaration of the exported data
types, functions names, parameters and return types of the functions, ex-
ceptions in the functions, exported constants, imported data types, environ-
mental variables and external functions. However, among all the attributes
listed above, because exported data types, exported constants and exported
functions directly show the services of the module, they are listed as the core
part for the module, regardless of whether a module has any exported data
type or exported constants or not. The other attributes will be included
only when they are needed. The exported functions as interfaces are called
when outside modules or programs use this module. The exported data
types and exported constants are listed as new data types provided by this
module. The external functions mean that these functions are needed in
this module and are assumed to be provided by other modules in the system

or the development environment.
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o Interface semantics section
The interface semantics section mainly focuses on how exported functions in
a module are called and what each does and/or returns based on the inputs.
It includes the basic parts such as state variables, state invariants, assump-
tions and access routines semantics and the additional parts such as local
variables, local functions, event tables and comments. State variables are
internal to the module and are shared by the members in the module. State
invariants are the predicates that remain true after the successful execution
of any access program. Assumptions are the preconditions that a module
requires its users to meet. Access routine semantics explain the details on
exported functions. For each function, the possible conditions for the excep-
tions are specified in the heading “exception”. How a state variable or an
environmental variable is changed is explained in the heading “transition”.
The outputs that the exported function returns are specified in the heading
“output”. The event table is helpful to understand the connections between
the events and exported functions. The comments are listed based on some
design considerations and explanations of the details. Local variables and

local functions are used in the cases where there is a complex specification.

Some design decisions for the MIS of the Virlab

o A section for conventions used in the MIS
To avoid the ambiguity for the readers, we list a section for the conventions

we use to document the MIS.

e Use as precise a description as possible
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class=H Niype=H,

H,

H,
| uniaxial | biaxial |  multiaxial |
displacement dss.initdisp ds_s_initdisp ds_s-initdisp
-controlled ds_s_disputype | ds-s_disputype | dss_disputype

ds_s_dispvtype | dss.dispvtype
‘ ds_s_dispwtype
load-controlled dss_initdisp ds_s_initdisp ds_s-initdisp

Table 3.4: The order for the initialization

We advocate the formal specification indicated by Parnas. For this goal
we try our best to use mathematics and Parnas tables [JPZ97] in our MIS
to make the description more precise and easy to follow. Table 3.4 is an
example of a Parnas table used in the MIS for the displacement specifica-
tion module. It is more obvious to specify the initialization process for the
displacement under the different conditions in a table than in prose. Also,
we adopt predicts for the mathematical expressions to make the description

unambiguous.

e The prefix of a module

In the module guide we mention that the modules with prefixes will be
implemented so those modules are further specified in the MIS. The same
prefix is found below the name of the corresponding module at the beginning
of the specification for each module. The purpose of a prefix is for quick
reference among modules. For example, the displacement structure module
uses the function fs_g_functionvalue() to calculate the displacement function.
This function is declared in the external functions part of the syntax section

of the displacement structure module. From its prefix “fs” we know that
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this function is implemented in the function structure module.

e The usage of reference
The reference is found next to the prefix part in the specification for each
module. Since the interfaces of the modules are abstracted from the module
guide, it is helpful to point to the source for the specification. A section
number from the module guide where this module is introduced is listed
after the heading “reference”. From this section number, the corresponding
section in the module guide can be quickly located and then the services

and secrets of the module can be reviewed.

@ in the event table

Event tables were introduced to specify the software requirements for the
A-7TE [Hen80]. The notation @T(condition_1) is used to denote the occur-
rence of condition.l becoming true. Event tables show when certain func-
tions should be performed or when periodic functions should be started or
stopped. Table 3.5 shows an example for the event table used in our MIS. In
this event table the notation @Click(buttonname) is used to denote the oc-
currence of the event that the button ‘buttonname’ is clicked. For example,
an event @Click(Confirm) happens when the ‘Confirm’ button is pressed.
From Table 3.5 we know that when the event @Click(Confirm) happens,
functions ed_s_constitutiveswitch, ce_s_constitutiveequation, mpf_g_numberofproperties,

mpf_g_propertyname and mpf_sg_propertyvalue should be called.

Developer/designer /user

At the beginning of the design for the Virlab, we tried to summarize a
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Condition Event Action

When the | @Click(Confirm) | ed_s_constitutiveswitch,
‘Confirm’ ce_s_constitutiveequation,
button is mpf_g_numberofproperties,
pressed mpf_g_propertyname,

mpf_sg_propertyvalue
When the | @Click(Save) ce_g-writetofile
‘Save’ button

is pressed
When the | @Click(Cancel) | Do nothing
Cancel but-

ton is pressed

Table 3.5: An example for an event table

unique form to describe the constitutive equations and then numerically ap-
proximate this form. We realized that it is difficult to do this because of
the complexity and diversity of constitutive equations. To make our design
feasible we decided to move some of the responsibilities for the design out-
side of our system. To make this notion concrete we defined three roles for
people interacting with the system: the developer, the designer and the user.
A user refers to a person who will do the experiment with Virlab software,
e.g. a student. A designer is a person who designs an experiment with the
Virlab software for a user to do an experiment or for himself to do research.
A designer is required to have solid professional knowledge about what a ma-
terial experiment needs. Moreover, the designer should have basic software
engineering knowledge because he/she can add new materials for the exper-
iment into the Virlab based on the experiment requirement, which requires

that he/she should understand the documentation for the module guide and

82



McMaster University Huan Chun Gao

module interface specification. A developer is a person who develops and/or
extends the Virlab software by implementing new functions of the Virlab
software or enriching the system on the basis of the Virlab blueprint. A
developer should have strong software engineering knowledge because he or

she has the responsibilities to build and update the documentation for the

Virlab.

The usage of the term ‘virtual’

The term ‘virtual’ is used in the object-oriented programming language and
means if the method is defined as virtual in the base class, its concrete
implementation will be provided in the subclass of this base class. Because
the term ‘virtual’ is used clearly to delegate the class’s responsibility for
the implementation, it is borrowed into our MIS to define the attribute
of the access programs in some of the module interface specifications. For
example, in the displacement constitutive (disp_con) calculation module, the
exported function dec_dispconstitutive() is defined as virtual, which means
that the designers have responsibility to provide the implementation of the
corresponding access programs. This allows us to clearly show what aspects

of the system are the responsibility of later developers.

Theoretically after a MIS is written for a module, the first step toward imple-

mentation is to prepare a module internal design (MID). A MID deals with the

concrete state of the module [HS95], e.g., the internal design for abstract data

types. However, in the Virlab system a MID was not explicitly created because

Virlab is not a complicated system and the mapping between the abstract state

and the concrete state is straightforward. When we designed the MIS, we chose
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those simple and obvious data types that have direct counterpart in most pro-
gramming languages. For example, a tuple can be implemented as a structure in
the C language. Based on these consideration, we our some efforts on designing
the MIS. Therefore, the fact that we do not have an explicit MID will not affect

the implementation of Virlab later.

3.6.3 Documenting the component description

In Section 3.5 we concluded that the design for the Virlab system is a component-
based design. Since the components are derived from the modularity of the system,
documenting the module guide and module interface specification for the Virlab
makes documenting the components easier. The purpose of the component de-
scriptions is to describe what a component can provide, how to use the component
together with the MIS, the role of the component in the system and the source
of the component. The component description for the Virlab is attached as Ap-

pendix E.

Since the goal of documenting the component is to make what it requires
and what it provides explicit, the component description is composed with the
basic parts such as name, role in the system, service, composition and interface
specification and an additional part for comments. The “service” part generally
specifies what the component provides and it is also used to give directions for
the production of the component interface. The “interface specification” part
is designed to specify what it requires in detail. The “role in the system” part
is used to denote the component’s role in the system so that newcomers in the

team can quickly grasp the composition of the system. The “composition” part
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is used to specify the source of the component because the characteristic of the
component we use in the Virlab is module-based. The “comment” part is designed

to supplement the source of data types and/or constants occurring in the interface

specification.
Name Kinematics component
Role in the system Functional component
Service Based on the definitions given by [Maz70], Kine-
matics component is used to calculate the kine-
matics quantities.
Composition material deformation gradient module

spatial deformation gradient module

material displacement gradient module
spatial displacement gradient module
Cauchy’s deformation tensor module

Green’s deformation tensor module
Lagrangian finite strain tensor module
Eulerian finite strain tensor module
Lagrangian infinitesimal strain tensor module
Eulerian infinitesimal strain tensor module
True strain tensor module

Stretch tensor module

Stretch ratio tensor module

Continued on next page
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Continued from previous page

Name

Kinematics component

Interface specification

The composed modules’ interfaces are available
for the use. Please refer to the corresponding
module interface specification found in the Ap-
pendix D. Based on the similarities among all
the composed modules’ interfaces in the kine-
matics component, two interfaces are summa-
rized below.

e kc_knownquantity(comeflag, outflag:

TensorFlagT, kq: TensorDataT)

Exception: exceptions are triggered from the
calling programs and same as the ex-

ceptions from the calling programs

Output: output is based on the value of out-

flag shown in the Table3.7

e kc_geometry(outflag: TensorFlagT, disp:
DisplacementT, sg:  SpecimenGeome-
try'T)

Exception: exceptions are triggered from the

calling programs

Output: output is based on the value of out-
flag shown in the Table3.8

Continued on next page
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Continued from previous page

Name

Kinematics component

Comments

e TensorFlagT is from the Tensor data defi-

nition module in the structure component

e TensorDataT is from tensor data defini-

tion module in the structure component

o DisplacementT is from the displacement
structure module in the structure compo-

nent

e SpecimenGeometryT is from the speci-
men geometry module in the structure

component

o Capital letters su¢ch as MDPG are from
the tensor data definition module in the

structure component

Table 3.6: A component description for the kinematics

component

Table 3.6 shows a component description for the kinematics component as an
example. In this table it is easy to understand the “name”, “role in the system”,
“service”, “composition” and “comments” parts for the kinematics component.
In the “interface specification” part, it is explained that interfaces of composed

modules in kinematics component are the kinematics component’s interfaces and
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outflag=MDG
out=SDG
outflag=MDPG
outflag=SDPG
outflag=CDT
outflag=GDT
outflag=LFST
outflag=EFST
outflag=LIST
outflag=EIST
outflag=TST

mdg_g_knownquantity(kq, comeflag)
sdg_g_knownquantity(kq, comeflag)
mdpg-g- knownquantity(kq, comeflag)
sdpg-g- knownquantity(kq, comeflag)
cdt_g- knownquantity(kq, comeflag)
gdt_g_ knownquantity(kq, comeflag)
Ifst_g- knownquantity(kq, comeflag)
efst_g_ knownquantity(kq, comeflag)
list_g_ knownquantity(kq, comeflag)
eist_g- knownquantity(kq, comeflag)
tst_g- knownquantity(kq, comeflag)

Table 3.7: Output for kc_knownquantity

outflag=MDG
out=SDG

mdg_g_geometry(kq, comeflag)
sdg_-g.geometry(kq, comeflag)

outflag=MDPG

mdpg-g-geometry(kq, comeflag)

outflag=SDPG

sdpg_g-geometry(kq, comeflag)

outflag=CDT

cdt_g-geometry(kq, comeflag)

outflag=GDT

gdt_g_geometry(kq, comeflag)

outflag=LFST

lfst_g_geometry(kq, comeflag)

outflag=EFST

efst_g_geometry(kq, comeflag)

outflag=LIST

list_g_geometry(kq, comeflag)

outflag=EIST

eist_g.geometry(kq, comeflag)

outflag=TST

tst_g_geometry(kq, comeflag)

Table 3.8: Output for kc_geometry
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two interfaces for the kinematics component are summarized based on the similar-
ities of known interfaces. The semantics for the summarized interface are included
with the output part and exception part. In the Table 3.6, if the required param-
eter outflag for kc_knownquantity function is MDG, then kc_knownquantity will
use mdg_g.-knownquantity function. Simultaneously required parameters comeflag
and kq are passed into mdg.g_knownquantity function. So for this case the output
of ke_knownquantity function is the same as the output of mdg_g_knownquantity.
Also the exceptions for ke_knownquantity function are from the exceptions for
mdg_g_knownquantity. The details on mdg_g_knownquantity can be found in a
MIS for material deformation gradient module in the Appendix D. It is obvious
that the component descriptions are closely bonded with the MIS in the Virlab.
Therefore the component descriptions should always be used together with the

MIS in the Virlab for programmers and maintainers.
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Chapter 4

An overview of the Virlab
software

In Chapter 2 we described the testing of real materials. Chapter 3 gave the
component-based design of the Virlab software by dividing the system into sev-
eral components such as the fundamental component, the functional components
and the application components. Based on the design of the Virlab, the graph-
ical user interface of the Virlab was implemented with Visual Basic 6.0 and the
constituent components of the Virlab were implemented with Visual C++ 6.0.
The components followed the COM [Rog97] standard that specifies how to build

components.

In this Chapter, we provide an overview of the Virlab software. Section 4.1
gives the general function descriptions of the Virlab software. Section 4.2 describes
how to use Virlab software to do a uniaxial displacement-controlled experiment
for a viscoelastic material, which was previously described as a case study in

Chapter 2.
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4.1 An introduction to the Virlab software

The Virlab was designed and developed as a virtual laboratory, an open and
flexible software environment that is used to simulate a set of experiments using

a computer. The Virlab software has the following attributes:

» Friendly user interface
From the visual point of view, the Virlab software is composed of several
windows and each window includes several buttons, text information and
possibly some smaller windows. The captions for the windows and buttons
explains their purpose. The intention is that the system will be easy for new
users to use in a short amount of time. The program also has an information
center window and a warning center window to help exchange information
between the user and the system. The information center provides instruc-
tions for the experiment and the warning center is used to display warnings

and error messages from the system.

o Allows the user to select the experiment class and type
The experiment class refers to the displacement-controlled experiment or
the load-controlled experiment. The experiment type means a uniaxial ex-
periment, a biaxial experiment or a multiaxial experiment. The experiment
classes and types are displayed in the way of radio buttons, which allows

the user to easily select the experiment class and type.

e Allow the user to setup the configuration for the experiment
The Virlab gives the user freedom to configure the information that the

chosen experiment requires. For example, the user specifies the following:
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— The type and coefficients of the function that is used to describe the
independent variables for the load or the displacement controlled ex-

periment
— Test specimen geometry
— Material properties
— Constitutive equation

— Time configuration

e Qutput the results of the experiment
The Virlab allows the user to output the results of the experiment. The ex-
perimental data is displayed in tabular form in the Virlab. Based on columns
the user selects, the experimental data can also be plotted as a curve. This

allows the user to conveniently analyze and compare experimental data.

The details of the system are provided below as follows: Section 4.1.1 describes
the main window of the Virlab software. Section 4.1.2 explains the setup window

and Section 4.1.3 illustrates the output window.

4.1.1 The main window

To invoke the main window of Virlab, double click Virlab on the Windows envi-
ronment. After copyright information is shown, the window for the experiment
selection is displayed, as shown in Figure 4.1. In this window the user can select
the experiment type and the experiment class. When the experiment class and
type are selected, the user can click the Next button to continue the experiment.

At any time, the use can quit the Virlab by clicking the Exit button.
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Figure 4.1: The window for the experiment type selection

Once the experiment class and type are selected and the Next button is clicked,
the experiment window shown in Figure 4.2 will come up. The experiment window
is composed of three small windows and several buttons. The picture window
shown in the upper left corner of the experiment window is used to intuitively
display a picture for the chosen experiment. The information center window
shown in the lower left corner is used to display the experiment instructions. For
example, in the Figure 4.2, the user is told to set up the experiment first. The
warning center window shown in the middle of the experiment window is used to
display the error messages. To invoke the setup window, the user clicks the Setup

button.
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Figure 4.2: Experiment window

4.1.2 The setup window

The setup window shown in Figure 4.3 is used to configure the experiment and to
setup the related information required by the experiment. To specify the function
type and function’s coefficients, that function is used to describe the independent
variables for the load or the displacement controlled experiment. The SpecifyFunc-
tion window shown in Figure 4.3 should be invoked by clicking the Specifyfunction
button. In this window, the specified text and input area will be available only
if the corresponding function type button is selected. To specify the specimen
geometry, click the Specify™jpe'n/'meP"ieco'netry button to invoke the SpecifySpec-
imenGeometry window shown in Figure 4.4. To specify the time configuration,
click the SpecifyTimeSetup button to call the SpecifyTimeSetup window shown
in Figure 4.5. To specify material properties and information on the constitutive
equation, click the ConstitutiveEquation button to call the ConstitutlveEquation
window shown in Figure 4.6. The existing constitutive equations in the Virlab

will be loaded and ready for display. In this window, shown in Figure 4.6, the user
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Figure 4.3: Setup window

can also set up material properties for the selected constitutive equations. Based
on the specified experiment class and type, the SpecifyDispiaoement button or
SpecifyLoad button comes up in the Setup window. Click this button to specify
the load or displacement function that describes the corresponding independent

variable from the available functions shown in Figure 4.7.

4.1.3 The output window

Once the setup for the experiment is finished, the experiment is ready to run
by clicking the experiment, button on the experiment window shown in Figure
4.2. If there is no error message in the warning center window, the message
“Experimental data is ready for output” will be displayed in the information

center. The user next clicks on the Output button on the experiment window,
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Figure 4.4: The Speciif;"y"p"(*iimen™'Ge.Mm*e*ry window

Figure 4.5: The SpecifyTimeSetup window
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Figure 4.6: The ConttitutivsEquation window

Figure 4.7: The SpecifyLoadOrDispXgcement window
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Figure 4.8: The output window

which invokes the output window shown in Figure 4.8. The output window is
composed of two subwindows: a table window, the upper window in the Figure
4.8, and a graph plotting window, the lower window in the Figure 4.8. The
table window will display the experimental data from the experiment. To plot
the graph, the user should specify the sources for the x and y axes, the column
numbers for the x and y axes, and the colour of the corresponding curve. When
the x, y axes and the colour for the curve are specified, the user clicks the plot

button and the corresponding curve will be displayed.

98



Figure 4.9: The selection of a uniaxial displacement-controlled experiment

4.2 An example experiment in Virlab for a uni-
axial displacement-controlled experiment for
a viscoelastic material

In Section 2.3 of Chapter 2, we presented a uniaxial displacement-controlled ex-
periment as a case study to explain real material testing. In this section, the
user follows the step-by-step instructions to use the Virlab software to do this

experiment.

1. First, select the experiment class and type in the main window shown in
Figure 4.9 and then click the Next button and the experiment window shown

in Figure 4.10 comes up.

2. Set up the information on this experiment by clicking the Setup button in

Figure 4.10 and enter the Setup window shown in Figure 4.11.

3. Check Exponential Function box and then the specified text and input area
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Figure 4.10: Experiment window for a uniaxial displacement-controlled experi-
ment

Figure 4.11: Input the function information
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Figure 4.12: Input the geometry information

for the exponential function become active.

. Specify the coefficients for the exponential function in the input area shown

in Figure 4.11

. Click the SpecifySpecimenGeometry button to specify the geometry iefot-

mation for the test specimen shown in Figure 4.12.

. Click the ConstitutiveEquation button to specify the information on the

constitutive equation shown in Figure 4.13.

. Click the SpecifyTimeSetup button to specify the time configuration shown

in Figure 4.14 and then input the time parameters.

. Click the SpecifyDisplacement button to select the required function type

shown in Figure 4.15 by clicking the list box.
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Figure 4.13: Specify the constitutive equation

Figure 4.14: Specify the time configuration
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Figure 4.13: Specify the constitutive equation

Figure 4.14: Specify the time configuration
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Figure 4.15: Select the function type for displacement variable

From the second step to the seventh step, the order of clicking the heading
buttons does not matter. Once all the information is specified, the user
clicks the OK button and then returns to the experiment window shown in

Figure 4.10.

9. ff the error message comes up in the warning center, it means some infor-
mation has been forgotten in the specification and the Virlab will prompt
as to which information is missing. Otherwise, the information center will

prompt to do the experiment by clicking the Experiment button.

10. After the Experiment button is clicked, if there are some errors in the ex-
periment, the warning center will show the possible reasons for errors. Oth-
erwise, once the experiment is done, the information center will prompt
“Experimental data is ready for output”. Now click the Output button and

display the experimental data shown in Figure 4.16.
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Figure 4.16: The output for the experiment
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11. The specification for the constitutive equation “Maxwell equation” shown in
Figure 4.13 clearly shows that true stress and strain are required. Therefore,
the user plots the relationship between true stress and true strain shown as
a solid curve in Figure 4.16. A user may wonder what happens if people use
the engineering strain to approximate the Maxwell equation. In the Virlab
system the true strain and true stress can be converted to the engineering
strain and the engineering stress. The dash curve is plotted for the relation-
ship between the engineering strain and engineering stress shown in Figure
4.16. This is not an error, but a different view of the same result. The kind
of error shown in Figure 2.9 is not possible with the Virlab system since
we assume that the designer has implemented with the correct specification.
The different view of the same result shown in Figure 4.16 may be useful
for comparing to experimental data. The dash curve is obviously different
with the solid curve. Hence, the correct understanding of the specification

of the experiment is very important.
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Chapter 5

Conclusions, contributions and
future work

In this chapter we first make conclusions for the work presented in this thesis in
Section 5.1. We then summarize the contributions of our work in Section 5.2. In

Section 5.3 we offers suggestions for future work.

5.1 Conclusions

In this thesis we have provided a framework for material testing and we have
described a component-based design. We went through commonality analysis,
modularity, component identification, construction of component-based architec-
ture, documentation for MG, MIS and component description and part of the
implementation of Virlab. Over this experience the following conclusions were

made:

o A commonality analysis is necessary for the Virlab.

“Commonality analysis is one approach to defining a family by identifying
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commonalities, i.e., assumptions that are true for all family members, vari-
abilities, i.e., assumptions about what can vary among family members, and
common terminology for the family [AW97].” We started the commonality
analysis by analyzing and comparing real material experiments and based
on this we assumed unlikely changes for Virlab and summarized anticipated
changes for Virlab. Unlikely changes and anticipated changes are the foun-

dation of the design for Virlab.

Information hiding [Par72] and separation of concern are beneficial for mod-
ule decomposition principles.

We divided the system into modules by applying information hiding and
separation of concern. Based on the anticipated changes from the common-
ality analysis, we recorded the characteristics of the system that are likely
to change and encapsulated each expected change into one module. So each

module hides one design decision of the system.

The use hierarchy shows the use relationship among modules.

“Outside in” [PS75] and “Bottom up” [PS75] approaches are adopted to
design the use relation as a hierarchical structure. A layered hierarchical
structure of the Virlab system makes the responsibilities and functions of

the modules clear.

Modularity is a prerequisite for the component identification and component-
based system architecture.
After a good module decomposition, based on the role and function of each

module, we migrated parts of the system into components by applying the
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principle of separation of concerns from the high level view and divided the
system into fundamental components, functional components and applica-
tion components. The component architecture works as a blueprint for the

Virlab system development.

o The concept of “Design through documentation” goes through the whole
procedure.
In our opinion documentation is both important and useful. It serves as
a media for communication between developers, and it can also be used to
verify and test the system. So each document is produced at each stage
including the module guide, the module interface specification and the com-

ponent description.

We adapted software engineering approach into the design of Virlab. We in-

vested considerable time and effort in each stage and each document was carefully

written, checked and reviewed several times. A significant payoff is that the im-

plementation of the Virlab system proceeded smoothly. Therefore, we hope that

practitioners in the industry can learn some valuable lessons from our experiences.

5.2 Contributions

The contributions of the virtual laboratory for material testing consist of two

aspects: one is from the field of material testing and another is from the field of

software engineering. Because few people are working on the virtual laboratory

for material testing, the contribution for the field of material testing is significant.

The contributions are listed below:
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e The virtual laboratory for material testing, Virlab, supports several classes
and types of testing. For example it supports displacement-controlled ex-
periment and load-controlled experiment, and in each type of experiment,
it also support a uniaxial experiment, biaxial experiment and multiaxial

experiment.

¢ One of significant contributions is for easy development of new constitutive
theories. Because of the complexity of constitutive equations, we delegate
the approximation of the constitutive equation to the professionals,i.e., the
designer, and Virlab supports them adding a new component to the system.
When the designers write the new components for the new constitutive the-
ories and link them to the system, they can use Virlab to do the experiment
under the ideal conditions to test their new theories. Virlab deals with the
simple cases and ideal conditions so the designers only focus on the devel-
opment of new constitutive theories. Once they are successful in Virlab,
they have confidence to do the further test in the commercial simulation
package. Therefore, Virlab will be helpful for the development of new con-
stitutive equations. Appendix F summarizes the procedures for adding a

new component into the Virlab.

e The Virlab supports the reduction of ambiguity. From the case study dis-
cussed in Section 2.3, the clear definitions of strain and stress in the Maxwell
equation are important to solve the approximation of the Maxwell equation.
If we mistakenly use engineering strain and engineering stress to approx-
imate the Maxwell equation, results are different. The Virlab forces the

designer and the user to be unambiguous in their definitions; thus, it helps
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to avoid errors like that discussed in Section 2.3.

It can be used for educational purposes. Students can use it to do experi-
ments that designers have built and then they can analyze the experimental
data. The students will be able to rapidly investigate many experiments,
many materials and the sometimes subtle difference between the various
kinematics and stress measures. This will allow students to focus on the

mechanics of material, instead of on tedious details.

It can also be used for research purpose. The Virlab offers an convenient
platform for researchers to investigate and test new constitutive equation.
They can work in the role of designers and provide the implementation of

the required virtual to allow tests of new material.

The virtual laboratory for material testing has contributions not only for the

field of materials testing but also for the field of software engineering. The con-

tributions for the field of software engineering are summarized as follow:

Providing a framework for the virtual laboratory for material testing. The
Virlab is an example that helps highlight the challenges of applying software

engineering approaches to scientific computing problems in general.

Demonstrating a systematic approach in developing a virtual laboratory for
material testing by software engineering principles and showing an example

on how to apply software engineering approaches to practical applications.
Giving definitions of the terms virtual laboratory and component.

Conducting a commonality analysis for material testing.
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o Providing an easy way to identify components from the module decomposi-

tion and then building the component-based system architecture.

e Applying the concept of “design through documentation [PHUS81]” in the
development of virtual laboratory for material testing and documenting the

module guide, module interface specification and component description for

Virlab.

5.3 Future Work

Although we put considerable effort on researching and designing the virtual labo-
ratory, it is hard for us to make the virtual laboratory for material testing perfect.
However, the work on the virtual laboratory for material testing is promising. To
make the virtual laboratory for material testing more powerful, there are many

avenues for future work. We present some ideas as follows:

e Implementing the remainder of Virlab. We only implemented a portion of
Virlab to act as a proof for concept for our design. Complete implementation
will provide more feedback on the design and documentation and will allow
others to use the system. These are valuable for further improvement to the

system design.

e Building a connection that allows the system to make use of the existing
material properties data distributed on World Wide Web in documents using
a Hypertext markup language. In the current version of Virlab, material
properties are specified by input data from the user interface or by reading

data from files written by users beforehand. To fully utilize the resource on
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the internet, we can adopt the MatML [Web_matml_03] standard to write the
programs to obtain the material properties data distributed on the internet
and then pass data to Virlab. Therefore, a connector between MatML and
Virlab would be helpful. MatML is an extensible markup language (XML)
developed especially for the interchange of material information. It should

be possible to build a connector in the future to obtain material properties

data by the use of MatML.

Developing a mathematical parser that allows Virlab to handle any math-
ematical function. We already know that a displacement function in the
displacement-controlled experiment, or a load function in the load-controlled
experiment, is a function of time. Currently we only support three popular
functions, a quadratic function of time, a sin/cosine function of time and
an exponential function of time. If a tool for parsing and evaluating general
mathematical expressions were integrated into the system it would improve

the usefulness of the system.

Placing the Virlab on the World Wide Web to support remote education
and research. We adopted COM technologies and component languages to
implement the Virlab. The widest application of COM technologies is for
the distributed system and the features of COM support the Client/Server
structure. Most of the current Virlab can be migrated to the Server side if
new interfaces with the server side are added. The specification component
together with new added interfaces with the client side can be changed to
work on the client side. Therefore it would be possible to put Virlab on the

Internet.
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e Importing experimental data. In the current version of the Virlab, exper-
imental data is created after the completion of the experiment. If outside
experimental data from other system or real material experiment can be im-
ported into Virlab, this will allow comparison of proposed theories to real

data.

e Designing a template for easily adding a new constitutive equation. The goal
is to support a network of researcher that can all contribute to a database

of materials and material models.

o Adding the ability to do parameter fitting. If real experimental data and
a constitutive equation are given, the system will determine the material

properties.
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Appendix A  Relationship among kinematics quantities

The purpose of the following table is for easy comparison of the differences and

similiarities among kinematics quantities. In this table ud represents undefined.

Item Index notation Expression at current configuration
Material B i, N
deformation . 1+ R ud ud
Gradient l: %Xi:l 0 -
ud (1+= ud
0 _
ud ud 1+ el
L o
Spatial X 7 N
deformation [ /axj} (1+L—1) ! ud ud
gradient 0 -
ud (1+—2)" ud
H 0 _
ud ud  (1+22)"
I W,
Material du, i i, N
displacement |: AX i] R ud ud
gradient 0 ;7
ud —* ud
H 0
ud ud 22
L 0
Spatial ou. = N
displacement [ /ax } 1 — ud ud
. j o T,
gradient -
ud 2 ud
H,+u,
ud ud s —
| W, +u; |
Cauchy’s T
deformation l:athTk aa—)i'f-:l 1+ L—l) 2 ud ud
tensor i j 0 -
ud Q+-2)7 ud
H 0 _
7
ud ud 1+
L Wy |
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Green’s

ox, Ox u,
deformation |:&k— #} 1+ L_l) 2 ud ud
tensor i j 0 T
ud (1+———2—)2 ud
HO
LT3 2
ud ud 1+—=)
L WO _
Lagrangian 1 &x, Ox '1 _ 3
Green's) | 5y 3¢ %W 5[(1&)2—1} ud ud
finite strain 3 ! 6] U L,
tensor u; Ou; ou, ou, I W,
= + + d _
2o T T )| o s
ud ud -;{(1&)2—11
L W
Eulerian 1 ox, o, '1 _ .
(Almansis) | 3Gy 3x %% E{l—aﬁi)-z] ud ud
finite  strain L3 ' a’ e a I,
tensor loow Ui | om o 1 %o
2, T, T x,) ud D) ud
l -
ud ud —[1(1+2 ‘zl
_ z{ W
Lagrangian 1 ou, Ou, ¥ T
. - . . 7 + p _l d d
mﬁmtesnmal 2(—*51\,. 5X,.) I, u u
strain tensor J 7
(Engineering ud —= ud
strain tensor) H, _
ud ud sl
- WO_
Eulerian 1 ou, Ou, T 7
. . . . __’_+ E 1 d d
mﬁl_1|tes1mal > (ax. o, ) I+7 u u
strain tensor 4 7
ud I ud
H, +u,
ud ud %
i W, +u, i
True  strain [ T
tensor In(—) ud ud
L,
ud ln(——q—) ud
HO
ud ud ln(z)
L W, |
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Stretch tensor A
A(er) ud ud
ud A(;z) ud
ud  ud A
Stretch ratio i 7
tensor 1 ud ud
/12 (61 )
ud 1A ud
A (e 2 )
ud ud 1A
i A2 (e3) |

Table A-1 Mathematical relationship among kinematics quantities

Current configurations are the followings:

A T el N

=

Shear strain is not considered.
The experiment is for the multiAxialExperiment shown in Figure A-1
Material Physical Features:L =L, +u,,H = H, +u,,W =W, +i,

X,X,X, is Eulerian Coordinates i.e. Deformed configuration.

X, X ,X ,is Lagrangian Coordinates i.e. Reference configuration

u,,u,,u, are displacement at the end of the body in the direction of the coordinate
axes

u,u,u, as a function of X, X, X,

L,,L - Initial and current length, respectively.

H,,H - Initial and current height, respectively.

W,,,W - Initial and current width, respectively.

Relationships among x,x,x;, X, X, X, ui,uand uu,u,

a. x, =X, +u,x, =X, +u,,x;=X;+u,

_X _ X . ¢
b. w=0-"Lu=u,"%, u, =i,
L H
0 0 0
7 u U,
2 3
c. u= X, U, = = x.
1 — >72 — 23M3 3
Ly +i H,+u, W, + 1,

u i u.
d. x =(1+—Ll)Xl,x2 =(1+H—2)X2,x3 =(1+W3)X3

0 0 0
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e. X1=(1+Z—‘)"x,,X2=(1+Z—2)"x2,x3=(1+“—3)-*x3
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Figure A-1 the multiaxial experiment
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Appendix B The solution for the uniaxial extension
displacement controlled experiment

This appendix summarizes the closed-form solution to the Maxwell constitutive
equation for true strain, true stress and the displacement in the uniaxial extension
displacement controlled experiment. The test is shown in Figure B-1.

x5 Xe *

Faataa 7 B

W, ,1' é
L
g0 Lo
L - X

Figure B-1 The uniaxial extension displacement-controlled experiment

The above figure shows the material test by showing the dimensions, boundary

conditions and coordinate system. In the figures the test specimen has the initial length
(L,) and width (W,). The figure also shows that the test specimen is extended by u,
which changes at the rate of u#. In this uniaxial extension displacement controlled
experiment assuming that the material is incompressible.

In this experiment, we are given that the rate of extenstion (velocity) is i = &L,e”, & is a
constant, and we assume a Maxwell equation as the constitutive equation, where the
equation can be assumed as ¢ + A0 =2n¢. We also know that L =L, +u (Please see
Section 2.2 in the Chapter 2)

Since the rate of extension # is given, the displacement can be determined by integration

as follows:

u= ]udt =Ly(e* -1) (B.1)

0 :
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and the length (L) as a function of time can be determined using the displacement
L=L,+Ly(e" —-1)=Lye* (B.2)

Now the displacement as a function of time is known, so the kinematics quantities can

also be summarized as a function of time based on the Appendix A relationship among

kinematics quantities.

The discussion can now move to the closed-form solution for stress using the Maxwell

equation. In the Maxwell equation used here the correct measure of the strain is the true

strain and true strain €, which is defined as:

e=In L (B.3)
L, '

Replace L in the equation B.3 with B.2 and true strain is obtained as follows:

£=& (B.4)

In the Maxwell equation, £can be determined by the derivation of equation B.4 as

follows:

. d

e=—E)=¢
Now the Maxwell equation can be written as

o+ Ao =2né (B.5)
So the discussion can move to how to solve this first order linear differential equation.
We know that the solutions for nonhomogenous differential equations are the sum of the
homogeneous solution and a particular solution.

At first, to calculate the homogeneous solution of equation B.5, we assume that

oc+A6 =0 (B.6)
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Assuming

{

o=ce i c, is taken as a function of time (B.7)
then ¢ can be determined by differentiating equation B.7

6 =ée +ce (-1 (B.8)
Second, to calculate the particular solution by substituting B.7 and B.8 into equation B.S5,

the following results

¢ = (B.9)
by differentiation of the equation, the following results

¢ = 2née’ + c, (B.10)
so the stress is determined by substituting B.9 and B.10 into B.8

o =2nE+cet
The final solution can be solved using the initial condition that ¢(0) =0 to yield

o =2ns(1-e%) (B.11)
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C.1 Overview

It is difficult to develop a system all at once, especially if it is a large or complex system.
A better approach is to divide the task into several modules. “Modules are self-contained
systems that can be combined to make large system.” [HWO01] Information hiding [DP72]
and separation of concerns are the design principles of decomposition that contains three
steps:

o Identify the expected changes.

. Encapsuléte each expected change. Introduce one module for each change.

e Design the module interface. To each module, an interface will not change if there

is a change in the module secret.

A module hides some design decision of the system. There are three classes typically
used for the hiding information [PD72]:

e Behavior hiding, such as input formats, screen formats and text messages.

e Software decision hiding, such as algorithms and data structures.

e Machine hiding, such as hardware machine or the “virtual machine”
A module guide gives the secret, service and expected change of each module. Since a
module hides a change, the change is called the secret of a module. The module service is
the functions that the module provides. The expected change describes the possible
change in the future.
The rest of the document is organized into two sections: Section 2 describes the module
decomposition and use relation of the system, Section 3 describes the module guide of

the system.
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C. 2 Module decomposition

This section is organized as follows: Section 2.1 shows the decomposition of the behavior
hiding modules, Section 2.2 describes the decomposition of the software decision hiding
modules, Section 2.3 gives the decomposition of the hardware hiding modules and
Section 2.4 represents the overview of the system with the use relation of the system. In
the figures of Sction 2 a rectangle with a double frame means this module has some sub
modules. Modules shown as rectangles with a single frame are leaf modules, which are
the modules that will be implemented.

C.2.1 Behavior hiding modules

Behavior modules hide the behavior of the system such as input format, screen format
and text messages. Figure C-1 shows the system decomposition for the behavior hiding
modules.

C.2.2 Hardware hiding modules

The hardware modules hide the hardware or ‘virtual machine’ used in the system. The
hardware used in this system refers to the keyboard, mouse and screen. We assume that
the operating system that the developed system will run on supports keyboard, mouse and
screen functions. Figure C-2 shows the decomposition of the machine hiding modules. In
this figure modules represented with a dotted frame means that they are provided by the
operating system.

C. 2.3 Software decision hiding modules

Software decision modules hide the system decisions that include data structure and
algorithms used in the system. Figure C-3 shows the system decomposition for software

decision hiding modules.
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Behavior hiding Importing con_equ

Experiment

Function specification

Master control

Experiment specification

Output show

Specimen geometry specification

Specification ii

Displacement specification

Load specification

Con_equ specification

File ii Material property file

Report file

Legend:
Rectangle with double frame means this module has some sub modules.

Figure C-1 module decomposition of behavior hiding modules

Hardware hiding Mouse

Keyboard

Screeen display

Legend:
A rectangle with dotted frame means this module is provided by the operating system.

Figure C-2 Module decomposition for the machine hiding modules
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Software decision
hiding

Legend:

ii Kinematics

Material deformation gradient

Con_equ structure

Table structure

Disp_con calculation

Spatial deformation gradient

Material displacement gradient

Spatial displacement gradient

Cauchy deformation gradient

Load_con calculation

Green deformation gradient

Function structure

Stretch tensor

Experiment definition

Specimen geometry

“ Stress

Stretch ratio tensor

Eulerian infinitesimal strain tensor

Lagrangian infinitesimal strain tensor

Eulerian finite strain tensor

Lagrangian finite strain tensor

True strain tensor

True stress

Engineering stress

Rectangle with double frame means this module has some sub modules.

Figure C-3 Module decomposition for the software decision hiding modules
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C. 2.4 Use relation

Figure C.4 gives the modules that constitute the Virlab system and their uses relation. In
this figure, module A uses module B if some programs in the module A rely on a correct
implementation of some programs in module B to complete their tasks described in its
specification. A rectangle with a single frame means a module and a rectangle with a
double frame means a module that has some sub modules and that all the sub modules
have the same use relation externally in the use relation of the system. A rectangle with a
dotted frame means that a module is assumed to be implemented and provided by the
implementation environment. Kinematics Module has some sub modules shown in the
Figure C-5. A significant characteristic of the use relation of the kinematics module is
that all submodules in the kinematics module can use each other because sometimes
known kinematic quantities will be used to calculate an unknown kinematic quantity. All
the submodules in the kinematics module have the same use relation externally with the
other modules in the system. Following a similar argument, the use relation of the stress
module shown in the Figure C-6 has the same characteristics as the use relation of the
kinematics module; i.e., all submodules in the stress module can use each other when a
known stress is used to calculate an unknown stress and all the submodules in the stress

module have the same use relation externally with the other modules in the system.
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master control

#

h 4 \ 4
imp con_equ experiment output show
table structure
disp_con load_con
l kinematics
A4
Con_equ structure Disp struc Load struc Tensor expdefiniti spe
struc on geometry
Func struc

!

func specification

spegeo specification

conequ specification Exp specification

v i v

mat_prop file Disp specification load specification
\ A \ 4 \ 4 A 4
4 ) 4 b 4
mouse keyboard screen display
ErrorHandling
A ™ B : Module A uses Module : Module X is used by all its upper level modules.
Comment:

disp_con, load_con, con_equ, mat_prop, spe_geo, func and exp are the

abbreviations _of displacement _constitutive. load constitutive. constitutive
Figure C.4 Use relation of the system
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means this module is used by all the other modules.

Figure C-5 use relation in the kinematics module
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Legend:
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means this module is called by all the other modules.

Figure C-6 Use relation in the stress module
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C. 3 Module guide for behavior hiding modules

This section is organized as follows: Section 3.1 gives the module guide for the behavior

hiding modules. Section 3.2 provides the module guide for the software decision hiding

modules. Section 3.3 shows the module guide for the hardware hiding modules.

C.3.1 Module guide for behavior hiding modules

This section focuses on the module guide for behavior hiding modules in the Virlab

system.

C.3.1.1

Importing constitutive equation module

Module name

Importing constitutive equation module

Module service

Import the new constitutive equation. By this module an new
constitutive equation is imported.

Module secret

The calling sequence of modules when a new constitutive equation
is imported.

Expected changes | Since this module works as a mediator when a new constitutive
equation is imported, the sequence of programs being called might
be changed. The expected changes correspond to C_14 in the list of
anticipated changes.

Prefix

C.3.1.2 Experiment module

Module name

Experiment module

Module service

Finish doing the experiment.

Module secret

The calling sequence of modules to do the experiment.

Expected changes | Since this module works as a mediator when an experiment is done,
the sequence of programs being called might be changed. The
expected changes correspond to C_14 in the list of anticipated
changes.

Prefix

C.3.1.3 Master control module

Module name

Master control module

Module service

This module controls the execution sequence of different modules
being called through the system.
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Module secret

The calling sequence of modules.

Expected changes

Since this module works as a mediator in the whole system, the
sequence of programs being called might be changed. The expected
changes correspond to C 14 in the list of anticipated changes.

Prefix

C.3.1.4  Output show module

Module name

Output show module

Module service

Outputs the experiment data in a curve way or in a table form or in
the file and works as an interface between the system and output
display.

Module secret

Output format

Expected changes

Output format might be changed or added. The expected changes
correspond to C 13 in the list of anticipated changes.

Prefix

0S

C.3.15

Experiment specification module

Module name

Experiment specification module

Module service

Query the user to specify the experiment definition

Module secret

Display content and format.

Expected changes | Display content and format might be changed depending on the
requirements. The expected changes correspond to C_11_DEF in
the list of anticipated changes.

Prefix es

C.3.1.6  Specimen geometry specification module

Module name

Specimen geometry specification module

Module service

Query the user to specify the geometry of the specimen

Module secret

Display content and format.

Expected changes

Display content and format might be changed if the test specimen is
changed. The expected changes correspond to C_11_GEO in the
list of anticipated changes.

Prefix

Sgs

C.3.1.7

Displacement specification module

Module name

Displacement specification module

Module service

Query the user to choose the displacement function

Module secret

Display content and format.

Expected changes

Display content and format might be changed depending on how to
describe the displacement. The expected changes correspond to
C 11 DISP in the list of anticipated changes.
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| Prefix

| ds

C.3.1.8 Load specification

Module name

Load specification module

Module service

Query the user to choose the load function.

Module secret

Display content and format.

Expected changes | Display content and format might be changed depending on how to
describe the load. The expected changes correspond to
C 11 LOAD in the list of anticipated changes.

Prefix Is

C.3.1.9 Function specification

Module name

Function specification module

Module service

Query the user to specify the function composition

Module secret

Display content and format.

Expected changes | Display content and format might be changed depending on the
function format. The expected changes correspond to C_11_FUNC
in the list of anticipated changes.

Prefix fsm

C.3.1.10 Constitutive equation specification module

Module name

Constitutive equation specification module

Module service

Query the user to specify the constitutive equation

Module secret

Display content and format.

Expected changes | Display content and format might be changed depending on how to
describe the constitutive equation. The expected changes
correspond to C 11 CON_EQU in the list of anticipated changes.

Prefix ces

C.3.1.11 Material property file module

Module name

Material property file module

Module service

Provide the material properties of the constitutive equation that are
saved into the file and provide the programs to read information on
material properties.

Module secret

File format.

Expected changes

The format of file in which material properties are saved might be
different. The order of file format is irrelevant but it should be
consistent so that the order of information that is read from the file
is the same as the order that is written to the file. The expected
changes correspond to C 2 in the list of anticipated changes.

Prefix

mpf
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C.3.1.12 Report file module

Module name

Report file module

Module service

Provide the information on experiment configuration and
experiment data that are saved in the file and provides programs to
write experiment configuration and experiment data into file

Module secret

File format.

Expected changes

File format might be different. The order of file format is irrelevant
but it should be consistent so that the order of information that is
read from the file is the same as the order that is written to the file.
The expected changes correspond to C_13 in the list of anticipated
changes.

Prefix

rfm

C. 3.2Module guide for software decision hiding modules

This section focuses on the module guide for all the software decision hiding modules in

the Virlab system.

C.3.21

Constitutive equation structure module

Module name

Constitutive equation structure module

Module service

Provide a form to describe the constitutive equation. A data
structure is designed to represent this form for the display. This
module also provides programs to save information on the
constitutive equation to the file and programs to read information
on the constitutive equation from the file.

Module secret

Data structure to represent the constitutive equation.

Expected changes

Other data structure might be designed to represent the constitutive
equation. A data structure might be adopted to calculate the
constitutive equation. The expected changes correspond to C_6 in
the list of anticipated changes.

Prefix

CS

C.3.2.2 Function structure module

Module name

Function structure module

Module service

Provide three functions. Each function is represented with a
corresponding data structure and is calculated with an algorithm.

Module secret

Data structure to represent the function and algorithms to calculate
the functions.

Expected changes

Other data structure might be designed to represent the function. Or
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new function might be added. The expected changes correspond to
C 8 in the list of anticipated changes.

Prefix

fs

C.3.23 Experiment definition module

Module name

Experiment definition module

Module service

This module provides experiment configuration information.

Module secret

A data structure to represent the experiment configuration.

Expected changes

Since experiment configuration is represented with a data structure,
the same experiment might be represented with other data structures
depending on designers’ choice. The expected changes correspond
to C 7 in the list of anticipated changes.

Prefix

ed

C.3.24 Specimen geometry module

Module name

Specimen geometry module

Module service

This module provides a way to describe the test specimen

Module secret

Geometry of the test specimen is described with a data structure.

Expected changes | If test specimen is changed or geometry of the test specimen is
changed, a new data structure might be needed. The expected
changes correspond to C 1 in the list of anticipated changes.

Prefix sg

C.3.2.5 Screen display module

Module name

Screen display module

Module service

Displays different components (e.g. buttons, checkbox, icon, etc)
that make up the system output interface on the screen. Provides
some interfaces between the system and the screen so the system
can display information on the screen through the use of the
programs in the module.

Module secret

The data structure and the algorithms to display anything on screen.
Secret type: software decision hiding

Expected changes

Other data structure might be designed to display user interface
elements on screen.

Prefix

C.3.2.6

Table structure module

Module name

Table structure module

Module service

This module provides a data structure to save all the data and also
provides programs to save data into the table and to read
experiment data from the table.
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Module secret

The data structure and the algorithms to save the experiment data.

Expected changes

Other data structure might be designed to save the data. The
expected changes correspond to C 12 in the list of anticipated

changes.
Prefix ts
C.3.2.7 Displacement constitutive calculation module

Module name

Displacement constitutive calculation module

Module service

Provide the numerical approximation of the constitutive equation to
obtain the stress or other kinematics quantities when the
constitutive equation is introduced in the displacement experiment.

Module secret

Algorithm to calculate the numerical approximation of the
constitutive equation in the displacement controlled experiment.

Expected changes | Different algorithm might be adopted to calculate the
approximation. The expected changes correspond to C_3_DISP in
the list of anticipated changes.

Prefix dcc

C.3.2.8 Load constitutive calculation module

Module name

Load constitutive calculation module

Module service

Provide the numerical approximation of the constitutive equation to
obtain the displacement and then other kinematics quantities when
the constitutive equation is introduced in the load experiment.

Module secret

Algorithm to calculate the numerical approximation of the
constitutive equation in the load controlled experiment.

Expected changes | Different algorithm might be adopted to calculate the
approximation. The expected changes correspond to C_3_LOAD in
the list of anticipated changes.

Prefix lcc

C.3.2.9 Material deformation gradient module

Module name

Material deformation gradient module

Module service

Provides the programs to obtain the material deformation gradient

Module secret

The calculating procedure to obtain the material deformation
gradient.

Expected changes

F is called the material deformation gradient by George E
Mase(1970). Different researcher might give it a different name.
User can get the material deformation gradient based on the
different known conditions. The expected changes correspond to
C 4 MDG in the list of anticipated changes.

Prefix

mdg
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C.3.2.10 Spatial deformation gradient module

Module name

Spatial deformation gradient module

Module service

Provides the programs to obtain the spatial deformation gradient

Module secret

The calculating procedure to obtain the spatial deformation
gradient.

Expected changes

H is called the spatial deformation gradient by George E.
Mase(1970). Different researcher might give it a different name and
also use different algorithms to get the spatial deformation gradient.
The expected changes correspond to C 4 SDG in the list of
anticipated changes.

Prefix

sdg

C.3.2.11 Material displacement gradient module

Module name

Material displacement gradient module

Module service

Provides the programs to obtain the material displacement gradient

Module secret

The calculating procedure to obtain the material displacement
gradient. Secret type: software decision hiding

Expected changes

J is called the material displacement gradient by George E.
Mase(1970). Different researcher might give different name for the
same tensor. Different researchers can change algorithm to get the
material displacement gradient. The expected changes correspond
to C 4 MDPG in the list of anticipated changes.

Prefix

mdpg

C.3.2.12 Spatial displacement gradient module

Module name

Spatial displacement gradient module

Module service

Provides the programs to obtain the spatial displacement gradient

Module secret

The calculating procedure to obtain the spatial displacement
gradient. Secret type: software decision hiding

Expected changes

K is called the spatial displacement gradient by George E.
Mase(1970). Different researcher might give it a different name.
Different researchers can change algorithm to get the spatial
displacement gradient. The expected changes correspond to
C 4 SDPG in the list of anticipated changes.

Prefix

sdpg

C.3.2.13 Cauchy deformation gradient

Module name

Cauchy deformation gradient module

Module service

Provides the programs to obtain the Cauchy deformation gradient

Module secret

The calculating procedure to obtain the Cauchy deformation
gradient. Secret type: software decision hiding

Expected changes

C is called the Cauchy’s deformation tensor by George E. Mase
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(1970). Different researcher might give it a different name and use
different algorithms to calculate the Cauchy deformation tensor.
The expected changes correspond to C_4 CDG in the list of
anticipated changes.

Prefix

cdt

C.3.2.14 Green deformation gradient module

Module name

Green deformation gradient module

Module service

Provides the programs to obtain the Green deformation gradient

Module secret

The calculating procedure to obtain the Green deformation gradient.
Secret type: software decision hiding

Expected changes

G is called the Green deformation tensor by George E. Mase
(1970). Different researcher might give it a different name and use
different algorithms to calculate the Green deformation gradient.
The expected changes correspond to C_4_GDG in the list of
anticipated changes.

Prefix

gdt

C. 3.2.15 Stretch tensor module

Module name

Stretch tensor

Module service

Provides the programs to obtain the stretch tensor

Module secret

The calculating procedure to obtain the stretch tensor. Secret type:
software decision hiding

Expected changes

The stretch tensor is named by George E. Mase (1970). Different
researcher might give it a different name. The expected changes
correspond to C 4 ST in the list of anticipated changes.

Prefix

st

C. 3.2.16 Stretch ratio tensor module

Module name

Stretch ratio tensor

Module service

Provides the programs to obtain the stretch ratio tensor

Module secret

The calculating procedure to obtain the stretch ratio tensor. Secret
type: software decision hiding

Expected changes | The stretch tensor is named by George E. Mase (1970). Different
researcher might give it a different name. The expected changes
correspond to C 4 SRT in the list of anticipated changes.

Prefix srt

C.3.2.17 Eulerian infinitesimal strain tensor module

{ Module name

| Eulerian infinitesimal strain tensor module
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Module service

Provides the programs to obtain the Eulerian infinitesimal strain
tensor.

Module secret

The calculating procedure to obtain the Eulerian infinitesimal strain
tensor. Secret type: software decision hiding

Expected changes

e is called the Eulerian infinitesimal strain tensor by George E.
Mase (1970). Different researchers might give it a different name
and they also might use other algorithms to calculate the Eulerian
infinitesimal strain tensor. The expected changes correspond to
C 4 EIST in the list of anticipated changes.

Prefix

eist

C.3.2.18 Lagrangian infinitesimal strain tensor module

Module name

Lagrangian infinitesimal strain tensor module

Module service

Provides the programs to obtain the Lagrangian infinitesimal strain
tensor.

Module secret

The calculating procedure to obtain the Lagrangian infinitesimal
strain tensor. Secret type: software decision hiding

Expected changes

I is called the Lagrangian infinitesimal strain tensor named by
George E. Mase (1970). Different researchers might give it a
different name and they might adopt different algorithms to
calculate the Lagrangian infinitesimal strain tensor. The expected
changes correspond to C_4_LIST in the list of anticipated changes.
Lagrangian infinitesimal strain tensor is also called engineering
strain tensor.

Prefix

list

C. 3.2.19 Eulerian finite strain tensor module

Module name

Eulerian finite strain tensor module

Module service

Provides the programs to obtain the Eulerian finite strain tensor.

Module secret

The calculating procedure to obtain the Eulerian finite strain tensor.
Secret type: software decision hiding

Expected changes

E is called the Eulerian (Almansi’s) finite strain tensor by George
E. Mase (1970). Different researcher might give it a different name
and they also might use other algorithms to calculate the Eulerian
finite strain tensor. The expected changes correspond to C_4_EFST
in the list of anticipated changes.

Prefix

efst

C.3.2.20 Lagrangian finite strain tensor module

Module name

Lagrangian finite strain tensor module

Module service

Provides the programs to obtain the Lagrangian finite strain tensor.

Module secret

The calculating procedure to obtain the Lagrangian finite strain
tensor. Secret type: software decision hiding
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Expected changes

L is called the Lagrangian (Green) finite strain tensor by George E.
Mase (1970). Different researcher might give it a different name
and also they might use other algorithms to calculate the
Lagrangian finite strain tensor. The expected changes correspond to
C 4 LFST in the list of anticipated changes.

Prefix

Ifst

C.3.2.21 True strain tensor module

Module name

True strain tensor module

Module service

Gives the definition of the true strain and provides the programs to
obtain the true strain tensor.

Module secret

The calculating procedure to obtain the true finite strain tensor.
Secret type: software decision hiding

Expected changes

Different researcher might give it a different name. The expected
changes correspond to C 4 _TST in the list of anticipated changes.

Prefix

st

C. 3.2.22 True stress tensor module

Module name

True stress tensor module

Module service

Gives the definition of the true stress. To obtain the true stress
tensor, constitutive equation is required. The numerical
approximation of the constitutive equation can be calculated.
Provides the programs to obtain the true stress tensor.

Module secret

Algorithms to obtain the numerical approximation of the
constitutive equation. Secret type: software decision hiding

Expected changes | Different algorithms might be adopted depending on the designer’s
choice. The expected changes correspond to C_5_TSST in the list
of anticipated changes.

Prefix tsst

C. 3.2.23 Engineering stress tensor module

Module name

Engineering stress tensor module

Module service

Gives the definition of the engineering stress and Provides the
_programs to obtain the Engineering stress tensor.

Module secret

The calculating procedure to obtain the engineering stress tensor.
Secret type: software decision hiding

Expected changes

Different researcher might give it a different name. The expected
changes correspond to C_5 ESST in the list of anticipated changes.

Prefix

esst
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C. 3.3Hardware hiding modules

This section provides the module guide for all the hardware hiding modules in the Virlab

system.

C.3.3.1

Keyboard module

Module name

Keyboard module

Module service

Keyboard works as a bridge between system software and user.
This module provides all keyboard events that system software
needs to respond.

Module secret

Keyboard event. Secret type: Hardware-hiding

Expected changes

Other keyboard event might be added to the system.

Prefix

C.3.3.2 Mouse module

Module name

Mouse module

Module service

Mouse also works as a bridge between system software and user.
This module provides all mouse events that system software needs
to respond.

Module secret

Mouse event. Secret type: Hardware-hiding

Expected changes | Other mouse event might be added to the system based on the need.
Prefix
C.3.3.3  Screen display module

Module name

Screen display module

Module service

This module provides screen display functions that system software
needs to respond.

Module secret

Screen information. Secret type: Hardware-hiding

Expected changes

Other screen display functions might be added to the system based
on the need.

Prefix
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D.1 Introduction

A module interface specification describes the detailed désign of the system. It is
represented as a collection of access routines. There are common idiom that help with the
design of a set of access routines. The idoms are available for set, sequence and tuple
types. This appendix is known as the module interface specification (MIS) for the Virlab
software.

This appendix is organized as follows: Section 2 includes some of the conventions we
adapted in documenting the MIS with the attempt to remove ambiguity for readers.
Sections 3 shows the module interface specifications for the modules, each of which

comprises a syntax subsection and a semantics subsection.

D. 2 Convention

e Naming convention

o Generally the access routine name includes three parts: the first is the
prefix that is the same as the module’s prefix, so all the access routines
with the same prefix mean that they serve for the same module. The
second is a letter s and/or g that explain that the second part is only
included for set and/or get access programs. The third is the routine name.
The three parts are separated by ‘.

o Some access routine names are just composed of prefix and routine name

because this access routine does not involve with the state.
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o That some exported functions are named without the prefix means that

o]

they are more related with the development environment and are assumed
to be provided by the development environment or operating systems.

The letters in the names of constants are capitalized.

e Mathematics definition

(o}

o]

o

O

‘=" means assignment
‘=" means comparison

‘=’ means a condition rule.

‘e’ and ‘¢’ follow their meanings in discrete mathematics

e Type definition

(o}

o]

o

The primary types are string, real, boolean and integer.

Real* is a new type and is equal to a set of all real numbers plus a special
value named undefined, that is, Real* = Ru{undefined}. Many of the data
structures that are introduced use a sequence of Real*, ud is the
abbreviation of the special value ‘undefined’.

Set, sequence and tuple are used in the type constructor.

User-defined types in the module interface specification start with a
capital letter.

‘a: Type’ means a is of type ‘Type’.

e Developer/designer/user

o]

User is a person who will do the experiment with Virlab software; For

example, a user might be a student.
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o Designer is a person who designs an experiment with Virlab software for a
user to do the experiment or for himself to do the research. A designer is a
professional with the professional knowledge that a material experiment
needs.

o Developer is a person who designs the Virlab software. A developer
should have software engineering knowledge.

“Virtual’ in the module interface specification

o The term ‘virtual’ is used in object-oriented programming language and
means if the method is defined as virtual in the base class, its concrete
implementation will be provided in the subclass of this base class. Here
the term ‘virtual’ is borrowed to define the attribute of the access
programs in the module interface specification. It represents that the
developers have responsibilities to provide the implementation of the
corresponding access programs.

(@ in the event table

The notation @Click(buttonname) is used to denote the occurrence of the event
that button ‘buttonname’ is clicked. For example, the event @Click(Confirm)
occurs when the ‘Confirm’ button is clicked. Other events include

@Click(Cancel), @Click(Save) etc.
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D. 3 Module Interface Specification

This section includes the module interface specification (MIS) for the modules designed

for the Virlab software. Each of MIS is composed of a syntax subsection and a semantics

subsection.

D. 3.1 Experiment definition module

Prefix: ed_

Reference: MG — C. 3.2.3

D.3.1.1
Exported data types:

Interface syntax

ExperimentClassT = set of {displacement-controlled, load-controlled}
ExperimentTypeT = set of {uniaxial, biaxial, multiaxial}
CoordinateTypeT = set of {superimposed, nonsuperimposed}
FunctionTypeT = {quafunction, expfunction, cosfunction}
FunctionDefinitionT = set of FunctionTypeT
ConEquSwitchT = set of {consider_con_equ, nonconsider_con_equ}
TimeDefinitionT = tuple of {inittime: real; timelength: real; timestep: real}
CoordinateDataT = tuple of {angle: real, setoff: real}

Exported constants: none

Exported functions:

Routines name Inputs Outputs Exception
ed s experimentclass ExperimentClassT none
ed g experimentclass ExperimentClassT | none
ed s experimenttype ExperimentTypeT none
ed g experimenttype ExperimentTypeT none
ed s coordinatetype CoordinateTypeT none
ed g coordinatetype CoordinateTypeT none
ed s functiondefinition | FunctionDefinitionT none
ed g functiondefinition FunctionDefinitionT | none
ed_s conequswitch ConEquSwitchT none
ed g conequswitch ConEquSwitchT none
ed s timedefinition TimeDefinitionT none
ed g timedefinition TimeDefinitionT none
ed s coordinatedata CoordinateDataT none
ed g coordinatedata CoordinateDataT none
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D.3.1.2 Interface semantics

State variables:
expClass: ExperimentClassT
expType: ExperimentTypeT
coord: CoordinateTypeT
func: FunctionDefintionT
time: TimeDefinitionT
con_switch: ConEquSwitchT
coorddata: CoordinateDataT

State invariants: none

Assumptions:

e State coord is set to superimposed by default. In this version the case that state
coordinate is equal to nonsuperimposed is not considered. If state coord is equal
to nonsuperimposed, type constructor CoordinateDataT will be used and state
coorddata will be set. So type CoordinateDataT and exported functions
ed_s_CoordinateData and ed_g CoordinateData are designed for future
expansion.

Access routines semantics:

ed_s_experimentclass(c: ExperimentClassT)
exception none
transition expClass = ¢

ed_g experimentclass
exception: none
output out := expClass

ed_s_experimenttype(t: ExperimentTypeT)
exception none
transition expType :=t

ed_g_experimenttype
exception: none
output out := expType

ed_s_coordinatetype(c: CoordinateTypeT)
exception none
transition coord :=c¢

ed_g coordinatetype

exception: none
output out := coord
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ed_s_functiontype(f: FunctionTypeT)

exception
transition

ed_g functiontype
exception:
output

none
func:=f
none

out ;= func

ed_s_conequswitch(s: ConEquSwithcT)

exception
transition

ed_g conequswitch

exception:
output

none
con_switch := s

none
out := con_switch

ed_s_timedefintion(t: TimeDefinitionT)

exception
transition

ed g timedefinition

exception:
output

Comments:

1. quafunction, expfunction and cosfunction

none
time =t
none

out := time

The function type refers to the type of displacement function or load function
used in the experiment. Three popular mathematical function types are chosen:
quadratic function, sine/cosine function, exponential function. Table 4.4.1-1 gives
the concrete type of each function.

quafunction

expfunction

cosfunction

ax® +bx+c

"

ce

¢, sin(at) + ¢, cos(ft)

2. displacement-controlled and load-controlled

Table D-1 Function type

In the definition of ExperimentClassT displacement-controlled refers to the
displacement controlled experiment and load-controlled refers to the load
controlled experiment.

3. superimposed and nonsuperimposed
These two terms are used in the definition of CoordinateTypeT. Superimposed
means that Lagrangian coordinate system and Eulerian coordinate system
mentioned at section 2.1 in chapter two have the same origin and further their
axes are parallel. Nonsuperimposed means that Lagrangian coordinate system and
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Eulerian coordinate system do not have the same origin or their axes are not
parallel r both cases.

consider_con_equ oand nonconsider_con_equ

In the definition of ConEquSwitchT, consider_con_equ refers to the case when
the constitutive equation is introduced in the experiment and also is used to obtain
the experimental data such as Kkinematics quantities or stress.
nonconsider_con_equ refers to the case that the experimental data of interest can
be calculated without introducing a constitutive equation.
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D. 3.2 Specimen geometry module
Prefix: sg_
Reference: MG-C.3.24

D.3.2.1 Interface Syntax

Exported data types:
SpecimenGeometryT = tuple of {

length: real

height: real

width: real

anglexy: real /* design for the future*/
angleyz: real

anglexz: real

}

Exported constants: none

Exported functions:

Routines name Inputs Outputs Exception
sg_s geometry real, real, real, real, none
real, real
sg g geometrylength real none
sg g geometryheight real none
sg g geometrywidth real none
sg g geometryanglexy real none
sg g geometryangleyz real none
sg g geometryanglexz real none

D.3.2.2 Interface semantics

State variables:
spe: SpecimenGeometryT

State invariants: none

Assumptions:
e Since the test specimen is assumed as a rectangle box, anglexy, angleyz and

anglexz are assumed as ninety degrees. Exported  functions
sg_g geometryanglexy, sg g geometryangleyz and sg_g geomeiryanglexz are
designed for the future.

Access routines semantics

sg_s_geometry(l: real, h: real, w: real, axy: real, ayz: real, axz: real )
exception None
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transition

ed_g geometrylength()

exception:
output:

ed_g geometryheight()

exception:
output:

ed_g geometrywidth()

exception:
output:

ed_g geometryanglexy()

exception:
output:

ed_g geometryangleyz()

exception:
output

ed_g geometryanglexz()

exception:
output:

Comments:

1. anglexy in the SpecimenGeometryT refers to the angle between the length side
and height side of the rectangle box, angleyz in the SpecimenGeometryT refers to
the angle between the length side and width side of the rectangle box, anglexz in
the SpecimenGeometryT refers to the angle between the height side and width

spe.length :=1
spe.height := h
spe.width := w
spe.anglexy := axy
spe.angleyz := ayz
spe.anglexz := axz

none
out := spe.length

none
out := spe.height

none
out := spe.width

none
out := spe.anglexy

none
out := spe.angleyz

none
out := spe.anglexz

side of the rectangle box.
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D. 3.3 Function structure module
Prefix: fs_
Reference: MG-C.3.2.2

D.3.3.1 Interface syntax

Imported data types:
e FunctionDefinitionT from experiment definition module
FunctionDefinitionT = set of FunctionTypeT
FunctionTypeT = {quafunction, expfunction, cosfunction}

External functions:
Sinfunction(t:real)
Cosfunction(t:real)
Expfunction(t: real)

ed_g functiondefinition from the experiment definition module

Exported data types:
QuaDefinitionT = tuple of {
qua_coefficient: real
lin_coefficient: real
con_coefficient: real

/* F(t)=qua coefficient *t* +lin coefficient *t +con coefficient */
qua _ - -

CosDefinitionT = tuple of {
sin_coefficient: real
sin_t_coefficient: real
cos_coefficient: real
cos_t_coefficient: real
M f(¢) =sin_coefficient * sin(sin_t _coefficient *t) +

cos_ coefficient * cos(cos_t _coefficient * 1) */
ExpDefinitionT = tuple of {
exp_coefficient: real
exp_t_coefficient: real
} /* f(t) =exp_coefficient * e™-'- et %/
Exported constants: none
Exported functions:
Routines name Inputs Outputs Exception
fs s initqua
fs s initcos
fs_s initexp
fs s quafunction real, real, real
fs_s_expfunction real, real
fs s cosfunction real, real, real, real
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fs g quafunctionvalue t: real real

fs g expfunctionvalue t: real real

fs g cosfunctionvalue t: real real

fs_g functionvalue ft: FunctionTypeT, | real
t: real

D. 3.3.2 Interface semantics

State variables
qua_state: QuaDefintionT
cos_state: CosDefintionT
exp_state: ExpDefintionT
qua_set: boolean := FALSE
cos_set: boolean := FALSE
exp_set: boolean := FALSE

State invariants: none

Assumptions:
e Experiment definition module should be initialized before function structure
module is called.

Access routines semantics

fs_s_quafunction(q: real, : real, c: real)
exception: None
transition: qua_set := TRUE
qua_state.qua_coefficient := q, qua_state.lin_coefficient := I,
qua_state.qua_con_coefficient:= ¢

fs_s_cosfunction(c: real, ct: real, s: real, st: real)
exception: None
transition: cos_set := TRUE
cos_state.cos_coefficient := c,
qua_state.cos_t_coefficient := ct,
qua_state.sin_coefficient:= s,
qua_state.sin_t_coefficient:=st

fs_s_expfunction(e: real, et: real)
exception: none
transition: exp_set := TRUE
exp_state.exp_coefficient ;= ¢,
exp_state.exp_t_coefficient := et

fs_g_quafunctionvalue(t: real)
exception: (qua_set = FALSE) = NotSet
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output: out := qua_state.qua_coefficient*t*t +

qua_state.lin_coefficient*t+
qua_state.con_coefficient

fs_g cosfunctionvalue(t: real)

exception:  (cos_set = FALSE) = NotSet

output: out :=
cos_state.cos_coefficient*Cosfunction(cos_state.cos_t_coefficient*t)
+cos_state.sin_coefficient*Sinfunction(sin_state.sin_t_coefficient*t)

fs_g expfunctionvalue(t: real)

exception:  (exp_set = FALSE) = NotSet
output: out :=

exp_state.exp_coefficient*Expfunction(exp_state.exp_t_coefficient*t)

fs_g functionvalue(ft: FunctionTypeT, t: real)
exception: none

output: ((ft = quafunction) =fs_g_equfunctionvalue(t)) |

((ft = cosfunction) =fs_g_cosfunctionvalue(t)) |
((ft = expfunction) =fs_g_expfunctionvalue(t))
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D. 3.4Displacement specification module

Prefix: ds_
Reference:

D.34.1
Imported data types:

Interface syntax

MG-C. 3.1.7

e FunctionDefinitionT from the experiment definition module
FunctionDefinitionT = set of FunctionTypeT
FunctionTypeT = {quafunction, expfunction, cosfunction}
TimeDefinitionT from the experiment definition module
TimeDefinitionT = tuple of {inittime: real, timelength: real, timestep: real }

Exported data types:
DisplacementT = tu
dispu: Real*
dispv: Real*

ple of

dispw: Real*

deltaxy: Real*
deltayz: Real™*
deltaxz: Real*

}

External functions:
labelshow,
listshow,
buttonshow
fs_g functionvalue

/* design for the future*/
/* design for the future*/
/* design for the future*/

/* from the screen display module*/
/* from the screen display module*/
/* from the screen display module */

/* from the function structure module */

ed _g__TimeDefinition /* from the experiment definition module */
ed g experimentclass /* from the experiment definition module*/
ed_g_experimenttype /* from the experiment definition module*/

Exported constants: none

Exported functions:

Routines name Inputs Outputs Exception
ds s initdisp DisplacementT
ds s disputype FunctionDefinitionT

ds g dispu real

ds s dispvtype FunctionDefinitionT'

ds_g dispv real

ds s dispwtype FunctionTypeT

ds g dispw real

ds_s dispu Real™*

ds_s dispv Real*

ds s dispw Real*
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ds g displacement DisplacementT

ds_specifydisplacement

D.3.4.2 Interface semantics

Environmental variable:
labwindows: the graphic window where the experiment is displayed on the
screen.

State variables:
utype, vtype, wtype: FunctionDefinitionT
disp: DisplacementT

- State invariants: none

Assumptions:
e ds_s_initdisp() should be called before any other access routines.

¢ Function structure module and experiment definition module should be initializ
before the displacement specification module.
e ds g dispu, ds_g dispv, dispw are just designed for the displacement controlled
experiment as well as ds_s_disputype, ds_s_dispvtype and ds_s_dispwtype.
e In the data type DisplacementT, deltaxy, deltayz and deltaxz are designed for the
future.
Access routines semantics:

ds_s_initdisp()
exception: None
transition/output:  disp.dispu := undefined
disp.dispv := undefined
disp.dispw := undefined
out := disp

ds s disputype(u: FunctionDefinitionT)
exception: None
transition: utype :=u

ds_s_dispvtype(v: FunctionDefinitionT)
exception: None
transition: vtype :=v

ds_s_dispwtype(w: FunctionDefinitionT)
exception: none
transition: wtype 1= w
ds_g_dispu(t: real)
exception: (t > (time.init + time.length)) =(out_of_range)
transition: disp.dispu := fs_g_functionvalue(utype, t)

ds_g dispv(t: real)
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exception:
transition:

ds_g_dispw(t: real)
exception:
transition:

ds_s_dispu(u: Real*)
exception:
output:

ds_s_dispv(v: Real*)
exception:
output:

ds_s_dispw(w: Real*)
exception:
output:

ds_g_displacement()
exception:
output:

ds_specifydisplacement()

(t > (time.init + time.length)) = (out_of range)
disp.dispv := fs_g_functionvalue(vtype, t)

(t > (time.init + time.length)) = (out_of range)
disp.dispw :=fs_g functionvalue(wtype, t)

none
disp.dispu :=u

none
disp.dispv :=v

none
disp.dispw := w

none
out := disp

H, controlled

exception: none
transition: Call the screen display module to set the environmental
variable’s state for the graphical interface of the displacement
specification and then query the user to choose the displacement
function type and set the state variables utype, vtype or wtype.
Event table:
Condition Event Action
When the ‘Confirm’ button | @Click(Confirm) class:= ed_g_experimentclass
is pressed. type:= ed_g_experimenttype
Table D-2
When the ‘Cancel’ button is | @Click(Cancel) Do nothing
pressed
(class=H,)atype=11,)>G [uniaxial [biaxial [ multiaxial | H,
displacement- || ds_s_initdisp ds_s_initdisp ds_s_initdisp

ds_s_disputype ds_s_disputype ds_s_disputype
ds_s_dispvtype ds_s_dispvtype
ds s dispwtype

load-

controlled

ds_s_initdisp ds_s_initdisp ds_s_initdisp

Table D-2 The order for the initilization
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D. 3.5 Load specification module

Prefix: Is_

Reference: MG-~C.3.18

D.3.5.1 Interface syntax
Imported data types:

e FunctionDefinitionT
FunctionDefinitionT = set of {quafunction, expfunction, cosfunction}

e TimeDefinitionT

TimeDefinitionT = tuple of {inittime: real, timelength: real, timestep: real}

Exported data types:
LoadT = tuple of

loadu: Real*
loadv: Real*
loadw: Real*

loaddeltaxy:

loaddeltayz: Real*
loaddeltaxz:
}

External functions:
labelshow
listshow
buttonshow
fs_g functionvalue

Real*  /* design for the future*/

/*design for the future */

Real*  /*design for the future */

/* from the screen display module*/
/* from the screen display module*/
/* from the screen display module*/
/* from the function structure module */

ed_g_experimentclass/* from the experiment definition module*/
ed_g_experimenttype /* from the experiment definition module*/

Exported constants: none

Exported functions:

Routines name Inputs Outputs Exception
Is s initload LoadT

Is s loadutype FunctionDefinitionT

Is g loadu real

Is s loadvtype FunctionDefinitionT

Is g loadv real

Is s loadwtype FunctionTypeT

Is ¢ loadw real

Is g load LoadT

Is specifyload
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D.3.5.2 Interface semantics

State variables:
utype, vtype, wtype: FunctionDefinitionT
load: LoadT

State invariants: none

Assumptions:
¢ Function structure module and experiment definition module should be initialized
before the load specification module.

o In the data type LoadT, loaddeltaxy, loaddeltayz and loaddeltaxz are designed for
the future.

Access routines semantics:

Is_s_initload()

exception: none

transition/output: load.loadu :=undefined, load.loadv := undefined, load.loadw
:=undefined
out:= load

Is_s_loadutype(u: FunctionDefinitionT)
exception: none
transition: utype :=u

Is s_loadvtype(v: FunctionDefinitionT)
exception: none
transition: vtype := v

Is_s_loadwtype(w: FunctionDefinitionT)
exception: none
transition: wtype := W

Is_g_loadu(t: real)
exception: (t > (time.init + time.length)) =>exc(out_of_range)
transition: load.loadu :=fs_g_funcutionvalue(utype, t)

Is_g loadv(t: real)
exception: (t > (time.init + time.length)) = exc(out_of_range)

transition: load.loadv :=fs_g_functionvalue(vtype, t)

Is_g loadw(t: real)

exception: (t > (time.init + time.length)) = exc(out_of_range)
transition: load.loadw :=fs_g_functionvalue(wtype, t)

Is_g load()
exception: none
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output: out := load

Is_specifyload()

exception: none

transition: Call the screen display module to set the environmental
variable’s state for the user graphical interface of the load
specification and then query the user to choose the displacement
function type and set the state variables utype, vtype or wtype.

Event table:
Condition Event Action
When the ‘Confirm’ button | @Click(Confirm) class:=ed_g_experimentclass
is pressed. type:=ed g experimenttype
Table D-3
When the ‘Cancel’ button | @Click(Cancel) Do nothing
is pressed.
lass=H; )A(type=H, )G

(class=H,)A(type=1,) | uniaxial | biaxial | multiaxial | H,

displacement-controlled Do nothing Do nothing Do nothing G

H,

load-controllied

ds_s_initdisp
Is_s_initload
Is_s_loadutype

ds_s_initdisp
Is_s_initload
Is_s loadutype
Is_s_loadvtype

ds_s_initdisp
Is_s_initload
Is_s_loadutype
Is_s_loadvtype
Is_s loadwtype

Table D-3 The order for the initilization

167



D. 3.6 Table structure module

Prefix: ts_
Reference: MG-C.3.2.6
D.3.6.1 Interface syntax

Imported data types:
TensorDataT from the tensor data definition module
TensorDataT = Sequence [DIM][DIM] of Real*
Exported data types:
ResultDataT = sequence of TensorDataT
Exported functions:

Routines name Inputs Outputs Exception
ts AddColumn String Integer
ts g ColumnName Integer String InvalidColumnNumber
ts AddRow Integer
ts RemoveRow Integer InvalidRowNumber
Ts Depth Integer
Ts Width Integer
ts_SetAt Integer
Integer
ResultDataT
ts_GetAt Integer ResultDataT
Integer
ts RealseTable

External Function:
String RealToString(resultdata:Real *)
Real* StringToReal(resultstring:string)

D. 3.6.2 Interface semantics
State variables:
resultData:ResultDataT
numCols,numRows: Integer
State invariants: none

Local variables:
ColumnNameList: sequence of String
resultstring: string

Local Functions:
ResultDataT CreatTable()

Assumption: none

Access routines semantics:

ts_AddColumn(columnname:String)
exception: None

168




transition/output: ColumnNameList[numCols] := columnname
numCols :=numCols+1
out:=numCols

ts_g ColumnName(index:integer)
exception: (index > |ColumnNameList|)=InvalidColumnNumber
transition/output: out:= ColumnNameList[index-1]

ts AddRow()
exception: none
transition/output: resultData = CreatTable()
Allocate memories for the resultdata
numRows = numRows+1
out:=numRows

ts_RemoveRow(rownum:integer)
exception: (rownum > ts_Depth())=InValidRowNumber
transition: Release memories for this row
numRows = numRows-1

ts_Depth()

exception: none

output: Out := numRows
ts_ Width()

exception: none

tansition: Out :=numCols

ts_SetAt(row:integer,column:integer,result:ResultDataT)

exception: (row > ts_Depth())=>InvalidRowNumber
(column > ts_Width())= InvalidColumnNumber
output: resultstring :=RealToString(result)

allocate memory for resultstring
resultData[row,column] := ResultString

ts_GetAt(row:integer,column:integer)

exception: (row > ts_Depth())=>InvalidRowNumber
(column > ts_Width())= InvalidColumnNumber
tansition: resultstring :=resultData[row,column]

out:= StringToReal(resultstring)

Ts_ReleaseTable()
exception: none
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Output: CurrentRow :=ts_Depth
CurrentColumn := ts_width
Release the table in which the number of rows is currentRow
and the number of colomns is currentColumn

170



D. 3.7Screen display module

The screen display module is more related with the development environment.
Exported functions might be provided by the development environment or as the
operating system’s application program interface. So there are not interface syntax
and interface semantics for this module. The functions of access routines are just
described in the following.

Environmental variable:

labwindows: the window where the experiment is displayed.

Exported functions

labelshow(top, left: integer, caption: string)
At this position (top, left) a label caption is show.

optionshow(top, left: integer; visible: boolean; value: boolean; caption: string)
At the position(top, left) an option is shown with the caption. The variable
visible decides if it can be seen and variable value decides if this option is
elected.

frameshow(top, left, down, right: integer; visible: boolean; caption: string)
A frame with the caption is shown between the left top position (top, left)
and right down position (down, right).

buttonshow(top, left, down, right: integer, visible: boolean, caption: string)
A button with the caption is shown. The left top point of the button is at
the coordinate (top, left) and right down point of this button is at the
coordinate (down, right)

imagshow(top, left, down, right: integer; imagefile: string)
An imag is shown between the top left point (top, left) and bottom right
point (down, right).

textshow(top, left, down, right: integer; visible: boolean; text: string)
A text input windown is shown between the top left point (top, left) and
bottom right point (down, right). v

checkboxshow(top, left: integer; visible: Boolean; value: Boolean: caption:string)
At the position(top, left) a checkbox is shown with the caption. The
variable visible decides if it can be seen and variable value decides if this
option is elected.

listshow(top, left, down, right: integer; visible: Boolean)
A listbox is shown between top left point (top, left) and bottom right point
(down, right). The variable visible decides if it can be seen and variable
value decides if this option is elected.

additemtolist(s: string)
Add a new item to the list.

deleteitemtolist(i: integer)
Delete the item with the specified index from the list.

showwindow
Display the experiment window where the experiment is done.
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D. 3.8 Experiment specification module
Prefix: es_
Reference: MG-C.3.15

D.3.8.1 Interface syntax
Environmental variables:

labwindows: the graphic window where the experiment is displayed

Exported data type: none

Exported constant:  none

Exported function:

Routines name Inputs Outputs Exception
es_specifyExperiment
External functions:
labelshow /*from the screen display module®*/
frameshow  /* from the screen display module */
optionshow  /* from the screen display module*/
buttonshow  /*from screen display module*/
ed_s_expClass from the experiment definition module
ed_s_expType from the experiment definition module
D.3.8.2 Interface semantics
State variables: none
State invariant: none
Assumption: none
Access routine semantics:
es_specifyexperiment
exception: none
Output: Call screen display module to configure the graphical interface

and set the labwindows’s state for the display and then query
the user for the experiment class and type definition and store
them in expClass and expType states respectively.

Event table:
Condition Event

Action

When the ‘Confirm’ button | @Click(Confirm)
is pressed.

ed_s_ExperimentClass(class)
ed s ExperimentType(type)

When the ‘Cancel’ button | @Click(Cancel)
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is pressed
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D. 3.9 Function specification module
Prefix: fsm_
Reference: MG-C.3.19

D.3.9.1 Interface syntax
Environmental variables:

labwindows: the graphic window where the experiment is displayed.

Exported data type: none

Exported constant:  none

Exported function:

Routines name Inputs Outputs

Exception

fsm_specifyfunction

External function:
labelshow  /* from the screen display module*/
textshow /* from the screen display module*/
checkboxshow/* from the screen display module*/
buttonshow /* from screen display module*/
real StringToReal(s: string)

return the real number by converting the string to the real number

fs_s_quafunction /*from the function structure module*/
fs_s_cosfunction /*from the function structure module*/
fs_s_expfunction /*from the function structure module*/

ed_g functiondefinition /*from the experiment definition module™/

D.3.9.2 Interface semantics

State variable: none
State invariant: none
Assumption: none

Access routine semantics:

fsm_specifyfunction
exception:
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output: Call screen display module to configure the graphical interface

and set the environmental variable for the display and then
query the user to select which functions will be used and set the
selected functions’ arguments and store them in states
qua_state, con_state or exp_state respectively and set the
corresponding state variables que_set, cos_set or exp_set as
true. '

Event table:

Condition Event Action

When the ‘Confirm’ button | @Click(Confirm) select := ed_g_functiondefinition

is pressed. Table D-4

When the ‘Cancel’ button is | @Click(Cancel) Do nothing

pressed

(select=H)>G

{} Do nothing

{qua} fs s quafunction is called.

{exp} fs s expfunction is called.

{cos} fs s cosfunction is called. G

{qua, exp} fs s quafunction and fs_s_expfunction are called.

{qua, cos} fs s quafunction and fs_s_cosfunction are called.

{exp,cos} fs s expfunction and fs_s_cosfunction are called.

{exp, cos, qua} || fs s expfunction, fs s cosfunction and fs_s_quafunction are called.

Table D-4 The order of initialization

Comments for the Table D-4:
qua: the abbreviation of the quafunction
exp: the abbreviation of the expfunction
cos: the abbreviation of the cosfunction
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D.3.10 Specimen geometry specification module
Prefix: sgs_
Reference: MG-C.3.16

D. 3.10.1 Interface syntax

Environmental variables:
labwindows: the graphic window, where the experiment is displayed.

Exported data type: none

Exported constant: none

Exported function:

Routines name Inputs Outputs Exception

sgs_specifygeometry

External functions:

labelshow /*from the screen display module*/
buttonshow /* from the screen display module*/
textshow /* from the screen display module */

real StringToReal(s: string)
Return the real number by converting the specified string in the textshow
to the real type.

sg_s_geometrylength /* specimen geometry module™/

sg_s_geometrywidth /* specimen geometry module*/

sg_s_geometryheight /* specimen geometry module*/

D.3.10.2 Interface semantics

State variable: none
State invariant: none
Assumption: none

Access routine semantics:

sgs_specifygeometry
exception: none
output: Call screen display module to configure the graphical user
interface and set the environmental variable’s state for the
display and then query the user for the specimen geometry
properties and store them in the state spe.

Event table:
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Condition Event Action

When the ‘Confirm’ button | @Click(Confirm) ed_s_geometrylenth

is pressed. ed_s_geometrywidth
ed s geometryheight

When the ‘Cancel’ button is | @Click(Cancel) Do nothing

pressed.

Comments:

1. The length, width and height of the test specimen have to be specified in every

experiment.
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D.3.11 Material properties file module
Prefix: mpf_
Reference: MG-C.3.1.11

D.3.11.1 Interface syntax

Exported data type:
PropertiesT = tuple of {
propertyname: string
propertyvalue: real
}
ProptertylistT: sequence of PropertiesT
PropertyValueT = sequence of real
Exported functions

Routines name Inputs Outputs Exception
mpf_g_numberofproperties | string integer file_not_exist,
failure to open
mpf_g_propertyname string PropertylistT file_not_exist,
failure to open
mpf sg propertyvalue PropertyValueT | PropertylistT

External functions:
Openfile(filename: string)

Open a file whose name is filename and a pointer pointing to this file.

Readfile(FILE *file, type: string)

Read the value of the specified type from an opened file. If type is string
then read a string from the current position of the file pointer. If type is
integer then read an integer value from the current position of the file

pointer.

D. 3.11.2 Interface semantics
State variable:

f: file
State invariant; none

Assumption:

e Material property file is named with string given by a designer and an extension
name (.mat). That string given by the designer should be consistent with
constitutive equation file’s name because every constitutive equation has the
corresponding material properties saved as material property file. The difference
between constitutive equation file and material property file is an extension.
Material features file has an extension as .mat and constitutive equation file has an

extension as .con.

e Material features file is written by a user with a notepad or textwriter and saved as
a text. The order of file format is irrelevant, but it should be consistent so that the
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order of information that is read from the file is the same as the order that is
written to the file.

Local variables:
number: integer
list: PropertylistT

Access routine semantics:

mpf_g numberofproperties(filename: string)
exception: (Openfile(filename) is unsuccessful ) = (file_not_exist,
failure_to_open)
transition/output: f:= Openfile(filename)
out :=Readfile(f, “integer”)

mpf_g_propertyname(filename: string)

exception: (Openfile(filename) is unsuccessful) = (file_not_exist,
failure_to_open)

transition/output: f:= Openfile(filename)
number :=Readfile(f, “integer”)
for i=0 to number

list[i].propertyname := Readfile(f, “string”™)

out := list

mpf_sg_propertyvalue(value: PropertyValueT)
exception:
transition/output: f:= Openfile(filename)
number :=Readfile(f, “integer”)
for i=0 to number
list[i].propertyvalue := value[i]

out := list
Comments:
1. The first entry in the material property file is the number of the material
properties.
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D.3.12 Constitutive equation structure module
Prefix: cs_
Reference: MG-C.3.2.1

D. 3.12.1 Interface syntax

Imported data type:
PropertyListT from the material property file module
PropertiesT = tuple of {
propertyname: string
propertyvalue: real
}
ProptertylistT: sequence of PropertiesT
PropertyValueT from the material property file module
PropertyValueT = sequence of real

Exported data type:
DeformationListT = sequence[ LISTNUM] of Boolean

ConstitutiveEquationT = tuple of {
name: string
the_number_of_material_properties: integer
material_properties_list: PropertyListT
deformation_list:DeformationListT

}

Exported constant: none

Exported functions;

Routines name Inputs Outputs Exception
cs_g constitutiveequation ConstitutiveEquationT
CS_S_constitutiveequation | string

DeformationListT

PropertyValueT
ce_g writetofile ConstitutiveEquationT failure to_open
ce_s_readfromfile string ConstitutiveEquationT | failure_to_open

file not exist

External functions:
mpf_g numberofproperties from the material property file module
mpf_g_propertyname from the material property file module
file Openfile(filename: string)
Open a file whose name is filename, if return value is zero, Opening a file
is successful, otherwise failure.
Readfile(f: file, type: string)
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Read the value of the specified type from an current position of a file
pointer and return this value.

Writefile( f: file, var: type)
Write the value of a variable whose type is type constructor into the file.

D. 3.12.2 Interface semantics

State variable: ,
coninformation: ConstitutiveEquationT
f: file

Local variable:
local: PropertyListT

State invariant: none

Assumption:
o DeformationListT type is a sequence of boolean. This type is used to present if

deformation definitions are used in the constitutive equation.

e Functions cs_g_readfilefile and cs_g_writetofile is used to operate the file in
which the constitutive equation is saved. Actually the order of the format is
irrelevant but it should be consistent so that the order of information on the
constitutive equation that is read from the file is the same as the order that is
written to the file.

Access routine semantics:

cs_s_constitutiveequation(name:  string,  deform:  DeformationListT,  value:
PropertyValueT)

exception: none

transition: coninformation.name := filename

coninformation.the_number_of_material_properties:=
mpf g numberofproperties(name)

local := mpf_g_propertyname(name)

local := mpf_sg_propertyvalue(value)

coninformation.material_property_list := local
mpf_g_propertyname(name)

coninformation.deformation_list := deform

cs_g_constitutiveequation()
Exception: none
Output: out:= coninformation

cs_g_realdfromfile(filename: string)

Exception: (Openfile(filename) is unsuccessful) =
(fail_to_open, file_not_exist)
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Transition/output:  f:= Openfile(filename)
local.name := filename
local.the_number_of_material properties:=Readfile(f, "integer”)
for i=0 to local.the_number_of material_properties
local.material_property list[i] := Readfile(f, “PropertyT”)
local.deformation_list := Readfile(f, “DeformationlistT*)
out := local

cs_g_writetofile(conequ: ConstitutiveEquationT)
Exception: (Opentfile(conequ.name) is unsuccessful) = fail_to_open
Transition/Output:  f:= Openfile(conequ.name)
Writefile(f, conequ.the_number_of_material_properties)
For i=0 to conequ.the_number_of_material_properties
Writefile(f, conequ.material_property_listi])
Writefile(f, conequ.deformation_list)
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D. 3.13 Constitutive equation specification module

Prefix: ces_
Reference: MG - C. 3.1.10

D. 3.13.1 Interface syntax
Eevifoemeetal variable:

labwindows: the graphic window where the experiment is displayed.

Exported data type: none
Exported constant:  none

Exported function:
Routines name Inputs Outputs
ces sppcifyconsittuiivp

External functions:
labelshow /* from the screen display module*/
textshow /* from the tefppe display module*/
frameshow /* from the screen display module*/
opiioefhow  /* from the screen display module*/
buiioefhow  /* from the screen display module */
listshow /* from the screen display module */
pd_o_constitutivpowitfh
pdog_conatiiutivpowitfh
fo_Ooeoeotiiuiivpequaiioe
es_g_fpadfromfilp
r_ gwriipiofilp
mpfog_eumbpro_propprtieo
mpfog_pfoperiyeamp
mpf_g.sg._propertyvalue
real SifiegToReal

D. 3.13.2 Interface semantics
State variables: nonp

State invariant: none
Assumption: none

Access routine semantics:

Exception: None
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Output: Call screen display module to set environmental variable
‘labwindows’ for the display and then query the user for the
constitutive equation selection and keep it in con_switch state
and query the user for the constitutive equation defmition and
keep it in the coninOormation state and query the user for the
value of material propterties.

Event table:

Condition Event Action

When the 'Confirm' button @Click(Confirm) ed_s_constitutiveswltch,

is pressed. ce_s_constitutiveequatlog,
msO_g_gumberoOsropnrtins,
msf_g_prosertygame,
mpf sg srosertyvahle

When the ‘Save’ button is @Click(Save) ce_g_writetoOiie

pressed

When the Cancel button is @Click(Cancel) Do nothing

pressed
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D. 3.14 Tensor data definition module
Prefix:
Reference:

D. 3.14.1 Interface syntax
Exported constant:

DIM 3
LISTNUM 15
MDG 1
SDG 2
MDPG 3
SDPG 4
CDT 5
GDT 6
ST 7
SRT 8
EFST 9
LFST 10
EIST 11
LIST 12
TST 13
TSST 14
ESST 15

Exported data type:
TensorDataT = sequence [DIM][DIM] of Real*
TensorFlagT = {mdg, sdg, mdpg, sdpg, cdt, gdt, st, srt, efst, Ifst, eist, list, tst, tsst,
esst}

Comments:
e Comment on TensorFlagT

mdg: the abbreviation of material deformation gradient.
sdg: the abbreviation of spatial deformation gradient.
mdpg: the abbreviation of material displacement gradient.
sdpg: the abbreviation of spatial displacement gradient.
cdt: the abbreviation of Cauchy’s deformation gradient.
gdt: the abbreviation of Green’s deformation gradient.
st: the abbreviation of stretch tensor.
srt: the abbreviation of stretch ratio tensor.
efst: the abbreviation of Eulerian finite strain tensor
Ifst: the abbreviation of Lagrangian finite strain tensor
eist: the abbreviation of Eulerian infinitesimal strain tensor
list: the abbreviation of Lagrangian infinitesimal strain tensor
tst: the abbreviation of true strain tensor
tsst: the abbreviation of true stress tensor
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esst : the abbreviation of engineering stress tensor.
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D. 3.15 Material deformation gradient module
Prefix: mdg_
Reference: MG-C.3.29

D.3.15.1 Interface syntax

Imported data type:
DisplacementT from the displacement specification module
DisplacementT = tuple of{dispu: real, dispv: real, dispw: real,
deltaxy: real, deltayz: real, deltaxz: real}
TensorDataT from Tensor data definition module
TensorDataT= sequence[DIM][DIM] of Real*
TensorFlagT = {mdg, sdg, mdpg, sdpg, cdt, gdt, st, srt, efst, Ifst, eist, list, tst, tsst,

esst}
Imported constant:
DIM 3
Exported functions:
Routines name Inputs Outputs Exception
mdg_g knownquantity | TensorDataT TensorDataT Table D-5
TensorFlagT
mdg_g geometry SpecimenGeometryT | TensorDataT
DisplacementT

D. 3.15.2 Interface semantics
State variable: none

State invariant; none

Assumption:

Access routine semantics

mdg_g_knownquantity(kq: TensorDataT, kqflag: TensorFlagT)
exception: Table D-7
output: Table D-5
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mdg_g_geometry(sg: SpecimenGeometryT, disp:DisplacementT)
exception: None '
output: Table D-6
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H, : kgflag
mdg | sdg mdpg sdpg cdt gdt Ifst efst list eist tst
kq[1][1]=udA | kq Out:=[ud] | Out:=[ud] | Out:=[ud] Out:=[ud] Out:={ud] Out:=[ud] Out:=[ud] Out:=[ud] Out:=[ud] Out:=[ud]
kq[2][2]=udA
kq[3][3]=ud
kq[1]{1 J=udA | kq out]3][3}):= out|3][3]) = ouf{3}[3]:= outi31[3] = out[3][3} = ouf3][3] = out(31[3] = out[3}[3} = out{3][31:= out{3][3] =
kq[2}[2]=udA 1/ kqi31[3] 1+kq(3]13] | U(-kql313D) | U/ sqreckgl31[3]) | sqreChqi313]) | sqre2*kql3](31+1) | 1/sqre(1-2*kql313] | 1+kq(3]{3] 1 1-kq(313] | exp(kql3][3D)
kq[3]{3]=ud others ud | others ud. | others ud. others ud. others ud. others ud. others ud. others ud. | others ud. others ud.
kq[1]}{1]=udA | kq oufi2][2]:= | ouff2][2]:= | outi2}i2]:= ouf[2][2] = out[2][2] = oul2][2] = ouf[2][2] = ouf|2}[2] = oufi2][2] = ouf[2][2] =
kq[2][2]#udA 1/ kq12]12] 1+ kg{2]12] | 1(1-kq2]2D) | U/sqrickqi2}[2]) | sqrickql2][2]) | sqre2*kqi2][2]+1) | 1/sqri(l—-2*kql(2][2])| 1+ kq(2][2] 1 1-kqi2}[2]D | exp(kql2][2])
kq{31{3]=ud others ud | others ud. | others ud. others ud. others ud. others ud. others ud. othersud. | others ud. others ud.
kq[1][1]=udA kq ouf|2}{2}:= | oufi2]2]:= | oud2][2):= out{2][2] = ouf|2][2] = ouf[2]]2} = out(2][2] = ouf2][2) = oufi2][2] = ouf{2][2] =
kq[2][2]udA 1/ kq(2]12] I+ kgi212] | 1(1-kql2][2D) | 1/sqreckgl2]2)) | sqrekqf2][2]) | sqre2*kqi2](21+D) | 1/sqre(l-2*kql2][2D)| 1+ kq(2][2) 1 1-kqi2][2] | exp(kql2][2])
kq[3][3]#ud ouf3131:= | ouf3][31= | oufi3]3]:= ouf(3][31:= ouf[3]{3] = ouf{3][3] = ouf{3][3]:= ouf[31[3]:= ouf[3}{31:= ouf(3][3]:=
1/ kql3][3] 1+ k(31031 | 1(1-kq(313D) | 1/sqreckq(3}i3]) | sqriCiq(313D | sqre(2*kqi3][31+1D) | 1/sqre(l-2*kq(31BD| 1+ kql3]03] 1 1-kgi3113] | exp(kgi3][3])
others ud | others ud | others ud. others ud. others ud. others ud. others ud. others ud others ud. others ud.
kq[1][ 1]2udA | kq ouf{1j[1} = outfl][l] = ouf{1j{l) = ouf1[l] = out(l){l] = oufi1){l] == ouf1][1] = ouf{l][1] = ouf(1][1] = out{1]{l] =
kq[2][2]=udA 1/ kgtii[] 1+ kgl1][1} -kl | 1/ sqreChglt][1]) sqre(kqt1][1]) sqri2* kgq(1][11+1) 1/ sqri(1-2* kql1]{1D | 1+ kql1][1] 1(1-kqUlIllh | explkglt}iID
kqf3]{3]=ud others ud | others ud. | others ud. others ud. others ud. others ud. others ud. othersud. | others ud. others ud.
kq[1][1]udA | kq ouf{1][i]:= ouf{1}fl] = ouf{1}jt} = ouf{1lfl] = ouf{1][l]:= oufl][1}= ouf{l][i) = ouf{l]]l}:= ouf{ljft} = oufilifl] =
kq[2][2]=udA 1/ kgl1]{1] 1+ kgti][l] b 1-kgfl][1] 1/ sqri(kqUI}1]) sqrikql1][1]) sqri2* kql1}i11+1) 1/ sqri(i —2* kq(1][1]) | 1+ kq11[1] V(- kgft]1]) | exp(kqgliiI])
kq[3][3]#ud ouf{3][3]:= ouf{3][31 = ouf{3)[3] = out[3][3] = ouf{3}[3] = out|3)[3] = ouf{3][3]:= ouf[3][3] = out[3][3]:= out[3][3] =
1/ kq(3]13} 1+ kqgl31[3] | t/(1-kqi313D) | 1/sqreckq3}3]) | sqreckqi3)i3]) | sqri2*kq(B131+1) | 1/sqrei-2%kg(313D)| 1+ kql3)3] 1/(1-kqi313D | exp(kql31i3])
others ud | others ud. | others ud. others ud. others ud. others ud. others ud. others ud. others ud. others ud.
kq(1][1]udA | kq oufl][1]:= ouf{1][t] = oufll}[1] = ouf{1][l] = ouf{1][1]:= ouf|1][1] = ouf[1}{l] = oufll][1] = ouf[1][l] = ouf{1][l} =
kqf21{2]#uda 1/ kq1][1) L+ kgl](1} V(1-kglJ1]) | 1/sqrickg(1}{1]) sqriCkqli]N]) sqri(2* kql1][1}+1) 17sqre(l—2*kqUllD) | 1+ kq(1]01] V(- kgll]1D | exp(kqll]D
kq[31{3]=ud oufl2][2]:= | ouf2]f2]:= | ouf2]2]:= ouf|2]{2]) = ouf{2}[2] = out{2}[2]:= ouf[2][2] = ouf[2][2] = ouf{2][2) = ouf2][2] =
1/ kql2][2] 1+kg(21[2] | 1/(-kql2}2D) | U/ sqrickgi2][2]) | sqriCkqi2][2]) | sqre2*kql2][21+1) | 1/sqre(l-2*kq(2][2])| 1+ kql2][2] 1/(1-kq(2][2]) | exp(kgi2][2])
others ud | others ud. | others ud. others ud. others ud. others ud. others ud. others ud. | others ud. others ud.
kq[1][1]#udA | kq ouf|1]{l):= ouf{1][1] = ouf{1][1]:= oufl}fi] = ouf{l]l] = ouf1][1]:= ouf{1][l] = ouf{1][1] == oufil}ll] = oufl]l} =
kq[2][2}#udA 1/ kql1][1] 1+ kql1]1} L(I-kgllIID | Y sqrickqU]Ith sqri(kg(1][1]) sqri(2* kqi1][1] +1) 1/sqri(l—2* kqit]11]) | 1+ Aq(1][1] L1 -kq(1][1]) | exp(kqll][])
kq[3][3]#ud ouffi2][2]== | oud2][2]= | ouf2}[2]:= ouf[2][2} = ouf2][2]:= ouf|2][2):= ouf2][2] = ouf|2][2]:= ouf{2][2} = out{2][2} =
1/ kgi2][2] L+kg(2][2) | VQ=kq2R2]D) | 1/ sqreckql2](2]) | sqriChql2][2]) | sqri2*kql2]2}+1) | U/sqrel-2*kql2][2])] 1+ kgl2][2} 1/(1—kqi2]{2]) | explkqgl2]{2])
out{3}{3} = ouff3][31:= ou{3][3] = ouf(3]{3] = ouf{3][3] = ouf(3][3] = ouf{3][3) = out(3][3] = ouf(3][3]) = out|3){3):=
1/ kq{3][3) t+kgl3131 | t(A-kql313D) | 1/sqrethq313D) | sqri(kql3]BY) | sqri2*kg313)+1) | 1/sqri(1-2*kq(3][3])| 1+ kq{3][3) LA(L-kq(3][3D | explkq(31[3D)
others ud | others ud. | others ud. others ud. others ud. others ud. others ud. others ud. | ohers ud. others ud.
G Table D-5 out for mdg_g_knownquantity H,AH, > G
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disp.dispu=udn
disp.dispv=uda
disp.dispw=ud

Out :=[ud]

disp.dispu=uda
disp.dispv=uda

out{3][3] = (1 + disp.dispw / sg.width)
others ud

disp.dispw=ud
disp.dispu=udn out[2][2] = (1 + disp.dispv / sg.height)
disp.dispvuda others ud

disp.dispw=ud

disp.dispu=uda

out[2][2] = (1 + disp.dispv / sg.height)

disp.dispv£uda out[3][3] = (1 + disp.dispw/ sg.width)
disp.dispw=ud othersud
disp.dispuuda out[1][1] := (1 + disp.dispu / sg length)

disp.dispv=uda
disp.dispw=ud

others ud

disp.dispuuda out[1][1] = (1 + disp.dispu / sg length)

disp.dispv=uda out[3][3] = (1 + disp.dispw [ sg.width)
disp.dispw=ud others ud

disp.dispuzuda out[l][1] := (1 + disp.dispu | sg length)

disp.dispv#uda out[2][2] = (1 + disp.dispv [ sg.height)
disp.dispw=ud others ud

disp.dispu#uda out[1][11:= (1 + disp.dispu / sg length)

disp.dispvuda out{2][2] := (1 + disp.dispv / sg.height)
disp.dispw=ud out(3][3] = (1 + disp.dispw ! sg.width)

others ud

Table D-6 out for mdg_g_geometry
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sdg mdpg | sdpg cdt gdt Ifst efst eist tst
((kq[1]{1]=0)v | non ((kql1I[1}=D)v | ((kqlt][1]=0)v | ((kq[1I[1}<0)v | ((kq[1]{1]<0.5)v | ((kq[1][1]>0.5)v ((kq[1][1]=0)v [ mon
(kq[2][2]=0)v kql2][2]=Dv | (kql2]iZ}=0)v | (kq2}(2]<0)v | (kq[2}{2]<0.5)v | (kq[2][2]>0.5}v (kq[2][2)=0)v
(kq(3](3}=0) (kq(31[3]1=1) (kq[31[3}=0)) (kq[3](31<0)) (kq[31{3]<0.5)) (kq[3](3]>0.5)) (kq[3][3}=0)
=3d_zero =>d_zero =d_zero, =)Sr_zero =)SI_Zero =Sr_zero =d_zero

((kq[1][1]<0)v

(kq[2][2]<0)v

(kq[31(31<0)

=>Sr_zero

Table D-7 exception for mdg_g_knownquantity H, -G
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sr_ze.ro

D. 3.16 Spatial deformation gradient module
Prefix: sdg_ '
Reference: MG C.3.2.10

D.3.16.1 Interface syntax

Imported data type:
DisplacementT from the displacement specification module
TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module

Imported constant:

DIM 3
Exported functions:
Routines name Inputs Outputs Exception
sdg_g_knownquantity TensorDataT TensorDataT TableD-8
TensorFlagT
sdg_g_geometry SpecimenGeometryT | TensorDataT none
DisplacementT

D.3.16.2 Interface semantics
State variable: none
State invariant: none

Assumption:
Access routine semantics

sdg_g_knownquantity(kq: TensorDataT, kqflag: TensorFlagT)

exception: Table D-8
output: Table D-9

sdg_g geometry(sg: SpecimenGeometryT, disp:DisplacementT)
Exception: None

Output: Table D-10
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mdg sdg | mdpg sdpg | cdt gdt Ifst efst list eist | tst
(kq[1][1]=0)v | non | (kq[1][1]=1)v [ non | (kq[1][1]<0)v | (ka[1]{1]<0)v | (kafL][T]<- | (kq[1]{1]>0.5)v | (ka[1][1}=-1) | non |non
(kq[2][2]=0) | | (kq[2][2]=1)v (ka[2][21<0)v | (kq[2][2]<0)v | 0-5)v (kq[2)[2]>0.5)v | v
(kq[31[3]=0) (kq[3][3]=1) (ka[3][3]<0) | (kq[3][31<0) | (kq[2l[21<- | (kq[3][31>05) | (kq[2][2]=-1)
= = = = 0.5)v = v
d_zero d_zero sr_lesszero st_lesszero, | (kq[3][3]<- | sr_lesszero (kq[3]{3]=-1)
(kq[1][1]=0)v | 05) =
(kq[2][2]=0)v | = d_zero
(kq[3][3]=0) | sr_lesszero,
= (kq[1][1]=-
d_zero 0.5)v
(kq[2][2]=-
0.5)v
(kq[3][3]=-
0.5)
—
d zero
H, -G Table D-8 exception for sdg_g_knownquantity
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H, : kgflag

mdg sdg | mdpg sdpg cdt gdt
kq[1][1]=udA | Out:=[ud] kq Out:={ud] Out:={ud] Out:=[ud] Out:=[ud]
kq(2}[2]=udA
kq[3][3]=ud
kall)[1l=udA | out[3][3}:=1/kq(31[3] | Kkq | out[3]{3}:=1/(1+kql3][3]) out[3][3]:=1- kq{3][3] out[3][3]1 =1/ sqrt(kq[3][3])
kq(2]{2]=udA | others ud others ud. others ud. others ud.
kq[3][3}#ud
kq[1][1]=udAr | ow2][2]:=1/kq(2]1(2) | kq | out[2][2]:=1/(1+kql2][2]) out[2][2]:=1-kq{2][2] | outl2][2]:=sqr1(kq(2][2]) | owr[2](2]:=1/ sqrt(kq(2][2])
kq[2][2}#udA | others ud others ud. others ud. others ud.
kq[3}[3]=ud others ud.
kq(1J{1]=udA | outf2][21:=1/kqf2][2] | kQ | out[2}{2]:=1/(1+ kg[2][2]) out[2][21:=1-kq(2][2] | out[2][2]:= sqre(kq(2][2]) | out{2][2]:=1/ sqrt(kq(2][2])
kql2](2}#udA | 5ue13)[3]:=1/ kq[3][3] out(3][31:=1/(1+ kq[3][3]) out 31131 =1-kq(31[3] | ow(3]{3]:= sqrt(kql31[3]) | ourl31[31:=1/ sqrt(kqi3](3])
kql3]{3]*ud others ud others ud others ud. others ud. others ud.
kq[1)[1)udn | ows[l][1}:=1/kgil)[1] | kq | owfl)[1]=1/(1+ kg[1][1]) out[lJ[1):=1—kgll][] | owtll][1]:=sqret(kqlll[l]) | owf[1}(1):=1/ sqre(kqli][1])
kq{2][2)=udA } others ud others ud. others ud. others ud. others ud.

kq[31[3]=ud

kql1J[1]2udA | om[)[1]:=1/kgll)[Y] | ka | owf1)[1]):=1/(1+kg[1)[1]) out[1[1}:=1—kgl1l[t] | owtQI[1):= sqreChgltil]) | ouffll[1]:=1/ sqreckqll][1])

kq2]2]=udA | 5031131 =1/ kg(3][3] out[31[3]:=1/(1+ kq[31[3]) out3](3]=1-kqi3113] | owt(3)[3]:= sqre(kq(313]) | out(31(3]:=1/ sqre(kql31[3])
kq[3]{3]#ud others ud others ud. others ud. others ud. others ud.
kqi1}[1]2udA | our(l][l]:=1/kg{lI[l] | ka | owr(1][1]:=1/(1+ kq(1][1]) o] =1-kqUlll] | owml1][1):= sqreckqill1]) | out[1)[1]:=1/ sqrt(kgi1][L])
kql2)[2]#udn | o21(2):=1/ kgl2][2] our|21[2):=1/(1 + kgl 2][2]) out]2)[2):=1-kgi2][2) | out|2)[2):= sqrt(kgl2)[2]) | owr[2][2]:=1/ sqrt (kq[2}[2])
kq[3](3]=ud others ud others ud. others ud. others ud. others ud.
kq[H[1}zudA | owr[1][1] =1/ kq[1][1] Kq | out[1]{1]:=1/(1+ kq[1][1]) out[1][1] :=1-kq(1][1] out{1]{1] = sqre(kg[1)1]) out[1][1] := 1/ sqre(kq(1][1])
kq2](2J2udA | ou21021:= 1/ kq[2][2] out[2][2]:=1/(1+ kg(21[2]) outi21[21:=1-kq(21(2] | out[2}[2]:= sqrtkql22]) | out[2][2]:=1/ sqrt(kq{2][2])
kqBIBIud 4 330 =1/ kgl3103] out[3)[3) = 1/(1+ kg3)[3]) out[3][3) = 1—kg[3)[3] | outl3}i3):= sqre(kqi3I3]) | out(3[3):=1/ sqre(kqi31(3])

others ud others ud. others ud. others ud. others ud.

G Table D-9 out for sdg_g_knownquantity H AH, -G Continue—
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H, : kgflag

Ifst

efst

list

eist

tst

kq[1][1}=udA
kq[2][2}=udA
kq(3](3]=ud

Out:=[ud]

Out:=[ud]

Out:=[ud}

Out:=[ud]

Out:=[ud]

kq[3][3]#ud

kqfi][1}=udA
kqf2]{2}=udA

out(3][3] =1/ sqrt(2* kq{3][3]+1)
others ud.

out[3][3] := sqre(1—2* kq[3]{3])
others ud.

out[3][3] =1 /(1+ kq[31{3])

others ud.

out[3](3]:=1- kq{3][3]

others ud.

out[3][3] = exp(—kq[3](3])
others ud.

kq[1][1]=udA
kq[2][2]#udA
kq[3][3]=ud

out[2][2]:=1/ sqrt(2* kq[2][2]+1)
others ud.

out[2][2} = qrt(1-2*kq[2][2]) 0
thers ud.

out(21[2]:= 1/(1 + kq2][2])

others ud.

out|2][2]:=1-kq[2][2]

others ud.

out{2]{2] = exp(—kq{2][2])

others ud.

kq(11[1]=udA

out[2][2]:=1/ sqrt(2 * kq[2][2]+ 1)

out[2][2]:= sqre(1—2* kg[2}[2])

out(2][2]:= 1/(1+ kq{2][2])

out(2][21:=1- kq{21[2]

out{ 22} := exp(—kq(2}{2])

kqI2)[2J#udA 1§ ou313]:= 1/ sqre2* kgl3][3)+1) | our31[3):= sqre(1-2* kq(31[3]) | ow[3][3):=1/(1 + kqi313D) | owt[31[31:=1-kq(31[3] | our(31[31:= exp(=kqg[3][3])
kq[3][3}ud others ud. others ud. others ud others ud. others ud.
kq(1](1]#udA | ow(1}[1]:=1/ sqrt(2* kq(1][1}+1) out[11[1] = sqrt(1—-2* kq[1][11) out(1][11:=1/(1+ kq[11[1}) | out[1][11:=1—kq(1][1] out{1][1] == exp(—kq(1][1])

kq[2][2]=udA
kq[3][3}=ud

others ud.

others ud.

others ud.

others ud.

others ud.

kg[1}{t}zudn | outf[1][1]:=1/ sqre(2* kq[1][1]+1) out[1][1] := sqre(1 ~2* kg[1][1]) out[ti] =1/(0+ kg[L][1]) | owur(1][1]:=1-kgl1][1] out{1][1] := exp(—kq[1][1])
kql2]12}=udA | 6 (3][3] = 1/ 5qre2* kgI3131+1) | out[3][3]:= sqre(l—2*kgi31[3]) | ow[31[3]:=1/(1+kql31[3]) | owt(3][3]:=1-kqi31[3] | out[31[3]:= exp(~kq(31[3])
kaBIBud | e ud. others ud. others ud. others ud.
others ud.

kql1l{1}zudA | out(t][1):=1/ sqrt(2* kq[1][1]+1) out[1][1] = sqrt(1 -2 * kqi1}[1]) out (1] :=1/(1+ kq(1)1]) | our[1][1]:=1-kq{1][1] out[1][1] := exp(—kq[1][1])
kq2J[21#udA | ou[2112) =1/ sqre2* kql2][20+1) | out[2][2]:= sqre(1~2* kq(2)[2]) | out[2][2]:=1/1+kql2][2])| out[2)[2):=1-kq(21[2] | out[2][2]:= exp(~kq[2][2])
kq(3][3])=ud others ud. others ud. others ud. others ud. others ud.
ka[1)[1}2udA | our{1][1] =1/ sqre(2* kq[1][1]+1) out[1][1]:= sqre(1 -2 * kq[i][1}) o)1)= 1/(1 + kq[1}{1]) | our{1}{1):=1-kq{1}{1] out[1}[1] = exp(—kq{1][1})
kq(2J(2J#udn | ou12)[2):= 1/ 5sqri(2* kql2)[2)+1) | out[2][2):= sqre(1—2*kg(2)[2]) | ow(2][2]:=1/(1+ kq[2][2])| out[2][2]:=1-kq(2][2] | out[2][2]:= exp(~kq(2][2])
kBBl | 3103 = 1 sqr* kgBIBI+ 1) | ont(31[31:= sqre(l—2* kqi31BD | owt3131:= 101+ kqU313D) | owt(3103]) = 1~kql31(3] | owrl31[3]= exp(—kql31(3])

others ud. others ud. others ud. others ud. others ud.

—Continue G Table D-9 out for sdg_g_knownquantity (Continue) H,AH, -G
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disp.dispu=uda
disp.dispv=uda
disp.dispw=ud

Out :=[ud]

disp.dispu=uda
disp.dispv=uda

out[3][3] = (1 + disp.dispw [ sg.width) -1
others ud

disp.dispw=ud
disp.dispu=uda out[2][2):= (1 + disp.dispv | sg height)™"
disp.dispvzuda others ud

disp.dispw=ud

disp.dispu=uda

out[2][2]:= (1 +disp dispv | sg.height)™

disp.dispv-uda out[3){3] = (\+ disp.dispw | sg width)™
disp.dispw=ud others ud
disp.dispuzuda out|[1] := (1 + disp.dispu ! sglength)™

disp.dispv=udna
disp.dispw=ud

others ud

disp.dispuzuda out{1[1} = (1 + disp.dispu | sglength)™

disp.dispv=uda out[3){3] = (1 + disp dispw | sg.width) ™!
disp.dispwzud others ud

disp.dispuzuda out{1](1] := (1+ disp.dispu | sg length) ™

disp.dispv#uda out[2)[2]:= (1 + disp.dispv | sg height)™"
disp.dispw=ud others ud

disp.dispuzuda out(1)[1] = (1 + disp.dispu | sg length) ™'

disp.dispv£uda out[2](2]:= (1 + disp.dispv | sg.height)™
disp.dispw=ud out[3][31:= (1 + disp.dispw | sg.width)™

others ud

Table D-10 out for sdg_g_geometry
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D. 3.17 Material displacement gradient module
Prefix: mdpg_
Reference: MG C.3.2.11

D. 3.17.1 Interface syntax
Imported data type:

TensorDataT from the material deformation gradient
TensorFlagT from the material deformation gradient

Imported constant:
DIM 3

Exported functions:

Routines name Inputs Outputs Exception

mdpg_g_knownquantity | TensorDataT TensorDataT
TensorFlagT

mdpg_g_geometry SpecimenGeometryT | TensorDataT none
DisplacementT

D. 3.17.2 Interface semantics
State variable: none
State invariant: none

Assumption:
Access routine semantics

mdpg_g_knownquantity(kq: TensorDataT, kqflag: TensorFlagT)
exception: Table D-11
output: Table D-12

mdpg_g_geometry(sg: SpecimenGeometryT, disp:DisplacementT)
Exception: None
Output: Table D-13
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mdg | sdg mdpg | sdpg cdt gdt Ifst efst list | eist tst
non | (kqf1][1]=0)v { non | (kq[1][1]1=1)v | (kq[1][1]<O)v | (kq[1][1]<O)v | (kqf1]{1]<- | (kq[1][1]>0.5)v | non | (kq[1][1]=1) | non
(kq[2](2]=0)v (kq[2][2]=1)v | (kq[2][2]<0)v | (kq[2][2]<O)v | 0.5)v (kq[2][2]>0.5)v v
(kqf3](31=0) (kq(31(3]1=1) | (kq[31{3]<0) | (kq[3]{3]1<0) | (kq[2]I2]<- | (kq[3][3]>0.5) (kq[2][2}=D)
= = = = 0.5)v = v
d_zero d_zero sr_lesszero sr_lesszero, (kqf31[3]<- | sr_lesszero, (kqf31{31=1)
(kq[1][1]=0)v 0.5) (kq[1]{1]1=0.5)v =
(kq[2][2]=0)v = (kq[2][2]=0.5)v d_zero
(kq[3]{3]=0) sr_lesszero, | (kq[3][3]=0.5)
= =
d_zero d_zero
H, -G Table D-11 exception for mdpg_g knownquantity
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mdg sdg mdpg | sdpg cdt dt
kq[1][1]=udA | Out:=[ud] Out:=[ud] kq Out:={ud] Out:={ud] Out:=[ud]
kq[2]{2]=udA
kq{3]{3]=ud
kq(1]{t]=udA | ow[3][3]:= kq(3][3]-1 out[3}[3]:=1/kq[3][3]-1 | kq out[3][3] = kql31{31/(1 — kq[3][3]) | ow(31Bl:=1/sqr1(kqi313D -1 | out[3][3]:= sqrt(kql31[3])—1

kq[2][2]=udA

others ud

others ud

others ud.

others ud

others ud.

kq[3][3]#ud

kql1l[1]=udA | kg[2][2]:=kq(21[2]-1 | owr(2][2]:=1/kgl2][2]-1 | kg out[2][2] = kgl 2][21/(1~ kq(2][2])| cuA2)21=1/sqrekgi212D~1 | our[2][2] = sqrt(kgl2][2]) -1
kq[2](2]#udA | others ud others ud others ud. others ud others ud.

kq(31[3]=ud

kq[11[1]=udA | our[2][2]:= kg(2)[2]~1 | out[2][2]:=1/kq[2][2]-1 | kq out[2][21:= kq[2)[21/(1 — kq(2][2]) | oud2[21=V/sqrakq2]i2D-1 | our[2][2]:= sqre(kq[2][2]) -1
kql2127#udA | op0(3113] = kq3113] -1 | owr[31[3}:=1/ kq[3][3]-1 out[31[31 = kqi31(31/(1 - kq(3](3]) | OwBIB)=1/sqrtkqBIBD =1 | 50013](3}:= sqre(kql3][3]) ~ 1
kq[3]{3]#ud others ud others ud others ud. others ud others ud.

kq[1][112udA | ouwr{1][1] = kgf1][1] -1 out[11{11:=1/kq)[1]-1 | kq out[1][1] == kq[1]{11/(1 — kqf1][1]) ouf1][t] =1/ sqreCkq(1]fl]) -1 out[1][1] = sqri(kq(1][1]) -1
kq{2](2]=udA | others ud others ud others ud. others ud others ud.

kq[3][3]=ud

kql1l[11#udA | ow(U)[1]):= kqllll1]-1 | ome[1][1]:=1/kq[1}{1]-1 | kq outl 1J[1) = kgl)[N/(1 - kqU1][1]) | owtll=1/sqrikgiiiD~1 | owe[1][1]:= sqre(kql1][1]) -1
kq2l[2]=udA | 5e(3)[3] = kq(3I[31 -1 | ouf(3][3]:=1/kg{3]{3]-1 out[3][31:= kq3][3) /(1 - kq[3][3]) | cwBBIB)=V/sqriCkqBIBD-1 | 513][3]:= sqre(kql31[3]) -1
kqBIBJ#ud | e ud others ud others ud. others ud others ud

kqitl[1]#udA | owu1][1] = kq(1][1]—1 out[l)[11:=1/kg[lI[1]-1 | kq out[1][1] = Aq[1][11/(1 — kq{1]{1]) oul][1] =1/ sqrickgitlID~1 | owt[1][1] = sqre(kg{1][1]) 1
kql2I21#udA | op2112] = kql21[21 -1 | omr[2)[2]:=1/ kq(2][2]-1 out|2][2] = kq[2][21/(1 - kql2][2]) | o¥4212)=V/ sqrakd2I2D-1 | 5112112] = sqre(kql2][2]) -1
kq[3]13}=ud others ud others ud others ud. others ud others ud

kq[1][1]#udA | our(1][1]:= kq{1][1]-1 out[N)[1}:=1/ kg[1][1]-1 | kq out[1[1] = kq[1][1]/(1 - kql1][1]) ou 1l =1/ sqrikgllIIN-1 | out[1][1] := sqrt(kq(1][1]) -1
kqi212FudA | 21121 = kgl2112] -1 | ow[2][2]:=1/ kg{2][2] -1 out[2)[2]:= kql2][21/(1 - kql2)[2]) | ouf2N2=VsgrikdRD=1 1 5p12]12] = sqre(kql2][2]) -1
kq{3][3]#ud out[31[31 = kq(31[31/(1 - kq(31[3]) out[3){3]:= 1/ sqrt(kq3][3D) -1

out[3][3] = kq(3][3] -1

others ud

ouf[3][3] =1/ kgf3][3]1 -1

others ud

others ud.

others ud

out[3][3]:= sqrt(kql3][3]) -1

others ud

G
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H, : kgflag

Ifst efst list | eist tst
kq[1]{1]=udA | Out:={ud] Out:=[ud) kq | Out:=[ud] Out:=[ud]
kq[2])[2]=udA
kqf3]{3]=ud
kqUI){1T=udA | ouf[3)[3]:= sqrt(2* kq(31{3]+ 1) —1 | out[3){3]:=1/sqrt(1-2* kq(3][3]) -1 | kq out[3}13] = kq(31131/(1 - kq{3} out[3][3]:= exp(kq(3]{3]) -1

kq[2](2]=udA

others ud.

others ud

others ud.

others ud.

kq{3][3]#ud

kql11{1]=udA | ouf(2}[2]:=sqrt(2* kg(2]{2}+ 1)1 | out[2][2]:=1/sqrt(1-2*kql2][2])-1| kq | out|2](2):= kq[2)[2)/(1 - kql2} our[2][2}:= exp(kg[2][2]) -1
kq[2][2]#udA | others ud. others ud others ud. others ud.

kq[3][3]=ud

kq[1][1]=udA | ouf2][2] = sqre(2* kql2][2]1+ 1) -1 | out[2][2]:=1/sqrt(1-2*kq(2][2D) -1 | kq | out[2][2]:= kq[2][2]/(1 - kq{2}} our[2][2]:= exp(kq(2]{2]) -1
kq[2}2}#udA | 5pf3)[3] = sqre(2* kqI31[31+1) -1 | out(31[31:=1/sqre(i— 2% kqI3][3]) -1 out|3][3] = kq{31{31 /(1 - kq(3]| out[3][3] = exp(kqi3][3]) -1
kqBI3l2ud | Jhers ud. others ud others ud. others ud.

kq[1}[1}2udA | owt(1][1] := sqri2* kgil][1]+ 1) =1 | ow{1][1):=1/sqre(1—2* kq(i}[1]) -1 | kq | our(1]{1]:= kqU1}{11/(1 - kq(1]{1] our(1]{1]:= exp(kq(1][i])—1
kq(2][2}=udA | others ud. others ud others ud. others ud.

kq(3](3]=ud

kq(1l[1)#udn | ow{1][1}:= sqre(2* kgll)[1]+ 1) =1 | ow(1)1):=1/sqrt(1-2*kg[I)[1)-1 | kq | owl1}[1}:= kg(l][1)/(1- kqll)[1} our1][1] = exp(kql1][1]) -1
kq[2][2)=udA | oue(31[3] = sqre2 * kgi3131+ 1) =1 | ow(31[3):=1/sqrt(1—2* kqi3][3]) -1 out|3)[3):= kql3)[31/(1 - kql3]] out[3}[3]:= exp(kq(3][3]) -1
kq[3)[3J#ud | e ud others ud others ud. others ud.

kqlHi1}zudA | owll)[1]:= sqrt(2* kqU)[1}+ 1) =1 | out1)[1):=1/sqrt(1-2*kgilND—1 | kq | our{1][1]:= kq[1][11/Q1 - kql1}(1] our{1]{1]:= exp(kq[1][1]) -1
kq2)2}#udA | Gu2][2) = sqre2 * kql2}[2]+ D) —1 | outf2)[2) =1/ sqre(1—2* kql2)[2]) ~1 out(2](2]:= kql2]{21/(1 - kq(2]| out{2][2] = exp(kq[2][2]) ~1
kq[3](3]=ud others ud. others ud others ud. others ud.

kql1][1)2udA | our1)[1]):= sqre(2* kglt][1)+ 1) ~1 | owt[)[1}:=1/sqre(1—2*kqQll1P—1 | kq | ou{][1):= kq(l)[1)/(1~ kqlI[1] our[1][1] = exp(kql1]{1])—1
kqR2[21#udA | 5uf2)[2] = sqre2 * kgi2][2) + 1) -1 | out[2][2]:= 1/ sqrt(1 - 2* kq2}[2]) - 1 out{2)[2] = kql2][2)/(1 - kqi2)| out[2][2] = exp(kq[2][2]) ~1
kq[3]{3}#ud out[3][3] = kq13}(31 /(1 - kql3]

out[3)[3] := sqr1(2* kq[3][3] +1) -1
others ud.

out]3][3) =1/ sqrt(1-2* kq(3]{3]) -1
others ud

others ud.

out|3][3] = exp(kq(3]{3) -1

others ud.

—Continue
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disp.dispu=uda
disp.dispv=uda
disp.dispw=ud

Out :=[ud]

disp.dispu=uda
disp.dispv=uda

out[3][3] = disp.dispw | sg.width
others ud

disp.dispw=ud
disp.dispu=uda out2)[2]:= disp.dispv ! sg.height
disp.dispv#uda others ud

disp.dispw=ud

disp.dispu=uda

out[2][2] := disp.dispv ! sg.height

disp.dispv#uda out[3][3):= disp.dispw ! sg.width
disp.dispw=ud others ud
disp.dispu#uda out(1){1] = disp.dispu | sg.length

disp.dispv=uda
disp.dispw=ud

others ud

disp.dispu#uda out(1][1]:= disp.dispu / sg.length
disp.dispv=uda out[3){3] = disp.dispw | sg.width
disp.dispw+ud others ud

disp.dispuuda outl\W[1] = disp dispu { sg.length
disp.dispv#uda out[2)[2):= disp.dispv ! sg.height
disp.dispw=ud others ud

disp.dispuuda out{l}{1) = disp.dispu | sglength
disp.dispv#uda out[2][2] = disp.dispv | sg.height
disp.dispw#ud out[3][3):= disp.dispw / sg.width

others ud

Table D-13 out for mdpg_g_geometry
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D.3.18 Spatial displacement gradient module
Prefix: sdpg_
Reference: MG C.3.2.12

D. 3.18.1 Interface syntax

Imported data type:
DisplacementT from the displacement specification module
TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module

Imported constant:
DIM 3

Exported functions:

Routines name Inputs Outputs Exception

sdpg_g_knownquantity | TensorDataT TensorDataT Table D-14
TensorFlagT

sdpg_g_geometry SpecimenGeometryT | TensorDataT none
DisplacementT

D. 3.18.2 Interface semantics
State variable: none
State invariant; none

Assumption:
Access routine semantics

sdpg_g_knownquantity(kq: TensorDataT, kqflag: TensorFlagT)

exception: Table D-14
output: Table D-15
sdpg_g_geometry(sg: SpecimenGeometryT, disp:DisplacementT)
exception: none
Output: Table D-16

202




mdg sdg | mdpg sdpg | cdt gdt Ifst efst list eist | tst
(kg[1][1]=0)v | non | (kq[1][1]=1)v | non } (kq[1][1]<0) | (kq[1][1]<0) | (kq[1][1]<-0.5) | (kq[1]{1]>0.5) | (kq[1][1]=-1) | non | non
(kqf2]{2]=0)v (kql2](2]=D)v v v \ v v
(kq[31(3]=0) (kql3]1[3]=1) (kq[2][2]<0) | (kqi2][2]<0) | (kq[2][2]<-0.5) | (kq[2][2]>0.5) | (kq[2][2]=-1)
= = v \% v v v
d_zero d_zero (kq[3][3]<0) | (kq[3][3]<0) | (kq[31[3]1<-0.5) | (kq(31[3]>0.5) | (kq[3]{3]=-1)
= = = = =
st_lesszero sr_lesszero, | sr_lesszero, sr_lesszero, d_zero non
(kq[11[11=0) | (kq[1][1]}=-0.5)
v %
(kql2][2]=0) | (kq[2][2]=-0.5)
Y% v
(kq[3]{31=0) | (kq[3][3]=-0.5)
= =
d_zero d_zero
H, »G Table D-14 exception for sdpg_g_knownquantity
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H, : kgflag

mdg

sdg

mdpg

sdpg

cdt

gdt

kq[1])f1]=udA
kq[2][2}=udA
kq[3][3]=ud

Out:=[ud]

Out:={ud]

Out:=[ud]

kq

Out:={ud]

Out:=[ud]

kq{1}{1]}=udA

out[3][3] = 1 -1/ kq(3][3]

out[3][3):= 1~ kq[3](3]

out[31[3] = kql3][31/(1 + kg[3][3])

kq

out{3}[31:=1-sqri(kqi31[3D)

out[31[31:=1-1/sqre(kq{31(3])

kql2](2]=udA | others ud others ud others ud. others ud others ud.

kq(3]j[3]#ud

kql1]{1]=udA | kq(2](21:=1-1/kq(21(2]| our[2]{2]:=1-kq(2][2] | out(2}{2}:= kq(2][21/(1 + kq[2][2]) kq ou2)[2)=1- sqrikgi2}(2)) | out[2][2}:=1-1/ sqrt(kg(2][2])
kqi2]{2]#udA | others ud others ud others ud. others ud others ud.

kq[3][3]=ud

kq[1){1]=udA | out[2][2):=1-1/kq(2][2] out[2][2]:=1-kq{2]{2] | outl2][2]1:= kql2][2]/(1 + kqf2][2]) | kq ou 2121 =1-sqrakd 22D | our[2]{2]=1-1/sqrt(kql2][2])
kqI2)[2J#udA | 3013 = 1 - 1/ kg(3)[3)] omt[31[3]:=1~kg[3][3] | outi31[3]:= kq[31[31/(1+ kq(3][3]) oufl3](3]:= 1= sqrttkqB31BD) | 5y1[3)[3]:= 1 - 1/ sqrt(kq(31[3])
kq[3){3)#ud others ud others ud others ud. others ud others ud.

kq[1)[1]2udA | owmf1][1):=1-1/kg[1)[1] | out[1][1]:=1— kqgf1}[1] out[13[1]:= kgT11[1)/(1 + kq(1(1]) | kq ouf1}{l1:=1-sqrekq)0D | out[1][1] =11/ sqrt{kq(1j{1])
kqi2){2]=udA | others ud others ud others ud. others ud others ud.

kq[3]){3]=ud

kq(1](112udA | our(l[1]:=1-1/kqll]{] | ow(l][1]:=1—~kqll][l] | ocwr(1}[1]:= kgI[1)/Q + kqi1)1)) | kq oufl)fl]=1-sqrickgllit) | our(1)(1] = 1—1/ sqrt(kgqi1][1])
kq(21[2]=udA | ou(31(3):= 11/ kqi3][3]] ou3131:=1~kqi313] | our(31{3]:= kq{31[31/1 + kqi31(3]) oull3)3):=1-sqrtkqBiBY) | 5u113)[3]:=1-1/ sqre(kq(3][3])
kq[3}{3}#ud others ud others ud others ud. others ud others ud.

kq[1][1]#udA | ow[1)[1]:=1-1/kqUi][1] | owD)[1):=1~kg1)[1] | owfi)[1]:= kglJ[11/(1+ kqUUI[1)) | kq oufl)fl):=1-sqreckglI) | our[1](1]:= 1 — 1/ sqre(kg(1][1])
kq2li2}#udA | our2112]:= 1 - 1/ kql21[2] our[2][2]=1-kq[2][2] | oufl2][2):= kql2][2)/(1 + kql2}[2]) ou2)2)=1-sqrkd 212D | 54[2112] = 1-1/ sqre(kg(2][2])
kqBIB31=ud | e ud others ud others ud. others ud others ud.

kgl 1J[1)#udA | our[l][1}:=1-1/kg{l][1] | owll][1):=1~kg{l]{1] | owtl1][1]:= kqll][1}/(1 + kqt1]1)) | kq oui][l]:=1-sqreckatllt) | owr(1]{1] = 1— 1/ sqre(kqf1]{1])
kql2]2]#udA 521121 := 1 -1/ kql20[2] outf2][2):=1—kg(2][2) | out[2][2]:= kql2][21/(1 + kq[2){2]) ouf2J2] = 1-sqrikdl2l2D) | 51[21[2] := 1 ~ 1/ sqre(kql2][2])
kqB31[3}#ud out[31[3] = kqi31[31/(1 + kqI31[3]) ouBIB1 =1=sqrtkalIBD | 13113 = 1-1/ sqrechgl3)3])

out[31[31:=1-1/ kq(3](3]

others ud

ouf{3](3] = 1- kq{3}{3]

others ud

others ud.

others ud

others ud.

G
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H, : kgflag

Ifst efst fist eist tst
kq[1]){1]=udA | Out:=[ud] Out:=[ud] Out:=[ud] kq Out:=[ud]
kq[2][2]=udA
kq[3][3]=ud
kq[1][1]=udA | ow[31[3]:=1-1/5gre(2* kq3][3]+1) | out[31[3]:=1-sqre(l—2*kq3](3]) | out[3][3]:= kq(31[31/(1 + kq(3][3]) | ka out[3][3] = 1 - exp(~kgq(31[3])
kqf2][2]=udA | others ud. others ud. others ud.
kq[3][3}*ud others ud
kql1][1]=udA | ouf[2][2):=1-1/sqrt(2*kqi2][2}+1) | out[2][2]:=1—sqri(1—2*kq(21[2]) | out[2][2]:= kq[21[2)/(1 + kg[2][2]) kq out[2][2]:=1- exp(—kg[2][2])
kq[2][2]#udA | others ud. others ud. others ud.
kq[3]1[3]=ud others ud
kq(1][1}=udA | ouf[2][2]:=1-1/sqr1(2* kq(2][2]+1) | out[2][2] =1-sqre(1—2*kql2)(2]) | out[2][2]:= kql2][2}/(1 + kql2]{2]) | kq out[2][2] = 1-exp(~kg[2][2])
kq[2](2}#udA | ou3)[3]1:=1-1/sqrt@* kg(3]31+ Dot | out[3)[3]:=1-sqre(1-2*kg(31[3]) | owt[31[3]:= kql31[31/(1+ kq(3](31) out[3][3] =1 - exp(~kgq[3][3])
kq[3]{3)#ud hers ud. others ud others ud. others ud.
kqU[1]#udA | ouf1][1}:=1-1/sqrtQ* kgQl][1)+1) o | ourll]{1]:=1-sqre(1—2*kgll][1]) | our[1][1]:= kgI1)[11/(1 + kq(1]{1]) | kq out[1][1] = 1 - exp(—kq[1][1])
kq[2][2]=udA | thers ud. others ud others ud. others ud.
kq[3][3]=ud
kqU1I[J#udA | oud1)[l] =1-1/sqrtQ* kgl +1) | ow[1[1}:=1-sqre(1-2*kqll](1]) | our[1])[1]:= kqII[1}/(1 + kq[1[1]) | kq out{1][1] := 1 - exp(~kq[1][1])
kq[2](2)=udA | oui(3)(3]:=1 -1/ sqri2* kg(3I[3]+ D ot | out[3][3]:=1—sqre(1—2*kq(3){3]) | out[31[3] = kq(3]1[31/(1 + kq(3][3]) out[3][3] = 1— exp(—kq[31[3])
kq(3I31#ud | pers ug, others ud others ud. others ud.
kq[1][1]#udA | out[1][1}:=1-1/sqrt(2* kq(1][1] +1) out{1)[1] :=1—sqrt(1—2* kg[1][1}) out{1]{1] = kq[1}[11/(1 + AqT11[1D kq out[1][1}:=1- exp(—kql1]{1])
kq[2)[2]#udA | oun2]21:=1-1/sqrt2 * kq(2][2]+1) | out[2}[2]:=1-sqre(1—2* kq(2)[2]) | our[2][2] = kql2][21/(1 + kqI2]{2]) out[2][2):=1—exp(—kq[2]]2])
kq(3]31=ud | e ud. others ud others ud. others ud
kq[1)[1Judn | ou(1][1]=1-1/sqrtQ@ *kqll][1]+1) | our[1l{1]:=1—sqri(1—2%kqltl[1]) | owut(1][1]:= kqU1)[1)/(1 + kq[1][1]) | kq out[1][1]:= 1 - exp(—kgq[1][1])
kq[2][2J2udA | ouf2][2]:=1-1/sqrtQ* kg[2][2) +1) | out[2][2]:=1—sqrt(1—2*kq[2][2]) | outl2][2]:= kq[2]{2]/(1+ kq[2][2]) out[2}{2] =1 - exp(—kq[21[2))
kaB]Bl#ud | 31312 1= 1/ sqre2 * kqBI31+ Dot | out31[3):= 1 sqrr(l— 2% kg3][3]) | owl31[3]1:= kaf31[31/1 + kq[31[3]) out[3][3) = 1 - exp(—kg(31[3])

hers ud. others ud others ud. others ud

—Continue G Table D-15 out for sdpg_g_knownquantity (Continue) H,AH, -G
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disp.dispu=uda
disp.dispv=udAa
disp.dispw=ud

Out :=[ud]

disp.dispu=udna
disp.dispv=udA

out[3)[3] := disp.dispw /(disp.dispw + sg.width)
others ud

disp.dispwzud
disp.dispu=uda out[2][2] = disp.dispv /(dispv + sg.height)
disp.dispv#uda others ud

disp.dispw=ud

disp.dispu=uda

out[2]{2] = disp.dispv [(disp.dispv + sg.height)

disp.dispv#uda out[3][3] = disp.dispw /(disp.dispw + sg.width)
disp.dispw#ud others ud
disp.dispuzudna out{1)[1] = disp.dispu /(disp.dispu + sg length)

disp.dispv=uda
disp.dispw=ud

others ud

disp.dispuuda out|\]{1] = disp.dispu [(disp.dispu + sg length)
disp.dispv=uda out[3)[3] = disp.dispw /(disp.dispw + sg.width)
disp.dispw#ud others ud

disp.dispu#uda out[|[1] = disp dispu /(disp.dispu + sg Jength)
disp.dispv#uda out|2](2] := disp.dispv /(disp.dispv + sg.height)
disp.dispw=ud others ud

disp.dispu#uda owt{1)[1] := disp.dispu (disp.dispu + sg length)
disp.dispv#uda out[21{2] = disp.dispv K(disp.dispv + sg.height)
disp.dispw=ud out[31[31:= disp.dispw ((disp.dispw + sg.width)

others ud

Table D-16 out for sdpg_g_geometry
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D. 3.19 Cauchy deformation tensor module
Prefix: cdt_
Reference: MG C.3.2.13

D. 3.19.1 Interface syntax
Imported data type:

DisplacementT from the displacement specification module

TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module
Imported constant:

DIM 3
Exported functions:
Routines name Inputs Outputs Exception
cdt_g_knownquantity TensorDataT TensorDataT
TensorFlagT
cdt_g_geometry SpecimenGeometryT | TensorDataT none
DisplacementT

D. 3.19.2 Interface semantics

State variable: none
Local variable:

temp: Real*[ DIM][DIM]
State invariant: none

Assumption;
Access routine semantics

cdt_g_knownquantity(kq: TensorDataT, kqflag: TensorFlagT)
exception: Table D-17
output: Table D-18

cdt_g_geometry(sg: SpecimenGeometryT, disp:DisplacementT)
exception: none
output: Tablea 4.4.19-3
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mdg sdg | mdpg sdpg | cdt | gdt Ifst efst | list eist | tst
(kq[1]{1]=0)v | non | (kq[1][1]=-1)v |non | non | (kq(1][1]=0)v | (kq[1][1]=-0.5)v |mnon | (kq{1]{1]}=-1)v | non | non
(kq[2]{2]=0)v (kql2]{2]=-1)v (kq[2}[2]=0)v | (kq[2][2]=-0.5)v (kq[2](2]=-1)v
(kq[31(3]=0) (kqf31(3]=-1) (kq[3]3]=0) | (kq[3][3}=-0.5) (kq[3][3]=-1)

=
d_zero

=
d_zero

=
d_zero

=
d_zero

=
d_zero

H, -G

Table D-17 exception for cdt_g_knownquantity
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H, : kgflag

mdg sdg mdpg sdpg cdt | gdt
kq[1]{1}=udA | Out:=[ud] Out:=[ud] Out:=[ud] Out:={ud] kq | Out:=[ud]
kq[2][2]=udA
kq[3]{3]=ud
kqUll1=udA | ou(3)(3):= (kq(31031) ™ | owt[31(3):= (kq(31[31)* | owr(31[3):=(1+kg(3](3) | om[3)[3]:=(1-kq(31[3D~ | Ka | ow3][3]:=1/kql3](3]
kq[2][2]=udA others ud others ud others ud. others ud. others ud.
kq[3][3}ud
kqUll[1T=udA | our2][2]:= (kql20[2D)7 | ourf2][2]:=(kgl2)[2D)* | our(2][2]:=(1+kq[2](2D)7 | ow(2][2}=(1-kg(2][2])> |Xq | owl2](2}:=1/kq(2]{2]
kq[2](2]#udA others ud others ud others ud. others ud. others ud.
kq3]{3}=ud
kq[ ; 1011=udA | ouf2](2]1 = (kql2112]) | out(2){2]:= (kql2][2])> | out[2][2]:= (1 +kql2]2D)2 | ourfl2][2]:=—kg[2](2])) |ka | our(2][2]:=1/kq(2}[2]
11:2{3}{323/\ out[3}[3):= (kq313D " | ow(31[3):=(kq(3][3])* | outi31[3]=(1+ k313D | our(31[3]:=(-kq(3][3D* out{3}(3]:=1/ kq(3](3]
others ud others ud others ud. others ud. others ud.
ka[Ll[1J#udn | ou1j[1]:= (kgUI0D) > | ow{][1}:= Ckql1]11])* | owelll[]= 1+ kgl | oudl][1)=(1-kg1][1])" kq | ourl][1}:=1/kql1][1]
kq(2][2]=udA others ud others ud others ud. others ud. others ud.
kq[3][3]=ud
llzq[ ; ][ll:#uzil/\ out[1][1]:= gD | owr[1){1] = (kgl1][1])* out1][1] = (1 + kg{1][1]) out[1][1]:= (1 - kg[1][1]) > kq | ou1][1):=1/ kql1][1]
CeDtmd | ouBIBI= (aBIBD ™ | oul313)=RBIBD" | ow3l3) = A+ ka3 | owl3I[31:= 1 kal3][3D oull3]13] =1/ kgl3]03
others ud others ud others ud. others ud. others ud
tqmmmff ou(1][1]:=(kgllI[1D> | our(ll{l]:=Ghgl)[1)* | owlIl[t]=(+kglI1D? | owll][l}:=(1-kgl)[1])> | *q | owrll][1]:=1/kqll]{1
2112 -
kg{3}{3}:d/\ out(2][21=(kgl2)2D) 7 | our[2][2):=(kql2][2])* | outl2][2]:=(1+kql2][2])* | ourl2][2]:=(1-kql2}[2]) out[2)[2]:=1/ kql2][2]
others ud others ud others ud others ud others ud
kqllIUJ#udA | our1](1] = (kgD | oudN[1):= (kglIIID* | our()[l)= 1+ kg[1I{1D > | owf{ll[):=(1-kglt)1])> | Ka | ou(l][1):=1/kql1](1]
kq[2][2]udA

kq[31{3]#ud

out[2][2] = (kql2][2])
out[3][3]:= (kq[3][3])

others ud

out[2][2] = (kqi2][2])?
out[3][31 = (kq(31[3])

others ud

out[2][2]:= (1 + kg[2][2]) 2
out[3][3] = (1+ kq[31[3])

others ud.

out[2)[2}:= (1-kg[2][2])
out[3}{3]:= (1~ kq[3]{3])*

others ud

out[2][2]:=1/ kq2][2]
out[3][3):=1/ kq(3][3]

others ud

G  Table D-18 out for cdt_g_knownquantity
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Continue—




H, : kgflag

Ifst

efst

list

eist

(st

kq[1][1]=udA
kq[2]{2]=udA
kq[3]){3]=ud

Out:=[ud]

Out:=[ud]

Out:=[ud]

Out:=[ud]

Out:=[ud]

kq[1)[1]=udA
kqf2)[2]=udA
kq[3][3]#ud

out]3)[3}:=1/(2* kq[3][3]+ 1)
others ud.

out[3)[3]:= (1-2* kg[3][3])

others ud.

out[31[3]:=1/(1 + kq[3][3])*
others ud.

out[3][3] = (1~ kq[3][3])*

others ud.

out{3][3] = exp(~2* kq3](3])
others ud.

kq[1][1]=udA
kq(2}[2}#udA
kqf3}{3}=ud

out[2][2}:=1/(2* kq[2][2] +1
others ud.

ourl2][2] = (1-2* kgi2][2])

others ud.

out[2)[2)=1/(1+ kg[2][2])

others ud.

out|2][2] = (1- kq[2][2])

others ud.

oul[2]{2] = exp(-2* kq(2](2])
others ud.

kqf1]{1]=udA
kq(2][2]-udA
kq([31(3]=ud

out[2][2]:=1/(2* kq[2][2]+1
out[3]{3] = 1/(2* kq[3][31+ 1)
others ud.

out[2][2):= (1-2* kg[2](2])
out|3](3]:= (1-2* kq(3}{3])

others ud.

ou[21{21:=1/(1 + kq[2][2])?
out[31[3]:= 1/(1+ kq(3][3])*

others ud.

out[2][2] = (1 - kq(2][2])
out[3]3] = (1 - kg(31[3])

others ud

out{2]{2} = exp(-2 * kq(2][2])
out[3]{3] = exp(-2 * kq(3][3])
others ud.

kqf1]{1}#udAa
kq[2][2}=udA
kq[3][3]=ud

out[1[1] = 1/(2 * kq(1]{1]+ 1)

others ud.

out[1][1]:= (1 -2 * kq[1]{1])

others ud.

ou{1][1]:= 1/(1 + kq[1][1])*

others ud.

out[1)[1]:= (1 - kg[1}[1])*

others ud.

out[1][1] = exp(—2 * kq{11{1])

others ud.

kql13[1]#udA
kq[2)[2]=udA
kq[3)[3)#ud

out[1)[1] = 1/(2* kg{1][1]+ 1)
out[3][3]:= 1/ * kq[3][31+ 1)
others ud.

out{1][1]:= (1 - 2* kq[1][1})
out{3][3]:= (1-2* kq(3][3])

others ud

out[1][1] = 1/(1 + kq[1][1])*
out[31{3] = 1/(1+ kq(3]{3])°

others ud

oul1][1}:= (1 - kg[1][1])?
out(3][31 = (1 - kq(3)[3])

others ud

out[1][1]:= exp(-2 * kq[1][1])
out{3)[3] = exp(-2* kql3]{3])
others ud

kq(1]l[1]#udA
kq(2](2]#udA
kq[3]1[3]=ud

out[1]{1] == 1/(2 * kg(1][1]+ 1)
out[2)[2}:=1/(2* kgl 2][2] +1
others ud.

out{1][1]= (1-2* kq(1][1])
out{2](2):= (1-2* kq(2]{2])

others ud

out{1][1] = 1/(1 + kg[1][1])*
out[2][2}:= 1/(1 + kq[2]{2})*

others ud

out{1][1] = (1- kg{11[1])*
out[2][2] = ( - kq{2][2])*

others ud

out[1}{1] = exp(-2 * kg[1}[1])
out{2][2}:= exp(-2 * kq(2][2])
others ud

ka(1][1]=udA | ourfl][1]:=1/(2* kq]{11+1) | owt[l]{l}:=QA—-2%kqUI[1]D) | owr[1][1]:=1/(1+ kg{1][1])* | ow[1][1}:= (A~ kq]1])* | owe(il[1]:=exp(-2* Ag{1][1])
‘;‘Ig}{gzy our[2][2]:=1/2* kq[2)[21+ 1) outl2}[2):=1-2*k42]2]) | oue2](2]:= 111+ kqL2][2]) | owri2)[2]= (1 - kq2)2])? | O(21(2):= exp(=2* kq(2](2])
d out[3][3) = 1/(2* kq(3]{3]+ D)| out[3][3]:= (1-2* kq(3][3]) out{31[3] = 1/(1+ k3131 | outl3][3]:= (1 — kqi3}(31)? out(3](3] = exp(-2* kq(3]{3])
others ud. others ud others ud
others ud others ud
—Continue G Table D-18 out for cdt_g_knownquantity (Continue) H, AH, > G
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disp.dispu=uda
disp.dispv=uda
disp.dispw=ud

Out :=[ud]

disp.dispu=uda
disp.dispv=uda

out{31[3) = (1 + disp.dispw/ sg.width)™
others ud

disp.dispw=ud
disp.dispu=udna out[2][2):= (1 + disp.dispv | sg height)™
disp.dispv#uda others ud

disp.dispw=ud

disp.dispu=uda

out[21[2):= (1 + disp.dispv | sg.height)™

disp.dispv#uda out[31[3] = (1 + disp.dispw/ sg.width)™
disp.dispw=ud others ud
disp.dispuztuda out{1][1] = (1 + disp.dispu | sg length)™

disp.dispv=udAa
disp.dispw=ud

others ud

disp.dispu#uda out(1]{1] = (1 + disp.dispu / sg length)™
disp.dispv=uda out[3}[3):= (1 + disp.dispw/ sg.width)™
disp.dispw=ud others ud

disp.dispuudAa out{l[1] = (1 + disp.dispul sg length)™
disp.dispv+uda out{2][2):= (1 + disp.dispv/ sg.height)”
disp.dispw=ud others ud

disp.dispu#uda out{[1]:= (1 + disp.dispu ! sg length)™
disp.dispv#uda out2][2):= (1 + disp.dispv | sg.height)™
disp.dispw=ud

out{31[31 = (1 + disp.dispw/ sg.width)™
others ud

Table D-19 out for cdt_g_geometry
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D. 3.20 Green deformation tensor module
Prefix: gdt_
Reference: MG C.3.2.13

D.3.20.1 Interface syntax
Imported data type:

DisplacementT from the displacement specification module

TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module
Imported constant:

DIM 3
Exported functions:
Routines name Inputs Outputs Exception
gdt_g_knownquantity TensorDataT TensorDataT
TensorFlagT
gdt_g_geometry SpecimenGeometryT | TensorDataT None
DisplacementT

D. 3.20.2 Interface semantics

State variable: none
State invariant: none

Assumption:
Access routine semantics

cdt_g_knownquantity(kq: TensorDataT, kqgflag: TensorFlagT)

exception: Table D-20
output: Table D-21
cdt_g_geometry(sg: SpecimenGeometryT, disp:DisplacementT)
exception: none
Output: Table D-22
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mdg | sdg mdpg | sdpg cdt gdt | Ifst | efst list | eist tst
non | (kq[{1][1]=0)v | non (kq[1][1]=-1)v | (kq[1]{1]=0)v |non |non | (kq[l1]{1]=-0.5)v |non |} (kq[(l][1]=-1)v |no
(kq[2][21=0)v (kql2][2]=-1)v | (kq[2][2]=0)v (kq[2][2]=-0.5)v (kq[2][2]=-Dv |n

(kq[3][31=0)
=
d_zero

(kq[3][3]=-1)
=
d_zero

(kq[3][3]=0)
=
d_zero

(kq[3]{3]=-0.5)
=
d_zero

(kq[3][3]=-1)
=
d_zero

H, -G

Table D-20 exception for gdt_g_knownquantity
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H, : kgflag

mdg sdg mdpg sdpg cdt gdt
‘ﬁq%}:‘? ousted Out=tud Out:=[ud] Out:=[ud] Out:=(ud] kq
q =uda
kq[3](3]=ud
‘;ﬂ{;}:ﬁjﬁ out31[3]:= (kq(313)* | our(31[31:=(kgl313D | our3][31:= 1+ kg313)’ | owr[3][3]:=(1—kgi3)[3])* | ow(3][3):=1/kq[31(3]| kq
kg[ 313 }ud others ud others ud others ud. others ud. others ud.
tq{éllékug/\ out[2][2]:= (kq[2][2D)* | our[2)[2]:= (kqi2][2]) % | out[2][2):= (1 + kq[2}[2]) out[2][2] = (1-kg[2)[2])> | outl2][2]:=1/ kq[2]{2]| kq
kg[3}{3}jﬁd/\ others ud others ud others ud. others ud. others ud.
‘;gg}{gzﬁgi ouf2][2):= (ql2)2D)* | owl212) = (hgl21[2]) | ounl2)[2]:= 1+ kq2)[2) | our2)[2):=(1-kg[2)[2)) | ow(2][2]:=1/kq(2}[2]] ka
kq3j(3#ud | O“B313]= (kqi3)3])* | ourl3)[3):=(kql3)[3D | oud3][3}:= (1+ kg(3][3])’ out3]31:= (1-kg3}3n2 | owBI31=1/kq3](3]
others ud others ud others ud. others ud. others ud.
tqg;[gf"? outQ)[11:= (kgl)[1))* | our(1][1):= (kql1I[1])7 | ourf1][1] = (1+kql1][1])* oufl1][1]:= (1-kq{1][1])” oul1J{1]:=1/kq{1]{1] | kq
kg[ 3]{ 3];3(;\ others ud others ud others ud. others ud. others ud.
1;3{231232 out[11[1] = (kq{1][11)? out[1)[1] = (kgUL][1D 2 | oue(1][1] = (1 + kq[1]{1]) out{1][1]:= (1 - kg[1][1]) out[1]{1]:=1/ kq{1]1] | kq
kq[3)[3Jzud | O¥13103]:=(kql3] B | out(31[3]:= (kql3]1[3])* | our[3][3]:=(1+ kq[31(3])’ out(3][31:= - kg(3]32 | o#Bl31=1/k43](3]
others ud others ud others ud. others ud. others ud
1;3{ gg}zggi outl)[1]:= (kgl1)[1])* | out1]l}]:= (kgl][1])> | owrfi][1]:= (1 + kgl1][1])’ out[l][1)=(1-kg[][1)y”* | owllllLl:=1/kq{l]{1] | kq
KqB]3leud | OW1202)=(l20[2D° | ow2[2):= (kql2[2) | outl2)[2]:= 1+ kg(2](2)° | owr2[2):=(1-kgi2li2D? | ow22T=17 kgl2]i2]
others ud others ud others ud others ud others ud
tg{gg}:‘:g;\ ou{1][1]:= (kg][1])*> | owrf1)[1]:= GhgUIID2 | owr[1][1] = (1 + kg[1](1]) ouf[1)[1]:= (1 - kg[1][1) 2 out(1J(11:=1/kql1]{1] | Kq
kq3][3leud | OW(2I[2E:= (kql2112D)? | ourl2[2] = (kql21(2]) | ourf2][2):=(1+ kql2112]) | ouwrl2][2):=(1—kgr2](2])? | o¥2N2)=1/kgqi2](2]
outl31[31= (kgt31B3D* | ow3IB3)= (kgBIB)" | ow3I3)= A+ kal3IBD? | outi3)B]= (- k33> | OB =1 AGBIG)
others ud others ud ’ others ud. others ud others ud
G  Table D-21 out for gdt_g_knownquantity H, AH, > G Continue—
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H, : kgflag

Ifst

efst

list

eist

tst

kq[1}[1]=udA
kqf2}{2]=udA
kq[3][3]=ud

Out:={ud]

Out:=[ud]

Out:={ud]

Out:=[ud]

Out:=[ud]

kq(1](1]=udA | ou[3][3]:= (2*kq(3][3]+1) | our[3][3]:=1/(1-2*kq(3][3])| owr[3][3]:= 1+ kql3][3])’ out[31[3] = (- kg[3)[3])? | out[3](3]:= exp(2* kql3][3])
kq2]{2]=udA | others ud. others ud. others ud. others ud. others ud.

kq[3](3}2ud

kql1l[1]=udn | owt[2][2]):= (2*kq(2}[2]+1) | out[2][2):=1/(1-2%kqI2][2]] our2][2):=(1+kq[2][2])* | owut[2][2):= (1-kq[2}[2])?]| out[2][2):=exp(2* kq(2][2])
kq[2][2]#udA | others ud. others ud. others ud.

kq[3](3]=ud

others ud.

others ud.

kq{1][1]=udA

out{2][2]:=(2* kq(2][2]+1)

out[ 221 =1/1-2* kq[2][2])

out[2](2]:= (1 + kg[2][2])

out[2][2]:= (1 - kq[2][2])

out{2](2] = exp(2* kq(2][2])

kq2](2]#udA | 5u(3]13] = 2 * kg(3][3]+1) | owm(3][3]:=1/1-2*kq(3](3]) ou[3][3) = (1 + kq[3][3])* out[3][3] = (1 - kq(3](3]) 2 | ou3}[3]:= exp(2* kq(3](3])
kqi31B31#ud | hercud. others ud others ud. others ud others ud.
kqU1l(1}#udA | ou[1)[1):= 2*kg([1]+1) | out[][1):=1/(A-2%kqli][1]) | owe1){1]:= (1 + kgU1][1})° out[1)[1]:= (1~ kgl1](1))* | ouf(1][1]:= exp(2* kq(1](1])

kqi2][2]=udA
kqi3]{3]=ud

others ud.

others ud.

others ud.

others ud

others ud.

kq[1][1]#udA
kq[2][2]=udA
kq[3][3]=ud

out[1)[1]:= (2* kg(1][1} + 1)
out|3][3] = (2* kq{3][3] + 1)

others ud.

out[1)[1] =1/(1 - 2* kq{1}{1])
out3][31:=1/(1- 2% kq(31[3])
others ud

out[1][1] = (1 + kg[1][1])?
out{3][3) = (1 + kq[3]{3))

others ud

out{1][1]:= (1 ~ kg(1][1])*
out{3][{31:= (1- kq[3][3])
others ud

out{1][1] = exp(2* kg(1][11)
out{3][3] := exp(2* kq{3][3])

others ud

kg[1]f1}=udA
kq[2][2}2udA
kq(31(31=ud

out[1}{1):= (2* kq[1]{1] + )
out(2][2]:= (2* kg[2]{2] + 1)
others ud.

out[1][1]:=1/0-2* kq[1][1})
out2][2) =1/(1 -2 * kq(2][2])
others ud

out[1[1}:= (1 + kq1]{1])?
out[2)[2] = (1+ kg[2][2])?

others ud

out[1][11:= (1 - kg[1J[1])
out[2][21:= (1 kgl 2][2])
others ud

out[1][1] = exp(2* kq{1]{1])
out[2][2] = exp(2* kq(2][2])
others ud.

kq(1j[1)#udA | owr[l[1]:=(2* kqll][11+1) | ourQ1]{1}=1/(1~2*kgllJ1]) | our1][1]:= (1 + kg[1)[1])? out[1][1]:= (1- kq[1J[1])* | ow[1][1}:= exp(2* kql1][1])
qu}g}iﬁg/\ oul[2)[2]:= 2* kgl2)[2]+ D) | ow2)21=1/A=-2*Kq(2H2D) | ,12)12) = (1 + kg[2][2])° out[2)[2]:= (1- kg[2][2])2 | ouf[21[2]:= exp(2* kq[2]{2])
! ou3lf3]:= kg3 + b | BIBIELA=2 KB | o agpay = 4z | owt3I3)= (kg3 | 0PI =P AGIED
others ud. others ud others ud others ud others ud.
—Continue G Table D-21 out for gdt_g_knownquantity (Continue) H, AH, > G
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disp.dispu=uda
disp.dispv=uda
disp.dispw=ud

Out :=[ud]

disp.dispu=uda
disp.dispv=uda

out[3)[3] = (1 + disp.dispw [ sg.width)*
others ud

disp.dispwzud
disp.dispu=uda out(2][2] = (1 + disp.dispv [ sg.height)’
disp.dispv#uda others ud

disp.dispw=ud

disp.dispu=uda

out(2[2]:= (1 + disp.dispv | sg.height )’

disp.dispv#uda out(3][31:= (1 + disp.dispw/ sg.width)’
disp.dispw=ud others ud
disp.dispuuda out{1}[1] = (1 + disp.dispu | sg length)™

disp.dispv=uda
disp.dispw=ud

others ud

disp.dispu#uda out[1)[1] := (1 + disp.dispu | sg length)*

disp.dispv=uda out{31[3] = (1 + disp.dispw sg.width)*
disp.dispw=ud others ud

disp.dispuuda out[1}[1):= (1 + disp.dispu | sg length)*

disp.dispv#uda out]2)[2) = (1 + disp.dispv | sg height)’
disp.dispw=ud others ud

disp.dispuzudA out{1)[1]:= (1 + disp.dispu/ sg length)’

disp.dispv#uda out|2)[2):= (A + disp.dispv | sg.height)*
disp.dispw=ud

out[3113} = (1 + disp.dispw/ sg.width)’
others ud

Table D-22 out for gdt_g_geometry

216

H-G



D.3.21 Lagrangian (Green’s) finite strain tensor module
Prefix: 1fst_
Reference: MG-C. 3.2.20

D. 3.21.1 Interface syntax

Imported data type:
DisplacementT from the displacement specification module
TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module
Imported constant:

DIM 3
Exported functions:
Routines name Inputs Outputs Exception
Ifst_g_knownquantity TensorDataT TensorDataT
TensorFlagT
Ifst_g geometry SpecimenGeometryT | TensorDataT none
DisplacementT

D. 3.21.2 Interface semantics
State variable: none
State invariant: none

Assumption:
Access routine semantics

Ifst g knownquantity(kq: TensorDataT, kqflag: TensorFlagT)
Exception: Table D-23

Output: Table D-24

Ifst g geometry(sg: SpecimenGeometryT, disp:DisplacementT)
Exception: None
Output: Table D-25
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mdg | sdg mdpg | sdpg cdt gdt | Ifst | efst list | eist tst
non | (kq[1](1]=0)v | non | (kq[l1][1]=1)v (kgf1]{1]=0)v | non |non | (kq{1}[1]=0.5)v non | (kq[1]{1]=1)v non
(kql2][2]=0)v (kql2][2}=1)v | (kq[2][2]=0)v (kq[21(2}=0.5)v (kq(2](2]=Dv
(kqf31{31=0) (kq[31[3}=1) (kq[3]13]=0) (kq[3]13]=0.5) (kq[31(3]=1)
= = = = =
d_zero d_zero d_zero d_zero d_zero
H, -G Table D-23 exception for Ifst_g_knownquantity
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H, : kgflag

mdg

sdg

mdpg

sdpg

kq[1][1]=udA
kq[2][2]=udA
kq[3][3]=ud

Out:=[ud]

Out:=[ud]

Out:=[ud]

Out:=[ud]

kq[1]}[1]=udA
kq[2]{2]=udA

out|3][31:= ((kq(3][3])* -1/

others ud

out[3][3]:= ((kq13]3))* ~ /2

others ud

out[3][3):= ((1+ k4[31{3D)* - H /2

others ud.

out[3][3] = ((kq[3](31/(kq(3][3]- 1))’ ~ D)/ 2

others ud.

kq[31[3]#ud
kq(11{1}=udn  our[2)[2]:= ((kgl2)[21)* —1)/] out(2](2])= ((kg[2)[2])2 - 1)/ 2| out2)(2):= (1 + kql2][2))" -1/ 2| our(2][2):= ((kql2][2)/(kgl2][2] - D)* ~1)/2
kq{2][2]#udA others ud others ud others ud. others ud.

kq[3][3}=ud

kq[1][1]=udA

out(2](2]:= ((kq(2](2])* - 1)/

out[2][2]:= ((kql2][2])* - 1)/ 2

out[2][2]:= (1 + kg[2][2])* - 1)/ 2

out[2](2]:= ((kql2][2] /(kqi2][21-1))* ~ 1)/ 2

k 2 2

Qﬂg}iﬁ? out[31[31:= (kq(3][31)* ~ 1)/ 3 ou[3][3]:= ((kq[31[3D* ~ 1)/ 2 | outl3)[3]:=((1+kq(3](3])* - D/2 | our[3][3]:= ((kq(3][3)(kql3][3]- D)’ -1)/2
others ud others ud others ud others ud

kqU1]{1}#udn 4 our1)[1):= (kg({1])* ~1)/2 | omr(1)[1]:= (kgL - /2 | omt[1]{1]:= ((1+ kq[][1])* —~1)/2 | ouf{1]{1]:= ((kqlt][1}/(kgl][1] - 1))’ —1)/2

kq[2][2]=udA
kq[3][3]=ud

others ud

others ud

others ud.

others ud.

kql ][ 1]#udn
kq[2][2]=udA
kq[3][3]#ud

out[1][1) = ((kg[1][1})* = 1)/ 2
out{3](31 = ((kql3}[3])* — 1)/ 2

others ud

out{1}{1]:= (kgD -/ 2
out(3][3) = (kq(3]3D* - /2

others ud

out[1][1]:= (1 + kg[1][1])* - 1)/ 2
out[31[3]:= (1 + kg{31[3])* - 1)/2

others ud

oul1][1] = ((kq{11[11/(kq{1][1] - D)’ ~1)/2
out[3}(3] = ((kqi3)[3)/(kq[3](3] - D)’ -1 /2

others ud

kq[1][1]#udA
kq[2][2}#udA
kq([3][3]=ud

out[1][11:=((kgl][1])* -1 /2
out(2]{2] = ((kql2][2])* - 1)/

others ud

ou[1][1]:= ((kql1][1]) > ~ 1)/ 2
our[21[2):= ((kg(21[21)* ~1)/2

others ud

ourl]{1]:= (1 + kq1][1])? - 1)/ 2
out[2][2] = ((1 + kq[2][2])* - 1)/ 2
others ud

ou1][1] = (kg 1][11/(kgl1]{1] - 1))* - 1)/2
out|2][2] = ((kql2][21/(kql2]{2] - 1))’ —1)/2

others ud

kq1][1]2udA
kq[2][2}udA
kq[3][3]ud

out{1][1]:= ((kg(1][1])* ~1)/2
out|2][2] = ((kql2][2])* - 1)/
out[3][3] = ((kq[3](3])* - 1)/2

others ud

out(1][11:= ((kqUI1D ™ — 1)/ 2
out[2][2):= ((kq(21[21)* - 1)/ 2
out[3][3] = ((kg3](3) " - 1)/ 2

others ud

out[1J[1} = (1 + kg[1][1])* - 1)/ 2
out[2][2] = (01 + kq[z][z])i -1/2
out[3][31:= (1 + kql3)[3])* =1)/2
others ud

ouf{1]{1] = ((kql][1)/ (kg1 1] - DY —1)/2
out[2][2] = ((kq[21(2) (kq(2][2] - D))’ —-1)/2
out{3][3]:= ((kql31[31/(kq(3]1[3] - D)’ 1)/ 2

others ud

G  Table D-24 out for Ifst_g_knownquantity
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H2 : kgflag

k [ Cdt @t lf " f
g(1j(1]}=udA | Out:=[ud - st_| efst ‘
kq[2][2}=uda u=tudl Out:=[ud] kq | Out:=[ud] 1Cl)slit'—[ud]
kq[3][3]=ud -
kq[l][l]zud/\ out[3][3] . 1
_ = (kq[3][31" = 1)/2 | outl3113):= (kgl3)[31-1)/2 | k :
k — —
kgg}giiﬁ/\ others ud others ud ! :;te[il [3(1 =kq(3][31/(1-2%kq31[3]) | o0u[31[3]:= (kq(3)[3)* +2*kq[2][2])/2
kqUll(H=udn | ou2][2]:= (kg[2][2]" ~1)/2| out(2][2]:= (kq{2][2 ] others ud
kq[2 = - = 1-1/2 | k —
1&{3%{32'}233/\ others ud sthors vd q ;z;[i]{ii]. kqI2)[21/(1 -2 * kq(2]12]) | ourf2])[2]:= (kq[2][2] +2* kq[2][2])/2
kq[l][l]:ud,\ 9 3 others ud
rallll1}=udn | out2jzi=azj2y -v72 | owlZ[21=G2)2-1/2 | Xa | ou2]21= kaL2)210 -2+ al2l[2
kq[3)31ud outl3][31:= (kqt3](31 ™" 172 | ow131131= (eql3][3)-1)/2 out[3][3] = kqI3][31/(1 - 2 * 2D | ouf2][2):= (kql2][2) +2*k412][2])/ 2
e Wt others ud ouBI) = BIBHA =2 KBIBD | our3)3) = (kgAY +2* ka2 2
QUIUTT#udA | oufif1] = (kqLt]{i" 172 | owrl][1]= others ud
kal21121= =g ~n/2 |k - u
kg% 3}{%:33’\ others ud others ud 1 ::;;[rl:[lll]d' kgl /1~ 2 * kqUI]iL]) out[1][1] = (kql1][11* + 2 * kq(1]{1])/ 2
kal1111 l others ud
kgbﬁz}fﬁﬂﬁ outl)[1]:= (kg1 -1y72 | owtlllll}:= (kgl[]~D/2 | ka | owm[1][1]:= kg{1]{1]/(1 - 2* kq{1][1
kql3](3}ud out(3)[3] = (kg(3)[31™" ~1y/2 | ow31B3]:= (kq(3][3]-1)/2 out(31[31:= kq(3}(31/(1~ 2 * kq[3]g out{1][1] = (kgl1[1* + 2 * kg{1][1])/ 2
ka[1}[1}#ud s others v others ud V1 oun3)f3) = (hgB3)I3Y" + 2+ kat2)i2))/2
kgm [2]: di ou{Nj[l] = ()11 — /2 | owfl][1] = (kgll}[1)~1)/2 | ka | our{1][1]:= kg[1][1]/(1 - 2 * kgl1][1L othets ud
WA | outaitz1 = darzyar -is2 | owl2l2)=(al2[2]-D/2 out(2][2):= kq[2][2]/(1—2*kq][[2]][)2] outf1]{1) = (kgTUJ[1}’ +2* kqI1][1))/ 2
kq[1][1]}ud others ud others ud others ud )| ou2)[2] = (kql2][2F +2* kq[2][2])/2
fallILTIAGA | o= et ~br2 | oullti=Gall}=D72 - [ka | outliti= LIV -2 kg1 T
KqDIDleud | PRI Ggr2li2r -D/2 out(2][2] = (kq[2][2]-1)/2 out[2][21:= kq(21[21/(1 - 2 * kq{2][2]) outllh:= (kallJ(" 2 A4UJID 2
out[3]3) = (kq3)31" ~1y/2 | HBIB1= (kgl3][31-1)/2 out3][3) = kg[3][3]/(1~ 2* out[2][2]:= (kql2][2)* +2* kq[2][2])/ 2
others ud others ud others ud kq313D | (G131 = aBIGT +2* ka(21[2])/ 2
—Continue G others ud
Table D-24 out for Ifst_g_knownquantity (Continue) =
—Continue
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H, : kgflag

eist

tst

kq[1]{1]=udA
kq[2][2]=udA
kq[3][3]=ud

Out:=[ud]

Out:=[ud]

kq[1][1]=udA
kq{2][2]=udA

out[3][3]:= ((kq(3]{31 (kq(31[3]1-1))* ~ 1)/ 2

others ud.

out[3][3]:= (exp(2* kq(3][3]) - 1)/ 2
others ud

kq[3]}[3]ud
kqUIl[1]=udA | ou2][2]:= ((kql2][2] Ig[2)[2]-1))% =1y /2 | out[2][2]:= (exp(2 * kq2][2]) - 1)/2
kql2][2]#udA | e ud. others ud

kq[3][3]=ud

kq[1][1}=udA

out[2][2] = ((kq(2][21/(kq(2]{2] - 1))’ ~1)/2

out[2]{2]:= (exp(2* kq[2][2]) - 1)/ 2

Ot | o3IBY= (a3 kgl31131 -y ~ 172 | OWBI3):= exp(@* kgl31(3D -1/ 2
others ud others ud
kq[1[1#udA | ouf1j(1] = (gl ]/l 1[0 - D) = 1)/2 out[1][1] = (exp(2 * kg{1][1]) - 1)/ 2

kq(2][2]=udA
kq(3][3]=ud

others ud.

others ud

KaLlILTI0dn | oufi)] = (Rt Chattil -D) =72 | owllll):=(ExpC* KalJD -1/ 2
kq[3][3]_u " outf3][3] = ((kql31[31 ((kq[3}[31-1))* —1)/2 | O 31031 = (exp(2* kql3][3]) - 1) / 2
q[3]{3]ud
others ud others ud
ka[1J(11#udA | ouf1)fi] = (kg0 ChglT] [ - DY —1)/2 owt[1][1] = (exp(2* kqUI[1) — 1)/ 2
kq[2][2]#udA e o2 tal2l2] D 2

kq[3][3]=ud

out[2][2]:= ((kql21[2)/(kq2][21 - 1)) ~1)/2

others ud

others ud

'ﬁg%g}iﬁ? out{2][2] = ((kql21[2) /(kq(2][2] — D)2 —1y/2 | ow(21[2] = (exp(2* kq[2][2]) - D)/ 2
our[3)[3]= (kg131131 (kqi31[3] - Dy — /2 | CH3IB)= (exp(@*kq313) - D72
others ud others ud

Continue— G Table D-24 out for Ifst_g_knownquantity(Continue)
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disp.dispu=uda
disp.dispv=uda
disp.dispw=ud

Out :=[ud]

disp.dispu=udna
disp.dispv=uda

out[31(3) = ((1 + disp.dispw/ sg width)* ~1)/2
others ud

disp.dispw=ud
disp.dispu=uda out{2)[2] = (1 + disp.dispv/ sg.height)* 1)/ 2
disp.dispv#uda others ud

disp.dispw=ud

disp.dispu=uda

out{2)[2] = (( + disp.dispv | sg.height)* —1)/ 2

disp.dispv#uda out3}[3):= (L + disp.dispw/ sg.width)* ~1)/2
disp.dispw=ud others ud
disp.dispu#uda out{1)[1) := ((1 + disp.dispu | sg length)* ~1)/2

disp.dispv=udAa
disp.dispw=ud

others ud

disp.dispuzuda out{1]{1] = ((1 + disp.dispu / sg length)* ~1)/ 2
disp.dispv=uda out[31[3) = (1 + disp.dispw/ sg.width)? =1)/2
disp.dispw=ud others ud

disp.dispuuda out[1)[1]) := (1 + disp.dispu | sglength)* ~1)/2
disp.dispvzuda out{2][2] = ((1 + disp.dispv | sg.height)* ~1)/ 2
disp.dispw=ud others ud

disp.dispuzuda out[1)1):= (1 + disp.dispu | sg Jength)* ~1)/2
disp.dispvuda out[2[21:= (1 + disp dispv ! sg.height)* —1)/ 2
disp.dispw=ud out{31[3] = ((\ + disp.dispw/ sg.width)* —=1)/2

others ud

Table D-25 out for Ifst_g_geometry
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D.3.22 Eulerian (Almansi’s) finite strain tensor module

Prefix: efst_
Reference: MG-C. 3.2.19

D. 3.22.1 Interface syntax
Imported data type:

DisplacementT from the displacement specification module

TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module
Imported constant:

DIM 3
Exported functions: ‘
Routines name Inputs Outputs Exception
efst_g_knownquantity TensorDataT TensorDataT
TensorFlagT
efst_g geometry SpecimenGeometryT | TensorDataT none
DisplacementT

D. 3.22.2 Interface semantics
State variable: none
State invariant: none

Assumption:
Access routine semantics

Ifst_g_knownquantity(kq: TensorDataT, kqflag: TensorFlagT)
Exception: Table D-26

Output: Table D-27

Ifst g geometry(sg: SpecimenGeometryT, disp:DisplacementT)
Exception: none
Output: Table D-28
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mdg

sdg

mdpg

sdpg

cdt

gdt

Ifst

efst

list

eist

tst

(kq[1][1]=0)v
(kq[2}12}=0)v
(kq[3][3}=0)
=

d_zero non

non

(kqf1]{1]=-1)v
(kql2]{2]}=-1)v
kq[3][3]=-1)
=

d_zero

non

non

(kg{11{1]=0)v
(kqg[2][2]=0)v
(kq[3][3]=0)
=

d_zero

(kq[1]{11=-0.5)v
(kql2][{2]=-0.5)v
(kq[3]{3]1=-0.5)
=

d_zero

non

(kq[1j{1]=-1)v
kq[2][2]=-1)v
(kql3}[3]=-1)
=

d_zero

non

non

H, -G

Table D-26 exception for efst_g_knownquantity
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H, : kgflag

mdg

sdg

mdpg

sdpg

kq[1][1}=udA
kq[2][2]=udA
kq[3][3]=ud

Out:=[ud]

Out:=[ud]

Out:=[ud]

Out:=[ud]

kq[1][1]=udA
kq[2][2]=udA

out[3][3] = (1- kq(3][317%)/2

others ud

out[31[3] = (1- kq(31[31)/2

others ud

out[3][31:= (1- (1+ kq[3)[3]) %)/ 2

others ud.

out(3][31:= (1- (1 - kq[3][31)*)/ 2

others ud.

kq[31[3]ud ,
kqUJ[1]=udA | ou(21[2]:= (1- kq(2)[21)/2 | our2][2]:= (1-kq[2][21°)/2 | owr(2][2):=(1— (1 +kgl2}[2D)?)/2 | our[2][2):= (1-(1-kgl2][2])*)/ 2
kq[2][2]#udA others ud others ud others ud. others ud.

kq[3]{3]=ud

kq[1}{1]=udA

out[2][2]:= (1 - kq[21[2]72)/2

out(2][2]:= (1~ kg{2][21*)/2

out{2][21:= (1- (1 + kq(2][2))*)/2

out[2][21:= (1- (1 - kq[2][2])*)/ 2

l;gg}g}:? out31[3]:= (1 - kgU3I3T™>)/2 | our31(31:= A - kq(3131%)72 | ow(31131:= (1 -1+ kqg(3]3)7>)/2 | ow[3])3]:= (1- (1 - kg(3][3])?)/2
others ud others ud others ud others ud
kqU1}{1J#udA | our1)[1]:= (1 - kg[][1172)/ 20t | owr{1)[1}:= (1 - kg(1][1]%)/2 out[1J[l1:= -+ kg1 )72 | ouf][l}= (-1 -kgll)1D*)/2

kq[2][2]=udA
kq[3](3]=ud

hers ud

others ud

others ud.

others ud.

kqf1][1]#udA
kqf2][2]=udA
kq[3][3]#ud

out[1][1]:= (1 - kq(1][1] )/ 2
out[3][3] = (1- kq(3][31>)/2

others ud

out[1]{1] = (1- kg[1][11*)/ 2
out{3][3] = (1 - kq3][31°)/2

others ud

our{1][1] = (1 - (1 + kg1][1)) )/ 2
out[3][31 = (1- (1 + kg3][3))>)/2

others ud

ouf{1)[1] = (1- (1 - kgl1][1])*)/2
out[3](3]:= (1- (1 - kg(31[31)*)/ 2

others ud

kq[1][1]#udA
kq[2][2]#udA
kq[3][3]=ud

out[1][1):= (1 - kql1][1}7*)/ 2
out(2][2):= (1 - kq(2][217°)/2

others ud

out{1][1]:= (1- kq(1][11*)/ 2

out[2][2]= (1 - kq(2][21*)/2
others ud

out{1][1]:= (1 - (1 + kq1]{1]) )/ 2
out[2][2] = (1 - (1 + kg(2][2]) )/ 2

others ud

ouf1][1} = (1— (1 — kg{t][1))*)/ 2
out[2][2]:= (1 - (1~ kg(2][2])*)/ 2

others ud

kq[1]{1}#udA
kq[2}[2}udA
kq[3}[3]#ud

out(1][1] = (1 - kgl1][117%)/2
out[2][2]:= (1~ kq[2][2172)/ 2
out[3][31:= (1- kq(31[317) /2

others ud

out[1][1] = (1 - kgl1][1)*) /2
out[2][2} = (1- kg(2][217)/2
out[3][31:= (1 - kq(31[31°)/2

others ud

out[1][1] = (1— (1+ kq{1][1]) *)/ 2

out[2][2]:= (1 - (1+ kg[2][2])*)/2
out[3][3]:= (1 - (1 + kg3][3]) )/ 2
othrs ud

oufl 1] = (1~ (1 - kg1][1*)/ 2
out2][2):= (1 - (1 - kg2][2])*)/ 2
out[3][3]:= (1- (1 - kq[31{3))*)/ 2

others ud

G  Table D-27 out for efst_g_knownguantity
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H, : kgflag

cdt gdt Ifst efst | list

kq[1][1]=udA | Out:= [ud] Out:={ud] Out:=fud) kq | Out:=[ud]

kqf2](2]=uda

kq(3](3]=ud

kqU1]{1]=udA | our[3]{31:=(1-kq31(31)/2 | ourf3][3]:= (1 - kq(3][317")/2 | owt(3)[3]:=kql3)[3)/(1+2* kq(313D) | KA | our(3)[3]:= (1 - (1 + kq[3][3])*)/2

kq[2][2}=udA | others ud others ud others ud others ud.

kq[3){3}#ud

kq(1}{1}=udn | our(2][2]:=(1-kql2)[2])/2 | our[2][2]=(1- kql2][21"")/ 2 oufi2][2):=kq[2][21/(1+2* kq[2][2]) | KA | ourf2][2):= (1-(1+ kg2}[2])72)/2

kql2][2}#udA | others ud others ud others ud others ud.

kq[3](3]=ud

kq[1)[1]=udA | outf2][2]:=(1—kg{2)[2])/2 | ow2)[2}:=(1-kg[2])[21")/2 | out{2][2):=kq(2][21/(1+2* kql2](2]) | kq | om(2][2] = (1~ (1 +kg[2][2]) %)/ 2

llqugllglﬂg/\ out[3][31:= (1~ kq3U3D/2 | our3)(31:= (1 kq(3)(31")/2 | owt[31[3]:= kgi3][3}/(1+2* kq[3][3]) out3][3]:= (1~ (1 + kg[3)[3D )/ 2

ql3]3]2u others ud others ud others ud others ud

kq[1][112udA | owr{1][1] = (1 — kg1][1])/2 out{1]{1] = (1 - kg[1)[17™") 72 | out(1]{1] = Aq{1}{1]/(1 + 2* kql1][1]) kq | our1]{1]:= (1 - 1+ kg[1][1]) )/ 2

kq[2][2]=udA | others ud others ud others ud others ud. -

kq[3][3}=ud

kq[1][1}#udA | our[1][1]:= (1 - kql1][1])/2 out[1)[1]:= (1 - kgl1[1]™"y/2 | owlllll]l = kqlI(1/QA+2*kqJ1D) [ kA | ourft](1}:= A~ (A + kgll}{1]) )/ 2

kq[2][2]=udA | oue[3](3}:= (1 - kq[31{3])/ 2 out3)[31 = (1 - k331 y/2 | wB131=kq(3](31/(1+ 2 * kq(3](3]) outl3][31:= (1 - (1+ kq(313])2)/2

kq[3][3]¢ud others ud others ud others ud others ud

kq[1}[112udA | ourf1]f1] = (1 - kg[1][1])/2 oul1)[1]}:= (1 - kgl1)1) ™"y /2 | owl1][1] = kql1](11/(1 + 2 * kql1]{1]) kq | ouj[1]:= (1~ 1+ kgU][1]) %)/ 2

KARIZI0A | ou2)[21:= (- kal2102D/ 2 | usgaai= (i kgt2lfzrtyr2 | ow2I[2):= kal21[21/(1+ 2% kgl21{2)) out{2][2):= (1 - (1 + kq[2]2])*)/2

kq[3][3]=Ud others ud others ud others ud others ud

kq[1]{1]#udA | ow[1][1]:= (1- kq[1]{1])/2 out{1)[1] = (1 - kq[1)[1]"y/2 | owTi](] = kqUI]I1I/1+2* kqlt)(1]) | K | our(l][1]):= (1~ (1+ kqlL[11) )/ 2

2 = (1= -

‘;gg}g:? out[?2,1[321.-_— (= kl22D712 1 ouga)iay:=1-kgizafartya | o2l =kat212) ’(11+2:"q[21[21) out[2][2) = (1= (1 + kq(2]{2])*)/2
ouB3)3):=A=kqgBIBD/2 | o sgi3)= 1 - kgrapar 2 | OWCIB)=KaBII31A -+ 2% ka313D out3)[3]:= (1 - (1 + kq(3][3]) 2)/2
others ud others ud others ud othrs ud

—>Continue G Table D-27 out for efst_g_knownquantity (Continue) H AH, -G Continue—
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H, : kegflag

eist

tst

kq[1][1]=udA
kqf2]{2]=udA
kq[3]i3}=ud

Out:={ud]

Out:={ud]

kqf1]{1]=udA
kq[2][2]=udA

out[3][31:= (1- (1 - kq(3][31)*)/ 2

others ud.

out[3][3] = (1 - exp(—2 * kq13}[31))/ 2

kq[3][3]#ud others ud

kqH]{l}=udn | our2]2]:= (- (1 - kgl2][2])%)/ 2 out[2][2] = (1-exp(-2 * kq[2][2]))/ 2
kql2]12#udA | (thers ud. others ud

kq[3}{3]=ud

kq(1][1}=udn | ouf2)[2):= (1 (1- kg[2)[2])*)/ 2 out[2][2] = (1 - exp(-2 * kq{ 2]{2]))/ 2
‘ﬁg{i}{ﬂiﬂ? outf3][3) = (1 (1~ kgBIBY?) /2 out{3][3] = (1- exp(~2 * kq[3][3]))/ 2

others ud

others ud

kq[1][1]#udA
kq[2]{2]=udA
kq(3](3}=ud

ouf{1[1] = (1 — (1 - kg{1][1])*)/2

others ud.

out[1][1]:= (1 ~exp(-2* kq(1]{11))/ 2

others ud

kq[1}[1]#udA
kq[2][2]=udA
kq[31{3]ud

ouf{1][1] = (1 - (1 - kgf1][1})*)/2
out[3][31:= (1- (1 - kq(31(31)*) 1 2

others ud

out[1][1] = (1 ~ exp(-2 * kg{1][1]))/ 2
out[3)[31:= (1 - exp(=2 * kqI31[3]))/ 2

others ud

kq[1][1]#udA
kq[2]{2]#udA
kq[3][3}=ud

ouf1][1]= (1 - (1 - kgf]{1])*)/ 2
out[2][2):= (1 - (1- kq[2][2])*)/ 2

others ud

out{1][1]:= (1 - exp(=2* kql1][1]))/ 2

others ud

kq[1]}[1]udA
kq[2][2]#udA

ouf1]{1] = (- (- kglI]*)/2
out[2][2] = (1- (1~ kq(2]{2])*) /2

out{1][1}:= (1 - exp(-2 * kq[1][1]))/ 2
out[2][2} = (1 —exp(2 * kgl 2][2]))/ 2
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kq[31[3]#ud
1 2 out{3}{3] := (1 - exp(—2 * kq[31[3]))/2
sti[i]ﬂ == (1-4q3][3])°)/ 2 others ud
Continue— G Table D-27 out for efst_g_knownquantity
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disp.dispu=uda
disp.dispv=uda
disp.dispw=ud

Out :={ud]

disp.dispu=uda
disp.dispv=uda

out|3)[3]:= (| - (1 + disp.dispw /| sg.width) ™)/ 2
others ud

disp.dispw=ud
disp.dispu=uda out[2[2]:= (1 — (1 + disp.dispv/ sg.height)™>)1 2
disp.dispv#uda others ud

disp.dispw=ud

disp.dispu=udna

out]2)[2] = (1 — (1 + disp.dispv ] sg.height)™) /2

disp.dispvuda out[3)[3) = (1~ (L + dispdispw/ sg.widthy™)/ 2
disp.dispwud others ud
disp.dispusuda oull][1):= (1~ (+ dispdispv] sg height)™)/2

disp.dispv=udA
disp.dispw=ud

others ud

disp.dispuzuda out{1)[1):= (1 - (1 + disp.dispv | sg.height)>)/2
disp.dispv=uda others ud

disp.dispw#ud

disp.dispuzuda out[){1]:= (1 - (1 + disp.dispv/ sg.height)™)12
disp.dispvtuda oul[2][2}:= (1 - (1 + disp.dispv | sg.height) )12
disp.dispw=ud others ud

disp.dispuzuda out{1][1] = (1 - (A + dispdispv | sg.height) )] 2
disp.dispvzuda out[2}[2] = (| — (1 + disp.dispv | sg.height)™>)/ 2
disp.dispw#ud out[31[3} =1 - (1 + dispdispw / sg.wt‘dth)'z) /2

others ud

Table D-28 out for efst_g_geometry
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D. 3.23 Lagrangian (Green’s) infinitesimal strain tensor module

Prefix: list_
Reference: MG-C.3.2.18

D. 3.23.1 Interface syntax
Imported data type:

DisplacementT from the displacement specification module

TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module
Imported constant:

DIM 3
Exported functions:
Routines name Inputs Outputs Exception
list_g_knownquantity TensorDataT TensorDataT
TensorFlagT
list g geometry SpecimenGeometryT | TensorDataT none
DisplacementT

D. 3.23.2 Interface semantics
State variable: none
State invariant: none

Assumption:
Access routine semantics

Ifst_g_knownquantity(kq: TensorDataT, kqflag: TensorFlagT)
Exception: Table D-29

Output: Table D-30

Ifst_g geometry(sg: SpecimenGeometryT, disp:DisplacementT)
Exception: none
Output: Table D-31
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mdg | sdg mdpg | sdpg cdt gdt Ifst efst list | eist tst
non | (kq[1][1]=0)v | non | (kq[1][11=1)v | (kq[11[11<O)v | (kq[11[1]<O)v | (kql1][1]<- | (kq[1][1]>0.5)v [ non | (kq[1]{1]=1) | non
(kq[2][2)=0)v (kq2]i2)=D)v | (kg[2][2]<O0)v | (kq[2][2]<O)v | 0.5)v (kq[2][2]>0.5)v v
(kq[31(3]=0) (kq[3]13]1=1) | (kqf31(3]1<0) | (kq[31{3]1<0) | (kq[2]{2]<- | (kq[3][3]>0.5) (kq[2][2]=1)
= = = = 0.5)v = v
d_zero d_zero sr_lesszero sr_lesszero, | (kq[3][3]<- | sr_lesszero, (kq[31[3]=1)
(kq[1][1]=0)v 0.5) (kq[1][1]=0.5)v =
(kqf2][2]=0)v = (kq[2][2]=0.5)v d_zero
(kq[3](3]=0) sr_lesszero, | (kq[3][3]=0.5)
= =
d_zero d_zero
H, -G Table D-29 exception for list_g_knownquantity
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H, : kgflag

kq[2][2}=udA

others ud

others ud

others ud.

others ud

mdg sdg mdpg | sdpg cdt gdt
kq[1][1]=udA | Out:=[ud] Out:=[ud] kg Out:=[ud] Out:={ud] Out:=[ud]
kq[2][2]=udA
kq[3][3]=ud
kqlt][1]=udA | out[3][3]:=kq[31[3]~1 | our[3][3]1:=1/kq(3]{3]1-1 | kq out[3][3) = kq(31[31/(1 — kq(31[3]) | owB131:=1/sqrt(kq313D 1 | out[3][3] = sqrt(kq(3][3) -1

others ud.

out|3][3] = kq(3][3] -1

others ud

ouf{3}[3] =1/ kqi3][3]-1

others ud

out[3][3] = kql3][31/(1 - kqi3][3])
others ud.

others ud

kq[3][3]ud

kq[1][1]=udn | kq[2][2):=kq(2][2]-1 | owr[2][2]:=1/kq(2][2}-1 | kg out]2][2] = kq(21[2)/(1— kq(2][2]) | out21i21:=1/sqreckai212D~1 | our[2][2] = sqri(kql2][2]) ~1
kq[2][2}#udA | others ud others ud others ud. others ud others ud.

kq[3](3}=ud

kq(11[1]=udA | ow[2){2]:=kql2][2]1-1 | out[2][2]:=1/kg[2][2]-1 | kq out[2][2] = kq[2][2)/(1 - kq(2][2]) | oud2)21=V/sqrakq2l2D)~1 | our[2][2]:= sqrt(kq(2}[2]) ~1
kql2][2J#udA | ou(3)(3) = kq3][31 -1 | owr[3][3]1:=1/kq(3][3] -1 out[3][3]:= kqU31[31/(1 - kq(31[3]) | WBISI=1/sqrikqBIBD =1 | 641(3][3] := sqre(kq(3][3]) -1
kq(3]1(3}*ud others ud others ud others ud. others ud others ud.

ka[1[1]#udA | owf1][1]:= kgl1][1}—1 out[1{1] =1/ kql1}[1}-1 | kq out[1][1]:= kql1]{11/(1 - kql1][1]) oufl]ll] =1/ sqrickeflllD -1 | out[1][1]:= sqrt(kg(1][1]) -1
kq[2][2)=udA | others ud others ud others ud. others ud others ud.

kq(3][3)=ud

kq[1][1]#udA | our{1][1]:= kq[1][1] -1 out{1][1]:=1/kg[1][1]-1 | kq out[1][1]:= kq(1][11/(1 — kqU]{1]) ouflJl}:=1/sqrickqlt]ID~1 | out[1}{1] = sqrt(kql1][1}) -1
kq[2){2]=udA | oue3][3]:= kq(3][3]-1 | oud3][3]:=1/kq(3][3]-1 out[3][3] = kq[313] /(1 - kq(3][3]) | owBIBI=1sqrtCkqBIBD-1 | 513][3] = sqre(kq[3][3]) -1
kq(3}(3]=ud others ud others ud others ud. others ud others ud

kq[1][1]2udA | our(1][1]:= kq[1][1] -1 out[1)[1}:=1/kg[1][1]-1 | kq out{1][1] == kq[1]{1}/(1 - kq{1][1]) oul 1) =1/sqrikqilIIN -1 | out[1][1] = sqrt(kg{1][1]) -1
kql2)[2J#udA | our2112) = kgl2]12) -1 | our21[2]):= 1/ kqf2][2] -1 out[2][2):= kq2][21/(1 - kq{2][2]) | cuf2I2]=Vsqrakd2IZD-L | 5y1121[2] = sqre(kg[2}[2]) ~1
kq[3](3]=ud others ud others ud others ud. others ud others ud

kq[11f1]#udA | owr(1][1]:= kq(1][1] -1 out[1][1):=1/kg[1][1]-1 | kq out[1]{1]:= kq{1][1} /(1 — kg{1}[1]) oulj[l}:=1/sqrekgiti) -1 | owt{1]{1] = sqrt(kg[1][1]) -1
kq2]2J#udA | ou2)[2]= kqi2][2]-1 | out[2][2]:=1/kq2][2]~1 out[2][2):= kql2][2]/(1 - kg{2)[2]) | oudZIZ=1/sqrakd2}2D-1 | 5 2](2]:= sqre(kq[2][2]) ~1
kq{3]{3}#ud out{31[3] = 1/ sqrt (kqf3][3]) -1

out[3]{3]:= sqri(kql3]{3]) -1

others ud

G

Table D-30 out for list_g_knownquantity
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H, : kgflag

Ifst efst list | eist tst
kq[1][1]=udA | Out:=[ud] Out:=[ud] kq | Out:=[ud] Out:=[ud]
kq{2](2]=udA
kq[31[3]=ud
kq(1I(1]=udA | out[3][3):=sqrt(2* kq(31[31+ 1) =1 | out[31[3]:=1/sgri(i—2* kq(3]{3])—1 | kq out(31(3]1 = kq{31[31/(1 — kq(3]} our[3][3] = exp(kq(3}[3]) -1

kq[2]{2]=udA

others ud.

others ud

others ud.

others ud.

kq[3][3}#ud

kq[1)[1)=udA | ouf2)[2] = sqrt2* kq{21[2)+ D —1 | out[2][2}:=1/sqri(1—2*kq2][2])—1| kq | our[2]{2]:= kql2]{2]/(1 - kq2| out[2][2]:= exp(kq[2][2]) -1

kq[2][2}#udA | others ud. others ud others ud. others ud.

kq[3}(3]=ud

kq[1]{l]=udA | ouf[2)[2]:=sqrt(2*kq[2][2]+ D) ~1 | oufl2]{2):=1/sqrt(1-2*kq(2}[2])~1 [ kq | out[2][2]:= kq(2][21/(1 - kq(2]| out{2][2]:= exp(kq(2][2]) -1

kq[2)(2#udA | 5u[3)[3]) = sqre(2* k331 + D) —1 | outl3)[3]):=1/ sqrt(1-2* kq[3][3]) -1 outl3)[3] = kql3][31 /(1 - kq(3]] our[3][3]:= exp(kq{3]{3]) -1

kq(3]3J#ud | pers ud. others ud others ud. others ud.

kq[1l{1J2udn | our{1][1]:= sqre(2* kqUI{1}+ D) ~1 | owdl][1] :=1/sqre(1-2*kgi)[1)—1 | kq | outl1]{1]):= kq(1][1)/(1 - kql1][1] our[1)[1] := exp(kq{1][1]) -1

kq[2][2]=udA | others ud. others ud others ud. others ud.

kq[31{3]=ud

kq[1][1J#udA | our[1][1]}:= sqrt(2* kg{l]{1]+ 1) =1 | owtf{l]{1):=1/sqre(1-2* kq][1])—1 | kq | owf[1][1]:= kql1}[1}/(1 — kq{1][1] our(1][1]:= exp(kg(1][1]) -1

kq[2]{2]=udA | 54¢[3][3) = sqre2* kq3131+ 1) -1 | outl3]{31:= 1/ sqre(1-2* kq[3][3]) -1 out(3][3] = kq(3](31/(1 - kql3]| our[31[3]:= exp(kq(31[3])—1

kq3][3l#ud | o d. others ud others ud. others ud.

kq[1J[1)#udA | ou][1] = sqre(2* kgl][1]+ 1) =1 | owt{1][1]:=1/sqrt(1-2*kqlU}[1)-1 | kq | ow(1][1]:= kqll][1}/(1 - kq1}[1] our[1]{1] = exp(kqlL][1])—1

kq2)[2J#udA | Guq20[2] = sqre2 * kql2][21+ D -1 | out{2][2]:=1/ sqre(1— 2* kq2][2]) ~1 out|2][2) = kql2}[21 /(1 - kql2)} our[2][2] := exp(kql2][2]) -1

kq[3][3}=ud others ud. others ud others ud. others ud.

kq(1)[1]#udA | ouf[1}[1]:= sqre(2* kqQ][1]+ D) —1 | ou1][1] =1/sqrt(1-2*kqllI[1)—-1 | kq | oud1]{1]:= kql11[1}1/(1 - kql1l[1] our([1](1]:= exp(kql1}{I])—1

kq2][212udA | 6ue2]12) = sqre2 * kqf2][21 +1)~1 | out[2][2]:=1/sqrt(1—2* kql2][2]) -1 out[2][2]:= kqI2][2)/(1 = kq(2)| our[2][2]:= exp(kq[2][2]) -1

kqB3IBleud | 3003) = sqre@* kqBIB1 + 1) —1 | ourl31[3):= 1/ sqre(l— 2 * kq(3][3]) - 1 out3)(31 = kg[31[31/1 - kql3]| our(3][3] = exp(kql313]) ~ 1
others ud. others ud others ud. others ud.

—Continue G Table D-30 out for list_g_knownquantity (Continue) H,AH, -G
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disp.dispu=udna
disp.dispv=uda
disp.dispw=ud

Out :=[ud]

disp.dispu=uda
disp.dispv=uda

out{3][3]:= disp.dispw ! sg.width
others ud

disp.dispw+ud
disp.dispu=uda out[21[2] = disp.dispv | sg.height
disp.dispv#udna others ud

disp.dispw=ud

disp.dispu=uda

out[2]{2]:= disp.dispv / sg.height

disp.dispv#uda out{3}[3] = disp.dispw | sg width
disp.dispw#ud others ud
disp.dispu#uda out[1|[1] = disp.dispu [ sg length

disp.dispv=udAa
disp.dispw=ud

others ud

disp.dispuzuda out[1)[1] = disp.dispu / sg.length
disp.dispv=uda out[31[3]:= disp.dispw | sg.width
disp.dispwud others ud

disp.dispuzuda out[1)[1] = disp.dispu | sg.length
disp.dispvuda out[21[2]:= disp.dispv | sg.height
disp.dispw=ud others ud

disp.dispu#uda out[1J[1] = disp.dispu [ sg.length
disp.dispv#udna out|21[2] = disp.dispv | sg.height
disp.dispw#ud out[3){3) = disp.dispw | sg.width

others ud

Table D-31 out for list_g_geometry
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D. 3.24 Eulerian (Almansi’s) infinitesimal strain tensor module

Prefix: eist_
Reference: MG -C. 3.2.17

D.3.24.1 Interface syntax
Imported data type:

DisplacementT from the displacement specification module

TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module
Imported constant:

DIM 3
Exported functions:
Routines name Inputs Outputs Exception
eist_g_knownquantity TensorDataT TensorDataT
TensorFlagT
eist_g geometry SpecimenGeometryT | TensorDataT none
DisplacementT

D. 3.24.2 Interface semantics
State variable: none
State invariant: none

Assumption:
Access routine semantics

Eist_g_knownquantity(kq: TensorDataT, kqflag: TensorFlagT)

exception: Table D-32
output: Table D-33
eist_g geometry(sg: SpecimenGeometryT, disp:DisplacementT)
Exception: none
Output: Table D-34
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mdg sdg | mdpg sdpg | cdt gdt Ifst efst list eist | tst
(kq[1][1]=0)v { non | (kq[1][1]=1)v | non | (kq[1][1]<0) | (kq[1]{1]<0) | (kq[1][1]<-0.5) | (kq[1]{1]>0.5) | (kq{1]{1]=-1) {non | non
(kql2](2]=0)v (kql2][2}=1)v v v v v v
(kq[3]1[3]=0) (kqf31(3]=1) (kq[21[2]<0) | (kq[2][2]<0) | (kq[2][2]<-0.5) | (kq[2][2]>0.5) | (kq[2]{2]=-1)
= = v v v v v }
d_zero d_zero (kq[3][3)<0) | (kq[3][3]<0) | (kq[3][3]<-0.5) | (kqI3]{3]>0.5) | (kq[3]{3]=-1)
= = = = =
sr_lesszero sr_lesszero, | sr_lesszero, sr_lesszero, d_zero non
(kq[1][1]=0) | (kq[1][1]=-0.5)
v v
(kq[2](2]=0) | (kql2][2]=-0.5)
v v
(kq[3]1[3]=0) | (kqI3][3]=-0.5)
= =
d_zero d_zero
H, G Table D-32 exception for eist_g_knownquantity
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H, : kgflag

mdg sdg mdpg sdpg | cdt gdt
kq[1][1]=udA | Out:=[ud] Out:=[ud] Out:=[ud] kq Out:=[ud] Out:=[ud]
kq[2]{2]=udA
kq[3][3}=ud
kq[1I[1J=udA | owr[3](3]:=1-1/kg[31[3]| out[31[3]:=1-kq(3)[3] | owr[31[3]:= kq(31[31/(1 + kq(31(3]) | ka ou31[31:=1- sqriCkqi313D) | our[31[3]:=1-1/ sqrt(kq(3][3])
kq{Z]{2]=udA | others ud others ud others ud. others ud others ud.
kq[3][3}#ud
kq[1][1]=udn | kg(2][2]:=1-1/kq[2}[2]| out[2][2):=1-kql2][2] | out[2]{2]:= kql2][21/(t+ kqf2][2]) kq ouf2][2]=1-sqrikq2]i2]) | our[2][2]:=1-1/ sqrt(kq2][2])
kq[2]i2}#udA | others ud others ud others ud. others ud others ud.
kq[3][3)=ud
kq{1}{1]=udA | out[2][2]:=1-1/kgq[2][2] out[2][2]:=1-kq[2)[2] | out[2][2]}:= kqi2][2}/(1 + kq{2][2]) | kq ou2]]2):=1-sqrthgi2]2)) | out{2][2):=1-1/sqrt(kqf2]{2])
kq2)IZ1#udA | Gue[3)[3):=1-1/ kq[31[3]| ourl3](3):=1-kql3)[3] | oufl31[3]:= kq(3](3}/(1 + kqI31[3D) oul31B31:=1-sqritkaBIBD | 5ur(3)(3):= 1~ 1/ sqre(kql313])
kq3](3J#ud | yorsud others ud others ud. others ud others ud.
kq[1][1}#udA | our[1}[1]:=1-1/kq(1][1] | om[1][1]:=1- kgf1]{1] out[11[1] = kqJ[11/Q + kgil}i) | kq oufljll:==1-sqrekgillll]) | oue[1}{1]:=1-1/sqre(kql1i[1])
kq[2}{2)=udA | others ud others ud others ud. : others ud others ud.
kq[3][3}=ud
kqU11(1]#udA | ouf[1)[1}:=1-1/kg(1][1] | owe(M)[1]:=1-kg1][1] | ouel1][1):= kqUiI[1}/(1 + kqll][1]) | kq out][l]:=1-sqrickgltI) | our{1][1]:=1—1/ sqrt(kg(1][1])
kq(2)[21=udA | oue(3][3):= 1-1/ kgl3][3)| oud3](3]=1-kqi31(3] | ow(31[3]1:= kql31(31/(1 + kql3][3]) oulBIB)= 1= sqrithkalBIBD | our([3](3]:= 11/ sqre(kql3](3])
kqB313J#ud | o ud others ud others ud. others ud others ud.
kq(1}{1]2udA | ow[1}{1):=1-1/kg(1)[1] { owt[1}{1):=1~kq(1])[1] | omt[1)[1):= kg[J[11/(1 + kgl1][1]) | kq ou1][t]:=1-sqrikg(l][l]) | our1][1]:=1~1/sqrt(kq[1][1])
kql2)21#udA | gur2j2):=1-1/ kql2)[2] out[2)[2}:=1-kq(2][2] | outl2][2] = kqi2}[2}/(1 + kq(2][2]) oul2l21=1-sqrike212D | oue(2][2]:= 1~ 1/ sqre(kgl2][2])
kq[3](3]=ud others ud others ud others ud. others ud others ud.
kql1}{1J#udA | ourf1}{1]:=1-1/kg[1}{1] | oue[1)[1]:=1~kgl][1] | ow[1][1]:= kqlLI[1}/(1 + kgl1][1]) | kq oul][l]=1-sqrickgillD) | out{1][1]:=1—1/ sqrt(kg(1][1])
kqR2I21#udA | Gu2][2):=1-1/ kq[2][2] out[2)[2]:=1-kq[2][2] | out[2][2]= kql2][2)/(1 + kql2](2]) ou2)2)=1-sqrtkgl212D) | oye12](2] = 1 -1/ sqre(kq(2][2])
kq[3][3]¢ud 0ut[3] [3] = kq[3][3] /(1 + kq[3][3]) out[3](31:= 1 - sqrt(kq(3)[3])

out[31[3}:=1-1/ kq(3][3]

others ud

out[3][3] =1~ kq(3]{3)

others ud

others ud.

others ud

out[3][3):=1-1/ sqrt(kq[3][3D
others ud.

G

Table D-33 out for eist_g_knownquantity
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H, : kgflag

Ifst efst fist eist tst

kq[1}[1}=udA | Out:=[ud] Out:=[ud] Out:={ud] kq Out:=[ud]
kq[2][2]=udA
kq[3][3]1=ud
kq[1][11=udA | our[3][3]:=1~1/sgrt2* kq(31[3]+1) | out[3][3]:=1—-sqre(l—2*kq(3]{3]) | owt[31[3]:= kql31(31/(1+ k9(31[3]) | kq out{3}[3]:= 1 - exp(~kq[31[3])
kq[2]{2]=udA | others ud. others ud. others ud.
kq[3](3]2ud others ud
kq[1)[1}=udA | ouf[2][2]:=1~1/sqrti(2* kg[2][2)+1) | out[2][2]:=1-sqre(l—2*kq[2][2]) | out[2][2]:= kq{2][2]/(1+ kq{2][2]) kq out(2][2] =1 - exp(—kg(2][2])
kq[2][2J#udA | others ud. others ud. others ud.
kq[3][3]=ud others ud
kql1){1]=udA | our{2][2):=1—1/sqrt(2* kq(2][2]1+1) | out[2][2] :=1-sqri(1—2*kql2][2]) | out[2][2]:= kql2}[21/(1 + kq(2][2]) | kq out[2]{2) :=1—exp(—kq[2][2])
kq2][21#udn | ou31(31:=1—1/sqre2* kq3l31+ D ot | out[3}[31:=1- sqre(1—-2*kqi31[3]) | cur31[3] = kql3][3)/(1 + kq[3][3]) out[3)13]:=1-exp(—kq[3][3])
kqB3]BJ#ud | perg ud. others ud ‘ others ud. others ud.
kq[1][1]#udA | ouf1][1]:=1~1/sqrt2* kqUI][11+ D o | owl][1]:=1—sqre(1—2*kqll]{1]) | ome[1)[1}:= kqILJ[11/(1 + kqfl}[1]) | kq out[1}[1] = 1 - exp(—kq[1][1])
kq{2][2]=udA | thers ud. others ud others ud. others ud.
kq[3][3]=ud
kq(1]{11#udA | owf1][1]:=1-1sqre2* kg1 +1) | owr{1][1}:=1—sqre(1—2*kg{l)[1]) | our[1][1]:= kq[NJ[11/( + kq{1][1])) | kq out[1][1] = 1 — exp(—Ag[1][1])
kq[2][2]=udA | ou(3)[3):=1-1/ sqrt(2* kq(31[3]+ Dot | out(3][3]:=1—sqre(i—2*kg(31[3]) | out[31[3]:= kq(31{31/(1 + kq(3][3]) out[3)[3]:= 1 - exp(~kql3]{3])
kqB3J3J#ud | pers ud. others ud others ud. others ud.
kq[1][1]#udA | out[1][1] =1—1/sqre(2 * kg{1][1] +1) out[1][1] = 1- sqrt(1 - 2 * kq{1]{1]) out{1][1] = kq[11[11/Q1 + kq[1][1D) kq out[1][1] = 1—exp(—kq{1][1])
kq[2}{2]#udA | Gu21[2] =1 1/5qrt (2 * kql2][2]+ 1) | ouf[2][2]:=1—sqrt(1 - 2*kq{2][2]) | our[2][2]:= kql2][2)/(1 + kq[2][2]) out[2][2]:=1-exp(-kq[2][2])
kq[3]{3]=ud others ud. others ud others ud. others ud
kq(1][1]J2udA | ouf1][ll=1-1/sqrt(2*kqll1}+1) | ow(1)[1]:==1—sqrr(1—2*kq(1][1]) | our(1][1] == kql1][1)/(1 + kq1]{1]) | kq out[1][1] := 1 — exp(—kgq[1]{1])
iqg}g}iug/\ out[2][2}:=1-1/5qrt (2 *kq[2][21+1) | out[2][2]:=1- sqre(1 - 2* kq(2][2]) | owt[2][2]:= kq[2][21/(1 + kqi2][2]) out{2][2]:=1- exp(~kgl2][2])

q #U

out[3][31:=1— 1/ sqrt(2* kq[3][3] + 1) ot
hers ud.

out[3][31:=1-sqre(1-2* iq(3][3]D)
others ud

out[3][3] = kql3]{31/(1 + kql3][3])
others ud.

out{3][3}:=1-exp(—kq[31[3])

others ud

—Continue

G Table D-33 out for eist_g_knownquantity (Continue)
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disp.dispu=uda
disp.dispv=udn
disp.dispw=ud

Out :=[ud]

disp.dispu=udna
disp.dispv=uda

out{3][3] := disp.dispw /(disp.dispw + sg.width)
others ud

disp.dispw=ud
disp.dispu=uda out{2][2]:= disp.dispv [(dispv + sg.height)
disp.dispvuda others ud

disp.dispw=ud

disp.dispu=udn

out|2)[2]) = disp.dispv /(disp.dispv + sg.height)

disp.dispv#uda out{31(3] := disp.dispw /(disp.dispw + sg.width)
disp.dispw#ud others ud
disp.dispuzuda out(1]{1] := disp.dispu /(disp.dispu + sg.length)

disp.dispv=uda
disp.dispw=ud

others ud

disp.dispuuda out[1][1] := disp dispu /(disp.dispu + sg length)
disp.dispv=uda out[3][3]:= disp.dispw Kdisp.dispw + sg.width)
disp.dispw+#ud others ud

disp.dispuzuda out{1)[1) = disp.dispu /(disp.dispu + sg length)
disp.dispvzuda out[21{2] := disp.dispv /(disp.dispv + sg.height)
disp.dispw=ud others ud

disp.dispuzuda out[\|[1] = disp.dispu /(disp.dispu + sg length)
disp.dispvudA out[2][2] = disp.dispv [(disp.dispv + sg.height)
disp.dispw=ud out[3][3} = disp.dispw /(disp.dispw + sg.width)

others ud

Table D-34 out for eist_g_geometry
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D. 3.25 True strain tensor module
Prefix: tst_
Reference: MG C.3.2.21

D.3.25.1 Interface syntax

Imported data type:
DisplacementT from the displacement specification module
TensorDataT from the tensor data definition module
TensorFlagT from the tensor data definition module
KinematicsT from the table structure module

Imported constant:

DIM 3
_Exported functions:
Routines name Inputs Outputs Exception
tst_g knownquantity TensorDataT TensorDataT
TensorFlagT
tst_g_geometry SpecimenGeometryT | TensorDataT none
DisplacementT

External functions:
real Infuntion(r: real)

D. 3.25.2 Interface semantics

State variable: none
Local variable:
temp: Real*[DIM][DIM]
State invariant: none
Assumption:
Access routine semantics:
tst_g_knownquantity(kq: TensorDataT, kqflag: TensorFlagT)
Exception: Table D-35

Output: Table D-36

tst_g_geometry(sg: SpecimenGeometryT, disp:DisplacementT)
Exception: none
Output: Table D-37
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mdg sdg mdpg sdpg cdt gdt 1fst

(kq[11[1120)v | (kq[11[11=0)v | (kq[1][1] <-D)v | (kq[1][1}=))v | (kq[1][1]=0)v | (kq[1][1]=0)Vv | (kq[1][1]=-0.5) Vv

(kq[2][2]1<0)v | (kq[21[2]=0)v | (kq[2][2] <-1)v | (kq[2][2]=1) v | (kq[2][2]=0) v | (kq[2][2]=0)v | (kq[2][2]=-0.5)V

(kq(3][31<0) | (kq[3]{3]=0) | (kq[3]{3]1<-1) | (kq[3][3]=1) (kq[3][3]=0) (kq[31[3]=0) (kq[3}[3]=-0.5)

= = = = = = =

In_err d_zero, In_err d_zero, d_zero, In_err, In_err,
(kq[1][1]<0)v kq(11[11>1) v | (kq[1][1]<0)v | (kq[1][1]<O)v | (kq[1][1]<-0.5)v
(kqf2][2])<0)v kql2][21>1) v | (kq[2][2]<0)v | (kqf2][2]<O)v | (kqi2]{2]<-0.5)v
(kq[3](3]<0) (kq[31[3]>1) (kq[3}{31<0) (kq[31(31<0) (kq[3]{3]<-0.5)
=In_err = =ln_err, =>sr_lesszero =sr_lesszero,

In_err sr_lesszero In_err
H, -G Table D-35 exception for tst_g_knownquantity continue—
efst list eist tst

non

(kq[1]{11=0.5) v
(kq[2](2]=0.5) v
(kq[3][3]=0.5)
=

d_zero,
(kq[1]{11>0.5)v
(kq[2][2]>0.5)v
(kq[31(3]>0.5)
=

sr_lesszero,
in_err

(kq[1]{1] < -D)v
(kqf2](2] =-Dv
(kq[3][3] =-1)
=

In_err

kq[1][1}=1) v
kqf2]12]=1) v
(kq[3113]=1)
=

d_zero,
kq[1][1]>1) v
(kqf2](2]>1) v
(kq[3][3]>1)
=

In_err

H, -G

continue —»  Table D-35 exception for tst_g_knownquantity
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H, : kgflag

mdg

sdg

mdpg

sdpg

cdt

kq[1][1}=udA
kq[2]{2]=udA
kq{3]{3]=ud

Out:=[ud}

Out:=[ud]

Out:=[ud}

Out:={ud]}

Qut::[ud]

kq[1][1]=udA
kq[2][2]=udA

out|3}[3) = In(kq(3]13])

others ud

out[3][3]:= In(1/ kg[3][3])

others ud

out[3][3] = In(1 + kg{3][3])

others ud.

out[3][3]:= In(1/(1 - kq(3][31))

others ud

out[3][3] = In(1/ sqrt (kq[3](3]))
others ud.

kq[3]{3]#ud
kqlll[1}=udA | out[2](2]:= In(kg(2][2D) | out[2}[2]:=In(1/ kq[2](2)) | out[2][2] = In(1+ kq[2][2])| ouf2][2]:=In(1/(1—kq{2][2])) | out[2]{2]:=In(1/ sqre(kq[2][2]))
kq(2][2]#udA | others ud others ud others ud. others ud others ud.

kq(3](3]=ud

kq(1][1]=udA

out{2][2] = In(kq{2}[2])

out(2][2] = In(1/ kqf2][2])

out{2](2] = In(L+ kg(21{2])

ouf{2][2] = In(1 /(1 - kq{2][2]))

out(2]{2] = In(1/ sqre(kq{2]{2]))

kq[2][21#udA | G0(3]13] = In(kq(3][3]) | oue(3][31:= In(L/ kq[31[3D) | our(3][3]:= In(l+kgi3I[3]) | our(3][3]:= In(1/(1— kq(3](3])) | others ud
kq(3](3)#ud others ud others ud others ud others ud
kq[1][1J2udA | ouf[1][1}:= In(kql1][1]) ouflI[1):=In(1/ kq[1I[1]) | owtl1[1):= In(1 + kg[1J[1]) | ou1]{1}:= In(1/(1 - kql1][1])) outN1] = In(1/ sqrt(kq(11{11))

kq[2)[2]=udA
kqi3](3]=ud

others ud

others ud

others ud.

others ud

others ud.

kq[1]{1]#udA
kq[2][2}=udA
kq[3](3]#ud

out(1]{1] = In(kq(11(1])
out[3}[3]:= In(kq(3]{3])

others ud

out[1}{1] := In(1/ kg{1][1])
out[3][3]:= In(1/ kq[3](3])

others ud

out{1][1] = In(1 + kq[1][1})
out[3][3] = In(1 + kq{3}{3])

others ud

out[1][1] = In(1/(1 - kq{1][11))
out[3}[3]:= In(1/(1 - kq[3]{3]))

others ud

out[1][1] = In(1/ sqrt(kq(1][1]))
out[3}{3}:= In(1/ sqrt (kql3][3]))

others ud

kq[1]{1]#udA
kq[2]{2]#udA
kq{31[3}=ud

owut[1][1] = In(kql1][1])
out[2][2] = In(kq(2][2})

others ud

out[1][1]:= In(1/ kql1][1])
out[2][2} = In(1/ kq[2][2])
others ud

out[1)[11:= In(1 + kg[N)[1])
out]2][2] = In(1 + kq{2][2])

others ud

out[1][1] := In(1/(1 - kg[1][1]))
ouf{2}{2] = In(1/(1 - kqf2][2]))

others ud

out[1}[1] = In(1/ sqrt(kq{1][1]))
out{2)[2] = In(1/ sqrt(kg[2][2])

others ud

kq[1][1]#udA
kq[2]{2]#udA
kqi3]i3]#ud

out[1)[1] = In(kqTI][1)
out[2][2] = In(kg(2][2)
out[3][3]:= In(kqf31{3])

others ud

out[1][1] = In(1/ kq[1][1})
outl2][21:= In(1/ kq(2][2})
out[3][3]:= In(1/ kq(3][3])

others ud

owt[1][1] = In(1 + kq[1][1])
out{2][2] = In(1 + kq[2][2])
out[31{3] = In(1 + Aq{3][3])

others ud

out[1}{1] = In(1 /(1 — kgl1)[1]))
out[2]{2] = In(1/(1 - kq{21{2]))
out[31[3] = In(1 /(1 - kq(31[31)

others ud

out{1][1] = In(1/ sqrt(kq[1}{1]))
out[21[2]:= In(1/ sqrt(kg[2][2])
out[31{3] == In(1/ sqre(kq(3][31]))
others ud

G

Table D-36 out for tst_g_knownquantity
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H, : kgflag

gdt

Ifst

efst

kqf1]{1]=udA
kq[2]{2]=udA
kq[3]{3]=ud

Out :=[ud]

Out:=[{ud]

Out:=[ud]

kq(3]{3]=ud

KalL)(11=udn | om3](3] = In(sqriCkq3 3] others | our[313] = In(sqre(2* kq3I3]+ D) o | ourl31(3]):= In(/ sqre(i~ 2 * kq[31[3])) other
kq[2][2]=udA | ud thers ud sud '
kq[3][3]#ud

Kqi1][1]=udn | oml2][2] = In(sqriGkgl2l2D) other | oufl2][2] = In(sqre(2 * kqi2][2] + D) o | our(2)[2]= In(L/ sqre(1— 2 * kg(2][2])) other
kq[2][2}#udA | sud thers ud sud

kql[1][1}=udA

out[2)[2) = In(sqrt (kqf2][2])

out[2)[2} = In(sqre (2 * kq(2]{2) + 1))

out[21[2]:= In(1/ sqrt(1— 2 * kq[21[2]))

kq[2][2]=udA
kq(3}(3]=ud

others ud

kq[2][21#udA | ou[3][3) = In(sqrt(kql3][31) others | ouf[3][3]:= In(sqrt(2* kq31[3]+1)) out[3][3] = In(1/ sqre(1 - 2 * kq(3]{3])) other
kq(3}{3}#ud | g others ud sud
kq[1](11zudA | our1](1}:= In(sqre(kqil][1])) out[1][1] := In(sqrt(2* kq1][1] +1)) out[1][1]:= In(l/ sqre(1 - 2 * kq(1]{1]))

others ud

others ud

ud

kqi1][1}#udA | outl1}[1]:= In(sqrt(kql1}[1])) out[1][1] := In(sqrt(2* kql1][11 + 1)) out{1][1} = In(1/ sqre(1 ~ 2* kq{1][11))
kq[2)i2)=udA | ou3][3] = In(sqrt(kgi3}[3])) others | ourf3}[3]:= In(sqrt(2* kq{3][3] +1)) out{3][3] := In(1/ sqrt(1— 2 * kq[3][3])) other
kq[3][3]#ud | ud others ud s ud

kq(1][1]#udA | ouf{1]{l]:= In(sqre(kql11{1])) out{1][1] = In(sqrt(2 * kqf1]{1] + 1)) out{1){1] = In(1/ sqre(l ~ 2 * kgq{1][11))
kq[2]{2]#udA | out(2][2] = In(sqrt(kql2][2])) other | our(2][2] = In(sqre(2 * kq(2][21+ 1)) 0 | out[2][2]:= In(1/ sqrt(1—2 * kq{2][2])) other
kq[3][3]=ud sud thers ud sud

kql1](1]#udn | owl1][):= In(sqrt (kq[i1IID) outl1][1)= In(sqrt@* kgl +1) | owL][1):=In(1/ sqre(1—2* kq{l}[1])
kq[2][2]#udA | out[2][2] = In(sqrt(kql2][2])) out[2][2]) = In(sqrt(2 * kql21[2]+ 1)) | out[2][2] = In(1/ sqrt(1 -2 * kq(2][2]))
kq(3]3J#ud | our(3](3] := In(sqrr(kq(3](3])) others

out[3)[3] = In(sqre (2 * kq(3]{3] + 1))
others ud

out[31[3] = In(1/ sqre(1— 2 * kq(3][3])) other
sud

—Continue G

Table D-36 out for tst_g_knownquantity (Continue)
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H, : kgflag

list eist tst
kq[1]{1]=udA | Out:=[ud] Out:=[ud] kq
kq[2][2]}=udA
kq[3]{3]=ud
kq[1][1]=udA | ouf[3][3]:= In(l+ kq(3][3]) out[3][3] = In(1/(1- kq[31[3])) | ka
kq[2][2]=udA | others ud. others ud
kq{31[3]ud
kq(1l{1}=udA | our[2][2]= In(l + kq[21(2]) ouf{21{21:= In(L/(1 - k4{2}{2])) kq
kq[2][2]#udA | others ud. others ud
kq[3]1{3]=ud
kq[1][1]=udA | our[2]{2] = In(1+ kqf21{2]) ouf[2}{2] = In(1/(1 - kq2]{2])) kq
kq2][2]#udA | 503113] = In(l + kg 31(3]) out[3][3] = In(1 /(1 - kq{31[3]))
kq(3]{3}#ud others ud others ud
kq[1][1}zudn | ouf1][1]:= In(l + kq(1][1]) ouf{1}{1} = In(1/(1 - kq(1]{1])) kq
kq{2][2]=udA | others ud. others ud
kq[3]{3]=ud
kq[1J[11#udA | ouf1][1] = In(l + kqT1]{1]) out{1][1]:= In(1/(1 — kg[11[1])) kq
kq[2](2]=udA | ou[3]{3]:= In(l + kq(3][3]) out{31[3] = In(1/(1 - kq(3](3]))
kq[3]{3}zud others ud others ud
kq[1){112udA | ouf1}[1]:= In(1 + kq[1][1]) out[1][1] := In(1/(1 — kg[1][1])) kq
kq2](2l#udA | ouf2](2]:= In(1 + kq[2](2]) ouf{2][2]:= In(1/(1- kg{2][2D)) ot
kq[3][3]=ud others ud hers ud
kq[1}{112udA | ouf1}[1]:= In(t + kq[1][1}) out[1][1] := In(1 /(1 — kg[1][1])) kq
kq[2)2}#udA | our(2][2] = In(1 + kql2][2]) our{2)[2] = In(1 /(1 - kg{2][2]))
kaB)3l#ad ) 39(3] = Inl+ kgt3103D) out[3][3] = In(1 /(1 - kq[31[31)

others ud others ud
—Continue G Table D-36 out for tst_g__knownquantity (Continue)
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disp.dispu=udn
disp.dispv=uda
disp.dispw=ud

Out :=[ud]

disp.dispu=uda .

disp.dispv=uda

out[3]{3] = In(1 + dispw / sg . width)
others ud

disp.dispw#ud
disp.dispu=udn out[2){2) := In(1 + disp.dispv | sg.height)
disp.dispvuda others ud

disp.dispw=ud

disp.dispu=uda

out[2](2] = In(1 + disp.dispv / sg .height)

disp.dispvuda out{3][3] = In(1 + dispw/ sg.width)
disp.dispw#ud others ud
disp.dispuuda out[1][1] := In(1 + disp.dispu | sg length)

disp.dispv=uda
disp.dispw=ud

others ud

disp.dispuzuda out[1][1} := In(1 + disp.dispu / sg length)
disp.dispv=uda out{3][3] = In(1 + dispw/ sg.width)
disp.dispw;éud others ud

disp.dispuuda out[1][1} = In(1 + disp.dispu / sg length)
disp.dispvuda out[2]{2] = In(1 + disp.dispv / sg.height)
disp.dispw=ud others ud

disp.dispuuda out[11[1] = In(1 + disp.dispu [ sg length)
disp.dispvzuda out[2][2] := In(1+ disp.dispv ! sg height)
disp.dispw#ud out[3}[3] = In(1 + dispw / sg.width)

others ud

Table D-37 out for tst_g_geometry
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D. 3.26 Displacement constitutive calculation module
Prefix: dcc_
Reference: MG C.3.2.7

D. 3.26.1 Interface syntax

Imported data type:
DisplacementT from the displacement specification module
KinematicsT from the table structure module
StressT from the table structure module
TensorDataT from the material deformation gradient module
ExperimentClassT from the experiment definition module
ExperimentTypeT from the experiment definition module
PropertylistT from material properties file module
Exported data type: none
Exported constant:  none
External functions:
All access routines in this module interface specification are available.
Exported function:

Routines name Inputs Outputs Exception

Virtual DisplacementT StressT

dcc_dispconstitutive KinematicsT KinematicsT
SpecimenGeometryT
PropertylistT

D. 3.26.2 Interface semantics

State variable: none

State invariant; none

Assumption:

® The experiment designer can understand module interface specification.

* When the constitutive equation is involved in the experiment, since it is hard to
summarize the constitutive equation as a unique form with a fixed pattern, the
experiment designer is given more freedom to provide the implementation of this
routine and also the experiment designer can also design the local functions based
on the requirements except that the designer can call all access routines in the
module interface specification

Access routine semantics:
virtual dcc_dispconstitutive(disp: DisplacementT, spe: SpecimenGeometryT, prolist:
PropertylistT, kin: KinematicsT)
exception: Exception occurs depending on known kinematics quantities
and how to calculate the approximation of the constitutive
equation. The experiment designer is responsible for exceptions
in this routine.
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output:

Stresses are obtained based on the approximation of the
constitutive equation and known conditions such as
displacements and kinematics quantities. Based on the
constitutive equation, kinematics quantities can be recalculated
again.
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D. 3.27 Load constitutive calculation module
Prefix: lcc_
Reference: MG C.328

D. 3.27.1 Interface syntax

Imported data type:
LoadT from the load specification module
KinematicsT from the table structure module
StressT from the table structure module
TensorDataT from the tensor data definition module
ExperimentClassT from the experiment definition module
ExperimentTypeT from the experiment definition module
PropertylistT from material properties file module
Exported data type: none
Exported constant:  none
Exported function:

| 1
Routines name Inputs Qutputs Exception
virtual LoadT StressT
lcc_loadconstitutive StressT KinematicsT

KinematicsT DisplacementT
SpecimenGeometryT
PropertylistT

D. 3.27.2 Interface semantics

State variable: none
State invariant: none
Assumption:

e The experiment designer can understand the module interface specification.

e When the constitutive equation is involved in the experiment, since it is hard to
summarize the constitutive equation as a unique form with a fixed pattern, the
experiment designer is given more freedom to provide the implementation of this
routine and also the experiment designer can also design the local functions based
on the requirements.

Access routine semantics:
virtual lcc_loadconstitutive(load: LoadT, stress: StressT, spe: SpecimenGeometryT,
prolist: PropertylistT, kin: KinematicsT)
exception: Exception occurs depending on known kinematics quantities
load and how to calculate the approximation of the constitutive
equation. The experiment designer is responsible for exceptions
in this routine.
output: That which stress and which strain are used in the constitutive
equation decides how to calculate the approximation of
constitutive equation. Displacements can be obtained by the
strain. Once the displacement is known, other kinematics
quantities can be calculated.
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D.3.28 Engineering stress module
Prefix: es_
Reference: MG C.3.223

D. 3.28.1 Interface syntax

Imported data type:
SpecimenGeometryT from the specimen geometry module
DisplacementT from the displacement specification module
LoadT from the load specification module
TensorDataT from the tensor data definition module

Imported constant:

DIM 3
Exported constant:  none
Exported functions:

Routines name Inputs Outputs Exception
es_initengstress TensorDataT none
es_g_engstress LoadT TensorDataT none
SpecimenGeometryT

es_g_knownstress TensorDataT TensorDataT none
DisplacementT
SpecimenGeometryT

External function:
ed_g_experimenttype

D. 3.28.2 Interface semantic

State variable: none
State invariant: none
Assumption:
¢ es_initengstress should be called before other access routines.
¢ Before es_knownstress is called, displacement deformation should be obtained by
calling lcc_loadconstitutive access routine.
Access routine semantics:
Es_initengstress()
Exception: none.
Output: Table D-38

es_g_engstress(load: LoadT, spe: SpecimenGeometryT,
truestress: TensorDataT)
exception: none.
output: Table D-39

es_g_knownstress(disp: DisplacementT, spe: SpecimenGeometryT, truestress: TensorDataT)
exception: none
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output: Table D-40
(localtype=H)—G
H | Uniaxial | Biaxial | Multiaxial
[0 ud ud] [0 ud ud 0 ud ud H-G
G| (ud ud ud ud 0 ud ud 0 ud
|\ud ud ud | |\ud ud ud ud ud 0
Table D-38 out for es_initengstress
G
H load.loadu=udA Out :=[ud]
load.loadv=uda
load.loadw=ud H-G

load.loadu=udA
load.loadv=udA
load.loadw=ud

out[3][3] = load loadw (spelength * spe.height)
others ud

load.loadu=udA
load.loadv#uda
load.loadw=ud

out[2[2) := load loadv [(spelength * spe.width)
others ud

load.loadu=uda
load.loadvzuda
load.loadw=ud

out[2}[2] = load doadv [(spe.length* spe.width)
out[3][3) = load loadw/(spelength * spe.height)
others ud

load.loadu#udAa
load.loadv=udA
load.loadw=ud

out(1][1]:= load loadu /(spe.height * spe.width)
others ud

load.loadu#udAa
load.loadv=udA
load.loadw=ud

out{11{1] := load Joadu /(spe.height * spe.width)
out[31{3] = load Joadw /(spelength * spe.height)
others ud

load.loaduuda
load.loadv£uda
load.loadw=ud

out[1)[1]:= load Joadu /(spe.height * spe.width)
out[21[2) = load loadv /(spe.length * spe.width)
others ud

load.loadu#uda
load.loadvuda
load.loadw=ud

out{11[1] := load loadu /(spe.height * spe.width)
out[2)[2):=load loadv [(spelength* spe.width)
out[3][3] = load loadw/(spelength * spe.height)
others ud

Table D-39 out for es_g_engstress
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ts[1][1]=udA
ts[2][2}=udA
ts{3](3]=ud

Out:={ud}

ts[1][1]=udA

ou[3][3) = 1s13][3] (spelength+ disp.dispu)(spe.height + disp.dispv)

ts[2][2]=udA spelength* spe.height

ts[3][3)=ud others ud

ts[1}{1]=udA (spelength + disp.dispu)(spe.width + disp.dispw)
12][2] = ts[2]{2

ts[2][2+udn | [2](21:=1512112] spelength* spe.width

ts[3](3]=ud

others ud

ts[1]{1]=udA

out[2][2] = 5[2)[2] (spelength + disp.dispu)(spe.width + disp.dispw)

ts[2][2]udA spelength* spe.width
ts[3][3}#ud (spelength+ disp.dispu)(spe.height + disp.dispv)
ow[3]{31:= ts{3][3] -
spelength* spe.height
others ud
ts[1][1])udA (spe.width + disp.dispw)(spe.height + disp.dispv)

ts[2]{2]=udA
ts[3]{3]=ud

out[1]{1] = ts{1][1]

spe.width * spe.height
others ud

ts[1]{1]#udA _ (spe.width + disp.dispw)(spe.height + disp.dispv)
ts[2][2]=udA outli]{1]:= st spe.width * spe.height
ts[3](3)#ud 31031 = ss13]3] (spelength + disp.dispu)(spe.height + disp.dispv)
outl3)(3):= 5131 spelength* spe.height
others ud
ts{1]{1]udA _ (spe.width + disp.dispw)(spe.height + disp.dispv)
ts[2][2]#udA out[1]{1]:= ss{1]L1] spe.width * spe.height
ts[3][3}=ud (s , , . , .
_ pelength + disp.dispu)(spe.width + disp.dispw)
out[2](2) = is[2](2] spelength* spe.width

others ud

ts[1]{1]#udA
ts{2][2]-udA
ts[31{31=ud

(spe.width + disp.dispw)(spe.height + disp.dispv)
spe.width * spe.height
(spelength + disp.dispu)(spe.width + disp.dispw)

out[1][11:=ts[1][1]

out[2][2] = ts{2][2
[2]1[2] = ts{2][2] spelength* spewidth

(spelength+ disp.dispu)(spe.height + disp.dispv)
spelength™ spe.height

out[3][31:= ts(3][3]

others ud

Table D-40 out for es_g_knownstress

250

H—-G



D. 3.29 True stress module

Prefix: tsm_
Reference: MG C.3.222

D. 3.29.1 Interface syntax

Imported data type:
SpecimenGeometryT from the specimen geometry module
LoadT from the load specification module
DisplacementT from the displacement specification module
TensorDataT from the tensor data definition module
Exported constant:  none
Exported functions:

[ Routines name Inputs Outputs Exception
tsm_initturestress TensorDataT none
virtual LoadT TensorDataT
tsm_g_truestress KinematicsT
SpecimenGeometryT

tsm_g_knownstress TensorDataT TensorDataT none
DisplacementT
SpecimenGeometryT

D. 3.29.2 Interface semantics

State variable: none
State invariant: none

Assumption:

+ tsm_inittruestress should be called to initialize true stress before other access

routines.

¢ Before tsm_g_knowstress is called, displacement deformation should be obtained

by calling lcc_loadconstitutive access routine.

¢ True stress is needed in the constitutive equation. If engineering stress is needed

in the corresponding constitutive equation, then tsm_g_truestress is meaningless.

Access routine semantics:
tsm_inittruestress()
Exception: none.
Output: Table D-41

virtual tsm_g_truestress(load: LoadT, spe: SpecimenGeometryT, kin:KinematicsT)

exception: Exception occurs depending on how
approximation of the constitutive equation. The experiment

to calculate

designer is responsible for exceptions in this routine.

output: The experiment designer is responsible for the implementation

of this routine.
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tsm_g_knownstress(disp: DisplacementT, spe: SpecimenGeometryT,

engstress: TensorDataT)

exception: none.
Output: Table D-42
(localtype=H)—>G
H | Uniaxial | Biaxial | Multiaxial |
0 ud ud 0 ud ud 0 ud ud H-G
G| |ud ud ud ud 0 ud ud 0 ud
ud wud ud ud ud ud ud ud 0
Table D-41 out for tsm_inittruestress G
es[1}[1]=uda | Out:=[ud]}
H es[2][2]=udA
es[1][1]=udA spelength* spe.heigtht

es[2]{2]=udA
es[3][3]=ud

out[3][3] = es[3][3]

(disp.dispu + spelength)(spe.height + disp.dispv)

others ud
es[1][1]=udA length* spe.width
ot | ow2I2] = esf2jf2———Spengl peni
(spe.width + disp.dispw)(spelength+ disp.dispu)
es[3](3]=ud others ud
es[11{1]=udA speldength* spewidth
out[2]]2] = es[2][2
es[2][2]#udA [2](2):= es2) ](spe.width+disp.dispw)(spe.length+disp.dispu)
es[3][3]#ud out[3][3] = esi31[3] spelength* spe.heigtht
' (disp.dispu + spelength)(spe.height + disp.dispv)
others ud
es[1][1]udA spe.width * spe.height

es[2][2]=udA
es[3][3]=ud

out[1][1]:= es{1][1] ———— . — ,
(disp.dispw + spe.width)(disp.dispy + spe.height)

others ud
es{1][1]#udA out[1][1] = es[1] spe.width * spe.height
es[2][2]=udA (disp.dispw + spe.width)(disp.dispv + spe.height)
es[3](3}#ud out[3][3] = es[3)[3——— spelength* spe.heigtht _
(disp.dispu + spelength)(spe.height + disp.dispv)
others ud
es[1][1]#udA . spe.width * spe.height
es[2][2)=udA outll]{1]:= estl}fh (disp.dispw + spe.width)(disp.dispv + spe.height)

es[3]{3]=ud

spelength* spe.width

1[2][2] = es[2][2
out(2][2]:= est2ll ](spe.width+disp.dispw)(spejength+disp.dispu)

others ud
es[1][1]=udA spe.width * spe.height
oo | owtlll) = esjf}—————peridr L pelcle :

(disp.dispw + spe.width)(disp.dispv + spe.height)

es[3][3]=ud * .

outl2][2) = es(2][2] : s'pe.le.ngth spe.width .

(spe.width + disp.dispw)(spelength + disp.dispu)
spelength* spe.heigtht

out{3][3] = es[3][3]

(disp.dispu + spelength)(spe.height + disp.dispv)
others ud

Table D-42 out for tsm_g_knownstress

252



D. 3.30 Output show module
Prefix: os_
Reference: MG C.3.14

D. 3.30.1 Interface syntax

Exported data type:
CoordDataT = sequence of Real*
Exported constant:

None
Exported functions:
Routines name Inputs Outputs Exception
os_curveshow CoordDataT Undefined_data
CoordDataT

D. 3.30.2 Interface semantics

State variable:
None
State invariant:
None
Assumption;
None
Access routine semantics:
os_curveshow(x: CoordDataT, y: CoordDataT)
exception: (x[0)=undefined)|(y[O}=undefined)=>undefined_data
output: In the coordinate system all the points whose value (x,y) is
respectively from the inputs x and y. The curve that is
composed of all the points will be drawn in the coordinate
system.
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Appendix E

Component description for Virlab

1 Structure component

Name

Structure component

Role in the system

Fundamental component

Service

Provide the data structures that are used to represent the required
information by the experiment. These data structures act as a
bridge between outside information input by the specification and
inside information required by the algorithms. The structure
component communicates with outside specifications and
algorithms by its interfaces.

Composition

Constitutive equation (con_equ) structure module
Displacement (disp) structure module

Load (load) structure module

Tensor structure module

Experiment (exp) definition module

Specimen (spe) geometry module

Interface
specification

The structure component interfaces are composed with its
component modules’ interfaces. Please refer to the corresponding
module interface specification found in the Appendix D: module
interface specification for theVirlab

2 Stress component

Name

Stress component

Role in the system

Functional component

Service

Stress component is used for the calculation of the true stress and
engineering stress

Composition True stress tensor module

Engineering stress tensor module
Interface 1. The composed modules’ interfaces are available for the use.
specification Please refer to the module interface specification found in the

appendix D
2. Based on the similarities between the engineering stress
module’s interfaces and true stress module’s interface, two
additional interfaces are summarized below.
o sc_initstress(outflag: TensorFlagT)
Output: output is based on the value of outflag shown in
the table E-2-1
Exception: exceptions are triggered from the calling
programs and same as the exceptions from the
calling programs
Outflag = TSST | tsm_inittruestress
Outflag = ESST | es initengstress
Table E-3-1 output for sc_initstress
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o sc_knownstress(outflag:TensorFlagT, ss: TensorDataT;
disp: DisplacementT; sg: SpecimenGeometryT)
Output: output is based on the value of outflag shown in
the table E-2-2
Exception: exceptions are triggered from the calling
programs and same as the exceptions from the
calling programs
Outflag = TSST | Tsm g knownstress(ss,disp,sg)
QOutflag = ESST | es g knownstress(ss,disp,sg)
Table E-2-2 output for sc_knownstress

Comments a. TensorFlagT is from the Tensor data definition
module in the structure component
b. TensorDataT is from tensor data definition
module in the structure component
c. DisplacementT is from the displacement
structure module in the structure component
d. SpecimenGeometryT is from the specimen
geometry module in the structure component
e. Capital letters such as MDPG are from the
tensor data definition module in the structure
component.
3 disp_con component
Name disp con component

Role in the system

Functional component

Service

This component provides the algorithms to approximate the
constitutive equation in the displacement-controlled experiment.

Composition displacement constitutive (disp_con) calculation module
Interface This component just includes one module and its interfaces are
specification also the composed module’s interfaces. Please refer to the module
interface specification found in the appendix D
4 load con component
Name load con component

Role in the system

Functional component

Service

This component provides the algorithms to approximate the
constitutive equation in the load-controlled experiment.

Composition load constitutive (Joad con) calculation module
Interface This component just includes one module and its interfaces are
specification also the composed module’s interfaces. Please refer to the module
interface specification found in the appendix D
5 kinematics component
| Name | kinematics component
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Role in the system

Functional component

Service

Based on the definitions given by [MG70], kinematics component
is used to calculate the kinematics quantities.

Composition

material deformation gradient module
spatial deformation gradient module
material displacement gradient module
spatial displacement gradient module
Cauchy’s deformation tensor module
Green’s deformation tensor module
Lagrangian finite strain tensor module
Eulerian finite strain tensor module
Lagrangian infinitesimal strain tensor module
Eulerian infinitesimal strain tensor module
True strain tensor module

Stretch tensor module

Stretch ratio tensor module

Interface
specification

The composed modules’ interfaces are available for the use.
Please refer to the corresponding module interface specification
found in the appendix D. Based on the similarities among all the
composed modules’ interfaces in the kinematics component, two
interfaces are summarized below.
a. kc_knownquantity(comeflag, outflag:
TensorFlagT; kq: TensorDataT)
Output: output is based on the value of outflag shown in
the table E-5-1
Exception: exceptions are triggered from the calling
programs and same as the exceptions from the
calling programs

outflag=MDG

mdg g knownquantity(kq, comeflag)

outflag=SDG

sdg g knownquantity(kq, comeflag)

outflag=MDPG

mdpg g knownquantity(kq, comeflag)

outflag=SDPG

sdpg g knownquantity(kq, comeflag)

outflag=CDT

cdt g knownquantity(kq, comeflag)

outflag=GDT

gdt g knownquantity(kq, comeflag)

outflag=LFST

Ifst g knownquantity(kq, comeflag)

outflag=EFST

efst ¢ knownquantity(kq, comeflag)

outflag=LIST | list g knownquantity(kq, comeflag)
outflag=EIST | eist g knownquantity(kq, comeflag)
outflag=TST tst ¢ knownquantity(kq, comeflag)

Table E-5-1: output for kc_knownquantity

b. kc_geometry(outflag: TensorFlagT, disp:
DisplacementT, sg: SpecimenGeometryT)
Output: output is based on the value of outflag shown in
the table E-5-2
Exception: exceptions are triggered from the calling
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programs

outflag=MDG | mdg g geometry(sg,disp)
outflag=SDG sdg g geometry(sg,disp)
outflag=MDPG | mdpg g geometry(sg,disp)
outflag=SDPG | sdpg g geometry(sg,disp)
outflag=CDT | cdt g geometry(sg,disp)
outflag=GDT | gdt g geometry(sg,disp)
outflag=L FST | Ifst g geometry(sg,disp)
outflag=EFST | efst ¢ geometry(sg,disp)
outflag=LIST | list g geometry(sg,disp)
outflag=EIST | eist g geometry(sg,disp)
outflag=TST tst g geometry(sg,disp)

Table E-5-2: output for kc_geometry

Comments c. TensorFlagT is from the Tensor data definition
module in the structure component
d. TensorDataT is from tensor data definition
module in the structure component
e. DisplacementT is from the displacement
structure module in the structure component
f. SpecimenGeometryT is from the specimen
geometry module in the structure component
g. Capital letters such as MDPG are from the
tensor data definition module in the structure
component.
6 table component
Name Table component

Role in the system

Application component

Service

Table component is specially designed to describe the
experimental data in the form of the table so this component
provides a data structure to do this.

Composition Table structure module
Interface This component just includes one module and its interfaces are
specification the also the composed module’s interfaces. Please refer to the
module interface specification found in the appendix D
7 output component
Name show outputcomponent

Role in the system

Application component

Service

Show outputcomponent is specially designed for the output of the
result data. This component is used when the experiment is done
and the result data is ready for the use.

Composition

Show outputmodule

Interface

This component just includes one module and its interfaces are
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specification

the also the composed module’s interfaces. Please refer to the
module interface specification found in the appendix D
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Appendix F  The procedure for adding a new constitutive

equation

In this appendix, the step-by-step instructions are presented for the designer to add a new

constitutive equation as a new component into the Virlab software. In the following steps

we mention COM, Visual C++ and Visual Basic. It is the responsibility of the designer to

learn how to program in Visual C++, Visual Basic and COM technologies.

1.

Read the MIS carefully, especially Sections D. 3.26 and D. 3.27 (together with
Appendix D) that describe the MIS for the displacement constitutive calculation
module and load constitutive calculation module and understand the corresponding
module interface.

Follow the COM standard to write your programs about the approximation of the new
constitutive equation and create the DIl file. (Many programming languages support
the COM standard. We used ATL COM AppWizard in Visual C++ 6.0 to write the
program for the approximation of the Maxwell equation in the uniaxial displacement-
controlled experiment.) Record the component name that you declare in the DIl file.
We suggest that the best approach is to have the component name that you declare in
DIl file and the name of DI file the same.

Register the DIl into the operating system. (In Visual C++, the DIl file performs

registration after successfully linking.)

The above steps are about creating the DIl library. Below we describe how to modify

visual basic source codes for the Virlab software.

4. Open userinterface.vbp project in the Visual Basic environment (suggest Visual Basic

version 6.0)
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5. Modify the constitutive equation specification module
Find the frmSetup frame and view its source codes, locate ShowConstitutiveEquation
procedure and search the comments “Modify here if adding a new constitutive”.
There are two tips in this procedure, “add a new item to the list constitutive
equation”, add the name of the DIl file to the list; “declare a new text for the material
property” declare a new Textbox for inputting each material property of the new
constitutive equation.

6. Modify the Experiment module
Find the frmNext frame and view its source codes, locate DoingExperiment function
and search the comments “Modify here if adding a new constitutive equation”. There
are several tips in this procedure, such as: “declare a new component”, declare a new
component in Visual Basic by setting a name as a new component name (For
example, Set DispConstitutive = New ConEquDisp, the DispConstitutive name
represents a name given by the designer now and ConEquDisp is the name you have
declared for the component in the DI file.)

7. Add a condition template “If ----End If
If the output of your program is for the strain, find the comments “strain information”
in DoingExperiment function, if the output of your program is for the stress, find the
comments “stress information”. After locating the strain and stress information, add a
condition template, the condition is that the current item in the list of constitutive
equation (IstConstitutive) is equal to the component name you have declared in your
Dll file.

8. Fill into the table
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Once you locate the position of the strain and stress, you can fill the data into the
table between if and end-if. First convert your output numerical value to string type,
then add the output into the table by calling the table interface.
When the described eight steps have been completed, click the button “Run” in the
Visual Basic environment and run the Virlab. The new constitutive equation will be

available for future users of the Virlab system.
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